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Abstract. Flash drought (FD) is an onset and intensify rapidly type of drought that can harm the terrestrial ecosystem, and 

cause economic and agricultural losses. The North China Plain (NCP) is an important agricultural region in China where 

sustainable development is restricted by the frequent droughts and insufficient water resources. Coping with FD requires an 

understanding of the FD onset and identification in the NCP. Based on root zone soil moisture (RZSM), standardized 10 

evaporative stress ratio (SESR) and multiples of mean evaporative stress ratio (MESR), this study identified the FD events in 

the NCP from 1981 to 2022, revealed the FD characteristics such as frequency, duration, severity and intensity, explored the 

temporal and spatial trend, determined the FD hotspots, and demonstrated the impact of FD identification thresholds on the 

FD identification. The frequency distributions of FD events identified by RZSM, SESR, and MESR are all high in the central 

and northern NCP and low in the southern, whereas the total duration is high in the southern and eastern NCP and low in the 15 

northern. As the FD intensity increases, the onset stage lengthens, the recovery stage shortens, the total duration reduces, and 

the severity declines. The FD affected areas from various FD identification methods exhibit significant and similar seasonal 

variations, primarily occurring from May to August. Besides, NCP is prone to extreme and exceptional FDs. The NCP has a 

decreasing tendency of the FD characteristics, and three hotspots with frequent and serious FD events are identified in the 

northwestern, eastern and southwestern NCP. The FD frequency is also significantly influenced by the thresholds in the 20 

identification methods. This study provides insights into the FD characteristics in the NCP, and clarifies its trend and hotspots, 

which may be valuable for FD understanding and adaptation. 
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1 Introduction 

Regional long-term inadequate precipitation can result in persistent and slow drought disasters, which harm the ecology, 25 

agriculture, and economy (Li et al., 2020; Limones, 2021). The terrestrial water cycle accelerates and droughts becomes more 

frequent under global warming. Except for the long-term and slow droughts, some droughts that exhibit rapid occurrence and 

intensification also happen frequently, which are called flash drought (FD) (Deng et al., 2022; Yuan et al., 2023). FD is 

restricted by both water and energy, and its rapid onset complicates drought monitoring and forecasting (Yuan et al., 2023; 

Zhang et al., 2022a). The severe FD in the United States during the 2012 summer rapidly shifted from no drought to extreme 30 

drought in less than a month. Its rapid intensification made it difficult to capture, resulting in economic losses of more than 

$30 billion (Yuan et al., 2023). Examples of the FD events also include those in western Russia in 2010, southern Great Plains 

in 2015, and southern China in 2019 (Edris et al., 2023; Hunt et al., 2021; Wang and Yuan, 2021). Because of the severe 

impact of FD on society and environment, its occurrence and development have received much more attention worldwide 

(Deng et al., 2022; Li et al., 2020). 35 

FD happens frequently accompanied with increasing temperature and decreasing precipitation, resulting in a rapid increase in 

evapotranspiration and reduction in soil moisture (Tyagi et al., 2022). As a result, some hydrological and meteorological 

variables were applied as key indicators to identify FD in previous studies. Currently, the FD identification methods can be 

mainly divided into three categories based on conventional drought indicators, soil moisture, and atmospheric evaporation 
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demand, respectively. The conventional drought indicators used for identifying FD include the United States Drought Monitor 40 

(USDM) (Chen et al., 2019; Edris et al., 2023; Otkin et al., 2019; Pendergrass et al., 2020), Standardized Precipitation 

Evapotranspiration Index (SPEI) (Fu and Wang, 2022; Noguera et al., 2020; Noguera et al., 2021), and Standardized 

Precipitation Index (SPI) (Noguera et al., 2021; Parker et al., 2021). Chen et al. (2019) defined FD as a drought event with at 

least two degrees of deterioration happening within four weeks using USDM, and they discovered that FD occurs mostly 

during the warm season in the central United States. Otkin et al. (2019) also provided the FD evolution in the central and 45 

southern United States from July to November 2015 using USDM. Noguera et al. (2020) used SPEI to identify the FD in Spain 

from 1961 to 2018, illustrating that the northwestern Spain is more prone to FD. They also revealed a remarkable consistency 

in the FD identified by SPI and SPEI (Noguera et al., 2021). However, the traditional drought indexes have drawbacks. SPI 

only examines the regional precipitation deficit, neglecting the influence of climatic variables like temperature and evaporation. 

SPEI describes the combined impacts of insufficient precipitation and increased evapotranspiration, yet its climatic response 50 

is quite slow (Deng et al., 2022). Besides, USDM is only applicable in the United States and cannot be used in other regions. 

As a result, several specific indicators for FD identification have also been created. 

The influence of FD on agriculture cannot be disregarded. Soil moisture represents the combined influence of precipitation 

and evapotranspiration. Hence, the soil moisture indicators have been frequently employed in the FD identification, such as 

root zone soil moisture (RZSM, Yuan et al., 2019), soil moisture index (SMI, Hunt et al., 2009, 2021), soil moisture volatility 55 

index (SMVI, Osman et al., 2021; Osman et al., 2022), and flash drought stress index (FDSI, Sehgal et al., 2021). Yuan et al. 

(2019) investigated the rapid decreases of soil moisture in a short period, suggested an FD identification method based on 

pentad RZSM, and examined the FD risk exposure in China. Hunt et al. (2021) utilized SMI to depict agricultural water stress 

and illustrated how the FD affects soil moisture. Osman et al. (2021) developed SMVI to successfully capture FD in humid 

and semi-humid regions of the United States, and explored its sensitivity. Sehgal et al. (2021) proposed FDSI, a combination 60 

of relative rate of dry down (RRD) and soil moisture stress (SMS), to characterize FD and analyze its mechanism. 

In addition to soil moisture, various studies have identified FD based on atmospheric evaporation demand. The evolutionary 

stress index (ESI) indicates the normalized anomaly of the ratio of actual evapotranspiration (ET) to potential 

evapotranspiration (PET) (Anderson et al., 2007; Hunt et al., 2021). Otkin et al. (2019) studied the vegetation stress in the 

United States from 2001 to 2017 by ESI, and Hunt et al. (2021) also quantified the spatial evolution of the 2010 Russian FD 65 

and its influence on agriculture. Ahmad et al. (2022) evaluated the occurrence and spread of two FD events in the northern 

Great Plain in 2016 and 2017 using ESI as well. Li et al. (2020) developed an FD temporal and spatial tracking framework 

based on standardized evapotranspiration deficit index (SEDI, Vicente-Serrano et al., 2010), and assessed the FD 

characteristics and driving factors in the Pearl River Basin of China between 1960 and 2015. The evaporative demand drought 

index (EDDI) detected FD through the PET response to surface dryness anomalies. Hobbins et al. (2016) contrasted USDM 70 

and EDDI to depict the FD evolution in the United States. Hoffmann et al. (2021) identified FD under CMIP5 by SPI, EDDI, 

and ESI. Christian et al. (2019) proposed a method for identifying FD based on standardized evaporative stress ratio (SESR), 

which has been widely promoted and applied. Deng et al. (2022) used SESR to determine the global FD spatiotemporal 

characteristics and its meteorological driving factors from 1981 to 2020. Zhong et al. (2022) utilized SESR to evaluate the FD 

spatial and temporal characteristics in the Pearl River Basin of China, and Edris et al. (2023) applied it to quantify the FD 75 

rapidly increasing components in the United States from 1979 to 2019. 

