
Dear editor: 

On behalf of all the contributing authors, I would like to express our sincere 

appreciations of your letter and the constructive comments from Referee #2 concerning 

our article entitled "Flash drought characteristics based on three identification methods 

in the North China Plain, China". All the comments are very helpful for revising our 

paper. We have studied and discussed all the comments point-by-point carefully, and 

accordingly made substantial revisions to our paper. All the changes we have made were 

in the red-colored text. Our point-by-point responses to all the comments are provided 

below in the blue-colored texts. 

 

 

********************************************************************* 

Zhang et al, have studied flash drought characteristics in China based on three 

indicators. This manuscript does not meet the requirements for publication in the HESS 

journal. 

1. First of all, the manuscript needs significant improvements in terms of language, 

there are so many grammatical errors, long sentences that make it hard to follow the 

text, and so many abbreviations even in the Abstract that confuse the reader. 

Response: Thank you for the comments. We apologize for the poor language of our 

manuscript. We have corrected the grammar errors, revised the long sentences into 

short sentences, and made efforts to reduce the abbreviations in the Abstract. We have 

now worked on both language and readability and have also involved native English 

speakers for language corrections. We really hope that the flow and language level have 

been substantially improved. 

 
 

 

2. In the Introduction, the literature review merely mentions other studies using 

different drought indicators (~3 paragraphs and introducing a new abbreviation in every 

line) without highlighting the knowledge gap and the challenges that need to be 

addressed. 

Response: Thank you for the comments. The literature review in the Introduction 

introduces many drought indicators but lacks focus and knowledge gaps. We have 

revised the writing logic of the Introduction. Firstly, it pointed out the serious harm of 

FD and the widespread global concern. Then, the application of FD identification 

indicators, which are developed by conventional drought indicators, soil moisture, and 

atmospheric evaporation demand, was introduced. The advantages and disadvantages 

of these FD identification indicators were pointed out, emphasizing two widely applied 



indicators, RZSM and SESR. After that, previous applications of RZSM and SESR for 

FD identification were discussed, especially their findings on FD characteristics. It was 

also pointed out that FDs based on RZSM and SESR are from agricultural and 

meteorological perspectives, respectively. The significance of exploring FD from 

different perspectives was highlighted. Finally, limitations of FD identification by 

SESR were displayed. In the last paragraph of Introduction, improvement methods to 

address those limitations were proposed, and the objectives of this paper were stated 

(see Introduction in lines 25-109). 

 

“1 Introduction 
The terrestrial water cycle has accelerated and droughts have become more frequent 

under global warming. Persistent and slow drought disasters, caused by long-term 

inadequate precipitation, can severely harm ecology, agriculture, and economy (Li et 

al., 2020; Limones, 2021). In addition to these long-term and slow droughts, some 

droughts characterized by rapid occurrence and intensification, known as flash 

droughts (FDs), also occur frequently (Deng et al., 2022; Yuan et al., 2023). FDs are 

driven by both water and energy limitations, and their rapid onset poses significant 

challenges for drought monitoring and forecasting (Yuan et al., 2023; Zhang et al., 

2022a). A severe FD occurred in the United States during the summer of 2012. The 

conditions rapidly shifted from no drought to extreme drought within less than a month. 

Its rapid intensification made prediction difficult, resulting in economic losses 

exceeding $30 billion (Yuan et al., 2023). Other notable FD events included those in 

western Russia in 2010, southern Great Plains in 2015, and southern China in 2019 

(Edris et al., 2023; Hunt et al., 2021; Wang and Yuan, 2021). Because of the severe 

societal and environmental impacts of FD, its occurrence and development have 

received significant attention worldwide (Deng et al., 2022; Li et al., 2020). 

FDs frequently occur alongside increasing temperature and decreasing precipitation, 

resulting in a rapid increase in evapotranspiration and a reduction in soil moisture 

(Tyagi et al., 2022). Consequently, some hydrological and meteorological variables 

have been applied as key indicators to identify FD in previous studies. Currently, FD 

identification methods can be categorized into three main classifications on the basis 

of conventional drought indicators, soil moisture, and atmospheric evaporation 

demand. 

The conventional drought indicators employed for identifying FDs include United 

States Drought Monitor (USDM) (Chen et al., 2019; Edris et al., 2023; Otkin et al., 

2019; Pendergrass et al., 2020), standardized precipitation evapotranspiration index 

(SPEI) (Fu and Wang, 2022; Noguera et al., 2020; Noguera et al., 2021), and 

standardized precipitation index (SPI) (Noguera et al., 2021; Parker et al., 2021). 

However, these conventional drought indices have drawbacks. For example, USDM 

provides weekly updates on drought location and intensity but is applicable only within 

the United States. SPI focuses only on the precipitation deficit and neglects the 

influences of temperature and evaporation. SPEI integrates both insufficient 

precipitation and increased evapotranspiration, yet its response to climatic changes is 

slow (Deng et al., 2022). Consequently, several specific indicators for FD identification 

that respond quickly to climate change and are applicable in broader regions have also 

been developed using soil moisture and climate factors. 

Soil moisture reflects the combined influence of precipitation and evapotranspiration 

and is directly related to agricultural production. Therefore, soil moisture-based 

indicators have been widely employed in agricultural flash drought identification. 

These indices include root zone soil moisture (RZSM, Yuan et al., 2019), soil moisture 



index (SMI, Hunt et al., 2009, 2021), soil moisture volatility index (SMVI, Osman et al., 

2021; Osman et al., 2022), and flash drought stress index (FDSI, Sehgal et al., 2021). 

SMI uses wilting and field capacity soil metrics to analyze the changes in soil moisture 

stress. However, these metrics are influenced by soil types and can be challenging to 

estimate (Garg et al., 2017; Otkin et al., 2018; Rab et al., 2011; Sehgal et al., 2021). 

SMVI must be reset by precipitation and is sensitive to interruptions associated with 

drought onset (Osman et al., 2021). Due to the limited research and application of 

SMVI, its effectiveness and universality need further verification. In addition, FDSI 

combines soil moisture and climate factors, which can comprehensively reflect FD 

stress. However, the diverse required data and complex calculations limit its 

widespread application (Sehgal et al., 2021). RZSM can directly monitor the rapid 

decreases in soil moisture over a short period and is closely related to soil moisture 

stress (Yuan et al., 2019). Owing to its clear physical mechanism, simple data 

requirements, and ease of calculation, RZSM is widely used worldwide. 

