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1 Abstract  15 

Flood magnitude and frequency estimation are essential for the design of structural and nature-based flood risk 

management interventions and water resources planning. However, the global geography of hydrological 

observations is uneven with . In many regions, such as the Philippinesespecially in the Global South, having data 

are spatially and/or temporarilly sparse data, that limitsing the choice of statistical methods for flood estimation. 

To address this data scarcity, Wwe evaluate the potential of pooling all available annual maximum flood data for 20 

the Philippines short historical data series to estimate flood magnitudes at national scale. Daily mean rAvailable 

irver discharge data were collected from publications covering 842 sites, with data spanning from 1908 to 2018. 

Of these, 466 sites met criteria to for reliable estimation of the e a reliable annual maximum flood. Using the index 

flood approach, a range of controls were assessed at both national and regional scales using modern land cover 

and rainfall datasets, and geospatial catchment characteristics. Multivariate analysis for pPredictive equations for 25 

2- to 100-year recurrence interval floods based on using only catchment area as a predictor only have R2 ≤ 0.59. 

Additionally, adding a rainfall variable, the median annual maximum 1-day rainfall, increases R2 to between 0.56 

for Q100 and 0.66 for Q2. Very few other topographic or land-use variables were significant when added to multiple 

regression equations. R, and relatively low R2 values in flood predictions are typical of studies from tropical 

regions. Although the Philippines exhibits regional climate variability, residuals from national predictive 30 

equations residuals show limited spatial structure, and region-specific  equations do not significantly outperform 

than the national equations. The predictive equations are suitable for use as design equations in ungauged 

catchments for the Philippines, but statistical uncertainties must be assessedreported. Our approach demonstrates 

how combining individually short historical records, after careful screening and exclusion of erroneous unreliable 

data, generates large data sets that can produce consistent results. Extension of continuous flood records by 35 

continuous and rateded monitoring is required to reduce uncertainties. However, but the national-scale consistency 

in our results suggests that extrapolation from a small number of carefully selected catchments could provide 

nationally reliable predictive equations with reduced uncertainties. 

2 Introduction and rationale 

The impact of river flooding across Southeast Asia is severe on a global scale, whether measured in terms of 40 

inundated area, the number of people affected or fatalities (Ziegler et al., 2020). Understanding the hazard and 

designing mitigation or adaptation strategies relies on estimating flood magnitude and frequency, which is 

achieved through empirical analyses of available data and, for forecasting, the results of climate and hydrological 

models. The resulting equations to estimate flows of specified recurrence are used for a wide range of purposes 
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including insurance loss estimation (Lyubchich et al., 2018), aquatic biodiversity assessment (Parasiewicz et al., 45 

2019), engineering design and water resource planning. 

Understanding flood magnitude and frequency is crucial for designing mitigation strategies, and this 

understanding relies on using empirical analyses to generate predictive models. A wide range of statistical 

methods have been applied to flood frequency estimation (see Asquith et al., 2017 for a recent listing). The index 

flood approach uses the median or mean annual maximum flood, or equivalently a flood of specified recurrence 50 

interval, and relates this to catchment properties to develop regional predictive equations (eg Dalrymple, 1960; 

Kjeldsen and Jones, 2006; Stedinger and Lu, 1995). In data-rich settings, such approaches can be complex, as 

illustrated by the United Kingdom (UK) Flood Estimation Handbook (FEH). Kjeldsen et al. (2008; Table 4.1) 

show how successive iterations of predictive equations for the UK have added variables and statistical complexity. 

However, catchment area and annual precipitation remain the most significant predictors even in this case (Meigh 55 

et al., 1997). Although the index flood method is reliable and can yield high R2 values, adding non-linear effects 

and spatially-dependent interactions have been proposed as potential sources of further improvement (Muhammad 

and Lu, 2020).  

In many countries, river flow data may be sparse in space and/or time (Mamun et al., 2011), limiting the choice 

of statistical methods for flood frequency estimation and strongly influencing the magnitude of associated 60 

uncertainties. The lengths of records that are available impacts on the analytical results (Fischer and Schumann, 

2022), and uncertainty increases with short data series. This uncertainty can be reduced by extending data series 

through use of historical or proxy information (Macdonald et al., 2014; Merz and Blöschl, 2008; Reinders and 

Muñoz, 2021; Ziegler et al., 2020), by cross-validation against hydrological modelling predictions (Haberlandt 

and Radtke, 2014), or by pooling information from many sites (Kjeldsen, 2015; Griffiths et al., 2020). 65 

For the Philippines, which exemplifies some of the challenges of using sparse hydrological data, some national-

scale analyses of flood magnitude and frequency have been undertaken. Meigh (1995) analysed data, mostly from 

up to 1980, from 333 sites collected by the BRS (Bureau of Research and Standards). Growth curves and 

prediction equations for flood magnitude were presented for different hydrological regions and catchment sizes 

(Meigh, 1995; Meigh et al., 1997). Liongson (2004) demonstrated a significant relationship between catchment 70 

area and mean annual flood (QMAF) for 29 sites in northern Luzon, and analysed the form of growth curves. 

Regional differences in climate and precipitation patterns are well-documented (Bagtasa, 2017) and projections 

have been made of climate change impacts on river flow (Tolentino et al., 2016) with some evidence for significant 

changes having occurred in recent decades (Meigh, 1995). Calibrating local data with global runoff datasets 

enables the augmentation of catchment-specific data to a certain extent (Ibarra et al 2021). 75 

Studies of flood magnitude across South-East Asia provide valuable regional context for our Philippines analysis. 

Loebis (2002) found significant correlations between mean annual flood and catchment area in Indonesia, Laos 

and Thailand, as did Meigh et al. (1997) for Indonesia, Papua New Guinea and Thailand. Mamun et al. (2011) 

provide updated equations for peninsular Malaysia which use catchment area and mean annual rainfall as 

predictors. In these studies, coefficients of determination (R2) values range from 0.5 to 0.9 tending to be higher in 80 

smaller countries and where inter-annual rainfall variability is lower: for example, Meigh et al. (1997) report R2 

values of 0.92 for Papua New Guinea and 0.46 for administrative regions 3-8 in the Philippines (Figure S1).  

There are few continuous long multi-decadal river flow records available for the Philippines, but many short (3-

2035 years) records exist from across the country. This scarcity of data leads to the Philippines being omitted 

from databases used for global flow frequency analyses (e.g. Zhao et al., 2021). Pooling of the information from 85 

the available records to maximise the value of these extensive data, taking account of climatic variability across 

the country, forms the basis of the analysis in this paper. The approach uses elements of the UK FEH methodology 

(Kjeldsen et al., 2008), adapted to reflect the nature of the river flow and other data that are available, and considers 

whether there are significant regional differences in flood magnitude across the country. The paper aims of the 

paper is to demonstrate and evaluate the potential use of pooleding short data series to deliver estimates of flood 90 

magnitude for the Philippines. Using these estimates, the hypothesis that regional equations do not reduce the 

uncertainties associated with single, national-scale predictive equations is tested. Finally, we assess the potential 

use of our new results as Reliable predictive design equations would then be applicable to catchments that are 

ungauged or that have records that are insufficiently long to be used by themselves to estimate flood 

magnitudeshort records 95 
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3. Data sources 

Daily mean river discharge data were collated from 842 sites (Table 1) reported by three sources. (1)  The “SWS” 

data set comes from four volumes of the “Surface Water Supply of the Philippine Islands” (Irrigation Division, 

1923-24) contain rating curves and daily flow measurements over the period 1908 – 1922. Water level 

measurements were made at constructed weirs and rating curves were computed using discharges obtained by the 100 

velocity-area method. Rating information is supported by detailed information on the measurement site, bank and 

bed characteristics and river channel stability. Data from 248 SWS stations across the country (Figure 1) were 

used. (2) The second dataset (“BRS”) was initially managed by the Bureau of Research Standards, later being 

transferred to the Bureau of Design, also under the Department of Public Works and Highways (DPWH). The 

BRS data set (Figure 1) is in three parts: BRS_A contains 364 gauging sites with data in the period 1940-1980, 105 

BRS_B has a further 181 with data from 1980 onwards. BRS_C includes 27 of the sites from BRS_A and BRS_B 

that are either at identical locations or are sufficiently close (within a few km, without any significant tributaries 

in between) to allow for their records to be combined. This produces a maximum record length of 62 years. Some 

of these sites had automated water level sensors but most sites had a gauging structure at which manual 

observations were made three times per day.  Rating curves were obtained by velocity-area gauging. (3) The 110 

source of the third dataset (“Cagayan”) is the “Feasibility Study of the Flood Control Project for the Lower 

Cagayan River in the Republic of the Philippines” produced by Nippon Koei Co. and Nikken Consultants Inc. in 

collaboration with the DPWH in 2002 (Nippon Koei, 2002). This study only considers the Cagayan watershed, 

north Luzon, the largest catchment in the Philippines. Out of 78 gauging stations in the watershed, 48 stations 

(Figure 1) were used in this study since some of the stations only reported gauge height data and others have a lot 115 

of gaps. Daily mean water level data were recorded from 1955 to 1991 and converted to discharge using rating 

curves (details not reported; Nippon Koei, 2002). 

