10

Neural networks in catchment hydrology: A comparative study of
different algorithms in an ensemble of ungauged basins in Germany

Max WeiBlenborn', Lutz Breuer', and Tobias Houska'

! Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and
Nutrition (IFZ), Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35390 Giessen, Germany

2Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen,
Senckenbergstral3e 3, 35392 Giessen, Germany

Correspondence: Max Weillenborn (maxweissenborn.umwelt@ gmail.com)

Abstract This study presents a comparative analysis of different neural network models, including Convolutional Neural Net-
works (CNN), Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) in predicting discharge within ungauged
basins in Hesse, Germany. All models were trained on 54 catchments with 28 years of daily meteorological data, either includ-
ing or excluding 11 static catchment attributes. The training process of each model scenario combination was repeated 100
times, using a Latin Hyper Cube Sampler for the purpose of hyperparameter optimisation with batch sizes of 256 and 2048.
The evaluation was carried out using data from 35 additional catchments (6 years) to ensure predictions in basins that were not
part of the training data. This evaluation assesses predictive accuracy, computational efficiency concerning varying batch sizes
and input configurations and conducts a sensitivity analysis of dynamic input features. The findings indicate that all examined
artificial neural networks demonstrate significant predictive capabilities, with a CNN model exhibiting slightly superior per-
formance, closely followed by LSTM and GRU models. The integration of static features was found to improve performance
across all models, highlighting the importance of feature selection. Furthermore, models utilising larger batch sizes displayed
reduced performance. The analysis of computational efficiency revealed that a GRU model is 41% faster than the CNN and
59% faster than the LSTM model. Despite a modest disparity in performance among the models (<3.9%), the GRU model’s

advantageous computational speed renders it an optimal compromise between predictive accuracy and computational demand.
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1 Introduction

Artificial intelligence (Al) is increasingly being used to answer scientific questions, including those in the realm of hydrology
(Kratzert et al., 2019a, b; Afzaal et al., 2019; Nabipour et al., 2020). The predictive accuracy of Al in these hydrological studies,
particularly concerning discharge, is of paramount importance for flood control, watershed management or the estimation of
water availability (Sharma and Machiwal, 2021; Brunner et al., 2021). In the era of climate change, which causes tremendous
variability in rainfall patterns and increases evapotranspiration, the role of precise hydrological forecasts becomes even more
essential (Tabari, 2020). An area of particular challenge is prediction in ungauged basins (PUB), an endeavour fraught with
substantial uncertainty due to the lack of empirical data for model calibration (Bloschl, 2016). Effective models for PUB
should thus possess robust generalisation capabilities across diverse watershed behaviours, enabling more universal basin-type
predictions (Sivapalan et al., 2003).

As demonstrated by Kratzert et al. (2019a), an artificial neural network (ANN) model, namely Long Short-Term Mem-
ory (LSTM) model, has shown unprecedented accuracy in PUB (Hochreiter and Schmidhuber, 1997). The employed LSTM
model exhibited the ability to generalise rainfall-runoff predictions across a substantial number of basins (531), surpassing
the performance of traditional hydrological models that typically operate best when independently calibrated for each separate
basin. Further comparative analyses, such as those by Le et al. (2023), have evaluated the performance of LSTM against other
ANNs like multilayer perceptrons (MLP) and convolutional neural networks (CNN) in daily streamflow prediction. This study
revealed superior performance of LSTM and CNN models over conventional ANNs, with LSTM exhibiting a marginal edge
over CNN. Moreover, a novel approach proposed by Ghimire et al. (2021) involves a hybrid CNN-LSTM model, designed for
hourly discharge predictions. When benchmarked against various ANNs (CNN, LSTM, DNN), traditional AI models (Extreme
Learning Machine, MLP), and ensemble methods (Decision Tree, Gradient Boosting Regression, Extreme Gradient Boosting,
Multivariate Adaptive Regression Splines), the CNN-LSTM model displayed superior performance in multiple evaluation met-
rics, although all ANNs exhibited high efficacy. This evidences that deep learning, a subset of machine learning characterised
by multilayered ANNSs, holds substantial promise for streamflow prediction. However, while numerous studies have explored
discharge prediction using ANNSs, a limited number have conducted comparative analyses of different ANN architectures. Ta-
ble 1 summarises these studies from 2020 to December 2023, noting that most incorporate lagged target variables as inputs.
This methodology, though effective, is less applicable for PUB due to the absence of discharge data in ungauged or poorly
gauged regions, necessitating the use of discharge—independent inputs. Among the studies shown in Table 1, three specifically
address this constraint. The first, by Nguyen et al. (2023a), evaluates CNN and LSTM models for daily discharge prediction in
the 3S River Basin, exclusively using daily mean temperature and precipitation data. This study adopted a "regional" approach,
akin to Kratzert et al. (2019a), training both model architectures with data from all three sub-basins. The LSTM was found to
outperform the CNN, although the latter’s results were not extensively discussed. The second study, by Wegayehu and Mu-
luneh (2023), contrasts three super ensemble learners against eight base models, including LSTM, Gated Recurrent Unit model

