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1 Abstract

Flood magnitude and frequency estimation are essential for the design of structural and nature-based flood risk
management interventions and water resources planning. However, the global geography of hydrological
observations is uneven with many regions, especially in the Global South, having spatially and temporally sparse
data that limits the choice of statistical methods for flood estimation. To address this data scarcity, we pool all
available annual maximum flood data for the Philippines to estimate flood magnitudes at national scale. Available
rver discharge data were collected from publications covering 842 sites, with data spanning from 1908 to 2018.
Of these, 466 sites met criteria for reliable estimation of the annual maximum flood. Using the index flood
approach, a range of controls were assessed at both national and regional scales using modern land cover and
rainfall datasets, and geospatial catchment characteristics. Predictive equations for 2- to 100-year recurrence
interval floods using only catchment area as a predictor have R? < 0.59. Adding a rainfall variable, the median
annual maximum 1-day rainfall, increases R? to between 0.56 for Q100 and 0.66 for Q.. Very few other topographic
or land-use variables were significant when added to multiple regression equations. Relatively low R? values in
flood predictions are typical of studies from tropical regions. Although the Philippines exhibits regional climate
variability, residuals from national predictive equations show limited spatial structure, and region-specific
equations do not significantly outperform the national equations. The predictive equations are suitable for use as
design equations in ungauged catchments for the Philippines, but statistical uncertainties must be reported. Our
approach demonstrates how combining individually short historical records, after careful screening and exclusion
of unreliable data, generates large data sets that can produce consistent results. Extension of continuous flood
records by continuous and rated monitoring is required to reduce uncertainties. However, the national-scale
consistency in our results suggests that extrapolation from a small number of carefully selected catchments could
provide nationally reliable predictive equations with reduced uncertainties.

2 Introduction and rationale

The impact of river flooding across Southeast Asia is severe on a global scale, whether measured in terms of
inundated area, the number of people affected or fatalities (Ziegler et al., 2020). Understanding the hazard and
designing mitigation or adaptation strategies relies on estimating flood magnitude and frequency, which is
achieved through empirical analyses of available data and, for forecasting, the results of climate and hydrological
models. The resulting equations to estimate flows of specified recurrence are used for a wide range of purposes
including insurance loss estimation (Lyubchich et al., 2018), aquatic biodiversity assessment (Parasiewicz et al.,
2019), engineering design and water resource planning.
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Understanding flood magnitude and frequency is crucial for designing mitigation strategies, and this
understanding relies on using empirical analyses to generate predictive models. A wide range of statistical
methods have been applied to flood frequency estimation (see Asquith et al., 2017 for a recent listing). The index
flood approach uses the median or mean annual maximum flood, or equivalently a flood of specified recurrence
interval, and relates this to catchment properties to develop regional predictive equations (eg Dalrymple, 1960;
Kjeldsen and Jones, 2006; Stedinger and Lu, 1995). In data-rich settings, such approaches can be complex, as
illustrated by the United Kingdom (UK) Flood Estimation Handbook (FEH). Kjeldsen et al. (2008; Table 4.1)
show how successive iterations of predictive equations for the UK have added variables and statistical complexity.
However, catchment area and annual precipitation remain the most significant predictors even in this case (Meigh
et al., 1997). Although the index flood method is reliable and can yield high R? values, adding non-linear effects
and spatially-dependent interactions have been proposed as potential sources of further improvement (Muhammad
and Lu, 2020).

In many countries, river flow data may be sparse in space and/or time (Mamun et al., 2011), limiting the choice
of statistical methods for flood frequency estimation and strongly influencing the magnitude of associated
uncertainties. The lengths of records that are available impacts on the analytical results (Fischer and Schumann,
2022), and uncertainty increases with short data series. This uncertainty can be reduced by extending data series
through use of historical or proxy information (Macdonald et al., 2014; Merz and Bléschl, 2008; Reinders and
Mufioz, 2021; Ziegler et al., 2020), by cross-validation against hydrological modelling predictions (Haberlandt
and Radtke, 2014), or by pooling information from many sites (Kjeldsen, 2015; Griffiths et al., 2020).

For the Philippines, which exemplifies some of the challenges of using sparse hydrological data, some national-
scale analyses of flood magnitude and frequency have been undertaken. Meigh (1995) analysed data, mostly from
up to 1980, from 333 sites collected by the BRS (Bureau of Research and Standards). Growth curves and
prediction equations for flood magnitude were presented for different hydrological regions and catchment sizes
(Meigh, 1995; Meigh et al., 1997). Liongson (2004) demonstrated a significant relationship between catchment
area and mean annual flood (Qmar) for 29 sites in northern Luzon, and analysed the form of growth curves.
Regional differences in climate and precipitation patterns are well-documented (Bagtasa, 2017) and projections
have been made of climate change impacts on river flow (Tolentino et al., 2016) with some evidence for significant
changes having occurred in recent decades (Meigh, 1995). Calibrating local data with global runoff datasets
enables the augmentation of catchment-specific data to a certain extent (Ibarra et al 2021).

Studies of flood magnitude across South-East Asia provide valuable regional context for our Philippines analysis.
Loebis (2002) found significant correlations between mean annual flood and catchment area in Indonesia, Laos
and Thailand, as did Meigh et al. (1997) for Indonesia, Papua New Guinea and Thailand. Mamun et al. (2011)
provide updated equations for peninsular Malaysia which use catchment area and mean annual rainfall as
predictors. In these studies, coefficients of determination (R?) values range from 0.5 to 0.9 tending to be higher in
smaller countries and where inter-annual rainfall variability is lower: for example, Meigh et al. (1997) report R?
values of 0.92 for Papua New Guinea and 0.46 for administrative regions 3-8 in the Philippines (Figure S1).

There are few continuous multi-decadal river flow records available for the Philippines, but many short (3-20
years) records exist from across the country. This scarcity of data leads to the Philippines being omitted from
databases used for global flow frequency analyses (e.g. Zhao et al., 2021). Pooling of the information from the
available records to maximise the value of these extensive data forms the basis of the analysis in this paper. The
approach uses elements of the UK FEH methodology (Kjeldsen et al., 2008), adapted to reflect the nature of the
river flow and other data that are available, and considers whether there are significant regional differences in
flood magnitude across the country. The aim of the paper is to demonstrate and evaluate the use of pooled short
data series to deliver estimates of flood magnitude for the Philippines. Using these estimates, the hypothesis that
regional equations do not reduce the uncertainties associated with single, national-scale predictive equations is
tested. Finally, we assess the potential use of our new results as predictive design equations applicable to
catchments that are ungauged or that have records that are insufficiently long to be used by themselves to estimate
flood magnitude records