 

The data were initially filtered to remove sites with very short records (<7 years), inadequate rating between water 

level and discharge and those from the SWS data set where the gauging site location could not be reliably 120 

determined. The Philippines has four distinct climate types (Coronas, 1920) shown on Figure 1.  For convenience, 

hydrological data is often reported for 15 administrative regions (Figure S1), and we use this regionalisation to 

consider whether there is variation in flood hydrology across the country. 
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Figure 1: (A) Locations of gauging sites from the data sources used in the analysis (n=466; Table 2). Background 

map (after Tolentino et al., 2016) shows elevation shading overlain by the four climate types that have been 

identified for the Philippines (Coronas, 1920). (B) Mean daily rainfall (after Bagtasa, 2017). (C) Proportion of 

annual rainfall generated by tropical cyclones (after Bagtasa, 2017). The climates can be summarised as (Ibarra 

et al., 2021): type I -distinct wet and dry seasons; type II - no distinct dry season and relatively high rainfall; type 130 

III – lower overall rainfall with short dry and wet seasons; and, type IV - reasonably even distribution with lower 

total rainfall. 
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Table 1 Summary of available discharge data sets. Candidate sites are sites retained after removing sites with no 

or poor rating, or indeterminate locations. Record length is the number of years for which reliable annual 

maximum flow estimates exist, after removal of erroneous data. 145 

Source Time period 

of data 

Total 

number 

of sites 

Number of 

candidate 

sites 

Number of 

candidate 

sites with ≥7 

years record 

Record Length (years) for sites with 

≥7 years data (figures in brackets are 

for all candidate sites) 

     Max Mean Total 

SWS 1908 - 1922  248 119  30 10 7.7 (5.1)   230 (604) 

BRS_A 1940 - 1980  364 337 310 34 18.3 (17.1) 5659 

(5771) 

BRS_B 1980 - 2018 154 144 115 33 16.1 (13.9) 1856 

(2003) 

BRS_C 1940 - 2018 27 27 27 62 36.2 (36.2)  978 (978) 

Cagayan 1955 - 1991  49 46 31 20 11.6 (9.5)  361 (437) 

TOTAL  842 673 513 62 17.7 (14.6) 9084 

(9793) 

 

4 Analysis Methods 

4.1 Curve fitting for annual daily maximum flows 

The maximum flows in each calendar year were extracted from the daily flow data and fitted with three 

distributions: (1) Generalised Logistic Distribution (GLO) (Kjeldsen and Jones, 2006; Kjeldsen, 2013); (2) 150 

Weibull; (3) Log-Pearson Type III. The median annual flood (Qmed) was used as the index flood, rather than the 

mean, to minimise the effect of outliers in the data (Kjeldsen and Jones, 2006), and the parameters of the 

distributions were estimated using L-moments (Hosking, 1990; Hosking and Wallis, 1997). L-moments are linear 

combinations of probability-weighted moments, and the GLO distribution uses ratios between the first three L-

moments, l1, l2 and l3, to define the L-CV (coefficient of variation) t2 and L-Skewness t3 as: 155 

𝑡2 = 𝑙2/𝑙1 𝑡3 = 𝑙3/𝑙2    (1). 

The GLO is a three parameter distribution, which has location, scale and shape parameters. The location (𝜉) is the 

median of the distribution. The shape () and scale () parameters are estimated from the L-moment ratios (Eq. 

1), as: 

𝜅̂ = −𝑡3  𝛽̂ =
𝑡2𝜅̂𝑠𝑖𝑛(𝜋𝜅̂)

𝜋𝜅̂𝑠𝑖𝑛(𝜅̂+𝑡2)−𝑡2𝑠𝑖𝑛(𝜋𝜅̂)
   (2), 160 

where ^ indicates an estimate of the distribution parameter. Further details on L-moments and their application to 

distribution fitting are provided by Hosking and Wallis (1997) and Asquith et al., (2017). The GLO distribution 

can be used to calculate a flood, QT, with a recurrence interval of T years as 

𝑄𝑇 = 𝜉 [1 +
𝛽

𝜅
(1 − (𝑇 − 1)−𝜅)] = 𝜉𝑧𝑇    (3), 

where zT is the ‘growth curve’ at T. The Weibull and Log-Pearson Type III distributions are also three parameter 165 

distributions, described fully by Asquith et al. (2017) and Hosking and Wallis (1997) who define the relevant L-

moments and parameter calculations. The Gringorten (Cunnane, 1978) plotting position (Eq. (4)) was used, 

𝑥𝑖 = (𝑖 − 0.44)/(𝑛 + 0.12)    (4), 
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where xi is the ith quantile of the distribution, i being the rank of the annual maximum flood in a given year, and 

n the total number of years in the record. This method allows estimation of an event of up to (1.79n + 0.2) years 170 

return period (Stedinger et al., 1993). Figure 2 shows typical data sets and curve fits. 

 

Figure 2: Selected annual maximum flood data and curve fits. Red points are data. Fitted curves are GLO (black), 

Weibull (red) and Log Pearson III (blue). Cramér-von-Mises p-values shown.  Left axes are flood magnitude 

(m3.s-1) and right axes scale this by the median annual flood at each site. Values of 2,10,20 and 100 year recurrence 175 

interval floods are indicated, calculated using the GLO method. (A) Site 76, Jalaur (Lat: 11.1195; Long: 122.5386; 

Area 210km2; BRS_C data set; 37 years of data; best-fit curve: Weibull); (B) Site 210, Supang (Lat: 17.0073; 

Long:120.9086; Area 56km2; Cagayan data set; 10 years; GLO); (C) Minalungao (or Sumacbao) River (Lat: 

15.3430; Long: 121.0794; Area 309 km2; SWS data set; 7 years; GLO). 

Analysis was undertaken in R (R Core Team, 2021), using the package lmomco (Asquith, 2020) to derive the L-180 

moment estimates, to fit the distributions and to calculate their significance. Of the 513 sites with records of at 

least 7 years length (Table 1), the minimum required for L-moment calculation, two had invalid L-moments and 

so are excluded from further analysis. For the remaining 511 sites, goodness-of-fit between the data and the three 

distributions was assessed using Cramér-von Mises (CvM) test (Asquith, 2020). Such goodness-of-fit tests are 

unable to definitively identify the best distribution to use, or if any of the distributions are adequate (Asquith, 185 

2020), particularly with relatively short records, as used here. Rather, the CvM p-values provide an indication of 

the performance of the three distributions. The annual maximum series and the three curve fits were inspected for 

each site and those with visually very poor fits were excluded. Mostly these excluded sites corresponded with low 

CvM p-values, although this was not always the case.  The median CvM p-value for best-fit curves was 0.93. The 

distribution (GLO, Weibull or Log-Pearson Type III) with the highest p-value from the CvM test was used to 190 

provide Qx estimates for the site. This screening process led to the elimination of a further 45 sites from the data 

set, leaving 466 that were further analysed. The distribution of the best-fit curves (Table 2) does not show 

systematic differences between data source, catchment area or climate type (Table 2).  

 

 195 

 

 

 

 

 200 
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Table 2 Best-fit curves, defined as those with highest Cramér-von Mises test p-value. 207 sites were excluded 

from the analysis, 2 due to L-moments not being valid, and the remainder due to having short records (<7 years) 

or a poor curve fit, based on the p-value and visual inspection. 