(GRU), and a compound CNN-GRU model, for daily discharge prediction. Here, the LSTM ranked among the top three in four
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out of five scenarios based on R? metrics. However, its performance significantly declined in the absence of feature selection,
indicating a susceptibility to redundant features. Notably, this study trained separate models for each basin, thus not directly
addressing PUB generalisation capabilities. The third study, by Oliveira et al. (2023), compared three ANN models (LSTM,
CNN, and MLP) for daily discharge estimation in a single basin. The CNN model exhibited superior performance (NSE of
0.86); however, this does not imply generalisability in non-calibrated catchments as both calibration and testing occurred within
the same basin. Regrettably, this limitation pertains to all three studies.

Consequently, this research aims to bridge the existing literature gap by comparing the performance of three distinct ANN
architectures for predicting discharge in ungauged basins. Through a comparative analysis, this study not only addresses a sig-
nificant gap in hydrological literature but also provides valuable insights into the relative strengths and limitations of each ANN
model, thereby guiding future applications and development in the field of hydrological prediction. Furthermore, a compre-
hensive sensitivity analysis was conducted to identify key drivers affecting the prediction of each model. This methodological
approach contributes to refining model selection and calibration strategies in hydrological forecasting.

The first architecture under examination is the LSTM, which has demonstrated robust performance in numerous studies
(Kratzert et al., 2019a, b; Le et al., 2023; Nguyen et al., 2023a). Although LSTM models demonstrate promising performance,
the inherent sequential architecture of LSTM leads to higher computational costs. This results in a relative decrease in compu-
tational efficiency when compared to feed—forward neural networks or CNNss, as discussed in Gauch et al. (2021). In pursuit
of addressing these limitations and challenges inherent to LSTM models, the second architecture chosen for examination is
the CNN. This model is characterised by its parallel processing capabilities, significantly boosting computational efficiency,
a critical factor when handling large-scale, high-resolution time series data, extensive input sequences, and a multitude of
input features (Bai et al., 2018). The third architecture under consideration is the Gated Recurrent Unit. GRU, a variant of
LSTM, recognized for its proficiency in effectively capturing temporal dependencies in time series data while imposing less
computational burden (Cho et al., 2014).

Given that PUB is often characterised by data scarcity this study incorporates two distinct scenarios: the first involving the
use of only daily forcing data, and the second extending this with additional static catchment features. This approach allows
for an evaluation of the model’s generalisation capacity when constrained to minimal data. Additionally, it provides insights
into the degree to which static catchment features can contribute to enhancing model performance, as indicated by (Kratzert

et al., 2019a). Accordingly, the objectives of this study are delineated as follows:

i. to evaluate the potential of predicting discharge in ungauged basins by daily forcing data with ANNs, namely LSTM,
CNN, and GRU,

ii. to compare the computational efficiency of LSTM, CNN, and GRU models for daily time series prediction,
iii. to investigate the potential of static features to enhance prediction performance, and

iv. to assess the impact of batch size on model performance and computational efficiency.