In addition to soil moisture, various indicators have been employed to identify FDs on 

the basis of the atmospheric evaporation demand. The evaporative stress index (ESI) is 

calculated as 1 minus the ratio of actual evapotranspiration (ET) to potential 

evapotranspiration (PET) (Ahmad et al., 2022; Anderson et al., 2007; Hunt et al., 2021; 

Otkin et al.,2019). It is sensitive to energy- and water-limited situations, although the 

spatial resolution is typically 5 ~ 10 km (Anderson et al., 2007). Standardized 

evapotranspiration deficit index (SEDI; Vicente-Serrano et al., 2010) evaluates both 

heatwave- and water deficit-driven FDs by measuring the difference between ET and 

PET. However, SEDI exhibits significant uncertainty in humid and sub-humid regions 

(Li et al., 2020; Rakkasagi et al., 2023). The evaporative demand drought index (EDDI; 

Hobbins et al., 2016) detects FDs through the PET response to surface dryness 

anomalies. While it provides weekly water stress, it can be utilized only in the 

contiguous United States (Rakkasagi et al., 2023). Standardized evaporative stress 

ratio (SESR; Christian et al., 2019) incorporates near-surface state variables and plant 

health, making it sensitive to rapid changes in evaporative stress and capable of 

capturing early FD signals (Gou et al., 2022). Identifying FDs by SESR is based on the 

objective percentiles on a grid, making it globally applicable (Christian et al., 2019). 

Therefore, RZSM and SESR are commonly utilized as indicators for identifying 

agricultural FDs and meteorological FDs in regional studies. For example, Yuan et al. 

(2019) characterized FD frequency and duration using RZSM and projected FD 

severity and risk exposure. They reported that southern China experiences more 

frequent, severe, and higher-risk FDs. Zhang et al. (2022a) assessed FDs using RZSM 

and simulated FD intensity by three machine learning models, revealing greater FD 

intensity in southeastern China. Zhong et al. (2022) evaluated FD spatial and temporal 

characteristics, such as duration, severity, and intensity, via SESR and identified 

increasing FD risk from west to east in the Pearl River Basin, China. Gou et al. (2022) 

illustrated the spatial distribution of FD frequency and duration using SESR and 

tracked FD spatial paths in the Huaibei Plain of China from 2001 to 2019. Deng et al. 

(2022) used SESR to determine global FD spatiotemporal characteristics and found a 

significant decrease in FD coverage from 1981 to 2020. Mukherjee and Mishra (2022b) 

investigated global FD frequency and intensity using SESR and RZSM, highlighting the 

influence of climate factors and background aridity on FD onset and evolution. 

Therefore, RZSM and SESR are widely applied to identify regional FD (i.e., FDRZSM 

and FDSESR). FDSESR, identified by anomalous evaporative stress, is classified as a 

meteorological drought. However, FDRZSM, determined by soil moisture, is categorized 

as an agricultural drought. Although they are interrelated, they identify FDs from 



different perspectives. Exploring FD characteristics from multiple perspectives plays 

an important role in the comprehensive understanding and effective response to FD 

events. Therefore, this study employs RZSM and SESR to further analyze regional FD 

characteristics and investigate the effects of climate factors and background aridity. 

However, the SESR application has several problems. When a FD identified via SESR, 

both SESR and the change in SESR (ΔSESR) are assumed to follow normal distributions. 

Therefore, the 50th percentiles of ΔSESR (ΔSESR50th) equal 0, indicating no change in 

SESR (ΔSESR = 0). A ΔSESR below the 40th percentile of ΔSESR (ΔSESR40th) denotes 

a decrease in the SESR. However, whether SESR and ΔSESR follow normal 

distributions remains uncertain. If they do not, ΔSESR40th may not be less than 0. In the 

study by Gou et al. (2022), the 36th percentile of ΔSESR (ΔSESR36th) corresponded to 

an increase in SESR, where ΔSESR36th was greater than 0. This phenomenon might be 

because SESR gradually decreases during dry periods and increases during 

precipitation process. Consequently, ΔSESR can be less than 0 during dry periods and 

greater than 0 during precipitation periods, potentially leading to underestimation or 

overestimation of FDs. Furthermore, Christian et al. (2019) did not provide a criterion 

for SESR at FD onset, only specifying a criterion for the minimum SESR at the FD onset 

stage greater than the 20th percentile (SESR20th). This leads to the possibility that SESR 

at FD onset is below SESR20th. Therefore, it is necessary to add a criterion for SESR at 

FD onset. 

In this study, a new method based on the multiples of the mean evaporative stress ratio 

(MESR) for FD identification was developed to address the aforementioned limitations. 

Unlike SESR, MESR does not rely on the assumption of a specific probability density 

function (PDF) for evaporative stress ratio (ESR). Instead, MESR and ΔMESR are 

fitted by multiple PDFs and converted into percentiles. Variable thresholds are 

employed for identifying FDs to guarantee that the thresholds of MESR and ΔMESR 

are less than 0, reflecting a lower level of MESR and a decrease in MESR. The 

objectives of this study are to: (1) propose an improved FD identification method called 

MESR based on SESR; (2) characterize FDs in the North China Plain (NCP) from 1981 

to 2022 using RZSM, SESR, and MESR and investigate FD temporal and spatial trends; 

and (3) identify FD hotspots in the NCP and evaluate the impact of thresholds on FD 

identification.” 

 

 

3. The same happens in the Discussion where a lot of other studies are mentioned 

without explaining what has been done differently or what is different in their results 

from those other studies. 

Response: Thank you for the comments. We have revised Section 4.1, which compared 

FD characteristics of this study with those of previous studies. The revised manuscript 

has emphasized the consistency between the findings of this study and those of others 

and explained the reason for the inconsistency with other studies. In addition, the impact 

of FD identification indicators on FD characteristics has also been discussed (see 

Section 4.1 in lines 554-606). Furthermore, the innovation of this study, namely what 

has been done differently, has also been added in Section 4.4 (see lines 673-685). 