Best fit 

curve 

All 

sites 

Data Source  Catchment Area (km2) Climate Type 

BRS 

A/B/C 

Cag SWS <100 100-

199 

200-

399 

400-

799 

≥800 I II III IV 

GLO 184 99/52/6 13 14 58 39 31 21 35 48 21 66 49 

Weibull 207 131/42/18 8 8 75 42 26 35 29 58 22 86 41 

Log 

Pearson III 

75 52/14/3 3 3 31 8 18 7 11 15 10 37 13 

TOTAL 

Used 

466 282/108/27 24 25 164 89 75 63 75 12

1 

53 189 103 

Excluded – 

poor curve 

fit or <7 

years data 

205 55/36/0 20 94 66 48 33 19 39 83 8 79 35 

L-

moments 

not valid 

2 0 2 0 0 0 1 0 1 0 0 2 0 

TOTAL 673 337/144/27 46 119 230 137 109 82 115 20

4 

61 270 138 

  205 

Values of Q2, Q10 and Q100 were calculated from the fitted curves although the lengths of available records mean 

that estimates of Q100 are subject to significant uncertainty. Towards the high flow end of the data, the Weibull 

and Log-Pearson Type III curves are usually very similar, with the GLO curve typically being steeper and more 

curved (Figure 2) and so providing higher flow estimates for high recurrence intervals (Q20, Q100) than the other 

two curves and often slightly lower estimates of Q2 and Q10.  Ratios between flow estimates from different curves 210 

(Figure S2) show this pattern: mean ratios between estimates from the GLO and Weibull distributions are 

Q2GLO/Q2Wei = 1.07 (range 0.99 – 3.48), Q10GLO/Q10Wei = 0.92 (0.70-1.00) and Q100GLO/Q100Wei = 1.09 (0.42-1.15).  

Equivalent ratios for the GLO and Log-Pearson Type III curves are Q2GLO/Q2LPIII = 1.10 (1.00 – 4.27), 

Q10GLO/Q10LPIII = 0.91 (0.55 – 0.99) and Q100GLO/Q100LPIII = 1.09 (0.36-1.15). These ratios show some systematic 

differences between the distributions (Figures 2, S1) and suggest that the choice of distribution influences flow 215 

estimates.  

Estimating uncertainty in the Qx estimates is not straightforward (Kjeldsen, 2013; Kjeldsen and Jones, 2004) and 

reflects variability in the index flood, in the growth curve and in covariance between the index flood and the 

growth curve (Kjeldsen and Jones, 2004). For a single site, the factorial standard error for the GLO distribution, 

fse, is defined as (Kjeldsen, 2013): 220 

𝑓𝑠𝑒 = 𝑒
(

2𝛽

√𝑛
)
       (5). 

.  Derivation of Eq. (5) relies on approximations that limit the reliability of the equation when n ≤ 20 (Kjeldsen, 

2013). On account of this, fse values were calculated only for records of at least 20 years length, all but one of 

which come from the BRS data sets (Table 1). 

Growth curves were calculated for each of the 466 sites (Table 2), using Eq.(3) and equivalents for the Weibull 225 

and Log-Pearson Type III distributions, over the range of -3.5 ≤ Ln(T-1) ≤ 5.0, i.e. return period T in the range 1 

to 149 years. Curves were standardised by dividing discharge by the median annual flood recorded at each site.  

Combined growth curves using data from sets of catchments that are adjacent or which have similar properties 

(eg. catchment area) can be used to provide estimates of the magnitude of floods of specified recurrence intervals 

given an initial value for Qmed. There are several ways to construct such pooled growth curves for: (i) each of the 230 

administrative regions of the Philippines; (ii) each of the four climate types (Figure 1); and, (iii) for catchments 

of different areas, as identified in Table 2. Firstly, the curves from each site within any of these groups can be 

combined, by calculating their mean, mean weighted by record length, or median (Figs. S3-S5). Secondly, the 
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Fdata can be amalgamated for all sites within each group and GLO curves fitted to the pooled data. The median 

and weighted mean methods lead to under-estimation of the longest recurrence interval floods (Figs. S3-S5) 235 

whereas both the mean of GLO the best-fit curves from each site and the GLO curves fitted to the amalgamated 

data increase more rapidly at long recurrence intervals. Note that the variability between sites within a region (or 

climate type or within catchments of similar area) provides an indication of the uncertainty to be expected when 

using regionalised curves. 

4.2 Predicting high magnitude floods from catchment properties 240 

The values of QT provided by the best-fit curves for each site individually determined above were correlated with 

catchment properties. These catchment properties, precipitation and land use were derived from a range of data 

sources. Table 3 summarises the variables used and provides a comparison with the FEH method (Kjeldsen et al., 

2008). Note that much of the data used are not contemporary and significant changes in some variables, 

particularly land use but potentially also precipitation (Bagtasa, 2017), may have occurred since the SWS data 245 

were collected in the early 20th Century. 

Table 3. Variables used in the flood prediction analysis. 

FEH variable 

name 

Units  FEH Definition Philippines data equivalent Variable 

names 

(this 

paper) 

AREA km2  Catchment area Area from DEM of the catchment, 

calculated in ArcGIS 

AREA 

BFIHOST - Baseflow index from 

soil data 

Excluded - 

DPLBAR km Drainage path length Mean average drainage path length to 

catchment outlet for all segments of 

the stream network 

DPLBAR 

DPSBAR m.km-1 (FEH) 

m.m-1 (this 

study) 

Mean catchment 

slope 

Mean average drainage path slope for 

all segments of the stream network 

DPSBAR 

EVAP mm Average annual 

potential evaporation 

Excluded - 

FARL - Flood attenuation 

index (lakes etc) 

Percentage/proportion of catchment 

area occupied by attenuation features 

(inland waters and fishing ponds) 

ATT 

FPEXT - Floodplain extent Excluded - 

PRAT none (FEH) 

mm (this 

study) 

Ratio of P100/P2 for 1-

day rainfall 

Standard deviation of annual rainfall 

within the catchment from mean 

annual rainfall (1998-2015) 

APHRODITE dataset  

RFSD 

PROPWET - Proportion of time 

when soil moisture 

deficit <6mm 

Excluded - 

RMED mm Median annual 

maximum 1-day 

rainfall 

Mean of maximum daily rainfall 

within the catchment from maximum 

daily rainfall (1998-2015) 

APHRODITE dataset 

RMED 

SAAR mm  Annual mean rainfall 

1961-90 

Mean of annual rainfall within the 

catchment from mean annual rainfall 

(1998-2015) APHRODITE dataset 

SAAR 

URBEXT2000 - Proportion of urban 

land cover in 2000 

Percentage of catchment area 

occupied by urban features (built-up) 

URB 

None - - Percentage of catchment area 

occupied by agriculture (annual crop, 

fallow plus perennial crop) 

AG 

None - - Percentage of catchment area 

occupied by closed and open forest 

FOR 
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National-scale catchment physical properties for the Philippines were previously calculated and are available as 

an open access geodatabase (Boothroyd et al., 2023). In brief, topographic analysis was undertaken using a digital 250 

elevation model (DEM) acquired in 2013 with a 5 m spatial resolution and 1 m root-mean-square error vertical 

accuracy (Grafil and Castro, 2014). The DEM was resampled to a 30 m spatial resolution in ArcGIS due to 

processing constraints. Here, AREA, DPLBAR and DPSBAR were extracted from the geodatabase. Rainfall data 

were from the end-of-the-day adjusted version of the APHRODITE data set (V1901, Yatagai et al., 2012). Land 

use variables (ATT, URB, AG, FOR) were from the National Mapping and Resource Information Authority 255 

(NAMRIA) 2010 land cover data set (www.namria.gov.ph).  

Each of the variables listed in Table 3, together with the estimates of Q2, Q10 and Q100, were tested for normality 

and transformed as required (Table 4). Log10 transformation was used as the default, most variables being 

moderately positively skewed, with square-root transformation for two land-use (areas of attenuation features and 

urban land-use) and one rainfall (standard deviation of rainfall) variables that contained numerous zero values. 260 

Cross-correlation plots and matrices, of the transformed variables where relevant, (Figure S7) show expected 

autocorrelation between climate variables and no significant non-linear relationships elsewhere in the predictor 

variables. Note (Table 4) that mean annual rainfall (SAAR) is poorly correlated with each of the Qx measures. 

Table 4. Summary statistics for variables used in the flood prediction analysis (466 sites). All values in original 

units, prior to transformation (Trans). Land-use variables expressed as % were converted to proportion (0-1 scale) 265 

for analysis. Correlation coefficient, R, significance: * p<0.01. Geometric mean (Geom mean) shown for variables 

with no zero values. + one slope of 0.0 excluded when calculating geometric mean. XT = transformed value of 

variable X.  NA = geometric mean not able to be computed due to zero values. 