RZSM and SESR are commonly utilized as FD indicators in regional FD study. Basara et al. (2019) measured the FD 

spatiotemporal development and spread in the United States in 2012 by SESR, while Gou et al. (2022) used SESR to track the 

FD path in the Huaibei Plain of China from 2001 to 2019. Zhang et al. (2022a) assessed the FD intensity based on RZSM in 

China from 1979 to 2016, and examined the effectiveness of multiple linear regression (MLR), long short term memory 80 

(LSTM), and random forest (RF) models in simulating the FD intensity. Mukherjee and Mishra (2022b) investigated the global 

FD frequency and intensity, as well as their influencing factors using SESR and RZSM. Shah et al. (2022) employed RZSM 
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to determine the FD frequency variations and driving factors in Europe from 1950 to 2019. 

However, the SESR application had some problems. When identifying FD in SESR, SESR and the change of SESR (ΔSESR) 

theoretically follow normal distributions, therefore the 50th percentile (SESR50th and ΔSESR50th) equal 0, indicating that 85 

ΔSESR50th denotes no change in SESR (ΔSESR = 0), whereas ΔSESR below the 40th percentile of ΔSESR values (ΔSESR40th) 

denotes a declining in SESR. However, whether SESR and ΔSESR follow a normal distribution remains to be determined, and 

if not, the ΔSESR40th may not be less than 0. In the study by Gou et al. (2022), it was found that the 36th percentile of ΔSESR 

(ΔSESR36th) corresponds to an increase in SESR, where ΔSESR36th is greater than 0. This phenomenon may be because that 

SESR gradually decreases during periods without precipitation, and increases during the precipitation process. It is conceivable 90 

for ΔSESR to be less than 0 during periods with no precipitation and larger than 0 during precipitation periods. Consequently, 

the FD events may be underestimated or overestimated. Furthermore, Christian et al. (2019) does not provide a criterion for 

SESR at the FD onset, but only a criterion about the minimum SESR at the FD onset stage greater than the 20th percentile 

(SESR20th). This leads to the possibility that the SESR at the FD onset is below SESR20th, even if all other criteria are satisfied. 

Therefore, it is necessary to add a criterion on the SESR at the FD onset. 95 

A new method based on the multiples of the mean evaporative stress ratio (MESR) for FD identification has been developed 

to address the aforementioned problems in SESR identification method in this study. To compare the local climatology at 

different locations, MESR is used instead of SESR, without considering the probability density function (PDF) that evaporative 

stress ratio (ESR) follows. Furthermore, MESR and ΔMESR are fitted by multiple PDFs and converted into percentiles. To 

guarantee that the thresholds of MESR and ΔMESR are less than 0 with a lower level of MESR and a decrease in MESR, the 100 

variable thresholds are employed for identifying FD. The objectives of this study are to: (1) propose an improved FD 

identification method called MESR based on the SESR; (2) characterize the FD in the North China Plain (NCP) from 1981 to 

2022 based on RZSM, SESR and MESR, and reveal the FD frequency, duration, severity and intensity; (3) investigate the FD 

temporal and spatial trend, identify the FD hotspots in the NCP, and analyze the impact of thresholds on the FD identification. 

2 Materials and Methods 105 

2.1 Study area 

The NCP is located in 31 ~ 43 °N and 110 ~ 123 °E, and is the second biggest plain in China, as can be seen in Fig.1 (Wang 

et al, 2022; Yu and Deng, 2022). It borders the Bohai Sea and the Yellow Sea to the east, Taihang Mountain and Loess Plateau 

to the west, Yanshan Mountain to the north, and the Yellow River Basin to the south (Wu et al, 2022; Zhang et al, 2022b). The 

NCP spans around 3 × 105 km2, and the elevation is 3 ~ 2836 m, with most regions below 50 m (Wu et al, 2022; Yang et al, 110 

2023). The NCP experiences a warm temperate semi-humid monsoon climate (Liu et al, 2018), with cold and dry winters and 

hot and humid summers (Zhao et al, 2017). It also has sufficient sunshine (Wang et al, 2022), with an average annual 

temperature of 6 ~ 17 ℃ and precipitation of 500 ~ 900 mm (Wu et al, 2022; Yu and Deng, 2022). Precipitation varies 

significantly by season, with the most precipitation occurring from June to August (Liu et al, 2018; Wu et al, 2022). With its 

flat terrain and fertile soil, the NCP is an important agricultural region and cropland production base in China (Liu et al., 2018; 115 

Yu and Deng, 2022). Wheat and corn are the main crops, along with grains, soybeans, and potatoes grown (Yu and Deng, 

2022). The frequent drought disasters and fragile ecological environment of the NCP have restricted the sustainable 

development (Liu et al., 2018; Wang et al., 2023). 

2.2 Data 

Developed by the European Centre for Medium-Range Weather Forecasts (ECWMF), the fifth-generation European Center 120 

for Medium-Range Weather Forecasts (ERA5)-Land has been produced by replaying the land component of the ECMWF 

ERA5 climate reanalysis, with improved nonlinear dynamical downscaling compared to ERA5 
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(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land; Muñoz Sabater et al., 2019; Deng et al., 2022). The 

ET, PET, and water volumes in soil layer 1 (0 ~ 7 cm), soil layer 2 (7 ~ 28 cm), and soil layer 3 (28 ~ 100 cm) from 1981 to 

2022 were acquired with the 0.1°×0.1° spatial resolution and 1 hour temporal resolution. The soil moistures in soil layers 0 ~ 125 

28 cm and 0 ~ 100 cm were determined using the weighted average with water volumes of the three soil layers. The soil 

moistures, ET and PET are utilized to calculate pentad mean RZSM, SESR, and MESR to identify the FD events. 

 

Figure 1 Location and the digital elevation model (DEM) of NCP. 

2.3 Methods 130 

2.3.1 FD identification by RZSM (FDRZSM) 

The FD identification by RZSM in this study was proposed by Yuan et al. (2019). Taking a grid as an example, the FD 

identification by RZSM is shown in Fig.2 (a). The steps are as follows. 

(1) Convert the daily top 1-meter RZSM into percentile values (Chen et al., 2021). On a given day p of the specified grid, a 

sequence of RZSM from the p-1, p, and p+1 days of each year is created. Fit the RZSM sequence by the empirical distribution 135 

function (EDF) and then convert it into percentiles. 

(2) Determine the pentad mean RZSM using the daily RZSM percentile values (Wang and Yuan, 2022). 

(3) Identify FDRZSM by the following three criteria (Mukherjee and Mishra, 2022a): 

a) The pentad mean RZSM decreases from above the 40th percentile (RZSM40th) to below the 20th percentile (RZSM20th) 

within 4 pentads, on average decreasing by at least 5th percentile every pentad (for instance, August 1 ~ 11 in Fig.2 (a)). 140 

b) The FD terminates when the decreasing RZSM recovers to above the RZSM20th for at least one pentad (e.g., August 31 in 

Fig.2 (a)). Additionally, the FD moves into the recovery stage when the average decline rate falls below 5th percentile or the 

RZSM percentile starts to increase (e.g., August 11 in Fig.2 (a)). 

c) The FD lasts for at least 4 pentads and up to 18 pentads. 

2.3.2 FD identification by SESR (FDSESR) 145 

Christian et al. (2019) proposed the FD identification method by SESR, which is based on ESR. On the basis of the method of 

Christian et al. (2019), a criterion regarding the SESR threshold at the FDSESR onset is added to the FDSESR identification in 

this study. An example of a FD event based on SESR is shown in Fig.2 (b). 

(1) SESR calculation 

ESR was calculated by taking the ratio between daily ET and PET (Christian et al., 2021): 150 
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ET
ESR

PET
=

                                                                                         (1) 

ESR was linearly detrended to eliminate the impacts of climate change on FD identification threshold over time. Then, the 

mean pentad ESR was calculated and standardized into SESR to remove the climate zone variations. 