 

lines 554-606  

“4.1 FD characteristics compared with previous studies 

A new FD identification method called MESR, which is an improved version of SESR, 

was developed in this study. On the basis of RZSM, SESR, and MESR, FD events in the 

NCP from 1981 to 2022 were identified from both agricultural and meteorological 



drought perspectives. The spatial distributions of FD characteristics, such as frequency, 

duration, severity, and intensity, were analyzed. These findings suggest that FD 

frequency is high in the north-central NCP and low in the southern NCP. Frequency of 

agricultural FD (FDRZSM) ranges mostly 0 ~ 0.5 times/year, whereas FDRZSM IR ranges 

primarily from 10 to 50 %. Previous studies have also reported FDRZSM frequency in 

the NCP. Yuan et al. (2019) estimated FDRZSM frequency in the NCP at 0 ~ 0.6 

times/year using the fifth Coupled Model Intercomparison Project (CMIP5). Mukherjee 

and Mishra (2022a, 2022b) identified FDRZSM events from 1980 to 2018 using ERA5, 

reporting a FDRZSM frequency of 0.08 ~ 0.38 times/year and a FDRZSM IR of 15 ~ 30 % 

in the NCP. Wang and Yuan (2022) found a FDRZSM frequency of primarily 0.1 ~ 0.4 

times/year in the NCP by ERA5, and Mahto and Mishra (2023) showed a FDRZSM IR of 

11 ~ 15 % in the NCP using ERA5. These studies illustrate that frequency and IR 

determined by the ERA5 dataset are lower than those found in this study, which might 

be related to the different data sources used. 

Moreover, frequency and IR of meteorological FDs (FDSESR and FDMESR) identified in 

this study are mostly 0.4 ~ 0.8 times/year and 30 ~ 60%, respectively. Gou et al. (2022) 

identified FDSESR events in the Huaibei Plain (south of the NCP) from 2001 to 2019 

using MODIS Global Evapotranspiration Project (MOD16) data with a spatial 

resolution of 500 m. They discovered a FDSESR frequency of 0.79 ~ 1.05 times/year, 

which was higher than that in this study. The Huaibei Plain is located in the sub-humid 

and humid regions with adequate precipitation, abundant heat, and developed 

agriculture, contributing to its higher FDSESR frequency than the NCP. Deng et al. 

(2022) found a FDSESR IR of 15 ~ 40 % from 1981 to 2020 in the NCP using ERA5-

Land, whereas Christian et al. (2023) obtained a mean FDSESR IR of 25 ~ 35% in the 

NCP using four reanalysis datasets from 1980 to 2014. These variations highlight the 

influences of data sources and their spatial resolution on the FD identification. Overall, 

the FD frequency in this study is within a reasonable range compared with those in 

previous studies. 

Agricultural FDs (FDRZSM) are less frequent than meteorological FDs (FDSESR and 

FDMESR). The FDRZSM identification is based on soil moisture from an agricultural 

perspective, whereas FDSESR and FDMESR focus on atmospheric evaporation demand 

from a meteorological perspective. FDRZSM and FDSESR/FDMESR are independent, 

whereas FDMESR is an advanced version of FDSESR. The higher FDSESR and FDMESR 

frequencies than FDRZSM frequency is related to the fact that meteorological FDs are 

directly determined by atmospheric conditions and is more sensitive to FD occurrence 

and development. In contrast, agricultural FDs are dependent on soil moisture and 

influenced by crop regulatory effects and human activities (Meng et al., 2024). 

The onset and recovery stages of FD events were distinguished in this study. FDRZSM 

events have durationOnset of 2 ~ 4 pentads, durationRecovery of 3 ~ 6 pentads, and 

durationTotal of 5 ~ 9 pentads. FDSESR and FDMESR have similar durationOnset (2 ~ 4 

pentads), durationRecovery (4 ~ 6 pentads), and durationTotal (7 ~ 9 pentads). The findings 

of this study align with those of other studies on the FDRZSM duration of the NCP. Yuan 

et al. (2019) determined FDRZSM durationTotal to be 4 ~ 8 pentads in the NCP using 

CMIP5. They also found durationTotal to be 6 ~ 8 pentads from 1951 to 2014 in the NCP 

with three reanalysis datasets with a 1° resolution (Yuan et al., 2023). Zhang et al. 

(2020) identified FD using RZSM using ERA5 with a 0.25° resolution from 2003 to 

2018 and found FDRZSM durationOnset of 3 ~ 4 pentads, durationRecovery of 1 ~ 6 pentads, 

and durationTotal of 5 ~ 10 pentads in the NCP. These findings show that different 

datasets within various spatial resolutions have a smaller effect on FD duration. Some 

studies have also identified FDSESR events. Deng et al. (2022) revealed FDSESR 



durationTotal to be 6 ~ 9 pentads in the NCP by three reanalysis datasets. In the Huaibei 

Plain, the adjacent region of the NCP, Gou et al. (2022) found FDSESR durationOnset to 

be 3 ~ 4 pentads and durationRecovery to be 2 ~ 4 pentads. The FDSESR durationOnset in 

the NCP is high in the south but small in the north, but durationRecovery is high in the 

north, as shown in Figure S2. The Huaibei Plain is located in the south of the NCP, 

therefore durationOnset in the Huaibei Plain is greater, but durationRecovery is smaller 

than in the NCP. The findings of this study demonstrate significant rationality 

compared with previous findings.  

The spatiotemporal variabilities in FD characteristics are explored in this study, 

revealing a decreasing trend in the NCP. The spatial distribution patterns of 

durationTotal and severity trends are comparable. Similar trends have been shown in 

other studies. Chen et al. (2019) reported a decreasing FD affected area in the United 

States from 2000 to 2017 using USDM. Zhang et al. (2021) determined a decreasing 

tendency in FDRZSM frequency, duration, severity, and intensity in the Gan River Basin 

from 1961 to 2018 using the variable infiltration capacity (VIC) model driven by 

meteorological data. Liu et al. (2020) and Deng et al. (2022) also reported that there 

was a notable decline in FDRZSM and FDSESR affected area in the NCP. Besides, 

Christian et al. (2023) revealed a noteworthy reduction in FDSESR frequency in the NCP 

from 1950 to 2015 using four reanalysis datasets. However, other studies have 

indicated different trends that cannot be disregarded (Yuan et al., 2019, 2023; Zhang 

et al., 2022a; Zhang et al., 2022c), which concern study areas, data sources, and study 

periods (Liu et al., 2020a). In addition, FD tendency might be affected by FD 

identification methods as well. For example, Noguera et al. (2021) revealed that FD 

frequency identified by the SPI decreased in Spain, whereas those identified by the 

EDDI and SPEI increased slowly.” 