Table 1. Overview of recent studies focused on comparing discharge prediction using various artificial neural networks. *Target indepen-
dence’ indicates that discharge data were not utilised as input features during model training/testing. *Ungauged’ implies model evaluation
with catchments, that were not part of the training dataset. ’Multi catchment’ denotes that the models were evaluated on multiple catchments.
ANFIS=Adaptive neuro-fuzzy inference system; ANN=Artificial neural network; BiLSTM=Bidirectional LSTM; CNN=Convolutinal neural network;
DT=Decision tree; DTR=Decision tree regressor; FNN=Feedforward neural network; GB=Gradient boosting; GRU=Gated recurrent unit; LSTM=Long short-

term memory; LR=Linear regression; MLP=Multilayer perceptron; LASSO=Least absolute shrinkage and selection operator; PSO=Particle swarm optimiza-

tion; Res=Residual; RF=Random forest; RNN=Recurrent neural network; SVR=Support vector regression; XGB=Extreme gradient boosting

Target Multi Lead time step
Ungauged Time scale Prediction algorithm Reference
independent catchment Single Multi
v v v Daily 4 CNN, GRU, LSTM This study
v v Daily, 4 CNN, LSTM Nguyen et al. (2023a)®
Monthly
v Daily 4 CNN-GRU, GRU, LR, = Wegayehu and Muluneh
LSTM, LASSO, MLP, (2023)®
SVR, XGB
(4 Daily (4 CNN, LSTM, MLP Oliveira et al. (2023)
v Daily v v CNN, LSTM, MLP, Nguyen et al. (2023b)
Transformer
v Daily, v v ANN,LSTM Cheng et al. (2020)°
Monthly
Daily v ANFIS, ANN, Vatanchi et al. (2023)°
BIiLSTM,
CNN-GRU-LSTM
Daily 4 ANN, CNN, LSTM Le et al. (2023)
Daily 4 ANFIS, LSTM-PSO Haznedar et al. (2023)°
Daily 4 CNN-LSTM, DT, GB, Hong et al. (2020)°
LSTM, MLP, RF
Daily v 4 BiLSTM, CNN, FNN, Le et al. (2021)
GRU, LSTM,
StackedLSTM
Daily v CNN, DTR, LSTM, RF  Li et al. (2022)°
Daily v CNN-LSTM, DT, GB, ~ Hong et al. (2021)°
MLP, RF, RNN-LSTM
Daily v CNN-LSTM, LSTM Deng et al. (2022)°
Daily v BiLSTM, CNN-LSTM, Herbert et al. (2021)

ResBiLSTM,
ResCNN-LSTM

@ QOnly results of LSTM model is stated, ® hyperparamter configuration nontransparent



80 2 Materials and Methods
2.1 Study Area

All basins analysed in this study are located in the federal state of Hesse, Germany (Figure 1). The climate of this region is
temperate—humid and characterised by moderate temperature and precipitation levels (Heitkamp et al., 2020). The topography
of Hesse, characterised by a complex blend of lowlands, hilly terrains and modest mountain ranges, fosters a multifaceted
85 hydrological setting. A variety of geological formations and soil types within the region contribute to the mixed pattern of

infiltration rates, groundwater recharge and surface runoff (Jehn et al., 2021) .

e =]
15 30 km

Catchments
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Testing -
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Figure 1. Geographic distribution of the catchments in Hesse and Hesse’s location within Germany. Darker shades represent nested catch-

ments, while intersections indicate catchments partially incorporated in both training and testing phases.
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2.2 Data Sources

The data set used in this study is derived from Jehn et al. (2021). For each catchment, daily sum of precipitation [mm], daily
sum of evapotranspiration [mm] and soil temperature in 5 cm soil depths [°C] are available along with the corresponding
discharge [mm]. The discharge data is obtained from a gauging station located within the respective catchment. In addition,
the data set includes 11 static catchment features corresponding to every catchment (Table 2). As suggested by Kratzert et al.
(2019a), the inclusion of static catchment attributes can improve the performance of machine learning models. Table 2 provides
an understanding of the underlying aggregation of data, spatial resolution and units. Apart from discharge data, which is
accessible upon contacting the Hessian Agency for Nature Conservation, Environment and Geology, all other data sets are

publicly available within the associated repository of Jehn (2020).