Variable 

(units) 

Min / 

Max 

Mean  s.d. Geom Mean 

/ Median 

Trans R (log Qx- XT) 

     QMED Q2 Q10 Q100 

AREA (km2) 1.13 / 

27450 

656 2040 172 / 163 Log10 0.77* 0.77* 0.74* 0.70* 

DPLBAR 

(km) 

0.02 / 

245.7 

27.2 27.7 18.0 / 18.9 Log10 0.74* 0.74* 0.71* 0.67* 

DPSBAR  

(m.m-1) 

0.00 / 

0.145 

0.041 0.024 0.034+/ 

0.044 

No 0.03 0.03 0.07 0.10 

ATT (%) 0 / 37.0 1.11 2.4 NA / 0.68 √ 0.34* 0.34* 0.30* 0.28* 

RFSD (mm) 0; 444 101 100 NA / 78.0 √ 0.48* 0.48* 0.47* 0.45* 

RMED (mm) 62.5 / 

331 

172 57.9 161 / 170 No 0.20* 0.20* 0.20* 0.19* 

SAAR (mm) 1169 / 

3877 

2316 475 2269 / 2238 Log10 0.06 0.06 0.05 0.03 

URB (%) 0 / 51.3 1.80 5.1 NA / 0.48 √ -0.06 -0.07 -0.07 -0.08 

AG (%) 0 / 100 36.9 27.6 NA / 32.5 No -0.31* -

0.31* 

-

0.30* 

-0.29* 

FOR (%) 0 / 86.4 25.9 23.9 NA / 19.2 No 0.28* 0.28* 0.29* 0.29* 

QMED 0.72 / 

6029 

380 722 132 / 136 Log10 - 1.00* 0.93* 0.59* 

Q2 (m3.s-1) 0.63 / 

6211 

374 717 131 / 141 Log10 - - 0.93* 0.61* 

Q10 (m3.s-1) 1.73 / 

15230 

831 1590 319 / 325 Log10 - - - 0.82* 

Q100 (m3.s-1) 3.75 / 

91040 

1801 5170 632 / 619 Log10 - - - - 

 

5 Results 270 

5.1 Validity of L-moment calculations 

The L-moment ratio diagram (Figure 3; Figure S6) shows the relationship between L-skew and L-kurtosis 

differentiated by catchment area and the optimal best-fit curve. Sites where each of the distribution types fit the 

data best do cluster close to the theoretical relationships for each of those distributions as expected. Neither climate 
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type (Figure 3), data source, catchment area nor record length (Figure S6) show significant segregation on the L-275 

moment diagram. Consequently, the 466 retained sites are considered as a single data set in subsequent analysis. 

 

 

Figure 3: Relationships between L-skewness and L-kurtosis compared with theoretical curves (Hosking and 

Wallis, 1997). Data classified by: (a) best-fit curve; and, (b) catchment area. Figure 3(a) shows segregation 280 

between sites with different best-fit curves, with higher positive L-kurtosis associated with the GLO curve, and 

low to negative L-kurtosis with the sites where the Weibull curve fits the data best. (b) shows overlap between 

the best-fit curve type and catchment areas with no clustering of different sized catchments. Colours indicate 

catchment areas, as shown at the top of the figure, and symbol shape indicates best-fit curve. Figure S6 plots the 

data classified by climate type, length of record and data source: in all cases, there is no segregation according to 285 

the classifying variable. 

Only for sites (N=71) that had at least 20 annual maxima and for which the GLO distribution provided the best fit 

to the data, it was possible to compute the factorial standard error (fse) using Eg. 5 . The values of fse range from 

1.03 to 1.32, with mean = 1.18. It is noted that uncertainty will be greater for sites with records of less than 20 

years. 290 

5.2 Regional annual maximum daily flow growth curves 

Growth curves for all sites (Figure 4a) show considerable variability within and between regions, reflecting the 

number, length and quality of available data records as well as catchment properties. To assess variation across 

the country, we use the administrative division of the Philippines into 15 regions (Figure S1) which are aligned to 

hydrological and topographic patterns (Figure 1). Different climate zones (Figure 4b) and catchment areas (Figure 295 

4c) indicate some grouping which may form the basis for hydrologic regionalisation. Climate types II and III plot 

higher than the others (Figure 4b), although the median growth curves for all four climate types are very similar 

(Figure 4d). The pooled data provide steeper growth curves, reflecting the larger data series used and the 

increasing influence of large events in these larger samples. Consequently, the pooled data curves match high 

percentiles of the individual curves (shown by plotting close to, or sometimes outside of, the 75th percentile limits 300 

shown in Figure 4b,c). The steeper curves for pooled data are also seen when grouped according to catchment 

area (Figure 4e). Small (< 25 km2) catchments plot separately from all larger areas, and there is little differentiation 

between any larger catchments. This contrasts with Meigh’s (1995) results which suggested a steady decrease in 

Qx/Qmean as catchment size increased. 
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Figure 4 Dimensionless growth curves. (a) individual curves (GLO, Weibull or Log-Pearson Type III according 

to which produced the highest p-value in the Cramér-von Mises test) for 466 sites, overlain by pooled GLO curves 

for each region. (b) GLO curves for fitted to data pooled from all sites in each climate type; IQ range lines are the 

inter-quartile (25th and 75th percentiles) of the curves for individual sites within each climate zone. (c) GLO curves 

fitted to all data withinfrom bins of catchment area, with inter-quartile ranges from individual sites shown. (d) 310 

Comparison of GLO curves fitted to all data from within each climate zone and the median value from curves 

fitted to individual sites within that zone. (e) Comparison of GLO curves fitted to all data for sites within each 

catchment area bin and the median value from individual sites within that area bin. (f) Overall GLO curves for 

each catchment area bin, and adjusted equivalent curves from Meigh (1995). Adjustment was necessary as Meigh 

(1995) used the mean annual flood as the index flood, rather than the median. See text for details. 315 

5.3 Flood estimation equations 

5.3.2 Flood prediction from catchment area and rainfall 

The correlations in Table 4 show that catchment area alone provides the most significant prediction of flood 

magnitude. Drainage path length (DPLBAR) provides an equally good predictor as path length is correlated with 

catchment area (Hack’s law; Rigon et al., 1996). However, R2 for catchment area and DPLBAR are in the range 320 

0.45-0.6 so there is potential for additional variables improving flood magnitude prediction. Initially, the rainfall 

variables were introduced to multiple regression relationships to account for the volume of water entering 

catchments as catchment area * rainfall. Tables 3 and 4 show two relevant rainfall variables: SAAR, the mean 

annual rainfall and RMED, the maximum daily rainfall which serves a measure of the magnitude of rainfall 

extremes which may be expected to be correlated with flood peaks.  325 

Equations using catchment area alone (Table 5) provide R2 values between 0.49 (Q100) and 0.6 (Q2). These rise to 

0.55-0.65 when area is multiplied by RMED (Table 5). P99, the 99th percentile of daily rainfall, produces equations 

which fit the data equally as well as RMED.  
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Table 5. Best-fit equations for the data set covering the whole of the Philippines (n=466). se = standard error of 

residuals. 

Event return 

period 

Equations R2 se 

Q2 𝑄2 = 3.013𝐴0.733 

𝑄2 = 4.989 × 10−2(𝐴. 𝑅𝑀𝐸𝐷)0.770 

0.59 

0.66 

0.424 

0.387 

Q10 𝑄10 = 10.666𝐴0.660 

𝑄10 = 2.576 × 10−1(𝐴. 𝑅𝑀𝐸𝐷)0.696 

0.55 

0.62 

0.417 

0.383 

Q100 𝑄100 = 25.645𝐴0.622 

𝑄100 = 7.568 × 10−1(𝐴. 𝑅𝑀𝐸𝐷)0.658 

0.49 

0.56 

0.442 

0.413 

 

The residuals from the equations using A.RMED as the predictor were examined for effects of data source, climate 

type or region (Figure 5). One-way ANOVA indicates significant differences between regions for Q2, Q10 and 335 

Q100, with regions 7 (p=0.003; 0.0043; 0.026, respectively), 11 (p=0.012; 0.001; 0.005) and 12 (p<0.001 for all 

Qx) being significantly different for all three return periods, region 3 (p=0.02; 0.02) for Q10 and Q100, and region 

9 (p=0.02) for Q100 only. Differences between climate types are only significant for Q10 and Q100, in both cases 

Type IV being significantly different from the others (p<0.01).  For data source, significant differences are noted 

for Q2 and Q10, in both cases due to BRS_B (p=0.006 for both) and the early 20th Century SWS (p<0.001; 0.014 340 

for Q2, Q10, respectively) data sets. While these results suggest possible benefits from sub-dividing the data to 

produce predictive equations, inspection of Figure 5, the boxplots and ANOVA results all show considerable 

inter-group variance. Hence, the alternative approach of introducing additional variables to the analysis is 

considered as the next stage of the analysis, before regionalisation is considered in section 5.3.4. 