 

lines 673-685  

“4.4 Innovation and prospects 

This study introduced a new FD indicator, MESR, as an improvement over SESR for 

regional FD identification. FD identified by MESR addressed the limitations of SESR, 

and the detailed improvement was explained in Section 2.3.3. Multiple indicators (i.e., 

RZSM, SESR, and MESR) were utilized to identify and characterize FD events from 

both agricultural and meteorological perspectives in this study, providing a 

comprehensive investigation of FD events in the NCP. The differences in FD 

characteristics are related to background aridity and climatic conditions. Besides, a 

FD hotspot identification method that combines agricultural and meteorological FDs 

and considers FD frequency, severity, and intensity was proposed. Percentile was also 

introduced, and two hotspots that were prone to frequent, severe, and intense FD were 

identified. Furthermore, the impacts of different thresholds in FD identification 

methods on FD frequency were quantified. Theoretical and statistical analyses were 

conducted to demonstrate the improvement in MESR over SESR. Furthermore, control 

variables were used to investigate the rationality of the spatial heterogeneity in FDMESR 

and FDSESR frequencies. Typical historical FD events were analyzed to demonstrate the 

applicability of FD indicators in the NCP as well. However, it is still worth exploring 

in depth how to quantitatively evaluate whether SESR or MESR is the optimal FD 

indicator.” 

 

 

4. The novelty of this work is questionable. They have used three indicators to identify 

flash drought frequency, intensity, severity, and duration of flash droughts. Two of these 



indicators have been used before, and it is not well described why the third indicator 

might have outperformed the others. There are differences between the values derived 

from the indicators although the spatial pattern is similar. My concern is how one could 

say which indicator is reporting flash drought characteristics closest to reality. In lines 

245-255, the authors have tried to justify the preference of MESR over SESR by 

showing their distribution, but this does not convince the reader, how about RZSM? It 

is hard to understand what makes this study different from other studies on flash drought 

identification in China!  

Response: Thank you for the comments. We have emphasized the limitations of FDSESR 

in lines 91-98 and added the detailed reasons for using MESR instead of SESR to 

identify FD in lines 204-214. FDMESR is an improvement method proposed based on the 

limitations of FDSESR. The differences between FDMESR and FDSESR and detailed 

improvement have also been applied in lines 102-106 and lines 623-625. The 

distributions of SESR and MESR have been illustrated in Section 3.1, emphasizing the 

necessity of improving FDSESR method and the improvement effect of FDMESR method 

(see Section 3.1 in lines 294-317). Furthermore, the limitations of FDSESR and the 

rationality of the spatially heterogeneous frequencies between FDSESR and FDMESR have 

been displayed in Section 4.2 (see Section 4.2 in lines 607-653). 

Two typical FD events occurring in 2017 and 2019 were utilized to validate the 

applicability of three FD identification methods in Section 3.4 (see Section 3.4 in lines 

477-499). Furthermore, the performance of MESR has been evaluated in Text S2 (see 

Text S2 in lines 23-55 of Supplementary Materials). Especially in Fig.S18 (c), MESR 

has slightly higher explanatory ability for RZSM than SESR (see lines 42-44 of 

Supplementary Materials). Based on the maximal information coefficient (MIC), the 

correlation between pentad SPI series and MESR and SESR percentile series from 1981 

to 2022 in the NCP have also been explored. A stronger correlation between SPI and 

MESR than between SPI and SESR has been shown in Fig.S19, highlighting a better 

performance of MESR than SESR (see lines 56-62 of Supplementary Materials). 

Besides, the uncertainties from the different reanalysis datasets have been evaluated in 

the Text S1 (see Text S1 in 2-22 of Supplementary Materials). It demonstrates the 

reliability of the findings using ERA5-Land in this study. 

FDRZSM identification, based on soil moisture, is categorized as an agricultural drought. 

FDSESR is identified by atmospheric evaporation demand and is classified as a 

meteorological drought. FDMESR identification is an improvement on the FDSESR 

identification method. It can be thought that FDRZSM and FDSESR/FDMESR are 

independent, while FDMESR is an advanced version of FDSESR (see lines 85-90 and lines 

576-581). The spatial heterogeneity of FD characteristics based on the three indicators 

has been analyzed, combined with the land use types, Aridity Index (AI), and the ratio 

of mean annual ET and PET in the revised manuscript (see lines 326-339, lines 363-

368, lines 380-388, lines 397-405). Furthermore, the innovation of this study has also 

been supplemented in the revised manuscript (see Section 4.4 in lines 673-685). 

 

lines 85-90 

“FDSESR, identified by anomalous evaporative stress, is classified as a meteorological 

drought. However, FDRZSM, determined by soil moisture, is categorized as an 

agricultural drought. Although they are interrelated, they identify FDs from different 

perspectives. Exploring FD characteristics from multiple perspectives plays an 

important role in the comprehensive understanding and effective response to FD events. 

Therefore, this study employs RZSM and SESR to further analyze regional FD 

characteristics and investigate the effects of climate factors and background aridity.” 



 

lines 91-98 

“However, the SESR application has several problems. When a FD identified via SESR, 

both SESR and the change in SESR (ΔSESR) are assumed to follow normal distributions. 

Therefore, the 50th percentiles of ΔSESR (ΔSESR50th) equal 0, indicating no change in 

SESR (ΔSESR = 0). A ΔSESR below the 40th percentile of ΔSESR (ΔSESR40th) denotes 

a decrease in the SESR. However, whether SESR and ΔSESR follow normal 

distributions remains uncertain. If they do not, ΔSESR40th may not be less than 0. In the 

study by Gou et al. (2022), the 36th percentile of ΔSESR (ΔSESR36th) corresponded to 

an increase in SESR, where ΔSESR36th was greater than 0. This phenomenon might be 

because SESR gradually decreases during dry periods and increases during 

precipitation process. Consequently, ΔSESR can be less than 0 during dry periods and 

greater than 0 during precipitation periods, potentially leading to underestimation or 

overestimation of FDs.” 

 

lines 102-106 

“In this study, a new method based on the multiples of the mean evaporative stress ratio 

(MESR) for FD identification was developed to address the aforementioned limitations. 

Unlike SESR, MESR does not rely on the assumption of a specific probability density 

function (PDF) for evaporative stress ratio (ESR). Instead, MESR and ΔMESR are 

fitted by multiple PDFs and converted into percentiles. Variable thresholds are 

employed for identifying FDs to guarantee that the thresholds of MESR and ΔMESR 

are less than 0, reflecting a lower level of MESR and a decrease in MESR.” 

 

lines 204-214 

“There are three main differences between FD identification via MESR and SESR. First, 

the ESR value is divided by its mean to construct the MESR series instead of 

normalizing ESR to create SESR. Regardless of whether ESR is standardized as SESR 

or MESR, their percentile values are unaffected by linear transformations based on 

ESR. However, whether ESR follows a normal distribution requires further 

determination, which makes the rationality of normalizing ESR into SESR debatable. 