Table 2. Summary of Daily Forcing Data and Static Catchment Attributes Utilised for Modelling: Detailing the Spatial Resolution of the
Original Data Sources with the Aggregation Methods and the Respective Units.

Feature Spatial resolution Aggregation Unit
precipitation 1,000 m daily sum mm
evapotranspiration 1,000 m daily sum mm
soil temperature (5 cm) 1,000 m daily mean °C
soil type 1:500,000 spatial majority classes (n=5)
soil texture 1:1,000,000 spatial majority classes (n=4)
geology type 1:250,000 spatial majority classes (n=2)
land use 1:100,000 spatial majority classes (n=3)
permeability 1:250,000 spatial majority classes (n=6)
average precipitation 1,000 m annual mean mm
catchment size 40 m at reach pour point m?
elongation ratio 40 m at reach pour point /
soil depth 1:1,000,000 spatial mean m
average slope 40 m spatial mean °
average evapotranspiration 1,000 m annual mean mm

2.3 Data preprocessing

The preprocessing of the input data is an essential step, as it ensures that the quality and integrity of the data is maintained.
This process entails a detailed analysis of data continuity, encoding nonnumerical values, splitting the data set into training and

validation subsets, followed by data normalisation and subsequent transformation. The data analysis revealed discontinuities
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in the discharge data across the time series of 39 catchments. In order to provide the longest possible time series for the
training process, a total of 54 out of the full set of 95 catchments were selected for model training. These catchments cover
28 years (1991-2018). Of the remaining 39 catchments, 35 were utilised for testing, each with a temporal resolution spanning
six years from 1997 to 2002. Rivers containing artificial constructions that impede discharge through impoundments (e.g.,
reservoirs) were not considered in this analysis. However, it should be noted that a subset of the selected rivers might be
equipped with hydraulic control mechanisms, such as floodgates (Jehn et al., 2021). For both training and testing data sets, all
categorical features (Table 2) were encoded with label encoding. For that, every unique variable of a categorical feature was
replaced by a non-repeatable integer value (Lin et al., 2020). This approach was preferred over the frequently recommended
one—hot—encoding technique (Duan, 2019; Cerda and Varoquaux, 2022) to circumvent an increase in the total feature count
equivalent to the number of unique feature variables, as occurs with one-hot—encoding (Ul Haq et al., 2019). Moreover,
label encoding accommodates ordinal scales, which is better suited for hierarchical features such as permeability. In contrast,
categorical features without a meaningful order, such as soil type or soil texture, are better handled by one—hot—encoding,
which treats each category independently. Furthermore, Potdar et al. (2017) indicate that label encoding yields the lowest
performance in the context of various investigated encoding methods. Consequently, it cannot be unequivocally asserted that
this method stands as the optimal approach. To avoid further increasing the number of static input features, label encoding
was selected. The training data set of 54 catchments was then further divided, using 80% of the data for training and 20% for
validation. Subsequently, the two data sets were normalised by employing a min—max scaling method, with a range of [0, 1]
chosen as the boundaries. This method was favoured over the standardization approach employed by Kratzert et al. (2019a),
as it consistently yielded superior predictive performance across all models utilized in the study. Concurrently, the precision
of the data representation was configured to adhere to a float32 format. The target variable was scaled independently of the
features. Moreover, to prevent data leakage, each feature normalisation was established solely based on the training data set.
The normalised training data set exhibited a shape of N x D for each catchment, where N signified the number of samples
in time and D represented the number of features. To assess the impact of additional static features, two distinct data sets
were created. The first data set included only three features with daily forcing data and assumed a shape of N x 3, while the
second one incorporated all 11 static features and took a shape of NV x 14. To transform the data sets into training batches a
two—dimensional moving window, characterised by dimensions 7' x D, was subsequently implemented, where T represents the
moving window size, also known as look—back period or sequence length (Figure 2). This window is continuously incremented
by a single period in the dimension of N, with the initial window encompassing observations [IN1, Nr|. The consecutive
window encapsulates observations [Na, N 1], this pattern is maintained until the window reaches the final element of the data
set (IV,,). Consequently, the entire data set was partitioned into m = N,,_71 subsamples for every catchment. All subsamples
were combined into a three—dimensional array (IN,,—741 X T x D). The transformed catchment data sets were stacked to one
final training set with the shape of C' x N,,_741 X T x D, where C was equal to the number of catchments. The identical