3. Data sources

Daily mean river discharge data were collated from 842 sites (Table 1) reported by three sources. (1) The “SWS”
data set comes from four volumes of the “Surface Water Supply of the Philippine Islands” (Irrigation Division,
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1923-24) contain rating curves and daily flow measurements over the period 1908 — 1922. Water level
measurements were made at constructed weirs and rating curves were computed using discharges obtained by the
velocity-area method. Rating information is supported by detailed information on the measurement site, bank and
bed characteristics and river channel stability. Data from 248 SWS stations across the country (Figure 1) were
used. (2) The second dataset (“BRS”) was initially managed by the Bureau of Research Standards, later being
transferred to the Bureau of Design, also under the Department of Public Works and Highways (DPWH). The
BRS data set (Figure 1) is in three parts: BRS_A contains 364 gauging sites with data in the period 1940-1980,
BRS_B has a further 181 with data from 1980 onwards. BRS_C includes 27 of the sites from BRS_A and BRS_B
that are either at identical locations or are sufficiently close (within a few km, without any significant tributaries
in between) to allow for their records to be combined. This produces a maximum record length of 62 years. Some
of these sites had automated water level sensors but most sites had a gauging structure at which manual
observations were made three times per day. Rating curves were obtained by velocity-area gauging. (3) The
source of the third dataset (“Cagayan”) is the “Feasibility Study of the Flood Control Project for the Lower
Cagayan River in the Republic of the Philippines” produced by Nippon Koei Co. and Nikken Consultants Inc. in
collaboration with the DPWH in 2002 (Nippon Koei, 2002). This study only considers the Cagayan watershed,
north Luzon, the largest catchment in the Philippines. Out of 78 gauging stations in the watershed, 48 stations
(Figure 1) were used in this study since some of the stations only reported gauge height data and others have a lot
of gaps. Daily mean water level data were recorded from 1955 to 1991 and converted to discharge using rating
curves (details not reported; Nippon Koei, 2002).

The data were initially filtered to remove sites with very short records (<7 years), inadequate rating between water
level and discharge and those from the SWS data set where the gauging site location could not be reliably
determined. The Philippines has four distinct climate types (Coronas, 1920) shown on Figure 1. For convenience,
hydrological data is often reported for 15 administrative regions (Figure S1), and we use this regionalisation to
consider whether there is variation in flood hydrology across the country.
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Figure 1: (A) Locations of gauging sites from the data sources used in the analysis (n=466; Table 2). Background
map (after Tolentino et al., 2016) shows elevation shading overlain by the four climate types that have been
identified for the Philippines (Coronas, 1920). (B) Mean daily rainfall (after Bagtasa, 2017). (C) Proportion of
annual rainfall generated by tropical cyclones (after Bagtasa, 2017). The climates can be summarised as (Ibarra
et al., 2021): type | -distinct wet and dry seasons; type Il - no distinct dry season and relatively high rainfall; type
I11 — lower overall rainfall with short dry and wet seasons; and, type 1V - reasonably even distribution with lower
total rainfall.
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Table 1 Summary of available discharge data sets. Candidate sites are sites retained after removing sites with no
or poor rating, or indeterminate locations. Record length is the number of years for which reliable annual
maximum flow estimates exist, after removal of erroneous data.

Source Time period Total Number of Number of Record Length (years) for sites with
of data number candidate candidate >7 years data (figures in brackets are
of sites sites sites with >7  for all candidate sites)
years record
Max Mean Total
SWS 1908 - 1922 248 119 30 10 7.7 (5.1) 230 (604)
BRS A 1940-1980 364 337 310 34 18.3 (17.1) 5659
(5771)
BRS B 1980-2018 154 144 115 33 16.1(13.9) 1856
(2003)
BRS C 1940-2018 27 27 27 62 36.2 (36.2) 978 (978)
Cagayan 1955-1991 49 46 31 20 11.6(9.5) 361 (437)
TOTAL 842 673 513 62 17.7 (14.6) 9084
(9793)

4 Analysis Methods

4.1 Curve fitting for annual daily maximum flows

The maximum flows in each calendar year were extracted from the daily flow data and fitted with three
distributions: (1) Generalised Logistic Distribution (GLO) (Kjeldsen and Jones, 2006; Kjeldsen, 2013); (2)
Weibull; (3) Log-Pearson Type Ill. The median annual flood (Qmed) was used as the index flood, rather than the
mean, to minimise the effect of outliers in the data (Kjeldsen and Jones, 2006), and the parameters of the
distributions were estimated using L-moments (Hosking, 1990; Hosking and Wallis, 1997). L-moments are linear
combinations of probability-weighted moments, and the GLO distribution uses ratios between the first three L-
moments, |, I2 and I3, to define the L-CV (coefficient of variation) t; and L-Skewness t; as:

t, =L/l ts =l3/1, D).

The GLO is a three parameter distribution, which has location, scale and shape parameters. The location (§) is the
median of the distribution. The shape (x) and scale (/) parameters are estimated from the L-moment ratios (Eq.
1), as:

i = —t, B — tyRsin(mK) (2),

TRsin(R+ty)—t,sin(nwk)

where ” indicates an estimate of the distribution parameter. Further details on L-moments and their application to
distribution fitting are provided by Hosking and Wallis (1997) and Asquith et al., (2017). The GLO distribution
can be used to calculate a flood, Qr, with a recurrence interval of T years as

er=¢[1+la-r-1")]=¢z 3),

where z7 is the ‘growth curve’ at T. The Weibull and Log-Pearson Type Il1 distributions are also three parameter
distributions, described fully by Asquith et al. (2017) and Hosking and Wallis (1997) who define the relevant L-
moments and parameter calculations. The Gringorten (Cunnane, 1978) plotting position (Eq. (4)) was used,

x; = ({—044)/(n+0.12) (4),
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where x; is the ith quantile of the distribution, i being the rank of the annual maximum flood in a given year, and
n the total number of years in the record. This method allows estimation of an event of up to (1.79n + 0.2) years
return period (Stedinger et al., 1993). Figure 2 shows typical data sets and curve fits.

(A) 76 Jalaur (8) 210 Supang (€) 418 Minalungao River
6 Q
GLO Q1o 200 100
. . 600
GLO (black? CvM p: 0.735 5 CvM p: 0.998 3
Weibull (red) CvM p: 0.985 CvM p: 0.981
kel CvM p: 0.986

1000
150

5 400

500

Annual maximum flood (m®/s)

1 200
_______ 50

0 0 0 0 0

-5.0 -25 00 25 5.0 -50 -25 00 25 50 =50 -25 00 25 50
Gringorten Logistic reduced variate [In(T—1)]

Figure 2: Selected annual maximum flood data and curve fits. Red points are data. Fitted curves are GLO (black),
Weibull (red) and Log Pearson Il (blue). Cramér-von-Mises p-values shown. Left axes are flood magnitude
(m3.s1) and right axes scale this by the median annual flood at each site. Values of 2,10,20 and 100 year recurrence
interval floods are indicated, calculated using the GLO method. (A) Site 76, Jalaur (Lat: 11.1195; Long: 122.5386;
Area 210km?; BRS_C data set; 37 years of data; best-fit curve: Weibull); (B) Site 210, Supang (Lat: 17.0073;
Long:120.9086; Area 56km?; Cagayan data set; 10 years; GLO); (C) Minalungao (or Sumachao) River (Lat:
15.3430; Long: 121.0794; Area 309 km?; SWS data set; 7 years; GLO).