Therefore, dividing ESR by its mean and transforming it into MESR can avoid 

considering the PDF that ESR follows. Second, the percentiles of MESR and ΔMESR 

for each pentad are fitted using an optimal PDF rather than an EDF for conversion 

into percentiles. Because the distributions of MESR and ΔMESR are yet unknown, 

several PDFs are fitted to select the optimal PDF, ensuring more precise percentiles. 

Finally, the variable thresholds of MESR and ΔMESR are employed in the process of 

FD identification. Due to uncertainty regarding whether SESR and ΔSESR follow a 

normal distribution, and SESR40th and ΔSESR40th might be greater than 0, variable 

percentiles of MESR and ΔMESR are used as thresholds for FD identification. The 

variable thresholds ensures that the threshold is less than 0.” 

 

lines 294-317  

“3.1 Shortcomings of FDSESR and rationality of FDMESR 

To graphically illustrate the limitations of the FDSESR method, the distributions of 

SESR50th and ΔSESR50th are shown in Fig.3 (a) (b). SESR and ΔSESR percentiles are 

calculated on a grid by pentads, meaning that SESR50th and ΔSESR50th vary across grids 

and pentads, and are temporally and spatially affected. Theoretically, SESR and ΔSESR 

follow a standard normal distribution, where SESR50th = 0 and ΔSESR50th = 0. This 

implies that SESR40th should be below the average level and that ΔSESR40th should be 



less than 0, indicating a decreasing SESR. However, the skewed distributions of 

SESR50th and ΔSESR50th in the NCP demonstrate that SESR50th and ΔSESR50th are 

generally not 0. When SESR50th > 0, SESR40th may also exceed 0, indicating that ESR40th 

exceeds ESR  and that SESR40th cannot reliably indicate a low evaporative stress value. 

When ΔSESR50th > 0, ΔSESR40th may also exceed 0, reflecting an increasing SESR. This 

could result in underestimation of the evaporative stress value and inaccurate capture 

of FD events that do not actually occur. When SESR50th < 0, ESR40th may be significantly 

lower than ESR , indicating a lower evaporative stress value. When ΔSESR50th < 0, 

ΔSESR40th is also significantly less than 0, indicating a severely decreasing SESR. This 

could lead to overestimation of the evaporative stress value and failure to detect FD 

events that have actually occurred. 

 
Figure 3 The distribution of (a) SESR50th, (b) ΔSESR50th, the optimal PDF that (c) 

MESR50th and (d) ΔMESR50th follow, and distribution of (e) Pr1 and (f) Pr2. 

Because both MESR and SESR are obtained by the linear transformations of ESR, it 

can be assumed that MESR also follows a skewed distribution, corresponding to Fig.3 

(a) (b). Figure 3 (c) (d) shows the optimal PDFs for MESR and ΔMESR (f1 and f2). The 

typical distributions for MESR (f1) and ΔMESR (f2) are the GEV and logistic 

distributions. Pr1 and Pr2 are shown in Fig.3 (e) and (f). While some Pr1 and Pr2 values 

may still deviate from the 50th percentile, there is a notable improvement over the SESR 

and ΔSESR distributions in Fig.3 (a) (b). In addition, the variable thresholds used in 

FDMESR identification ensure that the thresholds related to Pr1 and Pr2 remain less than 

0. Therefore, the FDMESR method, where MESR is fitted by several PDFs for FD 

identification, theoretically offers a more accurate method for identifying FD” 

 

lines 326-339 

“The frequency of FDRZSM is high in the central and northeastern NCP and low in the 

southern NCP, with two high-frequency regions in the central and northeastern NCP. 

The AI values in the central and northeastern NCP are 0.2 ~ 0.3 and less than 0.2, 

respectively (Fig.S1 (b)), indicating relatively dry conditions. The lack of precipitation 

and increased evapotranspiration accelerate the decrease in soil moisture, increasing 

the likelihood of FDs in the central NCP compared with the southern NCP (Gou et al., 

2022; Yuan et al., 2023). In addition, the northeastern NCP is predominantly woodland 

with high ET (Guo et al., 2007) and experiences frequent FDRZSM due to high water 

demand. In contrast, FDSESR and FDMESR frequencies are both high in the north-central 

NCP and low in the northeastern and southern NCP. It is inversely correlated with the 

ratio of annual ET to PET (Fig.S1 (c)), indicating that a region with greater 

evaporative stress would experience more FDSESR and FDMESR. The north-central NCP 

is primarily cultivated land and is influenced by irrigation. This leads to the significant 

fluctuations in evaporative stress and results in higher FDSESR and FDMESR frequencies. 



In contrast, the northeastern NCP, dominated by woodland, is usually not irrigated 

artificially. Evaporative stress is influenced mostly by climate conditions. Therefore, 

the northeastern NCP experiences fewer evaporative stress fluctuations and lower 

FDSESR and FDMESR frequencies (Guo et al., 2007). The southern NCP is characterized 

by higher temperatures, greater evapotranspiration, and more abundant precipitation 

as latitude decreases. The balanced hydrothermal conditions in the southern NCP leads 

to a greater AI and lower FD frequency.” 

 
Figure S1 Spatial distribution of (a) the land use in 2010, (b) AI, and (c) the ratio of 

annual ET and PET in NCP. 

 

lines 363-368 

“Warmer temperatures may result in longer FD durations (Zhang et al., 2022c). 

Woodlands take longer to recover from drought than cultivated lands do (Wu et al., 

2024). Additionally, human activities might influence FD durationTotal. Irrigation could 

significantly alleviate FDs in cultivated land, whereas woodlands in the northeastern 

NCP are less impacted by human activity and might have a longer FD durationTotal. 

The density distributions of durationTotal for FDSESR and FDMESR are similar, 

predominantly ranging between 7 and 9 pentads, whereas that of FDRZSM is lower, 

ranging between 5 and 9 pentads. This is connected to their identification methods.” 

 

lines 380-388 

“Overall, the severities of FDRZSM and FDSESR exhibit spatial distributions similar to 

their durationTotal distributions. FDRZSM severity is high in the southern, eastern, and 

northeastern NCP and low in the central NCP, whereas FDSESR severity is greater in 

the southern NCP and lower in the northern NCP. Zhang et al. (2021) reported that the 

spatial distribution patterns of severity and durationTotal were similar in the Gan River 

Basin. Warming exacerbates drought severity by increasing surface evapotranspiration 

losses and decreasing soil moisture (Yuan et al., 2019; Zhang et al., 2021). High 

temperatures also the duration of drought in the southern NCP, which might also result 

in high severity. In contrast, FDMESR severity is high in the northern and central NCP 

and low in the southern NCP. It is inversely correlated with the ratio of annual ET to 

PET (Fig.S1 (c)). These findings indicate that FDMESR durationTotal and severity are 

more strongly correlated with evaporative stress than FDSESR is.” 