transformation was implemented for both validation and test data sets, encompassing those with and those without static
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features. It is important to know that the transformation of the data is already part of the hyperparamterisation process, a
concept further elucidated below.

. initial ;-5 window

window --- slide
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Figure 2. Schematic procedure of data transformation by applying a moving window: This procedure primarily involves the partitioning of
the data into distinct sections, employing a window (blue) that slides across the data set, effectively creating a temporal snapshot (m). 1"
delineates the window size within the temporal dimension, D represents the feature dimension, and N signifies the temporal samples with a

daily resolution.

2.4 Hyperparametrisation

The performance of machine learning models is influenced by the optimisation of their respective hyperparameters (Shekhar
et al., 2022; Ozaki et al., 2021). In the domain of machine learning, hyperparameters are variables that define the configuration
of the models and are set prior to the training process (Bhattacharjee et al., 2021), while the term parameter refers to the
variables that the model learns via training (Goodfellow et al., 2016). The selection of an appropriate tool for hyperparameter
optimisation is a critical step. Consequently, this task was conducted utilising a Python framework known as Spotpy (Houska
et al., 2015). The framework offers computational optimisation techniques for calibrating models such as a Latin Hyper Cube

Sampler (LHS), an appropriate method for selecting input variable values within a specified range, given its ability to generate
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near—-random samples from a multidimensional hyperparameter distribution (McKay et al., 1979). The hyperparameters of the
models are contingent upon the architectural design.

In this study, three distinct model architectures were explored: LSTM, GRU and CNN. LSTM and GRU are both types of
Recurrent Neural Networks (RNNGs), specifically designed to handle sequential data, such as time series. Because the employed
LSTM and GRU models possess an identical layer structure, both models share an equivalent set of hyperparameters. A detailed
overview of the utilised hyperparameters can be found in Table 3. The hyperparameter 7" denotes the window size employed
in the moving window mechanism and signifies the length of the sequence, representing how many time steps (past days) are
used to predict the discharge of the following day. This sequence encapsulates the historical information considered during
prediction. The feature maps F' quantify the number of results or features generated within the convolution process. This is
achieved by utilising a kernel of size k, referred to as the filter size, which is systematically applied over the data to extract
essential patterns and characteristics, thereby transforming the input data. In the context of LSTM and GRU models, the unit
U refers to the number of hidden neurons within the RNN layer. This quantity not only characterises the internal complexity
of the layer but also corresponds to the output dimension. The last hyperparameter under consideration is the dropout rate p,
which represents the fraction of the neurons that are randomly set to zero during training (Srivastava et al., 2014).

The ranges of the hyperparameters were delineated in preliminary experiments by repeatedly training each model employing
LHS over wider ranges. Any hyperparameter that fell below or exceeded the minimum and maximum bounds of Table 3
respectively, demonstrated inferior performance on average. The final training process was executed with a sampling size of
100 for each model and batch size combination, with and without static features. This culminated in a total of twelve distinct

sampling processes.

Table 3. Ranges of hyperparameters deployed across different neural network models within the Latin Hypercube sampling framework.