 345 
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Figure 5. Observed values, prediction and residuals for Q10 as a function of catchment area (A) multiplied by 

median daily maximum rainfall (RMED). (a)-(c) stratified by data source, (d)-(f) by climate type.  (a), (d) are 

predicted vs. observed values, with 1:1 (solid), 1:2 and 2:1 (dashed) lines shown. Residuals (b) and (e) are 

normally (Gaussian) distributed and show no systematic variation with predicted Q10.  Density plots of residuals 

(c), (f) confirm the absence of systematic variation with data source and climate type. Equivalent figures for Q2 350 

and Q100 are in supplementary information (Figs. S8, S9). 

5.3.3 Comprehensive stepwise regression prediction 

Stepwise regression yielded equations (Table 6) with between three and six significant (p<0.05) predictors, but 

overall R2 values of 0.68, 0.63 and 0.57 for Q2, Q10 and Q100, respectively. The modest improvements in R2 

associated with these additional variables suggest that there is limited value in using these complex equations for 355 

flood magnitude prediction.  

Table 6. Best-fit stepwise equations for the data set covering the whole of the Philippines (n=466). se = standard 

error of residuals. 

Event 

return 

period 

Equation R2 se 

Q2 8.75 × 10−3𝐴0.753𝑆𝐴𝐴𝑅0.68510[0.002𝑅𝑀𝐸𝐷−2.423𝐷𝑃𝑆𝐵𝐴𝑅−0.165𝐴𝐺−0.676√𝑈𝑅𝐵]   0.68 0.377 

Q10 3.44(𝐴)0.67910[0.003𝑅𝑀𝐸𝐷−0.75√𝑈𝑅𝐵]  0.63 0.378 

Q100 8.49(𝐴)0.66710[0.003𝑅𝑀𝐸𝐷−0.838√𝑈𝑅𝐵−0.673√𝐴𝑇𝑇] 0.57 0.407 

 

This limitation is enhanced by consideration of the variables in the equations. Each equation contains land-use 360 

variables (ATT,URB,AG) that are determined from modern conditions. The relevance of these values to historical 

data is uncertain given historic and contemporary land-use change across the Philippines. Their inclusion in 

equations for all three return periods does suggest that land-use may play a significant role in flood magnitude. In 

all three cases, AREA enters the equation first, followed by RMED. R2 values after each of these steps, for Q2, Q10 

and Q100 are: AREA 0.59, 0.55, 0.49; and, AREA and RMED 0.66, 0.62, 0.55.  Adding further variables (Table 6) 365 

improves R2 by ≤ 0.02, hence only catchment area (AREA) and median annual maximum daily rainfall (RMED) 

are considered necessary for developing predictive equations. Whether these two predictors are added sequentially 

or are multiplied together (Table 5) does not affect overall model performance (note that the rmse values quoted 

in the equations are for the transformed variables). Subsequently, the product AREA.RMED is used as a single 

measure of flood event rainfall volume across the catchments. 370 

5.3.4  Regionalisation of predictive equations 

The dimensionless growth curves (Figure 4a), inspection and ANOVA analysis of regression residuals suggest 

that regionalisation may be able to improve predictive equations. Although the growth curves also show some 

segregation between climate types, this is not found to be a significant cause of variation in the residuals from 

predictive equations. Fitting equations to each region separately (Figure 6a) yields improvement in R2 and residual 375 

standard error for some regions, but this is inconsistent. The regional equations suggest that some grouping of 

regions may be beneficial. 

Three ways of dividing the 15 regions into groups were considered: (a) classification by visual inspection of the 

growth curves; (b) K-means cluster analysis of the intercepts (a) and gradients (b) for regression equations (Figure 

6a); and, (c) the regionally contiguous groups used by Meigh (1995). Each grouping was tested for Q2, Q10 and 380 

Q100 predictions. Results were consistent between these return periods, and results for Q10 are given in Table 7 

(see Supplementary Information for Q2 and Q100 results). 

 

 

 385 

 



Page 14 

 

Table 7. Equations for different groups of regions. Results for Q10 are presented. Meigh (1995) did not include 

regions 13 or CAR, so the total number of sites in the three contiguous regional groups is 431. 

Group Regions in group Number 

of sites 

Equation R2 se 

Growth curve     

A 1,13,CAR 65 𝑄10 = 0.234(𝐴. 𝑅𝑀𝐸𝐷)0.730 0.78 0.245 

B 2,3,4A,6,11,12 241 𝑄10 = 0.0945(𝐴. 𝑅𝑀𝐸𝐷)0.779 0.64 0.390 

C 4B,5,7,10 126 𝑄10 = 1.303(𝐴. 𝑅𝑀𝐸𝐷)0.530 0.36 0.427 

D 8,9 34 𝑄10 = 0.628(𝐴. 𝑅𝑀𝐸𝐷)0.603 0.69 0.211 

K-means clustering of regional regression equations 

E 1,6,7,8,11   142 𝑄10 = 0.095(𝐴. 𝑅𝑀𝐸𝐷)0.796 0.75 0.298 

F 2,3,4A,CAR 167 𝑄10 = 0.071(𝐴. 𝑅𝑀𝐸𝐷)0.813 0.69 0.389 

G 4B,9,10,12,13 103 𝑄10 = 1.24(𝐴. 𝑅𝑀𝐸𝐷)0.534 0.50 0.370 

H 5 54 𝑄10 = 5.10(𝐴. 𝑅𝑀𝐸𝐷)0.388 0.19 0.475 

Meigh (1995) contiguous regional groups 

I 1,2 86 𝑄10 = 0.166(𝐴. 𝑅𝑀𝐸𝐷)0.753 0.63 0.357 

J 3,4A,4B,5,6,7,8 264 𝑄10 = 0.334(𝐴. 𝑅𝑀𝐸𝐷)0.674 0.56 0.402 

K 9,10,11,12 81 𝑄10 = 0.851(𝐴. 𝑅𝑀𝐸𝐷)0.535 0.45 0.331 

 

The R2 and standard errors of residuals in Table 7 are compared with the combined results for all regions in Table 390 

5 (R2 = 0.62; se = 0.383). Weighting both the R2 and residual error values by the number of sites in each 

group/region suggested that for Q2, Q10 and Q100 the highest R2 values are those obtained using the overall 

regressions on the full data set (Table 5). The residual standard errors are slightly lower when obtained from the 

15 individual regional curves (0.36, 0.35, 0.37 for Q2, Q10 and Q100, respectively) than from the overall regressions 

(0.39, 0.38, 0.41). However, these differences are small and there is insufficient evidence to justify use of either 395 

curves for individual regions or groups of regions.  
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Figure 6. (a) Regression curves for each region in the form Q10 = a (A.RMED)b
.  Curves are grouped according to 

growth curve shapes (Table 7): group A (black), B (blue), C (red) and D (purple), and bold lines are regional 

curves given by the equations in Table 7.  (b) Probability density functions for residuals from the individual 400 

regional curves in (a), and the three groupings of regions in Table 7 (GC = Growth Curve; k = k-means). Note the 

similarity in the distributions of residuals, although those for the individual regions are clustered slightly more 

closely around the mean than those from the grouping methods. 

5.3.5 Spatial distribution of flood magnitudes and residuals  

The spatial distribution of calculated specific flood magnitudes (Qxx divided by catchment area A) (Figure 7a) 405 

show a concentration of higher values through the central Philippines, with relatively lower values in NE Luzon 

and across Mindinao in the south.  The underlying annual rainfall map shows a general decline from east to west, 

and some of the highest rainfall areas are associated with high Qxx/A values, for example in the Bicol region. 