 

lines 397-405 

“Lower intensity values indicate more intense FD events. FDRZSM intensity values are 

low in the southern, northern, and eastern NCP and high in the central NCP. However, 

FDSESR and FDMESR intensity values are low in the northern NCP and high in the 

southern NCP. Intensity reflects the rate of decrease in RZSM, SESR, and MESR. For 

FDRZSM, RZSM percentiles decrease more slowly in the west-central NCP. The west-

central NCP is located within an arid state with an AI ranging 0.2 ~ 0.4. But it is 

cultivated land, and irrigation has a significant impact on soil moisture, effectively 

mitigating the decline in RZSM. Although the AI in the northern NCP is less than 0.4, 



the woodlands in this region are less impacted by human activities, such as irrigation, 

which causes RZSM to rapidly decrease. Additionally, high temperatures and great ET 

in the southern NCP accelerated the RZSM decline. For FDSESR and FDMESR, high ET 

in the southern NCP might not result in a low ESR value or high evaporative stress 

(Fig.S1). Abundant precipitation and low evaporative stress slow the decline in SESR 

and MESR.” 

 

lines 477-499 

“3.4 Typical historical events 

To evaluate the applicability of the three FD identification methods, two typical drought 

events occurring in 2017 and 2019 were analyzed (Chen et al., 2024; Xue, 2023; Yao 

et al., 2022). Xue (2023) identified FD events in the NCP between 1978 and 2020 using 

soil moisture and reported that a FDRZSM event began in late July 2017, peaked in early 

August, and terminated by mid-August. Figure 9 (a) shows the spatial evolution of 

FDRZSM, FDSESR, and FDMESR from July to August 2017. FDSESR and FDMESR began in 

the southwestern NCP on July 5th, were alleviated by August 4th, and were followed 

by sporadic FDs. A FDRZSM event started on July 15th and eased until August 9. After 

that, the affected area rapidly shrank and ended on August 29th. In late July, the 

affected area of FDRZSM, FDSESR, and FDMESR were all large, indicating a severe FD. 

Furthermore, FDSESR and FDMESR started and developed before FDRZSM, indicating that 

they may precede and influence FDRZSM. Therefore, the FDRZSM, FDSESR, and FDMESR 

occurred in 2017 in this study align with the findings of Xue (2023). 

 
Figure 9 The spatiotemporal evolution process of FD events in (a) 2017 and (b) 2019.



 
Figure 9 (Continued). 

Yao et al. (2022) analyzed the 2019 FD event and discovered that FDRZSM developed 

rapidly from April 30th to June 9th, during which the RZSM percentiles decreased 

sharply from 86% to 25%. Afterward, the RZSM percentile decreased once again, 

FDRZSM severity peaked in July, and recovered in August. Figure 9 (b) shows that 

FDRZSM started on April 26th and briefly recovered on June 5th. The FDRZSM worsened 

again on June 20th, reached its peak affected area from late June to early July, and 

gradually recovered and terminated in August. FDSESR and FDMESR exhibited evolution 

similar to that of FDRZSM. It began on April 26th, recovered on May 31st, worsened 

again on June 15th, eased on July 10th, and ended on July 30th. The evolution is 

consistent with that reported by Yao et al. (2022). Therefore, FD identification via 

RZSM, SESR, and MESR in this study might be in good agreement with the actual FD 

events, and the applicability of FD identification methods used in this study is validated.” 

 

lines 576-581 

“Agricultural FDs (FDRZSM) are less frequent than meteorological FDs (FDSESR and 

FDMESR). The FDRZSM identification is based on soil moisture from an agricultural 

perspective, whereas FDSESR and FDMESR focus on atmospheric evaporation demand 

from a meteorological perspective. FDRZSM and FDSESR/FDMESR are independent, 

whereas FDMESR is an advanced version of FDSESR. The higher FDSESR and FDMESR 

frequencies than FDRZSM frequency is related to the fact that meteorological FDs are 

directly determined by atmospheric conditions and is more sensitive to FD occurrence 

and development. In contrast, agricultural FDs are dependent on soil moisture and 

influenced by crop regulatory effects and human activities (Meng et al., 2024).” 

 

lines 607-653 

“4.2 Attribution analysis of frequency differences between FDSESR and FDMESR 
Compared with FDSESR, FDMESR frequency shows spatial heterogeneity, which is 

related to the frequency distributions of SESR50th and ΔSESR50th. Figure S11 illustrates 

the spatial distributions of the mean SESR50th and ΔSESR50th during FDSESR pentads. 

Except for the southern NCP, where SESR50th is less than 0, SESR50th in the northern 

and central NCP is predominantly greater than 0. This may result in SESR40th failing 



to represent the real low evaporative stress value and an underestimation of the 

evaporative stress value. In addition, ΔSESR50th is greater than 0 in the NCP, which 

may be accompanied by increasing SESR and inaccurate capture of FDSESR events that 

do not occur, potentially causing overestimation in the NCP (see Sect.3.2). 

Theoretically, SESR40th and ΔSESR40th in the NCP should be less than 0, representing a 

low evaporative stress value and a decreasing ESR. The distributions of average 

SESR40th and ΔSESR40th in Fig.S11 (c) (d) indicate that both are less than 0, except in 

the northern NCP, where SESR40th exceeds 0. This further shows that unobserved 

FDSESR events might be captured in the northern NCP. The histograms of SESR50th, 

ΔSESR50th, SESR40th, and ΔSESR40th during FDSESR events are shown in Fig.S12. 

SESR50th and ΔSESR50th values are mostly greater than 0, particularly ΔSESR50th, 

corresponding to Fig.S11 (a) (b). However, most SESR40th and ΔSESR40th are less than 

0. Notably, approximately 35% of SESR40th and ΔSESR40th are greater than 0, 

supporting the likelihood of FDSESR overestimation in the NCP. Notably, the difference 

between Fig.3 (a) (b) and Fig.S12 (a) (b) is that Fig.S12 (a) (b) shows the SESR50th and 

ΔSESR50th values during FDSESR occurrence, whereas Fig.3 (a) (b) shows those for all 

pentads.  