Analysis was undertaken in R (R Core Team, 2021), using the package Imomco (Asquith, 2020) to derive the L-
moment estimates, to fit the distributions and to calculate their significance. Of the 513 sites with records of at
least 7 years length (Table 1), the minimum required for L-moment calculation, two had invalid L-moments and
so are excluded from further analysis. For the remaining 511 sites, goodness-of-fit between the data and the three
distributions was assessed using Cramér-von Mises (CvM) test (Asquith, 2020). Such goodness-of-fit tests are
unable to definitively identify the best distribution to use, or if any of the distributions are adequate (Asquith,
2020), particularly with relatively short records, as used here. Rather, the CvM p-values provide an indication of
the performance of the three distributions. The annual maximum series and the three curve fits were inspected for
each site and those with visually very poor fits were excluded. Mostly these excluded sites corresponded with low
CvM p-values, although this was not always the case. The median CvM p-value for best-fit curves was 0.93. The
distribution (GLO, Weibull or Log-Pearson Type I11) with the highest p-value from the CvM test was used to
provide Q estimates for the site. This screening process led to the elimination of a further 45 sites from the data
set, leaving 466 that were further analysed. The distribution of the best-fit curves (Table 2) does not show
systematic differences between data source, catchment area or climate type (Table 2).
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Table 2 Best-fit curves, defined as those with highest Cramér-von Mises test p-value. 207 sites were excluded
from the analysis, 2 due to L-moments not being valid, and the remainder due to having short records (<7 years)
or a poor curve fit, based on the p-value and visual inspection.

Best fit | All Data Source Catchment Area (km?) Climate Type
curve sites | BRS Cag SWS | <100 100- 200- 400- >800 || I v
A/B/C 199 399 799

GLO 184 99/52/6 13 14 58 39 31 21 35 48 21 66 49

Weibull 207 131/42/18 8 8 75 42 26 35 29 58 22 86 41

Log 75 52/14/3 3 3 31 8 18 7 11 15 10 37 13

Pearson |11

TOTAL 466 282/108/27 24 25 164 89 75 63 75 12 53 189 103

Used 1

Excluded — | 205 55/36/0 20 94 66 48 33 19 39 83 8 79 35

poor curve

fit or <7

years data

L- 2 0 2 0 0 0 1 0 1 0 0 2 0

moments

not valid

TOTAL 673 337/144/27 46 119 230 137 109 82 115 20 61 270 138
4

Values of Qz, Q10 and Qigo Were calculated from the fitted curves although the lengths of available records mean
that estimates of Qoo are subject to significant uncertainty. Towards the high flow end of the data, the Weibull
and Log-Pearson Type Il curves are usually very similar, with the GLO curve typically being steeper and more
curved (Figure 2) and so providing higher flow estimates for high recurrence intervals (Qzo, Q100) than the other
two curves and often slightly lower estimates of Q. and Q0. Ratios between flow estimates from different curves
(Figure S2) show this pattern: mean ratios between estimates from the GLO and Weibull distributions are
Q2cL0/Q2wei = 1.07 (range 0.99 — 3.48), QocLo/Qiowei = 0.92 (0.70-1.00) and QioocLo/Qioowei = 1.09 (0.42-1.15).
Equivalent ratios for the GLO and Log-Pearson Type Ill curves are QacLo/Qzpin = 1.10 (1.00 — 4.27),
Q1ocLo/QioLpin = 0.91 (0.55 — 0.99) and QioocLo/Qoopm = 1.09 (0.36-1.15). These ratios show some systematic
differences between the distributions (Figures 2, S1) and suggest that the choice of distribution influences flow
estimates.

Estimating uncertainty in the Qy estimates is not straightforward (Kjeldsen, 2013; Kjeldsen and Jones, 2004) and
reflects variability in the index flood, in the growth curve and in covariance between the index flood and the
growth curve (Kjeldsen and Jones, 2004). For a single site, the factorial standard error for the GLO distribution,
fse, is defined as (Kjeldsen, 2013):

2)

fse = e(ﬁ (5).

Derivation of Eq. (5) relies on approximations that limit the reliability of the equation when n < 20 (Kjeldsen,
2013). On account of this, fse values were calculated only for records of at least 20 years length, all but one of
which come from the BRS data sets (Table 1).

Growth curves were calculated for each of the 466 sites (Table 2), using Eq.(3) and equivalents for the Weibull
and Log-Pearson Type Il distributions, over the range of -3.5 < Ln(T-1) <5.0, i.e. return period T in the range 1
to 149 years. Curves were standardised by dividing discharge by the median annual flood recorded at each site.

Combined growth curves using data from sets of catchments that are adjacent or which have similar properties
(eg. catchment area) can be used to provide estimates of the magnitude of floods of specified recurrence intervals
given an initial value for Qmed. There are several ways to construct such pooled growth curves for: (i) each of the
administrative regions of the Philippines; (ii) each of the four climate types (Figure 1); and, (iii) for catchments
of different areas, as identified in Table 2. Firstly, the curves from each site within any of these groups can be
combined, by calculating their mean, mean weighted by record length, or median (Figs. S3-S5). Secondly, the
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Fdata can be amalgamated for all sites within each group and GLO curves fitted to the pooled data. The median
and weighted mean methods lead to under-estimation of the longest recurrence interval floods (Figs. S3-S5)
whereas both the mean of the best-fit curves from each site and the GLO curves fitted to the amalgamated data
increase more rapidly at long recurrence intervals. Note that the variability between sites within a region (or
climate type or within catchments of similar area) provides an indication of the uncertainty to be expected when
using regionalised curves.

4.2 Predicting high magnitude floods from catchment properties

The values of Qr provided by the best-fit curves for each site individually determined above were correlated with
catchment properties. These catchment properties, precipitation and land use were derived from a range of data
sources. Table 3 summarises the variables used and provides a comparison with the FEH method (Kjeldsen et al.,
2008). Note that much of the data used are not contemporary and significant changes in some variables,
particularly land use but potentially also precipitation (Bagtasa, 2017), may have occurred since the SWS data
were collected in the early 20" Century.

Table 3. Variables used in the flood prediction analysis.