Residuals from the overall equations (Table 5) do not show strong regional trends, although there are clusters of 

positive and negative residuals in different regions.  The residuals are not correlated with catchment area (R = -410 

0.04; p = 0.39) and only weakly with annual rainfall (R = 0.15; p < 0.001). However, there is a significant positive 

correlation between residuals and specific flood magnitude (R = 0.62; p < 2 x 10-16), with only negative residuals 

for Q10/A < 0.46 and only positive residuals when Q10/A > 6.4. These results are replicated for Q2 and Q100, with 

significant correlations of 0.6 (p < 2 x 10-16) for both Q2/A and Q100/A. 

  

   
 

 
 

 

Figure 7. (a) Specific 10-year flood discharge (Q10/A), showing generally higher values in the central Philippines 415 

and southern Luzon, and lower values across Mindanao. (b) Residuals (in log10 units) from Philippines-wide 

(Table 5) equations for Q10. Note the absence of regional trends, although there are some sub-regional clusters of 

both positive and negative residuals. 
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6 Discussion 420 

6.1 Design equations for the Philippines 

6.1.1 Data availability and quality 

Flow data were combined from four data sets that are partly independent, having been collected by different 

agencies and using different methods, but which overlap significantly in collecting data at the same or nearby 

locations. Catchment properties, such as area and gradients, were derived from a high-resolution DEM that covers 425 

the whole of the Philippines. Although some station locations are ambiguous in the data records, the locations of 

all stations included in the analysis have been reliably identified using the descriptions in the original data sources. 

Land use data rely on a single time, and no historical land use data are available. This introduces uncertainty to 

the analysis, especially for data collected a century or more prior to the land use data in areas that have undergone 

urban development or forest replacement by agriculture. 430 

The proportions of variance in flood estimates that are statistically explained by the best-fit equations (R2; Tables 

5-7) are within the range from studies in other tropical regions (Meigh et al., 1997), from 0.38 (Malawi) to 0.92 

(Papua New Guinea). The relatively low R2 values reflect a range of factors, including: data quality and length of 

flow records; changing climate and hydrological conditions during the time period covered by the study; and, 

controls over flood magnitude in these tropical catchments being influenced by hydrological parameters that are 435 

not considered in the analysis. Data quality has been assessed throughout, with sites excluded if their growth 

curves are based on short records or do not fit expected shapes (Tables 1,2). Further, there is no evidence of bias 

in the data, shown both by the original variables and the behaviour of residuals from the final predictive curves. 

For example, the best-fit curves are not biased by data source, climate type or record length (Figures 3; S6,S8,S9). 

The residuals show neither systematic variation across these same categories (Figure 5) nor consistent spatial 440 

dependence (Figure 7).  

Some spatial dependence is visible in Figure 7, although attempts to produce regionally consistent predictive 

curves (Table 7; Figure 6) do not improve the overall performance of the equations compared with national 

equations. The residuals in Figure 7 do not correlate clearly with either total rainfall (Figure 1B) or the relative 

importance of tropical cyclones in generating precipitation (Figure 1C). Further analysis of the role of regional 445 

climate in flood generation may be able to provide some improvements to predictions, although this is complicated 

by ongoing climate change and potential changes in the importance of cyclonic precipitation (Bagtasa, 2017). 

6.1.2 Recommended design equations 

Neither the addition of further catchment variables (Eq. 6), nor regionalisation (Table 7) generated significant 

improvement in the predictive capabilities of the discharge equations. Hence, it is recommended that single 450 

national equations are utilised. This approach has the advantage of maximising the size of the data set used in 

generating the equations; particularly for the largest catchments, the small sample size reduces confidence in the 

predictions in some regions. Regionally grouped equations (Table 7) can provide additional estimates of flood 

magnitude that may be helpful in some cases.  

The recommended design equations for Q2, Q10 and Q100 are those for the whole of the Philippines given in Table 455 

5. Using only catchment area, A, will provide usable flood magnitude estimates, the uncertainty of which can be 

estimated from the residual standard errors given in Table 5. Here we obtained RMED values from the 

APHRODITE database. RMED can be determined in other ways, and the sensitivity of flood predictions to 

changing RMED can be assessed directly. Along with catchment area, other catchment properties that provide 

information to contextualise the flood magnitude estimates can be obtained from an open access database 460 

(Boothroyd et al., 2023). Utilising design equations based on catchment area alone has the advantage of simplicity 

of computation, but the relatively low R2 values (Tables 5,7) obtained suggest that a simple multivariate regression 

approach offers only partial improvement to the predictive capability of the equations. 

Table 8 shows sample calculations for two sites, one of which (Agno) has 19 years of annual maxima available 

whereas the other (Sumlog) is ungauged. For the Agno, all of the equations from Tables 5 and 6 produce higher 465 

estimates of Q10 than from the observations. The reliability of the predictive equations may be affected by this 
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being one of the largest catchments in the Philippines. The Sumlog is a smaller catchment for which no data are 

available. In this case, the equations provide a smaller range, with the calculations using the three regional methods 

(Table 7) spanning the result from the national-scale equation using A.RMED in Table 5. 

Table 8. Sample calculations for Q10 using equations from Tables 5 and 6. The six Q10 estimates for each site are 470 

as follows: Q10 (data) from annual maxima recorded at the Agno site only; Q10 (A) using catchment area only – 

equation from Table 5; Q10 (A.RMED) using catchment area and RMED – equation from Table 5; Q10 (GC), Q10 

(k-means) and Q10 (Meigh) use equations from Table 6 that are for selected groups of Philippines administrative 

regions. 

River Lat. Long. Catchment 

area, A (km2) 

Philippines 

Admin. 

Region 

RMED (mm) Number of 

years of data 

Agno 15.81357 120.45855 2432.1 1 185.6 19 

Sumlog 6.97505 126.06849 430.0 11 93.55 n/a 

 

 

 

Q10 (data) 

 

Q10 (A) 

 

Q10 

(A.RMED) 

 

Q10 (GC) 

 

Q10 (k-means) 

 

Q10 (Meigh) 

Agno 1471 1831 2221 3141 3011 3006 

Sumlog n/a 583.6 412.7 365.0 439.5 247.4 

 475 

6.2 Comparison with other estimates 

6.2.1 Comparison with similar approaches 

The previous large-scale study of Philippines flood magnitude (Meigh, 1995; Meigh et al., 1997) used a smaller 

data set than here, based mainly on BRS data from before 1980, and fitted only the General Extreme Value 

distribution to the annual maxima time series. The overlap in data means that Meigh’s (1995) study cannot be 480 

considered to be independent of the present analysis and so does not provide a validation of our results. Some 

comparison between the two studies is valuable to illustrate the effects of using an expanded data set and the GLO 

fitting approach (Figure 4f). Liongson (2016) used data from 29 stations and found that Qm = 5.90A0.763 (R2=0.65), 

which is consistent with results in Table 5 as Qm lies between Q2 and Q10. 

Meigh et al. (1997) present global data, although with an emphasis on tropical regions. Their best-fit equations 485 

contain few variables, often only catchment area with mean annual rainfall as the secondary predictor. Comparison 

of equations between sites revealed the expected overall pattern of higher specific discharges in more humid areas 

with steeper growth curves in more arid locations that have more variable rainfall, as also seen in the data of 

Loebis (2002).  The consistency of rainfall across the Philippines leads to a clear catchment area effect (Figure 

4f) in growth curves for small (<25 km2) and large (>2500 km2) catchments, although using aggregated data shows 490 

no differentiation for catchments of intermediate sizes. Individual catchment growth curves show considerable 

variation within all of the catchment area bins, suggesting that caution is needed in using the aggregated curves 

for predictive purposes at individual sites. Figure 4 provides a range of aggregated growth curves that can be 

applied according to catchment area and/or climate type. The differences between the median and mean curves 

on Figure 4 reflect skew in the growth curve distributions, which is likely to result from the use of relatively short 495 

records some of which will include long return period events so overestimating flood magnitudes. Median curves 

(climate type - Figure 4d; catchment area – Figure 4e) can be used in flood estimation, with the associated mean 

values and inter-quartile ranges (Figure 4b,c) giving indications of the possible variability, and hence uncertainty, 

associated with these estimates.  

6.2.2 Comparison with rainfall-runoff modelling 500 

The Philippines “Nationwide Disaster Risk and Exposure Assessment for Mitigation (DREAM) Program” 

produced reports for major Philippines river basins (https://dream.upd.edu.ph/products/publications/index.html) 

that included flood magnitude estimation. In the DREAM study, 24-hour rainfall events with a range of return 

periods were calculated from data and these events were then used to model river flows in HEC-HMS 3.5 software.  