Model Hyperparameter Min Max

Window size (T) 50 300

CNN Feature maps (F) 100 500
kernel size (k) 3 9

Window size (T) 50 300

LSTM / GRU Units (U) 10 500
Dropoutrate (p)  0.05 0.5

2.5 Model architectures

The architecture of the LSTM was first introduced by Hochreiter and Schmidhuber (1997). An LSTM consists of a memory
cell governed by four specific gate units, thus granting the capacity to preserve information over extended periods (Cho et al.,

2014). Through this architectural design, LSTMs possess the capability to mitigate the challenges associated with exploding or
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vanishing gradients, as encountered with traditional RNNs. While the nuanced workings of LSTM cells and their concomitant
advantages are pertinent (Hochreiter and Schmidhuber, 1997), they have been extensively discussed in prior research and
thus will not be repeated within this study. The architectural design of a GRU model is inspired by the structure of LSTMs
with the distinction that it incorporates only two gates to regulate the information flow. This results in reduced computational
complexity and thereby rendering GRU more computationally efficient while still addressing the exploding/vanishing gradient
problem (Cho et al., 2014). In contrast, CNNs are tailored for grid—like data structures, including images. The CNN architecture
was first introduced by Fukushima (1980). The term convolutional neural network was introduced by LeCun et al. (1989), who
developed a model for handwritten digit recognition. CNN models possess a significant benefit in that the convolution operation
is inherently parallelizable, allowing for the simultaneous execution of numerous calculations. An additional merit is the ability
to extract features, irrespective of the exact location where the feature was found. This reduces the number of input samples
needed for training the network size and thus further improves computational efficiency (Lecun et al., 1998). Note that these
extracted features are not the same as features listed in Table 2. The architectural configurations of the three models employed

in this study are depicted in Figure 3, with further explanations provided in the subsequent sections.

b)

a) c)
Input Input Input
(None, T, D) (None, T, D) (None, T, D)
GRU
)

4

LSTM Convolution 1D
(None,U) (None, U (None, T, F)
Dropout Dropout Max Pooling 1D
(None,U) (None,U) (None, % F)

T
v v ¥
A &

Dense Dense Convolution 1D

(None, 1) (None, 1) (None, ;2F)

Output Output Max Pooling 1D
(None, 1) (None, 1) (Nome, L., 21

1

<

Convolution 1D
(None, % J4F)

Global Max Pooling 1D

(None, 4F)
T

v

Dense

(None, 1)
Output
(None, 1)

Figure 3. Schematic diagrams of the architectures of the three utilized models: (a) Long Short-Term Memory (LSTM), (b) Gated Recurrent
Unit (GRU), and (¢) Convolutional Neural Network (CNN).

10
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The LSTM model comprises a single LSTM layer configured with a designated number of hidden units (U). To mitigate
overfitting and promote generalisation, a dropout layer is directly connected to the LSTM layer, introducing regularisation
by randomly deactivating a specific fraction (dropout rate) of the hidden units (Srivastava et al., 2014). The final layer is
a dense layer that applies a Sigmoid activation function, which converts the output into a probability value between zero
and one (Figure 4c). The adoption of this specific activation function was motivated by the need to prevent the generation
of negative discharge predictions, which were previously encountered with the use of alternative activation functions like
LeakyReLU or a linear function. Such negative predictions are hydrologically implausible and undermine the validity of the
model outputs. However, the utilization of a sigmoid function, in conjunction with a min-max scaling technique, introduces a
structural limitation wherein the model is incapable of extrapolating beyond the maximum discharge values observed during
the training phase. Considering these trade-offs, the sigmoid function was chosen as a compromise to balance model stability
and physical realism.