FEH variable Units FEH Definition Philippines data equivalent Variable
name names
(this
paper)
AREA km? Catchment area Area from DEM of the catchment, AREA
calculated in ArcGIS
BFIHOST - Baseflow index from Excluded -
soil data
DPLBAR km Drainage path length  Mean average drainage path lengthto DPLBAR
catchment outlet for all segments of
the stream network
DPSBAR m.km?* (FEH) Mean catchment Mean average drainage path slope for DPSBAR
m.m?*  (this slope all segments of the stream network
study)
EVAP mm Average annual Excluded -
potential evaporation
FARL - Flood attenuation Percentage/proportion of catchment ATT
index (lakes etc) area occupied by attenuation features
(inland waters and fishing ponds)
FPEXT - Floodplain extent Excluded -
PRAT none (FEH) Ratio of P1oo/P2 for 1- Standard deviation of annual rainfall RFSD
mm (this  day rainfall within the catchment from mean
study) annual rainfall (1998-2015)
APHRODITE dataset
PROPWET - Proportion of time Excluded -
when soil moisture
deficit <6mm
RMED mm Median annual Mean of maximum daily rainfall RMED
maximum 1-day within the catchment from maximum
rainfall daily rainfall (1998-2015)
APHRODITE dataset
SAAR mm Annual mean rainfall Mean of annual rainfall within the SAAR
1961-90 catchment from mean annual rainfall
(1998-2015) APHRODITE dataset
URBEXT2000 - Proportion of urban Percentage of catchment area URB
land cover in 2000 occupied by urban features (built-up)
None - - Percentage of catchment area AG
occupied by agriculture (annual crop,
fallow plus perennial crop)
None - - Percentage of catchment area FOR

occupied by closed and open forest
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National-scale catchment physical properties for the Philippines were previously calculated and are available as
an open access geodatabase (Boothroyd et al., 2023). In brief, topographic analysis was undertaken using a digital
elevation model (DEM) acquired in 2013 with a 5 m spatial resolution and 1 m root-mean-square error vertical
accuracy (Grafil and Castro, 2014). The DEM was resampled to a 30 m spatial resolution in ArcGIS due to
processing constraints. Here, AREA, DPLBAR and DPSBAR were extracted from the geodatabase. Rainfall data
were from the end-of-the-day adjusted version of the APHRODITE data set (V1901, Yatagai et al., 2012). Land
use variables (ATT, URB, AG, FOR) were from the National Mapping and Resource Information Authority
(NAMRIA) 2010 land cover data set (www.namria.gov.ph).

Each of the variables listed in Table 3, together with the estimates of Qz, Q10 and Qioo, Were tested for normality
and transformed as required (Table 4). Log10 transformation was used as the default, most variables being
moderately positively skewed, with square-root transformation for two land-use (areas of attenuation features and
urban land-use) and one rainfall (standard deviation of rainfall) variables that contained numerous zero values.
Cross-correlation plots and matrices, of the transformed variables where relevant, (Figure S7) show expected
autocorrelation between climate variables and no significant non-linear relationships elsewhere in the predictor
variables. Note (Table 4) that mean annual rainfall (SAAR) is poorly correlated with each of the Qx measures.

Table 4. Summary statistics for variables used in the flood prediction analysis (466 sites). All values in original
units, prior to transformation (Trans). Land-use variables expressed as % were converted to proportion (0-1 scale)
for analysis. Correlation coefficient, R, significance: * p<0.01. Geometric mean (Geom mean) shown for variables
with no zero values. * one slope of 0.0 excluded when calculating geometric mean. Xr = transformed value of
variable X. NA = geometric mean not able to be computed due to zero values.

Variable Min /" Mean s.d. Geom Mean Trans R (log Qx- X7)
(units) Max / Median
Qmeb Q2 Q1o Q100

AREA (km?) 1.13 / 656 2040 172/163 Logl0  0.77* 0.77* 0.74* 0.70*
27450

DPLBAR 0.02 /[ 272 21.7 18.0/18.9 Logl0  0.74* 0.74* 0.71* 0.67*

(km) 245.7

DPSBAR 0.00 / 0.041 0.024 0.034%/ No 0.03 0.03 0.07 0.10

(m.m) 0.145 0.044

ATT (%) 0/37.0 111 2.4 NA/0.68 V 0.34* 0.34* 0.30* 0.28*

RFSD (mm)  0; 444 101 100 NA/78.0 V 0.48* 0.48* 0.47* 0.45*

RMED (mm) 625 /[ 172 57.9  161/170 No 0.20* 0.20* 0.20* 0.19*
331

SAAR (mm) 1169 / 2316 475 2269/2238 Logl0o 0.06 0.06 005 0.03
3877

URB (%) 0/51.3 1.80 5.1 NA/0.48 \ -0.06 -0.07 -0.07 -0.08

AG (%) 0/100 36.9 276 NA/325 No -0.31* - - -0.29*

0.31* 0.30*

FOR (%) 0/86.4 25.9 239 NA/19.2 No 0.28* 0.28* 0.29* 0.29*

Qwep 072 /[ 380 722 132 /136 Logl0 - 1.00* 0.93* 0.59*
6029

Q2 (m3s?) 063 / 374 717 131/141 Logl0 - - 0.93* 0.61*
6211

Q1o (Mi.s?) 173 /| 831 1590 319/325 Logl0 - - - 0.82*
15230

Quoo (Mmds?) 375 / 1801 5170 632/619 Logl0 - - - -
91040

5 Results

5.1 Validity of L-moment calculations

The L-moment ratio diagram (Figure 3; Figure S6) shows the relationship between L-skew and L-kurtosis
differentiated by catchment area and the optimal best-fit curve. Sites where each of the distribution types fit the
data best do cluster close to the theoretical relationships for each of those distributions as expected. Neither climate
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type (Figure 3), data source, catchment area nor record length (Figure S6) show significant segregation on the L-
moment diagram. Consequently, the 466 retained sites are considered as a single data set in subsequent analysis.
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Figure 3: Relationships between L-skewness and L-kurtosis compared with theoretical curves (Hosking and
Wallis, 1997). Data classified by: (a) best-fit curve; and, (b) catchment area. Figure 3(a) shows segregation
between sites with different best-fit curves, with higher positive L-kurtosis associated with the GLO curve, and
low to negative L-kurtosis with the sites where the Weibull curve fits the data best. (b) shows overlap between
the best-fit curve type and catchment areas with no clustering of different sized catchments. Colours indicate
catchment areas, as shown at the top of the figure, and symbol shape indicates best-fit curve. Figure S6 plots the
data classified by climate type, length of record and data source: in all cases, there is no segregation according to
the classifying variable.

Only for sites (N=71) that had at least 20 annual maxima and for which the GLO distribution provided the best fit
to the data, it was possible to compute the factorial standard error (fse) using Eg. 5. The values of fse range from
1.03 to 1.32, with mean = 1.18. It is noted that uncertainty will be greater for sites with records of less than 20
years.