ESR

ESR ESR
SESR



−
=

                                                                                     (2) 

where SESR is the Z score of ESR at the specific grid for a specific pentad, ESR  and σESR are the mean and standard deviation 155 

of ESR at the specific grid for a specific pentad over the whole study period. Additionally, the SESR change is linearly 

detrended and normalized as: 

( )
Z

SESR

SESR SESR
SESR



 −
 =                                                                                (3) 

where ΔSESR is the change in SESR between each pentad, (ΔSESR)Z (referred to as ΔSESR) is the Z score of ΔSESR, 

SESR  and σΔSESR are the mean and standard deviation of ΔSESR for an specific pentad at a given grid for all study period. 160 

 

Figure 2 Illustration of the definitions of FD through (a) RZSM, (b) SESR, and (c) MESR. Note that the numbers on 

the SESR line in (b) means the percentile of ΔSESR, the numbers before ‘/’on the MESR line in (c) means the percentile 

of ΔMESR, and that after ‘/’ means Pr2-10th. 

(2) FDSESR identification 165 

Identify FDSESR by the following four criteria (Christian et al., 2019): 

a) The minimum length is five pentads SESR changes, which means a length of six pentads. 
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b) The beginning SESR is above the 40th percentile of SESR values (SESR40th), and the minimum SESR is less than the 

SESR20th (e.g., July 27 ~ August 16 in Fig.2 (b)). The FD event ends at the pentad when SESR exceeds SESR20th. 

c) No more than one consecutive ΔSESR is over the ΔSESR40th. The ΔSESR after the ΔSESR exceeding ΔSESR40th must be 170 

lower than the ΔSESR40th, and the ending SESR should be lower than the SESR two pentads before. The onset stage of FD 

starts from the first pentad of ΔSESR below the ΔSESR40th, and ends at the last pentad with ΔSESR below the ΔSESR40th. 

d) The mean change in SESR during the FD event must be less than the 25th percentile of the ΔSESR for pentads that were 

encompassed with the FD events for all study period. 

2.3.3 FD identification by MESR (FDMESR) 175 

The difference between MESR and SESR identification is that the MESR identification does not need to consider the PDF that 

ESR follows. In the meanwhile, the percentiles of MESR and ΔMESR for each pentad are fitted using the optional PDF, and 

the variable thresholds that ensure less than 0 are employed in the process of FD identification. Figure 2 (c) illustrates a FD 

event based on MESR. The following are the steps of the FD identification by MESR: 

(1) MESR calculation 180 

Convert the mean pentad ESR that has been linearly detrended into MESR0: 

0

ESR
MESR

ESR
=

                                                                                        (4) 

where ESR  is the mean value of ESR, and MESR0 is the multiple of ESR  at the specific grid for a specific pentad. On the 

given pentad p of the specified grid, a sequence of MESR0 from the p-1, p, and p+1 pentads of each year are constructed. 

Seven PDFs (normal distribution, generalized extreme value (GEV), chi-square, t distribution, logistic distribution, Pearson-185 

Ⅲ (P-Ⅲ) distribution, and Rayleigh distribution) are used to fit the MESR0 series. The optimal PDF (f1) is determined with 

the lowest Akaike information criterion (AIC), Bayesian information criterion (BIC), and root mean square error (RMSE). 

Then the MESR0 is converted into percentile values using f1. Additionally, the MESR0 change (ΔMESR0) is detrended, and 

then converted into ΔMESR1 by Eq. (5). 

0
1

0

MESR
MESR

MESR


 =



                                                                                    (5) 190 

where ΔMESR0 is the change in MESR between adjacent pentads, 
0MESR  is the mean value of ΔMESR0, and ΔMESR1 is 

the multiple of 
0MESR  for the pentad for all study period. Similar as MESR0, the ΔMESR1 sequence is fitted by the seven 

PDFs, and ΔMESR1 is converted into percentile values (ΔMESR) by the optimal PDF (f2). 

(2) Thresholds determination 

The percentile of MESR0 equals to 1 (Pr1) and percentile of ΔMESR1 equals to 0 (Pr2) were calculated by the optimal PDF f1 195 

and f2 at the specific grid for a specific pentad, as can be seen in Eqs. (6) and (7).  

1

1 1Pr ( )f x dx
−

=                                                                                        (6) 

0

2 2Pr ( )f x dx
−

=                                                                                        (7) 

Pr1 indicates that the ESR is at an average level and equals to the ESR , whereas Pr2 indicates that ESR remains unchanged 

and the evaporative stress are unaltered as well. ΔMESR1 from all the pentads during the FD onset stage for all years is fitted 200 

by the seven PDFs as well, and the optimal PDF is regarded as f3. The percentiles of ΔMESR1 from all the pentads during the 

FD onset stage for all years equals 0 (Pr3) can be determined by Eq. (8). 

0

3 3Pr ( )f x dx
−

=                                                                                        (8) 

(3) FD identification 

FDSESR can be identified by the following four criteria: 205 
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a) The minimum length is five pentad MESR changes, which means a length of six pentads. 

b) During the onset stage, the beginning MESR is above the Pr1-10th percentile of MESR values (MESRPr1-10th), and the 

minimum MESR is below the Pr1-30th percentile (MESRPr1-30th) (e.g., July 27 ~ August 21 in Fig.2 (c)). The FD event ends at 

the pentad when MESR exceeds MESRPr1-30th. 

c) No more than one consecutive ΔMESR is over the Pr2-10th percentile of ΔMESR (ΔMESRPr2-10th). The ΔMESR after the 210 

ΔMESR exceeding ΔMESRPr2-10th must be lower than the ΔMESRPr2-10th, and the ending MESR should be lower than the 

MESR two pentads before. The onset stage starts from the first pentad of ΔMESR below the ΔMESRPr2-10th, and ends at the 

last pentad with ΔMESR below the ΔMESRPr2-10th. The number 

d) The mean change in MESR during the FD event must be less than the Pr3-25th percentile of the ΔMESR and for pentads 

that were encompassed with the FD events for all study period. 215 

2.3.4 FD characteristics 

Seven FD characteristics are used in this study. The FD frequency is defined as the average number of FD events per year, and 

incidence rate (IR) as the percentage of years that the FD events occurred during the study period. Duration is measured as the 

pentads from the onset of the FD events to the termination (durationTotal), and is divided into the duration of onset and recovery 

stages (durationOnset and durationRecovery). Severity of FDRZSM is determined by the accumulated deficit of RZSM relative to the 220 

40th percentile during a FD event, that of FDSESR is determined by the accumulated deficit of SESR relative to the 40th 

percentile, and that of FDMESR is determined by the accumulated deficit of MESR relative to the Pr1-10th percentile. Intensity 

is the mean change in RZSM, SESR and MESR percentiles during the FD onset stage. Table 1 shows that the FD events can 

be classified into four categories by intensity: moderate, severe, extreme and exceptional FDs (Christian et al., 2019; 

Mukherjee and Mishra, 2022b). 225 

Table 1 FD classification by intensity. 

FD intensity index FD classification Intensity of RZSM, SESR and MESR 

FD1 Moderate > 20th 

FD2 Severe 15 ~ 20th 

FD3 Extreme 10 ~ 15th 

FD4 Exceptional < 10th 

2.3.5 Mann-Kendall trend test 

Without assuming a probable probability distribution, Mann-Kendall test is extensively used to determine the trend with 

consistently increasing or decreasing (Mann, 1945; Mahto and Mishra, 2023; Noguera et al., 2020). Compared with parametric 

tests, the nonparametric Mann-Kendall test is less likely to affect by outliers. The Mann-Kendall test is used to assess the trend 230 

of FD characteristics at the grid scale. The detailed calculation steps of Mann-Kendall test can be seen in Mann (1945). 