 
Figure S11 Distribution of the mean (a) SESR50th, (b) ΔSESR50th, (c) SESR40th, and 

(d) ΔSESR40th on FDSESR pentads. 

 
Figure S12 Histogram of (a) SESR50th, (b) ΔSESR50th, (c) SESR40th, and (d) 

ΔSESR40th on FDSESR pentads. 

The FD identification based on SESR and MESR differs in three aspects. First, ESR is 

divided by its mean to construct MESR rather than being normalized into SESR. Second, 

MESR is fitted using various PDFs instead of EDF. Third, variable thresholds are 

utilized in FDMESR identification. Both MESR and SESR are linearly transformed from 

ESR to facilitate a comparison of FD identification results between different regions. 



Converting ESR to MESR rather than SESR enhances the rationality of the ESR 

standardization process. However, the linear transformation of ESR into SESR or 

MESR does not affect its corresponding percentiles. Therefore, the differences between 

FDSESR and FDMESR identification results can be attributed to two factors: PDF fitting 

and variable thresholds. 

To quantify the contributions of PDF fitting and variable thresholds to the differences 

between FDSESR and FDMESR, a modified version of FDMESR, termed FDMESR-invariable was 

created. The fixed thresholds from the FDSESR method instead of variable thresholds 

were applied, i.e., MESRonset1 = 40, MESRonset2 = 20, ΔMESRonset = 40, and 

MaxMESRchange = 25. Figure S13 (a) ~ (c) displays the frequency of FDMESR-invariable 

and the differences between FDMESR-invariable frequency and FDSESR and FDMESR 

frequencies. Figure S13 (d) (e) shows the contributions of PDF fitting and variable 

thresholds to the differences between FDSESR and FDMESR frequencies, and Fig.S13 (f) 

illustrates their relative contributions. 

 
Figure S13 Frequency of FDMESR-invariable and its difference with FDMESR and FDSESR. 

FDMESR-invariable and FDMESR frequencies exhibit similar spatial distributions, with 

higher frequencies in the north-central NCP and lower frequencies in the southern NCP. 

In addition, FDMESR-invariable has a lower frequency than both FDSESR and FDMESR do, 

indicating that PDF fitting decreases FD frequency, whereas variable thresholds 

increase it. According to Fig.S13 (d) (e), PDF fitting has a negative effect on the 

difference between FDSESR and FDMESR frequencies in the northeastern and west-

central NCP, whereas variable thresholds have a positive effect. However, it is opposite 

in the other NCP regions. As shown in Fig.S13 (f), the relative contribution of variable 

thresholds to PDF fitting mostly ranges between -2 and -1 in the northeastern and west-

central NCP but between -1 and 0 in other regions. Therefore, the absolute contribution 

of PDFs fitting is greater than 1 in the northeastern and west-central NCP but less than 

1 in other regions. Considering the negative contribution of PDF fitting in the NCP, it 



can be assumed that the contribution of PDF fitting is less than that of variable 

thresholds in the northeastern and west-central NCP but greater in other regions. 

Therefore, the frequency difference between FDSESR and FDMESR frequencies is driven 

mainly by variable thresholds in the northeastern and west-central NCP, whereas PDF 

fitting plays a greater role in other regions. 

FDSESR frequency is lower than FDMESR frequency in the northeastern and west-central 

NCP but higher in other regions. Although FDSESR frequency is overestimated in the 

NCP, particularly in the northern NCP, PDF fitting decreases FD frequency in the 

FDMESR. However, in the northeastern and west-central NCP, the increase in FD 

frequency due to variable thresholds outweighs the decreases due to PDF fitting, 

resulting in a higher FDMESR frequency than FDSESR frequency. In other regions, the 

decrease in FD frequency from PDF fitting surpasses the increase from variable 

thresholds, leading to a lower FDMESR frequency than FDSESR frequency.” 

 

 

lines 2-22 of Supplementary Materials 

“Text S1 Uncertainties from the reanalysis datasets 

To assess data-related uncertainties, the soil moisture, ET, and PET obtained from two 

additional reanalysis datasets, the GLEAM and GLDAS 2 datasets, were utilized to 

identify FDRZSM, FDSESR, and FDMESR. Because the RZSM, SESR, and MESR are the 

basis for FD identification, their pentad percentiles were determined. Figure S14 shows 

the Taylor diagrams comparing the pentad RZSM, SESR, and MESR percentile series 

from 1981 to 2022 for the ERA5-Land, GLEAM, and GLDAS 2 datasets, with the ERA5-

Land dataset as the reference. The pentad RZSM, SESR, and MESR percentiles from 

the GLEAM and GLDAS 2 datasets are highly consistent. Their correlation coefficients 

are approximately 0.7, centered root mean square differences are approximately 0.8, 

and standard deviations are close to 1. Therefore, the pentad percentiles of RZSM, 

SESR, and MESR of the ERA5-Land dataset are consistent with those of the GLEAM 

and GLDAS 2 datasets. Figure S15 displays the spatial distributions of correlations for 

the pentad RZSM, SESR, and MESR percentiles between the ERA5-Land dataset and 

the GLEAM and GLDAS 2 datasets. As shown in Fig.S15 (a) and (d), the RZSM 

percentile correlation between the ERA5-Land and the GLEAM is comparable to that 

between the ERA5-Land and the GLDAS 2, primarily exceeding 0.6. SESR percentile 

correlation between the ERA5-Land and the GLEAM is similar to MESR percentile 

correlation, which mostly exceeds 0.5. The correlations of SESR and MESR percentiles 

between the ERA5-Land and the GLDAS 2 are primarily between 0.4 and 0.7, with a 

comparable spatial distribution pattern. The greater correlation between the ERA5-

Land and the GLEAM than between the ERA5-Land and the GLDAS 2 might be due to 

the coarse spatial resolution of the GLDAS 2. 

 
Figure S14 Taylor diagram for the pentad (a) RZSM, (b) SESR, and (c) MESR 

percentiles based on ERA5-Land, GLEAM, and GLDAS 2 datasets. 



 
Figure S15 Spatial distribution of the Pearson correlation of the pentad RZSM, 

SESR, and MESR percentiles between ERA5-Land and (a) ~ (c) GLEAM and (d) ~ 

(f) GLDAS 2 datasets. 

 
Figure S5 Histogram of FD characteristics identified by RZSM, SESR, and MESR 

based on ERA5-Land. 