A comprehensive examination of all activation functions employed within the models is provided in Figure 4. This illus-
tration delineates the specific characteristics of each function, highlighting that both the Rectified Linear Unit (ReLU) and
Sigmoid functions are designed to avoid negative values. The ReLU function, in particular, suppresses negative values by set-
ting them to zero, while the Sigmoid function, recognised by its characteristic S—shape, maps any input into values between
zero and one. Pertinent to the context of deep learning, especially image recognition, ReLu is often favoured for its expedited
learning capabilities, yielding enhanced performance and superior generalisation attributes (Krizhevsky et al., 2017). However,
it has been observed in preliminary experimental setups that the Sigmoid function exhibits a greater degree of stability, while
ReLU demonstrated a higher propensity to induce gradient exploding. The complete architectural design of the LSTM model

is illustrated in Figure 3a.
2.5.2 GRU

The architecture of the GRU model shares a structure similar to that of the previously described LSTM model, with the
primary difference being the substitution of the LSTM layer with a GRU layer (Figure 3b). Similar to the LSTM model, the
GRU model contains a single layer configured with a designated number of hidden units (U/) and employs a dropout layer
directly connected to the GRU layer to mitigate overfitting and promote generalisation. The final dense layer similarly employs

a sigmoid activation function to ensure that all predicted discharge values remain within a physically plausible range.
2.5.3 CNN

The CNN is composed of a series of three convolution cells, each containing a one—dimensional convolution layer followed
by a pooling layer. The convolution layers incorporate a ReLU activation function (Figure 4b) and employ a sliding window

mechanism known as a kernel that traverses the input data for processing. As previously elucidated, this kernel is responsible

11
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for extracting feature maps (F') from time—dependent input features. The kernel, with a size of k, is applied uniformly across
all convolution layers. In each successive convolution layer, the quantity of feature maps is increased by a factor of two,
thereby increasing the model’s capacity to extract and represent complex features. In the initial pair of convolution cells, the
temporal dimension (7—array) within the pooling layer is reduced by a factor of two by employing a stride of size two across
each T—array, while the third pooling layer extracts a single set of feature maps along the temporal axis of all T—arrays. To
preserve the temporal dimension during the convolution process, each convolution layer incorporates symmetric zero—padding.
This technique involves adding zeros around the input data, ensuring that the processed dimension remains unchanged after
applying the convolution operation. The last layer of the model is a dense layer that compresses the model dimensions to
produce a single output value for each prediction. This layer is fully connected to the preceding layer and uses a leaky rectified
linear unit (LeakyReLU) activation function as depicted in Figure 4b. The LeakyReLU, akin to the standard ReLU (shown
in the same figure), differs by introducing a small, non—zero slope for negative values. This characteristic enhances gradient
propagation and mitigates the issue of vanishing gradients (Ramachandran et al., 2021). The selection of the LeakyReLU
over the standard linear activation function (Figure 4a) was driven by the latter’s propensity to generate negative predictions
for the discharge values. Although LeakyReLLU does not entirely preclude negative predictions, it effectively modulates them
into marginally negative outputs and therefore reduces the extent of negative predictions. Although the Sigmoid function is
effectively utilised in LSTM and GRU models to prevent negative discharge predictions, its application within the CNN model
framework yielded suboptimal results in preliminary trials, especially when compared to the performance achieved using the
LeakyReLU activation function. This informed the decision to opt for LeakyReLU in our work. A visual representation of the

complete architectural design of the CNN model is presented in Figure 3c.

a) Linear Activation Function b) ReLU Activation Functions c) Sigmoid Activation Function
10 10 1.0
— RelU
8 —— LeakyRelU 0.8
5
0.6
y 0 y y
0.4
-5
0.2
-10 0.0
-10 -5 0 5 10 10 -10 =5 0 5 10
X X X

Figure 4. Visualization of the three activation functions utilized within the employed models. The diagrams show the graphical representa-
tions and functional ranges of (a) the linear function, which preserves the raw, untransformed input; (b) the Rectified Linear Unit (ReLU)
function, which maps negative inputs to zero and passes positive inputs unchanged; and (c) the sigmoid function, characterized by its distinct

’S’-shape, which compresses any input into a range between zero and one. Note: different Y-axis scales.
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2.6 Loss function