2.3.6 Indicator to identify hotspots 

Taking into account the FD characteristics, higher frequency and severity, as well as lower intensity, correspond to FD that 

may cause greater harm. Therefore, an indicator to identify FD hotspots is constructed based on frequency, severity and 

intensity of FDRZSM, FDSESR and FDMESR, and it can be calculated as follows: 235 

min

max min

frequency frequency
frequency' = 

frequency frequency

−

−

                                                                     (9) 

min

max min

severity severity
severity' = 

severity severity

−

−
                                                                       (10) 

min

max min

intensity intensity
intensity' = 

intensity intensity

−

−

                                                                         (11) 
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1 1
Hotspots = frequency'+severity'+

3 intensity'

 
 
 

                                                                (12) 

where frequencymax, frequencymin, severitymax, severitymin, intensitymax, and intensitymin are the maximum and minimum 240 

frequency, severity, and intensity in the NCP; frequency’, severity’, and intensity’ are the max-min normalization of frequency, 

severity, and intensity; and frequency' , severity ' , and intensity'  are the mean frequency, severity, and intensity of FDRZSM, 

FDSESR and FDMESR. 

3 Results 

3.1 Shortcomings of FDSESR and rationality of FDMESR 245 

To graphically illustrate the limitations of the FDSESR method, the distribution of SESR50th and ΔSESR50th are shown in Fig.3 

(a) (b). Theoretically, SESR and ΔSESR follow the normal distribution, where SESR50th = 0 and ΔSESR50th = 0, indicating that 

SESR40th is below the average level and ΔSESR40th is less than 0 with the decreasing SESR. However, the skewed distributions 

of SESR50th and ΔSESR50th in NCP demonstrate that SESR50th and ΔSESR50th are generally not 0. When SESR50th > 0, it is 

possible that SESR40th > 0, indicating that ESR40th exceeds ESR  and SESR40th cannot indicate the low evaporative stress. 250 

When ΔSESR50th > 0, maybe the corresponding ΔSESR40th > 0, reflecting an increasing SESR, which could result in the 

underestimation of evaporative stress and inaccurate capture of FD events that would not occur. When SESR50th < 0, ESR40th 

may be significantly lower than ESR , which would indicate a lower evaporative stress. When ΔSESR50th < 0, ΔSESR40th is 

also significantly less than 0, indicating a severe decreasing SESR, leading to the overestimation of evaporative stress and 

disregard for the FD events that actually occurred. 255 

 

Figure 3 The distribution of (a) SESR50th, (b) ΔSESR50th, the optimal PDF that (c) MESR50th and (d) ΔMESR50th follow, 

and distribution of (e) Pr1 and (f) Pr2. 

Fig.3 (c) (d) shows the optimal PDFs that MESR and ΔMESR follow (f1 and f2). The typically followed distributions for MESR 

(f1) are mainly GEV and logistic distributions, and those for ΔMESR (f2) are logistic and t distributions. Since MESR and 260 

SESR are both obtained by the linear transformations to ESR, it can be assumed that MESR follows the skewed distribution 

as well, corresponding to Fig.3 (a) (b). The Pr1 and Pr2 are shown in Fig.3 (e) (f). While there are also Pr1 and Pr2 larger or 

smaller than the 50th percentile, there has been a notable improvement compared with SESR. Therefore, the FDMESR method, 
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which fits several PDFs and uses the variable thresholds for FD identification, may be employed to identify more accurate FD. 

3.2 Spatial characteristics of FD events 265 

RZSM, SESR and MESR were utilized to identify FD events between 1981 and 2022, and the spatial distribution of their 

characteristics were determined. Figure 4 depicts the spatial distribution patterns of frequency, durationTotal, severity and 

intensity. The frequency distribution and the variation with latitude are also demonstrated. Those of IR, durationOnset and 

durationRecovery can also be seen in Fig.S1. 

 270 

Figure 4 Spatial distributions of the frequency, duration, severity and intensity of FD events identified by RZSM, SESR 

and MESR, and their absolute differences, as well as the frequency distribution of the characteristics and its variation 

with latitude. 

The frequency of FDRZSM is high in the central and northern NCP and low in the southern NCP with two high-frequency regions 

in the central and northern NCP, that of FDSESR is high in the central and northeastern NCP and low in the southern NCP, and 275 

that of FDMESR is higher in the northern NCP than the southern. The lack of precipitation and increase of evapotranspiration 

would hasten the decrease of soil moisture and increase the likelihood of FD in the northern NCP than the southern NCP (Gou 

et al., 2022; Yuan et al., 2023). In the northern NCP, evapotranspiration is water limited, and the inadequate precipitation is 

the primary driving factor of FD. The latitude distribution of frequency also verifies this. The FDRZSM frequency decreases 

sharply within the range of 31 ~ 33 °N, and then fluctuates steadily in the north of 33 °N. In the region north of 33 °N, the 280 

FDRZSM frequency likewise peaks around 38 °N and 41 °N, respectively, and slowly decreases in regions north of 41 °N. The 

FDSESR and FDMESR frequency increases with latitude in the region south of 40 °N, reaches the maximum at 40 °N, and then 

gradually decreases in the region north of 40 °N. Furthermore, the overall FDSESR frequency is higher than that of FDRZSM and 

FDMESR. The density distribution demonstrates that the frequency of FDRZSM and FDMESR are both mostly dispersed 0 ~ 0.6 

times/year, whereas the FDSESR frequency is larger than that of FDRZSM and FDMESR, ranging between 0.4 and 0.8 times/year. 285 
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The difference in frequency spatial distribution reveals that the frequency difference between FDMESR and FDRZSM is between 

-0.2 and 0.3 times/year, with FDMESR has a higher frequency in the northern and eastern NCP, and a lower frequency in the 

central and southern NCP. With the exception of northeastern corner of NCP where FDMESR frequency is 0 ~ 0.2 times/year 

higher than that of FDSESR, the FDMESR frequency is mainly 0.1 ~ 0.3 times/year lower in the other region of NCP. The IR 

spatial distributions for the three FD methods are fairly similar to those of frequency (Fig.S1). Figure S2 compares the 290 

characteristics of FDRZSM, FDSESR, and FDMESR. Figure S2 (a) (b) depict the frequency and IR scatter distributions, which reveal 

a more significant linear relationship between FDRZSM and FDMESR than that between FDRZSM and FDSESR. Besides, the 

frequency and IR scatter distributions of FDSESR and FDMESR are quite comparable. 

The durationTotal distributions of FDRZSM, FDSESR, and FDMESR differ, but they are all high in the southern and eastern NCP and 

low in the northern NCP. The durationTotal of FDRZSM in the southwestern and eastern NCP surpasses 10 pentads, whereas that 295 

of FDSESR in the all NCP reaches 7 ~ 10 pentads. The latitude distribution demonstrates that the FDRZSM durationTotal shows 

great fluctuations with latitude, peaking at 33 °N and then gradually decreasing north of 33 °N. The durationTotal of FDSESR and 

FDMESR varies similarly with latitude, with greatest durationTotal at 33 °N, and gradually decreasing north of 33 °N. Warmer 

temperatures may result in longer FD duration (Zhang et al., 2022c). The density distribution also reveals a considerable 

similarity in the durationTotal distribution between FDSESR and FDMESR, which is predominantly distributed between 7 and 9 300 

pentads, but that of FDRZSM is relatively low, distributed between 5 and 9 pentads. This is connected to their identification 

methods. The differences in durationTotal indicate that the FDMESR durationTotal is lower than that of FDRZSM in the southwestern 

and eastern NCP. While the durationTotal difference of FDMESR and FDSESR, which ranges from -1 to 1 pentads, is not much 

significantly different in the NCP. Both FDRZSM and FDSESR have durationOnset that are mostly 2 to 4 pentads, with FDSESR 

having a greater durationOnset than FDRZSM. The FDMESR durationOnset, with 2 ~ 5 pentads, is greater than that of the FDRZSM and 305 

FDSESR. Besides, durationRecovery for FDRZSM is 4 ~ 6 pentads, but for FDSESR and FDMESR are both ranges from 2 to 7 pentads. 