In addition, FD characteristics identified using the ERA5-Land, GLEAM, and GLDAS 

2 datasets are displayed in Figs.S5, S16 and S17. The distributions of FDRZSM, FDSESR, 

and FDMESR characteristics are consistent across the datasets, except for FDMESR 

intensity based on the GLDAS 2. Moreover, the proportions of various FD grades 

determined by intensity from diverse datasets also demonstrate strong agreement, as 

shown in Fig.S6. The similarities in the pentad RZSM, SESR, and MESR percentiles 

from various datasets and FD characteristics across datasets effectively demonstrate 

the reliability of our findings.” 



 
Figure S16 Same as Figure S5, but based on GLEAM. 

 
Figure S17 Same as Figure S5, but based on GLDAS 2. 

 
Figure S6 Proportion of FD1 ~ 4 for FDRZSM, FDSESR, and FDMESR based on (a) 

ERA5-Land, (b) GLEAM, and (c) GLDAS 2 datasets. 

 

lines 23-55 of Supplementary Materials 

“Text S2 Explanatory ability between different FD types 

Given the influence of climate control on FD occurrence (Mukherjee and Mishra, 2022), 

there might be relationships between different FD types. Therefore, the coefficient of 



determination (R2) was used to quantify the relationships among FDRZSM, FDSESR, and 

FDMESR. R2 represents the capacity of linear regression to explain the variance in the 

dependent variable based on the independent variables (Mukherjee and Mishra, 2022). 

In particular, the relationship between FDRZSM and FDSESR, denoted as "RZSM ~ SESR", 

is represented by the R2 derived from the linear regression between RZSM percentile 

(dependent variable) and SESR percentile (independent variable) during FDRZSM 

pentads. Moreover, other relationships, such as "RZSM ~ MESR", "SESR ~ RZSM", 

"MESR ~ RZSM", "SESR ~ MESR", and "MESR ~ SESR", were determined, as shown 

in the first two columns of Fig.S18. 

 
Figure S18 Spatial distribution of the R2 determined by (a) "RZSM ~ SESR", (b) 

"RZSM ~ MESR", (e) "SESR ~ RZSM", (f) "MESR ~ RZSM", (i) "SESR ~ MESR", 

and (j) "MESR ~ SESR", as well as the differences of R2 (c) between "RZSM ~ 

SESR" and "RZSM ~ MESR", (g) between "SESR ~ RZSM" and "MESR ~ RZSM", 

and (k) between "SESR ~ MESR" and "MESR ~ SESR". The boxplots in the (d), 

(h), and (l) illustrate the R2 in the "RZSM ~ SESR" and "RZSM ~ MESR", "SESR 

~ RZSM" and "MESR ~ RZSM", and "SESR ~ MESR" and "MESR ~ SESR" over 

different AI values. 

In Fig.S18 (a) and (b), both "RZSM ~ SESR" and "RZSM ~ MESR" explain more than 

40% of the variance in RZSM percentile in the central NCP but less than 30% in other 

regions. In Fig.S18 (e) and (f), the southern NCP shows higher R2 values for "SESR ~ 

RZSM" and "MESR ~ RZSM" (mostly approximately 15% ~ 25%) than the northern 

NCP does (less than 15%). However, "SESR ~ MESR" explains more than 90% of the 

variance in SESR, and "MESR ~ SESR" explains more than 90% of the variance in 

MESR, as shown in Fig.S18 (i) and (j). Overall, the explanatory ability of these 

relationships, ranked from highest to lowest, is "SESR ~ MESR" and "MESR ~ SESR" > 

"RZSM ~ SESR" and "RZSM ~ MESR" > "SESR ~ RZSM" and "MESR ~ RZSM". 

Because SESR and MESR are both derived from the linear transformation of ESR, they 

exhibit strong mutual explanatory ability. The relationships between MESR and RZSM 

("RZSM ~ MESR" and "MESR ~ RZSM") are quite comparable to those between SESR 

and RZSM ("RZSM ~ SESR" and "SESR ~ RZSM"), highlighting the reliability of FD 

identification using MESR. The differences in Fig.S18 (c), (g), and (k) further 

demonstrate the similarities between SESR and MESR. However, considering the 

propagation from meteorological to agricultural drought, "RZSM ~ MESR" has a 

slightly greater explanatory ability for RZSM than "RZSM ~ SESR" in Fig.S18 (c), 

illustrating that MESR performs better than SESR in explaining RZSM. 

The spatial distributions of R2 also reveal sensitivity to the AI, as shown in Fig.S18 (d), 



(h), and (l). For "RZSM ~ SESR" and "RZSM ~ MESR", the explanatory ability 

increases with increasing AI in the region where AI < 0.3 but decreases in the region 

where AI > 0.3. The region with AIs between 0.2 and 0.3 has the highest explanatory 

ability for RZSM percentile (approximately 60%). Overall, the RZSM percentiles could 

be better explained by the SESR and MESR percentiles in drier regions, except where 

AI < 0.2, which might be related to RZSM being greater initially in wetter regions with 

extended memory (Mukherjee and Mishra, 2022). For "SESR ~ RZSM" and "MESR ~ 

RZSM", the explanatory ability is less than 20%, and is obviously greater in the region 

with AI > 0.2 than in the region with AI < 0.2. SESR and MESR percentiles could be 

better explained by RZSM percentile in wetter regions with less evaporative stress and 

greater evaporation. Meteorological drought (FDSESR and FDMESR) might lead to 

agricultural drought (FDRZSM), resulting in lower R2 for "SESR ~ RZSM" and "MESR 

~ RZSM" compared to "RZSM ~ SESR" and "RZSM ~ MESR". For "SESR ~ MESR" 

and "MESR ~ SESR", the explanatory ability exceeds 90% and generally increases with 

increasing AI overall.” 

 

lines 56-62 of Supplementary Materials 

“To quantify which indicator, SESR or MESR, can better identify FDs in the NCP, the 

relationships between the two indicators and the pentad SPI series were measured. The 

maximal information coefficient (MIC) can measure both linear and nonlinear 

relationships between two series (Cao et al., 2021). Therefore, the MICs between the 

pentad SPI series and SESR or MESR percentile series (denoted as MICSPI&SESR and 

MICSPI&MESR) were calculated grid by grid, and their differences are shown in Fig.S19. 

The difference between MICSPI&SESR and MICSPI&MESR is predominantly greater than 0, 

demonstrating a stronger correlation between SPI and MESR than between SPI and 

SESR. This suggests that the performance of MESR is better than that of SESR in the 

meteorological drought identification in the NCP.” 

 
Figure S19 Difference between MICSPI&SESR and MICSPI&MESR. 