5.2 Regional annual maximum daily flow growth curves

Growth curves for all sites (Figure 4a) show considerable variability within and between regions, reflecting the
number, length and quality of available data records as well as catchment properties. To assess variation across
the country, we use the administrative division of the Philippines into 15 regions (Figure S1) which are aligned to
hydrological and topographic patterns (Figure 1). Different climate zones (Figure 4b) and catchment areas (Figure
4c¢) indicate some grouping which may form the basis for hydrologic regionalisation. Climate types Il and 111 plot
higher than the others (Figure 4b), although the median growth curves for all four climate types are very similar
(Figure 4d). The pooled data provide steeper growth curves, reflecting the larger data series used and the
increasing influence of large events in these larger samples. Consequently, the pooled data curves match high
percentiles of the individual curves (shown by plotting close to, or sometimes outside of, the 75™ percentile limits
shown in Figure 4b,c). The steeper curves for pooled data are also seen when grouped according to catchment
area (Figure 4e). Small (< 25 km?) catchments plot separately from all larger areas, and there is little differentiation
between any larger catchments. This contrasts with Meigh’s (1995) results which suggested a steady decrease in
Qx/Qmean as catchment size increased.
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Figure 4 Dimensionless growth curves. (a) individual curves (GLO, Weibull or Log-Pearson Type I1l according
to which produced the highest p-value in the Cramér-von Mises test) for 466 sites, overlain by pooled GLO curves
for each region. (b) GLO curves fitted to data pooled from all sites in each climate type; 1Q range lines are the
inter-quartile (25" and 75™ percentiles) of the curves for individual sites within each climate zone. (¢) GLO curves
fitted to all data within bins of catchment area, with inter-quartile ranges from individual sites shown. (d)
Comparison of GLO curves fitted to all data from within each climate zone and the median value from curves
fitted to individual sites within that zone. (¢) Comparison of GLO curves fitted to all data for sites within each
catchment area bin and the median value from individual sites within that area bin. (f) Overall GLO curves for
each catchment area bin, and adjusted equivalent curves from Meigh (1995). Adjustment was necessary as Meigh
(1995) used the mean annual flood as the index flood, rather than the median. See text for details.

5.3 Flood estimation equations
5.3.2 Flood prediction from catchment area and rainfall

The correlations in Table 4 show that catchment area alone provides the most significant prediction of flood
magnitude. Drainage path length (DPLBAR) provides an equally good predictor as path length is correlated with
catchment area (Hack’s law; Rigon et al., 1996). However, R? for catchment area and DPLBAR are in the range
0.45-0.6 so there is potential for additional variables improving flood magnitude prediction. Initially, the rainfall
variables were introduced to multiple regression relationships to account for the volume of water entering
catchments as catchment area * rainfall. Tables 3 and 4 show two relevant rainfall variables: SAAR, the mean
annual rainfall and RMED, the maximum daily rainfall which serves a measure of the magnitude of rainfall
extremes which may be expected to be correlated with flood peaks.

Equations using catchment area alone (Table 5) provide R? values between 0.49 (Q100) and 0.6 (Qa). These rise to
0.55-0.65 when area is multiplied by RMED (Table 5). Pgs, the 99" percentile of daily rainfall, produces equations
which fit the data equally as well as RMED.
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Table 5. Best-fit equations for the data set covering the whole of the Philippines (n=466). se = standard error of
residuals.

Event return Equations R? se

period

Q2 Q, = 3.0134%733 0.59 0424
Q, = 4.989 x 1072(A.RMED)%77° 0.66  0.387

Q1o Q10 = 10.666A°-66° 0.55 0417
Q10 = 2.576 X 1071(A. RMED)?5% 0.62  0.383

QlOO QlOO = 25.6454%622 0.49 0.442

Q100 = 7.568 X 10~ (A. RMED)%658 0.56 0.413

The residuals from the equations using A.RMED as the predictor were examined for effects of data source, climate
type or region (Figure 5). One-way ANOVA indicates significant differences between regions for Qz, Qo and
Q100, With regions 7 (p=0.003; 0.0043; 0.026, respectively), 11 (p=0.012; 0.001; 0.005) and 12 (p<0.001 for all
Qy) being significantly different for all three return periods, region 3 (p=0.02; 0.02) for Q10 and Q1o0, and region
9 (p=0.02) for Q100 only. Differences between climate types are only significant for Q1o and Q1go, in both cases
Type IV being significantly different from the others (p<0.01). For data source, significant differences are noted
for Q2 and Qo, in both cases due to BRS_B (p=0.006 for both) and the early 20™ Century SWS (p<0.001; 0.014
for Qz, Q1o, respectively) data sets. While these results suggest possible benefits from sub-dividing the data to
produce predictive equations, inspection of Figure 5, the boxplots and ANOVA results all show considerable
inter-group variance. Hence, the alternative approach of introducing additional variables to the analysis is
considered as the next stage of the analysis, before regionalisation is considered in section 5.3.4.
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Figure 5. Observed values, prediction and residuals for Qi as a function of catchment area (A) multiplied by
median daily maximum rainfall (RMED). (a)-(c) stratified by data source, (d)-(f) by climate type. (a), (d) are
predicted vs. observed values, with 1:1 (solid), 1:2 and 2:1 (dashed) lines shown. Residuals (b) and (e) are
normally (Gaussian) distributed and show no systematic variation with predicted Q0. Density plots of residuals
(c), (f) confirm the absence of systematic variation with data source and climate type. Equivalent figures for Q.
and Q1o are in supplementary information (Figs. S8, S9).

5.3.3 Comprehensive stepwise regression prediction

Stepwise regression yielded equations (Table 6) with between three and six significant (p<0.05) predictors, but
overall R? values of 0.68, 0.63 and 0.57 for Q2, Q10 and Quoo, respectively. The modest improvements in R?
associated with these additional variables suggest that there is limited value in using these complex equations for
flood magnitude prediction.

Table 6. Best-fit stepwise equations for the data set covering the whole of the Philippines (n=466). se = standard
error of residuals.

Event Equation R? se
return

period

Q2 8.75 x 10~3497535 AAR0-6851 [0-002RMED~2.423DPSBAR—0.1654G~0.676VURB] 0.68 0.377
Qo 3_44(A)o.67910[0.003RMED—0.75 URB 0.63 0.378
Q100 8_49(A)o.667 10[0.003RMED—0.838\/W-0.673 ATT 0.57 0.407

This limitation is enhanced by consideration of the variables in the equations. Each equation contains land-use
variables (ATT,URB,AG) that are determined from modern conditions. The relevance of these values to historical
data is uncertain given historic and contemporary land-use change across the Philippines. Their inclusion in
equations for all three return periods does suggest that land-use may play a significant role in flood magnitude. In
all three cases, AREA enters the equation first, followed by RMED. R? values after each of these steps, for Qz, Q1o
and Q1o are: AREA 0.59, 0.55, 0.49; and, AREA and RMED 0.66, 0.62, 0.55. Adding further variables (Table 6)
improves R? by < 0.02, hence only catchment area (AREA) and median annual maximum daily rainfall (RMED)
are considered necessary for developing predictive equations. Whether these two predictors are added sequentially
or are multiplied together (Table 5) does not affect overall model performance (note that the rmse values quoted
in the equations are for the transformed variables). Subsequently, the product AREA.RMED is used as a single
measure of flood event rainfall volume across the catchments.