Comparisons are made using catchment area equations (Table 5) for Q10 and Q100 for sites with unambiguous 505 

locations from where DREAM results are reported and for which we are able to calculate catchment areas.  
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Q10 and Q100 comparisons (Figures 8a, S10) cluster around the 1:1 line of agreement. The HEC-HMS estimates 

exceed the predictions using catchment area at 27 of 38 sites for Q10, and at 24 sites for Q100. Mean ratios between 

HEC-HMS and predicted values are 1.61 for Q10 and 1.76 for Q100. The HEC-HMS results are for instantaneous 

flows which will be greater than the predicted daily mean flows, with the magnitude of this difference depending 510 

on hydrograph shape and hence catchment size (Figure 8b). Given the uncertainties in the data and predictions 

noted above, and the limited calibration data available for the flood modelling in the DREAM project, the results 

shown in Figure 8 provide confidence in both the HEC-HMS modelling undertaken for the DREAM project and 

the catchment area-based predictions developed herein. 

 515 

Figure 8. (a) Comparison between Q10 estimates based on catchment area (Table 5) and HEC-HMS estimates 

from the DREAM project. Red line is 1:1 equivalence. (b) Effect of catchment area on the ratio between Q10 

values from this paper and the DREAM HEC-HMS modelling. Red line shows equal Q10 values from both 

methods. DREAM estimates are instantaneous peak flows whereas the estimates herein are daily means. As 

catchment area increases, equivalence between the two methods would show the Q10 ratio increasing towards 1.0 520 

as catchment area increases, with lower values in smaller catchments in which flood peaks are of much less than 

one day duration. 95% prediction intervals are shown for selected points on (a) to indicate the magnitude of 

statistical uncertainty in the predictions.  These are approximated as ±2s.e., where s.e. is the regression standard 

error given in Table 5. Figure S10 presents equivalent results for Q100. 

6.3 Combining data from multiple sources 525 

Long hydrological time series are not commonly available worldwide, with particular challenges in developing 

countries (Cabrera and Lee, 2020). More usually, short, discontinuous records are available and the challenge is 

to make best use of these to produce regional or national design equations. Combining data from different sources 

and that was collected over different time periods raises several issues, including: changing data gathering 

methodologies; climate and land use changes; and, rating curve changes due to relocation of measuring sites 530 

and/or river bed morphological change. Uncertainty in individual measurements was assessed here through careful 

reading of available metadata and quality control. Comparison of results from different data sources (e.g. Figure 

5(a-c)) shows no statistically significant differences between results from analysis for each of the data sets, so 

supporting our amalgamation of the data from different sources for aggregated analysis. The metadata available 

for the early 20th Century SWS data includes very detailed site descriptions, rating curves, assessment of site 535 

stability and statements on data reliability from the authors (Irrigation Division, 1923-24). Such details are rarely 

available, at least in accessible public records, for more recent data. The SWS reports provide useful insight into 

the challenges of hydrometric monitoring in the Philippines, with several sites showing evidence of channel 

change and frequent shifts in rating curves. Although beyond the scope of this paper, such changes in rating 

behaviour can be used to assess the impacts of land use and climate changes on river sediment budgets (eg Slater 540 

et al., 2015).  
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The validity of combining data is difficult to assess directly. The residuals from predictive curves (Figure 5c), and 

similar disaggregation by data source for other parts of the analysis herein, show no significant difference between 

data sources. This absence of evidence of systematic bias between the data sources supports their aggregation. 

However, aggregation does need to be undertaken carefully with assessment of data quality and comparability at 545 

all stages of the analysis.  

6.4 Enhancing the predictions  

Tropical cyclones generate many of the significant floods in the northern Philippines, where they contribute over 

50% of total rainfall (Figure 1; Bagtasa, 2017), but are very infrequent south of 10°N. Annual rainfall totals show 

less variability (Figure 1), although rainfall seasonality varies between climate types. Climate models predict 550 

increasing flood magnitudes across the Philippines north of 10°N for nearly all scenarios, with smaller or no 

increases predicted in southern regions (Tolentino et al., 2016). Hence regional assessments, that consider cyclone 

frequency as well as annual precipitation changes, are required to assess the impacts of climate change on flood 

magnitude.  

The existing flow data base, coupled with geospatial information (Boothroyd et al., 2023), can be used for further 555 

analysis. Regional spatially-weighted grouping methods (Bocchiola et al., 2003; Griffiths et al., 2020; Muhammad 

and Lu, 2020) may reveal sub-regional controls over flood magnitude that will be able to improve predictions. 

Hydrological similarity between catchments does not necessarily imply regional proximity. In the Philippines, 

climatic gradients are observed both east-west due to topographic influences and north-south as a result of typhoon 

locations (Figure 1). Coupled with topographic diversity due to the range of island sizes and relief, a range of 560 

hydrological characteristics is expected across the country. Hence, statistical grouping (eg clustering, Figure 7) of 

catchments is necessary to identify hydrologically similar behaviour and provides a more cost-effective and 

achievable approach than resource-intensive rainfall-runoff modelling (Griffiths et al., 2020). Regional studies 

from the Philippines have shown the relative contributions that rainfall and topographic factors make to flood 

magnitude (Cabrera and Lee, 2020) and this approach may be extended nationally.  565 

The methods in this study assume stationarity in the data time series, which has increasingly been questioned as 

the impacts of recent climate change and a range of anthropogenic factors on flood properties have been observed 

(Kalai et al., 2020; Kundzewicz et al., 2017). Consequently, approaches that explicitly consider non-stationary 

time series (eg. François et al., 2019; Kalai et al., 2020) are being developed and refined. Spatially variable 

responses to changing climate suggest the need for spatio-temporal modelling (Franco-Villoria et al., 2018) and 570 

regional calibration of predictive equations (e.g. Griffiths et al., 2020). Our combined data set will enable some 

of these analyses to be undertaken in the Philippines, so potentially improving the understanding and prediction 

of flood peaks. 

7 Conclusions 

Collation of historical data from multiple sources is a widely used technique in climatological and hydrological 575 

studies to extend modern records. Changes to data collection methods, to the environment in which the data are 

collected and to the ways in which data are recorded and reported all affect the reliability of such consolidated 

data sets. Here we access an extensive and well documented data set from the early 20th Century (SWS data; 

Irrigation Division 1923-24) that extends annual maximum flood records from the Philippines. The data set is 

extended from that analysed by Meigh (1995), although the results herein are largely consistent with that study. 580 

Recent high-quality data on catchment properties, precipitation and land use have been added to the analysis 

enabling assessment of a range of controls over flood magnitude. 

Multivariate analysis shows that predictive equations for floods of recurrence intervals from 2 to 100 years based 

on catchment area alone have R2 values no greater than 0.59, but that incorporating RMED, the median annual 

maximum 1-day rainfall, as a precipitation variable only increases R2 to between 0.56 for Q100 and 0.66 for Q2. 585 

Very few other variables were significant when added to multiple regression equations. The relatively low R2 

values are typical of studies from tropical regions, suggesting that the Flood Estimation Handbook approach 

developed for temperate climates requires some re-design for application to the tropics. The equations developed 

herein are suitable for use as design equations for the Philippines, but the uncertainties in predictions need to be 

assessed. This is particularly relevant when predicting Q100 values for design purposes, as the uncertainties in Q100 590 

estimates are greater than in estimates of more frequent floods. Comparison with previous, independent, HEC-
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HMS modelling is encouraging but serves to illustrate the uncertainties in flood magnitude prediction that remain 

using either of these methods.  

The Philippines exhibits regional climate variability, and there is some spatial structure in residuals from the 

predictive equations. However, region-specific predictive equations do not perform significantly better than the 595 

national equations. 

This study demonstrates the potential for combining data from multiple sources to generate flood magnitude 

predictions. Combining individually short records, after careful screening and exclusion of erroneous data, 

generates large data sets that can produce consistent results. Enhanced data gathering and extension of continuous 

flood records are required to reduce uncertainties and improve flood forecasting, but the consistency across the 600 

Philippines suggests that extrapolation from a small number of carefully selected catchments could provide 

nationally reliable predictive equations with uncertainties that are considerably reduced from our results. 
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SUPPLEMENTARY INFORMATION 

Table S1. Q2 equations for different groups of regions. Meigh (1995) did not include regions 13 or CAR, so the 

total number of sites in the three groups is 431. 