Similar to durationTotal, the durationOnset spatial distributions display a pattern of high in the southern and low in the northern 

NCP, as well as the durationRecovery for FDRZSM
. (Fig.S1). Besides, the durationRecovery for FDSESR is mainly 4 ~ 5 pentads, and 

that of FDMESR is low in the northern NCP and high in the northern. 

The FDRZSM severity is high in southwestern and eastern NCP and low in the central and northern NCP, while FDSESR severity 310 

is greater in the south and lower in the north. Whereas, FDMESR has high severity in the northern and central NCP and low 

severity in the southern NCP. Warming not only lengthens the drought durations, but it also exacerbates them by increasing 

surface evapotranspiration losses and decreasing the soil moistures (Yuan et al., 2019; Zhang et al., 2021). The FDRZSM severity 

peaks at 33 °N and then has a notable decrease as latitude increases. On the other hand, there is a stable distribution in the 

FDSESR severity. The FDMESR severity is relatively high in the 37 ~ 40 °N. The severity distributions show notable differences. 315 

The FDRZSM and FDMESR severity is mostly concentrated between 50 and 200, whereas FDSESR severity ranges between 80 and 

180. However, the severity distribution of FDSESR is sharpest and thinnest, whereas that of FDRZSM is shortest and fattest. The 

severity spatial distribution differences indicate that the FDRZSM severity is greater than the FDMESR severity in the southwestern 

and eastern NCP, but the FDMESR severity is greater in other regions. While the severity difference between FDMESR and FDSESR 

in the NCP is mostly between -50 and 50. In general, Fig.S2 (f) shows a better linear relationship between FDRZSM and FDMESR 320 

than that between FDRZSM and FDSESR. 

The lower the intensity, the more severe the FD event. The southern, northern and eastern NCP have smaller FDRZSM intensity 

values, while the central NCP has larger. The intensity value of FDSESR is the largest, and its spatial distribution is smaller in 

the central NCP and larger in the northern and eastern NCP. Whereas FDMESR has larger intensity value in the north of the NCP 

and lower in the south. The FDRZSM intensity value subsequently increases with the increasing latitude in the region south of 325 

38 °N, reaching its maximum at 38 °N, and then gradually decreases in the region north. The FDSESR intensity increases with 

latitude in the region south of 41 °N, and then gradually decreases in the region north of 41 °N. Besides, the FDMESR intensity 

gradually increases with latitude and peaks at 39 °N, and then decreases in the region north of 39 °N. There are notable 
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differences in the intensity distribution among the three methods. The FDRZSM and FDSESR intensity is primarily concentrated 

between 10 and 20, but that of FDMESR is between 5 and 20. The intensity spatial distribution difference between FDRZSM and 330 

FDMESR indicates that intensity of FDMESR is larger in the northern NCP but smaller in the central NCP, and the difference is 

relatively small, mainly between -10 and 5. Besides, the FDMESR intensity in the NCP is smaller than that of FDRZSM in the 

NCP, especially in the northern and southern NCP. In Fig.S2 (g), the FDMESR intensity is wider than FDSESR intensity, which is 

concentrated and ranges much smaller. Besides, the intensity between FDRZSM and FDMESR are more linear correlation than that 

between FDRZSM and FDSESR. 335 

The FD characteristics of FD1 ~ 4, such as durationOnset, durationRecovery, durationTotal, and severity, were explored. Fig.5 

illustrates their distributions of FD1 ~ 4 based on RZSM, SESR and MESR, and the main ranges are shown in Table S1. For 

the three FD identification methods, the durationOnset gradually lengthens with the increasing intensity grades, whilst the 

durationRecovery and durationTotal shorten. That is, the higher the intensity grades of the FD event, the longer the onset stage, the 

shorter the recovery stage and the total duration. That may be because that the intensity is derived from the RZSM, SESR and 340 

MESR change during the onset stage. The higher the intensity grades, the smaller the intensity values, and the longer onset 

stage, thereby shortening the recovery stage. Besides, the greater FD grades have the lower severity. 

 

Figure 5 Frequency distribution of the properties under different (a) ~ (d) FDRZSM, (e) ~ (h) FDSESR, and (i) ~ (l) FDMESR 

grades. The density means the proportion of grids with corresponding characteristics, such as for FDRZSM1 events, the 345 

proportion of grids with severity between 200 and 250 to all grids is 0.27. 

Figure 6 depicts the average monthly affected area of FD events from 1981 to 2022. The affected area of FDRZSM events has 

evident seasonal and comparable seasonal fluctuations, with the majority concentrated from May to August. Almost 40% and 

30% of the FDRZSM events occurred in June and July, more than 10% in May, almost 10% in August, and more than 5% in 

April in the NCP. The affected area of FDSESR events is not as evident as that of FDRZSM, which is concentrated from June to 350 

August. The affected area of FDSESR from June to August are all over 10%, and that in other months expect for January are 

almost 10%. Whereas, there is no seasonal fluctuations in the affected area of FDSESR, where the affected area of FDSESR is 

about 10%. 

Figure S3 shows the amounts of FD1 ~ 4 grids from January to December. The FDRZSM and FDSESR grids under different 

intensity grades vary greatly with the season, while the seasonal fluctuations of FDMESR are small. FDRZSM occurs more 355 

frequently from May to August, while FDSESR from March to October. FDRZSM is mainly focused on FDRZSM3, with FDRZSM1 
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and FDRZSM2 mainly concentrated in June and July, while FDRZSM4 occurs more stably from April to August. For FDSESR, 

FDSESR3 also accounts for a large proportion, followed by FDSESR2 and FDSESR4, while FDSESR1 occurs steadily throughout 

one year. FDMESR4 in FDMESR occurred significantly, and the grid amounts of FDMESR3 ~ 4 far exceeded that of FDMESR1 ~ 2. 

On the whole, the findings of the three FD identification methods show that the proportion of FD3 ~ 4 in the NCP is high, that 360 

is, NCP is prone to extreme and exceptional FDs. 

 

Figure 6 Monthly average FD affected area percentages (%) identified by RZSM, SESR, and MESR from 1981 to 2022. 

3.3 Annual and spatial trend of FD characteristics 

Figure 7 (a) depicts the annual affected area of FD events from 1981 ~ 2022. The affected areas of FDRZSM fluctuate between 365 

0 and 80% with a clear decrease trend, while that of FDSESR and FDMESR ranging from 0 to 40% gradually rises. Figure 7 (b) ~ 

(f) show the annual variations in FDRZSM, FDSESR and FDMESR characteristics as well. FDMESR has a longer durationOnset (3 ~ 4 

pentads) compared to FDRZSM and FDSESR (2.5 ~ 3.5 pentads). Except for the quiet slightly decreasing trend of FDRZSM 

durationOnset, both FDSESR and FDMESR durationOnset are decreasing with a very slight trend. Besides, the durationRecovery of 

FDRZSM, FDSESR and FDMESR all decreased steadily and have similar fluctuations, primarily ranges from 4 to 6 pentads. The 370 

durationTotal of FDSESR and FDMESR gradually decreases within 7 ~ 9 pentads, whereas FDRZSM durationTotal ranging from 5 to 

10 pentads with severe oscillations displays a larger decline tendency than that of FDSESR and FDMESR. This may be related to 

the set minimum duration in the FD identification. FDRZSM, FDSESR and FDMESR have similar severity, and all are significantly 

reducing, with FDRZSM showing a more severe decrease tendency. The intensity values of FDRZSM significantly increases, and 

the increase in FDSESR is smaller than that of FDRZSM. Whereas, the intensity values of FDMESR shows a gradually decreasing 375 

trend. Overall, the durations and severity of the three FD identification methods are similar, with the decreasing tendency. As 

a result, the FD events in the NCP are being steadily reduced. 