5.3.4  Regionalisation of predictive equations

The dimensionless growth curves (Figure 4a), inspection and ANOVA analysis of regression residuals suggest
that regionalisation may be able to improve predictive equations. Although the growth curves also show some
segregation between climate types, this is not found to be a significant cause of variation in the residuals from
predictive equations. Fitting equations to each region separately (Figure 6a) yields improvement in R? and residual
standard error for some regions, but this is inconsistent. The regional equations suggest that some grouping of
regions may be beneficial.

Three ways of dividing the 15 regions into groups were considered: (a) classification by visual inspection of the
growth curves; (b) K-means cluster analysis of the intercepts (a) and gradients (b) for regression equations (Figure
6a); and, (c) the regionally contiguous groups used by Meigh (1995). Each grouping was tested for Q., Q10 and
Qa0 predictions. Results were consistent between these return periods, and results for Q1o are given in Table 7
(see Supplementary Information for Q2 and Qoo results).
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Table 7. Equations for different groups of regions. Results for Qo are presented. Meigh (1995) did not include
385 regions 13 or CAR, so the total number of sites in the three contiguous regional groups is 431.

Group Regions in group Number Equation R? se

of sites
Growth curve
A 1,13,CAR 65 Q10 = 0.234(A.RMED)°730 0.78 0.245
B 2,3,4A,6,11,12 241 Q10 = 0.0945(A. RMED)%77° 0.64 0.390
C 4B,5,7,10 126 Q10 = 1.303(A.RMED)®530 0.36 0.427
D 8,9 34 Q10 = 0.628(A. RMED)?-693 0.69 0.211
K-means clustering of regional regression equations
E 1,6,7,8,11 142 Q10 = 0.095(A. RMED)?79%¢ 0.75 0.298
F 2,3,4A,CAR 167 Q10 = 0.071(A.RMED)?813 0.69 0.389
G 4B,9,10,12,13 103 Q10 = 1.24(A.RMED)%534 0.50 0.370
H 5 54 Q10 = 5.10(A.RMED)0388 0.19 0.475
Meigh (1995) contiguous regional groups
| 1,2 86 Q10 = 0.166(A. RMED)?753 0.63 0.357
J 3,4A,4B,5,6,7,8 264 Q10 = 0.334(A.RMED)%674 0.56 0.402
K 9,10,11,12 81 Q0 = 0.851(A. RMED)°535 0.45 0.331

The R? and standard errors of residuals in Table 7 are compared with the combined results for all regions in Table
5 (R%? = 0.62; se = 0.383). Weighting both the R? and residual error values by the number of sites in each
group/region suggested that for Qz, Q1o and Qi the highest R? values are those obtained using the overall

390 regressions on the full data set (Table 5). The residual standard errors are slightly lower when obtained from the
15 individual regional curves (0.36, 0.35, 0.37 for Q2, Q10 and Q1o0, respectively) than from the overall regressions
(0.39, 0.38, 0.41). However, these differences are small and there is insufficient evidence to justify use of either
curves for individual regions or groups of regions.
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Figure 6. (a) Regression curves for each region in the form Qi = a (A.RMED)®. Curves are grouped according to
growth curve shapes (Table 7): group A (black), B (blue), C (red) and D (purple), and bold lines are regional
curves given by the equations in Table 7. (b) Probability density functions for residuals from the individual
regional curves in (a), and the three groupings of regions in Table 7 (GC = Growth Curve; k = k-means). Note the
similarity in the distributions of residuals, although those for the individual regions are clustered slightly more
closely around the mean than those from the grouping methods.

5.3.5 Spatial distribution of flood magnitudes and residuals

The spatial distribution of calculated specific flood magnitudes (Qxx divided by catchment area A) (Figure 7a)
show a concentration of higher values through the central Philippines, with relatively lower values in NE Luzon
and across Mindinao in the south. The underlying annual rainfall map shows a general decline from east to west,
and some of the highest rainfall areas are associated with high Qx/A values, for example in the Bicol region.
Residuals from the overall equations (Table 5) do not show strong regional trends, although there are clusters of
positive and negative residuals in different regions. The residuals are not correlated with catchment area (R = -
0.04; p = 0.39) and only weakly with annual rainfall (R = 0.15; p <0.001). However, there is a significant positive
correlation between residuals and specific flood magnitude (R = 0.62; p < 2 x 10%6), with only negative residuals
for Q10/A < 0.46 and only positive residuals when Q1o/A > 6.4. These results are replicated for Q2 and Q100, With
significant correlations of 0.6 (p < 2 x 10°1%) for both Q2/A and Qioo/A.
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Figure 7. (a) Specific 10-year flood discharge (Q10/A), showing generally higher values in the central Philippines
and southern Luzon, and lower values across Mindanao. (b) Residuals (in 1og10 units) from Philippines-wide
(Table 5) equations for Q1o. Note the absence of regional trends, although there are some sub-regional clusters of
both positive and negative residuals.
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6 Discussion

6.1 Design equations for the Philippines
6.1.1 Data availability and quality

Flow data were combined from four data sets that are partly independent, having been collected by different
agencies and using different methods, but which overlap significantly in collecting data at the same or nearby
locations. Catchment properties, such as area and gradients, were derived from a high-resolution DEM that covers
the whole of the Philippines. Although some station locations are ambiguous in the data records, the locations of
all stations included in the analysis have been reliably identified using the descriptions in the original data sources.
Land use data rely on a single time, and no historical land use data are available. This introduces uncertainty to
the analysis, especially for data collected a century or more prior to the land use data in areas that have undergone
urban development or forest replacement by agriculture.

The proportions of variance in flood estimates that are statistically explained by the best-fit equations (R?; Tables
5-7) are within the range from studies in other tropical regions (Meigh et al., 1997), from 0.38 (Malawi) to 0.92
(Papua New Guinea). The relatively low R? values reflect a range of factors, including: data quality and length of
flow records; changing climate and hydrological conditions during the time period covered by the study; and,
controls over flood magnitude in these tropical catchments being influenced by hydrological parameters that are
not considered in the analysis. Data quality has been assessed throughout, with sites excluded if their growth
curves are based on short records or do not fit expected shapes (Tables 1,2). Further, there is no evidence of bias
in the data, shown both by the original variables and the behaviour of residuals from the final predictive curves.
For example, the best-fit curves are not biased by data source, climate type or record length (Figures 3; S6,58,S9).
The residuals show neither systematic variation across these same categories (Figure 5) nor consistent spatial
dependence (Figure 7).