Group Regions in group Number 

of sites 

Equation R2 se 

Growth curve     

A 1,13,CAR 65 𝑄2 = 0.0675(𝐴. 𝑅𝑀𝐸𝐷)0.765 0.74 0.287 

B 2,3,4A,6,11,12 241 𝑄2 = 0.0218(𝐴. 𝑅𝑀𝐸𝐷)0.836 0.68 0.387 

C 4B,5,7,10 126 𝑄2 = 0.139(𝐴. 𝑅𝑀𝐸𝐷)0.662 0.45 0.443 

D 8,9 34 𝑄2 = 0.145(𝐴. 𝑅𝑀𝐸𝐷)0.685 0.75 0.203 

K-means clustering of regional regression equations 

E 1,6,7,8,11   142 𝑄2 = 0.0222(𝐴. 𝑅𝑀𝐸𝐷)0.851 0.73 0.336 

F 2,3,4A,CAR 167 𝑄2 = 0.0172(𝐴. 𝑅𝑀𝐸𝐷)0.864 0.71 0.391 

G 4B,9,10,12,13 103 𝑄2 = 0.148(𝐴. 𝑅𝑀𝐸𝐷)0.659 0.59 0.376 

H 5 54 𝑄2 = 0.693(𝐴. 𝑅𝑀𝐸𝐷)0.500 0.30 0.457 

Meigh (1995) contiguous regional groups 

I 1,2 86 𝑄2 = 0.0513(𝐴. 𝑅𝑀𝐸𝐷)0.779 0.63 0.369 

J 3,4A,4B,5,6,7,8 264 𝑄2 = 0.0583(𝐴. 𝑅𝑀𝐸𝐷)0.759 0.61 0.408 

K 9,10,11,12 817 𝑄2 = 0.0723(𝐴. 𝑅𝑀𝐸𝐷)0.696 0.57 0.342 

 

Table S2. Q100 equations for different groups of regions. Meigh (1995) did not include regions 13 or CAR, so the 730 

total number of sites in the three groups is 431. 

Group Regions in group Number 

of sites 

Equation R2 se 

Growth curve     

A 1,13,CAR 65 𝑄100 = 0.366(𝐴. 𝑅𝑀𝐸𝐷)0.750 0.77 0.255 

B 2,3,4A,6,11,12 241 𝑄100 = 0.248(𝐴. 𝑅𝑀𝐸𝐷)0.751 0.59 0.425 

C 4B,5,7,10 126 𝑄100 = 6.026(𝐴. 𝑅𝑀𝐸𝐷)0.447 0.27 0.447 

D 8,9 34 𝑄100 = 2.023(𝐴. 𝑅𝑀𝐸𝐷)0.537 0.60 0.228 

K-means clustering of regional regression equations 

E 1,6,7,8,11   142 𝑄100 = 0.244(𝐴. 𝑅𝑀𝐸𝐷)0.772 0.72 0.312 

F 2,3,4A,CAR 167 𝑄100 = 0.184(𝐴. 𝑅𝑀𝐸𝐷)0.787 0.63 0.421 

G 4B,9,10,12,13 103 𝑄100 = 4.198(𝐴. 𝑅𝑀𝐸𝐷)0.477 0.41 0.393 

H 5 54 𝑄100 = 24.95(𝐴. 𝑅𝑀𝐸𝐷)0.298 0.09 0.520 

Meigh (1995) contiguous regional groups 

I 1,2 86 𝑄100 = 0.317(𝐴. 𝑅𝑀𝐸𝐷)0.756 0.58 0.399 

J 3,4A,4B,5,6,7,8 264 𝑄100 = 1.122(𝐴. 𝑅𝑀𝐸𝐷)0.621 0.48 0.427 

K 9,10,11,12 81 𝑄100 = 4.111(𝐴. 𝑅𝑀𝐸𝐷)0.446 0.33 0.359 
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Figure S1.  Administrative regions of the Philippines. 
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 735 

Figure S2. Comparison between flood estimates for 2, 10 and 100 year return periods determined from the three 

curve fitting methods. GLO = Generalised Logistic Distribution; Wei = Weibull distribution; LPIII = Log-Pearson 

Type III. x-axes are flood estimates from the GLO (upper two rows) and Weibull distributions, and y-axes are 

ratios between the estimates obtained from two of the methods, as indicated for each row. Data are colour-coded 

according to the best-fit curve for each site.   740 
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Figure S3. Growth curves for all sites in each region of the Philippines (grey lines) with four methods for 

calculating a single growth curve for each region. Black line – mean of growth curves for all sites; red line – mean 

of growth curves for all sites weighted by length of record; blue line – median of growth curves for all sites; and, 745 

purple dashed line – GLO curve fitted amalgamated data from all sites within the region. Bottom row shows 

comparison between the four methods of calculating single growth curves for each region.  
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Figure S4. (a) Growth curves for all sites in each climate type of the Philippines (grey lines) with four methods 

for calculating a single growth curve for each climate type (N is the number of sites of each climate type). Black 

line – mean of growth curves for all sites; red line – mean of growth curves for all sites weighted by length of 750 

record; blue line – median of growth curves for all sites; and, purple dashed line – GLO curve fitted amalgamated 

data from all sites within each climate type. (b) Comparison between the four methods of calculating single growth 

curves for catchments within each climate type. Grey lines are growth curves for all individual sites. 

 

Figure S5. (a) Growth curves for all catchments within catchment area bins indicated (grey lines) with four 755 

methods for calculating a single growth curve for each region. Black line – mean of growth curves for all sites; 

red line – mean of growth curves for all sites weighted by length of record; blue line – median of growth curves 

for all sites; and, purple dashed line – GLO curve fitted amalgamated data from all sites within each catchment 

area bin. (b) Comparison between the four methods of calculating single growth curves for within each catchment 

area bin. 760 
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Figure S6. Relationships between L-skewness and L-kurtosis compared with theoretical curves (Hosking and 

Wallis, 1997). Data classified by: (a) climate zone; (b) length of data record; and, (c) data source. In all cases there 765 

is overlap between the best-fit curve type and the classification variable with no obvious clustering of catchments 

according to climate type, record length or data source. Data points are coloured according to the classification 

variable, with symbol shape indicating the best-fit curve. 
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Figure S7. Cross-correlations between all variables used in the analysis. Note that several variables have been 

transformed prior to plotting, either Log10 (AREA, DPLBAR, SAAR, QMED, Q2, Q10, Q100) or square root (ATT, 

RFSD, URB). See Table 4 for details. Points are colour coded by data source. Plots on the diagonal are probability 
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density functions of the variables. Numbers on the upper right of each figure are correlation coefficients, also 775 

coloured by data source.  

 

Figure S8. Observed values, prediction and residuals for Q2 as a function of catchment area (A) multiplied by 

median daily maximum rainfall (RMED). (a)-(c) stratified by data source, (d)-(f) by climate type.  (a),(d) are 

predicted vs. observed values, with 1:1 (solid), 1:2 and 2:1 (dashed) lines shown. Residuals (b) and (e) are 780 

normally distributed and show no systematic variation with predicted Q2.  Density plots of residuals (c), (f) 

confirm the absence of systematic variation with data source and climate type. 
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Figure S9. Observed values, prediction and residuals for Q100 as a function of catchment area (A) multiplied by 

median daily maximum rainfall (RMED). (a)-(c) stratified by data source, (d)-(f) by climate type.  (a),(d) are 785 

predicted vs. observed values, with 1:1 (solid), 1:2 and 2:1 (dashed) lines shown. Residuals (b) and (e) are 

normally distributed and show no systematic variation with predicted Q100.  Density plots of residuals (c), (f) 

confirm the absence of systematic variation with data source and climate type. 

 

Figure S10. (a) Comparison between Q100 estimates based on catchment area (Table 5) and HEC-HMS estimates 790 

from the DREAM project. Red line is 1:1 equivalence. (b) Effect of catchment area on the ratio between Q100 

values from this paper and the DREAM HEC-HMS modelling. Red line shows equal Q100 values from both 
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methods. DREAM estimates are instantaneous peak flows whereas the estimates herein are daily means. As 

catchment area increases, equivalence between the two methods would show the Q100 ratio increasing towards 1.0 

as catchment area increases, with lower values in smaller catchments in which flood peaks are of much less than 795 

one day duration. 95% prediction intervals are shown for selected points on (a) to indicate the magnitude of 

statistical uncertainty in the predictions.  These are approximated as ±2s.e., where s.e. is the regression standard 

error given in Table 5. 

 