 

Figure 7 Time series of (a) affected area percentages (%), (b) durationOnset, (c) durationRecovery, (d) durationTotal, (e) 

severity, and (f) intensity of FD events over NCP from 1981 to 2022, with their linear trend. 380 
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The Mann-Kendall trend test is used to examine the ratio of time when FD events occur, durationTotal, severity, and intensity 

of FD on the grid, as illustrated in Fig.8. Overall, the FD ratio, durationTotal, severity and intensity in the NCP are decreasing 

except for intensity of FDRZSM and FD ratio of FDSESR, and their spatial distribution trends are comparable. Among them, the 

FDRZSM ratio in the southwestern NCP decreased significantly (α < 0.05), and the FDSESR ratio in the southern and eastern NCP 

shows an increasing trend. The FDMESR ratio significantly decreases in the central NCP as well. The durationTotal and severity 385 

of FDRZSM have all reduced. Whereas the intensity of FDRZSM increases in the central and northern NCP. Aside from that, the 

FDSESR durationTotal and severity increases sporadically, while it tends to decrease as a whole. The FDSESR intensity value 

decreases in the northern NCP but increases in the southern. Although the dispersed northeastern NCP shows a significant 

decreasing trend, the durationTotal and severity of FDMESR in the southern NCP increases, and the intensity decreases. The trend 

spatial distribution of FD characteristics in NCP is consistent with their annual trends, and are a decreasing tendency overall. 390 

 

Figure 8 Spatial trends of FD identified by RZSM, SESR, and MESR during 1981 ~ 2022. 

3.4 Typical historical events 

To demonstrate the applicability of three FD identification methods, an evaluation is conducted based on the historical records 

of typical drought events. According to the records of "Flood and drought disasters in the Haihe River Basin" (Haihe River 395 

Water Conservancy Commission, MWR, 2009), the great summer drought occurred in Zhangjiakou in 1981, Shijiazhuang in 

1983, and Dezhou and Binzhou in 1989 were extracted. Due to the lack of more detailed records on the drought occurrence 

time, the number of pentads that FD events happened in the summer (from June to August) in 1981, 1983 and 1989 were 

calculated, as shown in Fig.9. 

Regarding the drought in Zhangjiakou in 1981, FDRZSM did not identified its occurrence, FDSESR identified that the drought 400 

occurred in the southeast and northeast of Zhangjiakou, and FDMESR identified a more dispersed and severe drought than FDSESR. 

For the drought in 1983, FDRZSM identified the severe drought in the east, and its findings were more reasonable than that of 

the other two methods, where almost no drought was detected. The drought identified by FDRZSM in 1989 mainly occurred in 

Dezhou and the western Binzhou, and it has a shorter drought duration than FDSESR. The FDSESR identified severe drought in 

southern Dezhou and Binzhou, with a long duration. Compared with the findings of FDRZSM and FDSESR, the regions 405 

encountering FDMESR are more dispersed, and the drought duration is similar to that of FDRZSM. Therefore, FDMESR, FDRZSM, 

and FDSESR have shown better performance in the drought identification in 1981, 1983 and 1989, respectively. 
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Figure 9 Three FD events occurred in the summer of 1981, 1983, and 1989 in the Cities Zhangjiakou, Shijiazhuang, 

and Binzhou & Dezhou, respectively. The color bands represent the pentads with FD events from June to August of 410 

that year. 

3.5 Hotspots of FD in the NCP 

As shown in Sect.3.4, the three methods for identifying FD may perform well in different events. Therefore, the hotspot 

identification indicator is constructed based on the frequency, severity and intensity of the three identification methods 

simultaneously. The hotspot identification indicator percentile is illustrated in Fig.10. Three hotspots with frequent and severe 415 

FD events in the NCP, where hotspot indicator percentile is above 60th, are detected. These hotspots are situated in the 

northwestern, eastern and southwestern NCP, respectively. High hotspot indicator regions are likely to encounter frequent and 

severe FD events. This might be because the regions are mostly with developed agricultural planting, high population and 

diversified human activities, increasing the moisture demand. The high-water demand causes the water scarcity, but the 

developed agriculture increases ET and the usage of soil moisture, rendering it prone to FD events. The NCP is one of the 420 

hotspots of FD worldwide (Christian et al., 2023). 

 

Figure 10 Distribution of the FD hotspot identification indicator, as well as the four FD hotspots. 
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3.6 Effect of all FD identification thresholds on the FD frequency 

The frequency spatial distribution of FD identified by RZSM from various soil layer depths are presented in Fig.S4. When 425 

comparing the RZSM at the depths of 0 ~ 7, 7 ~ 28, 0 ~ 28, and 28 ~ 100 cm, as well as that of 0 ~ 100 cm, it is evident that 

the frequency decreases with the soil depth. This might be as a result of that the deeper soil layers have less soil moisture 

variations and less impact from weather, but the surface soil layers react swiftly to the ET increasing and precipitation 

deficiency, which can capture more FD events. However, soil moisture in the deep soil layers promote and influence vegetation 

growth directly. Therefore, identifying FD using soil moisture in the root zone makes more sense (Qing et al., 2022). 430 

Based on the FD identification methods (see Sect.2.3.1, Sect.2.3.2 and Sect.2.3.3), the parameters in the three methods are 

summarized in Table 2, as well as their meanings and standard thresholds. Figs. 11, S7, and S8 display the FD frequency under 

different thresholds. Fig.11 demonstrates that the frequency under different ‘RZSMpentad1’ differ not much, suggesting that 

‘RZSMpentad1’ is not sensitive to FDRZSM identification. However, their frequency is significantly influenced by other FDRZSM 

thresholds. Smaller ‘RZSMonset1’, ‘RZSMpentad2’ and ‘MinDuration’, and greater ‘RZSMonset2’ and ‘RZSMtermination’ 435 

are correlated with a greater FDRZSM frequency. As can be seen in Fig.S5, both ‘SESRonset1’ and ‘ΔSESRonset’ are frequency 

insensitive for FDSESR, but smaller ‘MinDuration’ and ‘SESRpentad’, as well as greater ‘SESRonset2’ and ‘MaxSESRchange’, 

have greater FDSESR frequency. However, both the ‘MESRonset1’ and ΔMESRonset’ in FDMESR are more sensitive to frequency 

than ‘SESRonset1’ and ΔSESRonset’ in FDSESR, with lower ‘MESRonset1’ and greater ‘ΔMESRonset’ correlating to higher 

frequency, as illustrated in Fig.S6. Moreover, the effects of ‘MinDuration’, ‘MESRonset2’, ‘MESRpentad’, and 440 

‘MaxMESRchange’ on FDMESR frequency are comparable to those of FDSESR. 

Table 2 Parameters in the FD identification methods based on RZSM, SESR and MESR, as well as their meanings and 

standard thresholds. 