Some spatial dependence is visible in Figure 7, although attempts to produce regionally consistent predictive
curves (Table 7; Figure 6) do not improve the overall performance of the equations compared with national
equations. The residuals in Figure 7 do not correlate clearly with either total rainfall (Figure 1B) or the relative
importance of tropical cyclones in generating precipitation (Figure 1C). Further analysis of the role of regional
climate in flood generation may be able to provide some improvements to predictions, although this is complicated
by ongoing climate change and potential changes in the importance of cyclonic precipitation (Bagtasa, 2017).

6.1.2  Recommended design equations

Neither the addition of further catchment variables (Eq. 6), nor regionalisation (Table 7) generated significant
improvement in the predictive capabilities of the discharge equations. Hence, it is recommended that single
national equations are utilised. This approach has the advantage of maximising the size of the data set used in
generating the equations; particularly for the largest catchments, the small sample size reduces confidence in the
predictions in some regions. Regionally grouped equations (Table 7) can provide additional estimates of flood
magnitude that may be helpful in some cases.

The recommended design equations for Q2, Q10 and Qo are those for the whole of the Philippines given in Table
5. Using only catchment area, A, will provide usable flood magnitude estimates, the uncertainty of which can be
estimated from the residual standard errors given in Table 5. Here we obtained RMED values from the
APHRODITE database. RMED can be determined in other ways, and the sensitivity of flood predictions to
changing RMED can be assessed directly. Along with catchment area, other catchment properties that provide
information to contextualise the flood magnitude estimates can be obtained from an open access database
(Boothroyd et al., 2023). Utilising design equations based on catchment area alone has the advantage of simplicity
of computation, but the relatively low R? values (Tables 5,7) obtained suggest that a simple multivariate regression
approach offers only partial improvement to the predictive capability of the equations.

Table 8 shows sample calculations for two sites, one of which (Agno) has 19 years of annual maxima available
whereas the other (Sumlog) is ungauged. For the Agno, all of the equations from Tables 5 and 6 produce higher
estimates of Qo than from the observations. The reliability of the predictive equations may be affected by this
being one of the largest catchments in the Philippines. The Sumlog is a smaller catchment for which no data are
available. In this case, the equations provide a smaller range, with the calculations using the three regional methods
(Table 7) spanning the result from the national-scale equation using A.RMED in Table 5.
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Table 8. Sample calculations for Q1o using equations from Tables 5 and 6. The six Q1o estimates for each site are
as follows: Q1o (data) from annual maxima recorded at the Agno site only; Q1o (A) using catchment area only —
equation from Table 5; Q10 (A.RMED) using catchment area and RMED — equation from Table 5; Q10 (GC), Q1o
(k-means) and Q1o (Meigh) use equations from Table 6 that are for selected groups of Philippines administrative
regions.

River Lat. Long. Catchment Philippines RMED (mm) Number of

area, A (km?)  Admin. years of data
Region
Agno 15.81357 120.45855 2432.1 1 185.6 19
Sumlog 6.97505 126.06849 430.0 11 93.55 n/a
Quo (data)  Quo (A) Q1o Q10 (GC) Q1o (k-means) Q1o (Meigh)

(A.RMED)

Agno 1471 1831 2221 3141 3011 3006

Sumlog n/a 583.6 412.7 365.0 439.5 247.4

6.2 Comparison with other estimates

6.2.1  Comparison with similar approaches

The previous large-scale study of Philippines flood magnitude (Meigh, 1995; Meigh et al., 1997) used a smaller
data set than here, based mainly on BRS data from before 1980, and fitted only the General Extreme Value
distribution to the annual maxima time series. The overlap in data means that Meigh’s (1995) study cannot be
considered to be independent of the present analysis and so does not provide a validation of our results. Some
comparison between the two studies is valuable to illustrate the effects of using an expanded data set and the GLO
fitting approach (Figure 4f). Liongson (2016) used data from 29 stations and found that Qm = 5.90A°%7¢3 (R?=0.65),
which is consistent with results in Table 5 as Qm lies between Q2 and Q1o.

Meigh et al. (1997) present global data, although with an emphasis on tropical regions. Their best-fit equations
contain few variables, often only catchment area with mean annual rainfall as the secondary predictor. Comparison
of equations between sites revealed the expected overall pattern of higher specific discharges in more humid areas
with steeper growth curves in more arid locations that have more variable rainfall, as also seen in the data of
Loebis (2002). The consistency of rainfall across the Philippines leads to a clear catchment area effect (Figure
4f) in growth curves for small (<25 km?) and large (>2500 km?) catchments, although using aggregated data shows
no differentiation for catchments of intermediate sizes. Individual catchment growth curves show considerable
variation within all of the catchment area bins, suggesting that caution is needed in using the aggregated curves
for predictive purposes at individual sites. Figure 4 provides a range of aggregated growth curves that can be
applied according to catchment area and/or climate type. The differences between the median and mean curves
on Figure 4 reflect skew in the growth curve distributions, which is likely to result from the use of relatively short
records some of which will include long return period events so overestimating flood magnitudes. Median curves
(climate type - Figure 4d; catchment area — Figure 4e) can be used in flood estimation, with the associated mean
values and inter-quartile ranges (Figure 4b,c) giving indications of the possible variability, and hence uncertainty,
associated with these estimates.

6.2.2  Comparison with rainfall-runoff modelling

The Philippines “Nationwide Disaster Risk and Exposure Assessment for Mitigation (DREAM) Program”
produced reports for major Philippines river basins (https://dream.upd.edu.ph/products/publications/index.html)
that included flood magnitude estimation. In the DREAM study, 24-hour rainfall events with a range of return
periods were calculated from data and these events were then used to model river flows in HEC-HMS 3.5 software.
Comparisons are made using catchment area equations (Table 5) for Q10 and Qigo for sites with unambiguous
locations from where DREAM results are reported and for which we are able to calculate catchment areas.

Q10 and Q1go comparisons (Figures 8a, S10) cluster around the 1:1 line of agreement. The HEC-HMS estimates
exceed the predictions using catchment area at 27 of 38 sites for Q1o, and at 24 sites for Q0. Mean ratios between
HEC-HMS and predicted values are 1.61 for Q1o and 1.76 for Q100. The HEC-HMS results are for instantaneous
flows which will be greater than the predicted daily mean flows, with the magnitude of this difference depending
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on hydrograph shape and hence catchment size (Figure 8b). Given the uncertainties in the data and predictions
noted above, and the limited calibration data available for the flood modelling in the DREAM project, the results
shown in Figure 8 provide confidence in both the HEC-HMS modelling undertaken for the DREAM project and
the catchment area-based predictions developed herein.
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Figure 8. (a) Comparison between Q1o estimates based on catchment area (Table 5) and HEC-HMS estimates
from the DREAM project. Red line is 1:1 equivalence. (b) Effect of catchment area on the ratio between Quo
values from this paper and the DREAM HEC-HMS modelling. Red line shows equal Qi values from both
methods. DREAM estimates are instantaneous peak flows whereas the estimates herein are daily means. As
catchment area increases, equivalence between the two methods would show the Q1o ratio increasing towards 1.0
as catchment area increases, with lower values in smaller catchments in which flood peaks are of much less than
one day duration. 95% prediction intervals are shown for selected points on (a) to indicate the magnitude of
statistical uncertainty in the predictions. These are approximated as £2s.e., where s.e. is the regression standard
error given in Table 5. Figure S10 presents equivalent results for Qioo.