FD identification 

method 
Parameter Meaning 

Standard 

threshold 

FDRZSM 

RZSMonset1 RZSM percentile that should exceed at the FD start 40 

RZSMonset2 RZSM percentile that should decrease to during the FD onset stage 20 

RZSMpentad1 
Maximum pentads for RZSM to decrease from ‘RZSMonset1’ to 

‘RZSMonset2’ 
4 

RZSMtermination RZSM percentile that should exceed at the FD termination 20 

RZSMpentad2 
Continuous pentads that RZSM should exceed the 

‘RZSMtermination’ at the FD termination 
1 

MinDuration Minimum FD duration 4 

FDSESR 

MinDuration Minimum FD duration 6 

SESRonset1 SESR percentile that should exceed at the FD onset 40 

SESRonset2 SESR percentile that should decrease to during the FD onset stage 20 

ΔSESRonset ΔSESR percentile that should exceed at the FD onset stage 40 

SESRpentad 
Continuous pentads that ΔSESR should not exceed the 

‘ΔSESRonset’ at the FD onset stage 
1 

MaxSESRchange 
Percentile of the mean change of SESR during the entire FD event 

that should be below 
25 

FDMESR 

MinDuration Minimum FD duration 6 

MESRonset1 MESR percentile that should exceed at the FD onset Pr1-10 

MESRonset2 MESR percentile that should decrease to during the FD onset stage Pr1-30 

ΔMESRonset ΔMESR percentile that should exceed at the FD onset stage Pr2-10 

MESRpentad 
Continuous pentads that ΔMESR should not exceed the 

‘ΔMESRonset’ at the FD onset stage 
1 

MaxMESRchange 
Percentile of the mean change of MESR during the entire FD event 

that should be below 
Pr3-25 
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Figure 11 Frequency for FDRZSM with different thresholds for the definition. 445 

4 Discussion 

4.1 FD characteristics compared with previous studies 

Based on RZSM, SESR and MESR, this study identified the FD events in the NCP from 1981 to 2022, and investigated the 

spatial distribution of their frequency, duration, severity and intensity. The findings suggest that the FD frequency in the NCP 

is high in the north and low in the south, and the FDRZSM, FDSESR, and FDMESR frequency range mostly in 0 ~ 0.6, 0.4 ~ 0.8, 450 

and 0 ~ 0.6 times/year, respectively, while FDRZSM, FDSESR, and FDMESR IR range primarily from 10 to 50 %, from 30 to 60%, 

and from 10 to 50%, respectively. Previous studies have also disclosed the FD frequency. Mukherjee and Mishra (2022a) 

discovered the NCP suffering 3 to 12 FDRZSM events from 1980 to 2018. Yuan et al. (2019) estimated the FDRZSM frequency 

of about 0 ~ 6 times/decade in the NCP, and Wang and Yuan (2022) also identified the frequency of 2 ~ 6 times/decade between 

1979 and 2020. Mukherjee and Mishra (2022b) utilized ERA5 to detect the FDRZSM IR in the NCP as 15 ~ 30 %, while that of 455 

Mahto and Mishra (2023) was 11 ~ 15 %. Gou et al. (2022) discovered that the FDSESR frequency in the Huaibei Plain, located 

south of the NCP, where suffered about 18 ~ 20 FDSESR events from 2001 to 2019. Deng et al. (2022) found that the FDSESR IR 

fluctuated from 25 % to 40 % in the NCP from 1981 to 2020, while Christian et al. (2023) simulated the global FDSESR events 

using the Coupled Model Intercomparison Project Phase 6 (CMIP6) models from 1980 to 2014 and found that IR in the NCP 

was 25 ~ 35%. Considering the influences of data sources and spatial resolution, the FD frequency ranges in this study are 460 

comparable to those in previous studies, and the FD identification in this study appears to be reasonable. 

This study distinguished the onset and recovery stages of FD events and identified their durations. The durationOnset, 

durationRecovery, and durationTotal of FDRZSM are 2 ~ 3, 2 ~ 7, and 5 ~ 10 pentads, respectively, whereas those of FDSESR are 2 ~ 

4, 4 ~ 6, and 7 ~ 10 pentads, respectively, and those of FDMESR are 3 ~ 5, 3 ~ 6, and 7 ~ 10 pentads, respectively. Yuan et al. 

(2023) detected the worldwide FDRZSM events from 1951 to 2014, with the durationTotal of around 30 ~ 40 days in the NCP; 465 

Zhang et al. (2020) discovered that the FDRZSM durationOnset, durationRecovery, and durationTotal from 2003 to 2018 were 15 ~ 20, 

5 ~ 30, and 25 ~ 50 days, respectively. Yuan et al. (2019) illustrated the average durationTotal of 20 ~ 40 days from 1961 to 

2005. Some studies also identified FDSESR events. Deng et al. (2022) revealed the FDSESR durationTotal of 6 ~ 9 pentads in the 

NCP, and Gou et al. (2022) found the FDSESR durationOnset and durationRecovery in the Huaibei Plain of 14 ~ 20 days and 8 ~ 20 
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days, respectively. The findings of the previous studies varied slightly from the FD durations in this study. 470 

In this study, the durationTotal of FDRZSM, FDSESR, and FDMESR were all found to be higher in the southern and eastern NCP and 

lower in the northern. The spatial distributions of the FDRZSM and FDSESR severity were comparable to those of the FDRZSM and 

FDSESR durationTotal, with the spatial pattern of high in the southern and low in the northern NCP. Zhang et al. (2021) 

investigated the FDRZSM characteristics in the Gan River Basin from 1961 to 2018 and discovered similar spatial distribution 

patterns between severity and duration as well. 475 

The annual affected areas of FDRZSM and FDMESR in this study exhibit a significant decrease trend, but that of FDSESR exhibits 

a slowly increase. Overall, the FD ratio, duration, severity and intensity grades in the NCP show a decrease in both temporal 

and spatial variations, and the spatial distribution patterns of the durationTotal and severity trends are comparable. Additionally, 

Chen et al. (2019) also showed a decreasing FD affected area in the United States between 2000 and 2017. Noguera et al. 

(2021) revealed that the severity and frequency of FD decreased slowly in Spain from 1960 to 2020 as well. Zhang et al. (2021) 480 

discovered that the FDRZSM frequency and duration in the Gan River Basin exhibited a decreasing tendency from 1961 to 2018. 

Liu et al. (2020) and Deng et al. (2022) also observed that there was a notable decline in the FDRZSM and FDSESR affected areas 

in the NCP region from 1981 to 1999 and 2000 and 2017, respectively. Furthermore, Christian et al. (2023) revealed a 

noteworthy reduction in FDSESR frequency in NCP from 1950 to 2015 as well. Studies have also indicated that there are other 

FD characteristics trends that cannot be disregarded (Yuan et al., 2019, 2023; Zhang et al., 2022a; Zhang et al., 2022c), which 485 

are concerning with the FD identification methods, study areas, data sources, and study periods (Liu et al., 2020). 

4.2 Attribution analysis of the frequency difference between FDSESR and FDMESR 

Compared to FDSESR, the FDMESR frequency shows high spatial heterogeneity, which is connected to the frequency distribution 

of SESR50th and ΔSESR50th. Fig.S7 illustrates the spatial distribution of average SESR50th and ΔSESR50th. The SESR50th and 

ΔSESR50th in NCP is all larger than 0, which makes it possible that SESR40th cannot indicate the low evaporative stress, as well 490 

as the underestimation of evaporative stress and inaccurate capture of FD events that would not occur. Therefore, it may result 

in the overestimation in the NCP (see Sect.3.2). In FDSESR identification, the interplay between the overestimation from 

SESR50th and the overestimation of ΔSESR50th in the NCP may result in a more pronounced overestimation of the FDSESR 

frequency due to the joint effect of SESR50th and ΔSESR50th. As a result, the frequency of FDMESR is less than that of FDSESR in 

the NCP. 495 

The FD identification based on SESR and MESR differs in that MESR is used instead of SESR and is fitted with various PDFs 

rather than EDF, and the variable thresholds are utilized in the FDMESR identification. MESR and SESR are both linearly 

converted from ESR in order to facilitate comparisons of the FD identification results between different regions. Therefore, 

the difference between FDSESR and FDMESR can be traced back to two aspects: PDFs fitting and variable thresholds. To 

demonstrate their contribution to the difference between FDSESR and FDMESR, the thresholds in FDSESR method were referred 500 

to. The fixed thresholds, MESRonset1 = 40, MESRonset2 = 20, ΔMESRonset = 40, and MaxMESRchange = 25, were applied 

in the FDMESR method, which is called FDMESR-invariable. Fig.S8 (a) ~ (c) displays the frequency of FDMESR-invariable and its 

difference from that of FDSESR and FDMESR. Fig.S8 (d) (e) also show the contribution of PDFs fitting and variable thresholds 

to the differences between FDSESR and FDMESR, respectively, as well as the relative contributions in Fig.S8 (e). FDMESR-invariable 

and FDMESR have a comparable frequency spatial distribution, with higher frequency in the north and lower in the south of 505 

NCP. Besides, FDMESR-invariable has a lower frequency than FDSESR in NCP, whereas a higher frequency than FDMESR in the 

southern NCP and a lower frequency than FDMESR in the northern NCP. According to Fig.S8 (d) (e), except for the small region 

in the northeastern NCP, the PDFs fitting contributes negatively to the difference between FDSESR and FDMESR, while the 

variable thresholds contribute positively. Compared with the variable threshold contributions, the relative contribution of the 

PDFs fitting to the variable thresholds mostly ranges from -1 to 0 in the northern NCP and from 0 to 0.5 in the southern NCP. 510 

Considering the negative contribution of PDFs fitting in the NCP, and the mostly absolute values of the relative contributions 
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are less than 1, it can be believed that the contribution of PDFs fitting is greater than that of variable thresholds. Therefore, the 

frequency difference between FDSESR and FDMESR is mostly due to the PDFs fitting. 

4.3 Hotspot identification 

Christian et al. (2023) classified regions with the FD frequency higher than 30% as hotspots. Nevertheless, this identification 515 

is mostly biased. Sreeparvathy and Srinivas (2022) comprehensively examined the FD frequency, duration, severity, and 

exposure risk characteristics, constructed a meteorological flash drought index (MFDI), and identified hotspots regions with 

MFDI higher than 100. The hotspot identification indicator in this study is derived by taking the average of the frequency, 

severity, and reciprocal of the intensity from the three FD identification methods. It may be said that FD events occur frequently, 

seriously and intensely in regions with high hotspot indicators. The FD hotspots in this study are the regions where the hotspot 520 

indicator exceeds the 60th percentile. Through the comparison with typical historical events in Sect.3.4, the three FD 

identification methods have shown well performance in different typical events. Therefore, the hotspot identification indicator 

constructed in this study is based on these three methods simultaneously. This hotspot identification indicator considers the 

frequency, duration, and severity of FD, and comprehensively encompasses FD caused by insufficient precipitation and 

excessive evaporation demand. Furthermore, the regional FD hotspot indicators was quantified using the percentiles of FD 525 

hotspot indicators, which can identify hotspots effectively. It is possible to export this FD hotspots identification threshold to 

other regions as well. 

Meanwhile, this study only demonstrated the performance of the three FD methods through three typical historical events in 

Sect.3.4, and explored the rationality of the differences between FDSESR and FDMESR through the theoretical analysis. However, 

this study did not investigate the applicable regions and conditions of the three methods, which is also one of the reasons why 530 

all the three methods are considered simultaneously in the hotspot identification. This defect requires further in-depth research 

in the future. 

4.4 Thresholds’ effects on the FD frequency 

The effects of all thresholds of the three FD identification methods on the FD event identification are examined in this study. 

While the spatial patterns of the FD frequency under various thresholds are similar, there are notable differences. The effects 535 

of thresholds on FD frequency are in accordance with their role in FD identification. The standard thresholds for FDMESR 

identification are set based on the FDSESR identification. Because of the sensitivity of thresholds to FDMESR frequency, finding 

the appropriate thresholds is essential to identify FDMESR. Therefore, more studies are necessary to determine the 

appropriateness of the thresholds by an objective assessment. 

5 Conclusions 540 

Based on RZSM, SESR and MESR, the FD events in the NCP from 1981 to 2022 were identified, the FD characteristics, such 

as frequency, duration, severity and intensity, were revealed, and the temporal and spatial trend of FD characteristics were 

investigated. The FD hotspots in the NCP were illustrated likewise, as well as how the FD identification thresholds affect the 

FD identification. The main conclusions are as follows: 

(1) The frequency distributions of FDRZSM, FDSESR and FDMESR are high in the northern NCP and low in the southern, but the 545 

durationTotal is high in the southern and eastern NCP and low in the northern. Similarly, the southern NCP experienced higher 

durationOnset and the northern NCP experienced lower, as well as the durationRecovery for FDRZSM. There are notable differences 

in the severity spatial distribution of the three FD methods. The FDRZSM severity is high in the southwestern and eastern NCP, 

but low in the central and northern. FDSESR has a high severity in the southern NCP and a low severity in the northern NCP. In 

contrast, FDMESR has a high severity in the northern and central NCP and low in the southern. The central NCP has larger 550 
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FDRZSM intensity values and lower FDSESR intensity values. Whereas FDMESR has larger intensity in the north of the NCP and 

lower in the south. The higher the FD intensity, the longer the onset stage, the shorter the recovery stage, the shorter the 

durationTotal, and the smaller the severity. The areas affected by FD exhibit clear and similar seasonal characteristics, especially 

FDRZSM. The FDRZSM and FDSESR grids under different intensity grades vary greatly with the season, while the seasonal 

fluctuations of FDMESR are small. But the commonality is that NCP is prone to extreme and exceptional FDs. 555 

(2) The annual variations and spatial distributions of FD affected area, duration, severity and intensity in the NCP show a 

declining tendency, and the spatial distribution of duration and severity trends are similar. Three hotspots with frequent and 

severe FD events in the NCP are identified based on FD event characteristics, which are located in the northwestern, eastern 

and southwestern NCP, respectively. They all have developed agricultural planting, high population and diversified human 

activities. 560 

(3) The impact of various FD thresholds on FD frequency varies. RZSM from deeper soil layers identified a lower FDRZSM 

frequency. ‘RZSMpentad1’ is not sensitive to FDRZSM identification, while smaller ‘RZSMonset1’, ‘RZSMpentad2’ and 

‘MinDuration’, as well as greater ‘RZSMonset2’ and ‘RZSMtermination’, are connected with a greater FDRZSM frequency. 

Both ‘SESRonset1’ and ‘ΔSESRonset’ are insensitive for FDSESR frequency. Nevertheless, FDSESR frequency is higher for 

smaller ‘MinDuration’ and ‘SESRpentad’, and for larger ‘SESRonset2’ and ‘MaxSESRchange’. The effects of ‘MinDuration’, 565 

‘MESRonset2’, ‘MESRpentad’, and ‘MaxMESRchange’ on FDMESR frequency are similar to those of FDSESR, while lower 

‘MESRonset1’ and greater ‘ΔMESRonset’ are connected with higher frequency. 
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