6.3 Combining data from multiple sources

Long hydrological time series are not commonly available worldwide, with particular challenges in developing
countries (Cabrera and Lee, 2020). More usually, short, discontinuous records are available and the challenge is
to make best use of these to produce regional or national design equations. Combining data from different sources
and that was collected over different time periods raises several issues, including: changing data gathering
methodologies; climate and land use changes; and, rating curve changes due to relocation of measuring sites
and/or river bed morphological change. Uncertainty in individual measurements was assessed here through careful
reading of available metadata and quality control. Comparison of results from different data sources (e.g. Figure
5(a-c)) shows no statistically significant differences between results from analysis for each of the data sets, so
supporting our amalgamation of the data from different sources for aggregated analysis. The metadata available
for the early 20" Century SWS data includes very detailed site descriptions, rating curves, assessment of site
stability and statements on data reliability from the authors (Irrigation Division, 1923-24). Such details are rarely
available, at least in accessible public records, for more recent data. The SWS reports provide useful insight into
the challenges of hydrometric monitoring in the Philippines, with several sites showing evidence of channel
change and frequent shifts in rating curves. Although beyond the scope of this paper, such changes in rating
behaviour can be used to assess the impacts of land use and climate changes on river sediment budgets (eg Slater
et al., 2015).

The validity of combining data is difficult to assess directly. The residuals from predictive curves (Figure 5c), and
similar disaggregation by data source for other parts of the analysis herein, show no significant difference between
data sources. This absence of evidence of systematic bias between the data sources supports their aggregation.
However, aggregation does need to be undertaken carefully with assessment of data quality and comparability at
all stages of the analysis.
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6.4 Enhancing the predictions

Tropical cyclones generate many of the significant floods in the northern Philippines, where they contribute over
50% of total rainfall (Figure 1; Bagtasa, 2017), but are very infrequent south of 20°N. Annual rainfall totals show
less variability (Figure 1), although rainfall seasonality varies between climate types. Climate models predict
increasing flood magnitudes across the Philippines north of 10°N for nearly all scenarios, with smaller or no
increases predicted in southern regions (Tolentino et al., 2016). Hence regional assessments, that consider cyclone
frequency as well as annual precipitation changes, are required to assess the impacts of climate change on flood
magnitude.

The existing flow data base, coupled with geospatial information (Boothroyd et al., 2023), can be used for further
analysis. Regional spatially-weighted grouping methods (Bocchiola et al., 2003; Griffiths et al., 2020; Muhammad
and Lu, 2020) may reveal sub-regional controls over flood magnitude that will be able to improve predictions.
Hydrological similarity between catchments does not necessarily imply regional proximity. In the Philippines,
climatic gradients are observed both east-west due to topographic influences and north-south as a result of typhoon
locations (Figure 1). Coupled with topographic diversity due to the range of island sizes and relief, a range of
hydrological characteristics is expected across the country. Hence, statistical grouping (eg clustering, Figure 7) of
catchments is necessary to identify hydrologically similar behaviour and provides a more cost-effective and
achievable approach than resource-intensive rainfall-runoff modelling (Griffiths et al., 2020). Regional studies
from the Philippines have shown the relative contributions that rainfall and topographic factors make to flood
magnitude (Cabrera and Lee, 2020) and this approach may be extended nationally.

The methods in this study assume stationarity in the data time series, which has increasingly been questioned as
the impacts of recent climate change and a range of anthropogenic factors on flood properties have been observed
(Kalai et al., 2020; Kundzewicz et al., 2017). Consequently, approaches that explicitly consider non-stationary
time series (eg. Frangois et al., 2019; Kalai et al., 2020) are being developed and refined. Spatially variable
responses to changing climate suggest the need for spatio-temporal modelling (Franco-Villoria et al., 2018) and
regional calibration of predictive equations (e.g. Griffiths et al., 2020). Our combined data set will enable some
of these analyses to be undertaken in the Philippines, so potentially improving the understanding and prediction
of flood peaks.

7 Conclusions

Collation of historical data from multiple sources is a widely used technique in climatological and hydrological
studies to extend modern records. Changes to data collection methods, to the environment in which the data are
collected and to the ways in which data are recorded and reported all affect the reliability of such consolidated
data sets. Here we access an extensive and well documented data set from the early 20™ Century (SWS data;
Irrigation Division 1923-24) that extends annual maximum flood records from the Philippines. The data set is
extended from that analysed by Meigh (1995), although the results herein are largely consistent with that study.
Recent high-quality data on catchment properties, precipitation and land use have been added to the analysis
enabling assessment of a range of controls over flood magnitude.

Multivariate analysis shows that predictive equations for floods of recurrence intervals from 2 to 100 years based
on catchment area alone have R? values no greater than 0.59, but that incorporating RMED, the median annual
maximum 1-day rainfall, as a precipitation variable only increases R? to between 0.56 for Qg0 and 0.66 for Q..
Very few other variables were significant when added to multiple regression equations. The relatively low R?
values are typical of studies from tropical regions, suggesting that the Flood Estimation Handbook approach
developed for temperate climates requires some re-design for application to the tropics. The equations developed
herein are suitable for use as design equations for the Philippines, but the uncertainties in predictions need to be
assessed. This is particularly relevant when predicting Q100 Values for design purposes, as the uncertainties in Q1o
estimates are greater than in estimates of more frequent floods. Comparison with previous, independent, HEC-
HMS modelling is encouraging but serves to illustrate the uncertainties in flood magnitude prediction that remain
using either of these methods.

The Philippines exhibits regional climate variability, and there is some spatial structure in residuals from the
predictive equations. However, region-specific predictive equations do not perform significantly better than the
national equations.
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This study demonstrates the potential for combining data from multiple sources to generate flood magnitude
predictions. Combining individually short records, after careful screening and exclusion of erroneous data,
generates large data sets that can produce consistent results. Enhanced data gathering and extension of continuous
flood records are required to reduce uncertainties and improve flood forecasting, but the consistency across the
Philippines suggests that extrapolation from a small number of carefully selected catchments could provide
nationally reliable predictive equations with uncertainties that are considerably reduced from our results.
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