In machine learning algorithms, the role of the loss function is paramount as it quantifies the discrepancy between the model’s
predictions and the actual data (Wang et al., 2022). The optimizer, an algorithm designed to minimize the loss, regulates the
process of updating the model’s parameters. This optimizer strives to enhance the model performance by iteratively determining
the loss and then adjusting the model parameter to reduce this loss. This is achieved by identifying the gradient or derivative
of the loss function, which denotes the local minimum (least steep ascent). Thus, by minimising the loss, the machine learning
model can improve its predictive accuracy. The optimizer used for all models in this study is the Adam—optimizer (Kingma
and Ba, 2017). This algorithm provides high computational efficiency for gradient-based optimisation and is suitable for
large models that include a high number of parameter sets. The choice of loss function is dictated by the specific task at
hand. A commonly used loss function when predicting continuous data is the Mean Square Error (MSE), which is favoured
for its computational efficiency. However, MSE suffers from sensitivity to outliers due to its quadratic penalty and exhibits
scale—dependence, rendering it less interpretable and comparably challenging when evaluating models across disparate output
scales (Liano, 1996; Gupta et al., 2009). Another metric used to capture model performance, traditionally used in hydrology, is
the Nash—Sutcliffe efficiency (NSE) (Knoben et al., 2019). Based on the close similarities between MSE and NSE and hence
the inherent disadvantages, NSE is not an ideal choice as loss function either (Gupta et al., 2009). To mitigate the systematic
issues encountered in optimisation processes that arise from formulations linked to the MSE or NSE, we decided to utilise
the more resilient Kling—Gupta efficiency (KGE). The KGE corrects for underestimation of variability, by providing a direct
evaluation of four different facets of the discharge time series, which encompass shape, timing, water balance and variability

(Santos et al., 2018). The definition of KGE is delineated in Equation 1.

KGE:I—\/(r—1)2+(a—1)2+(ﬁ—1)2 (1)

with:
_ C’O’U(obs, sim)

r=
Oobs * Osim
o Osim
Oobs
__ Hsim
Hobs

where u is the mean, o is standard deviation, and r is the linear correlation factor between observations and simulations. The

variable « is a measure of how well the model captures the variability of the observed data and 3 defines a bias term indicating
how much the model’s predictions systematically deviate from the true values (Knoben et al., 2019). Analogous to NSE, KGE
also indicates the highest performance when equal to one. However, the goal of the loss function is to minimise the error; thus,
the discrepancy between simulation and observation should approach zero. Therefore, the implemented loss function L results

in Equation 2.
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2.7 Model training

The training process was conducted using a GeForce RTX 3090 graphics card equipped with 24 GB of memory. Each model
was subjected to training with batch sizes of 256 and 2,048. The batch size is a fraction of the total number of training samples
and represents the number of samples utilised to train the model prior to an update of the internal parameters (Radiuk, 2017).
The batch size has no physical interpretation in the context of hydrological processes but functions as a crucial hyperparameter
in the training of neural networks. Prior studies, such as Kratzert et al. (2019a, b), have demonstrated the successful application
of a batch size of 256. In this study, this batch size was also adopted and served as the baseline. To further explore the impact
of larger batch sizes, a multiple of 256 was employed. A batch size of 2048 was then utilized, as this represents the upper limit
of the memory capacity of the graphics card used.

The maximum number of epochs designated for training was set to 60. An epoch refers to a single iteration over the entire
training data set during which the model’s parameters are adjusted to minimise loss. However, the training process was config-
ured to terminate when the validation loss failed to show improvement throughout five consecutive epochs. An enhancement
was recognised when the validation loss decreased by a minimum of 0.001 during these five epochs. This mechanism is called
early—stopping. Given that the input data for the training procedure are arranged by catchments, shuffling of data was imple-
mented to circumvent the potential for overfitting to a specific catchment. Furthermore, each model was trained both with and
without the inclusion of static features for the two specified batch sizes. This leads to a total of four distinct training phases
for every model with a specific hyperparameter set. The static features were analogously processed within the models to the
treatment of the daily features. The learning rate, frequently acknowledged as the paramount hyperparameter to tune, exerts a
considerable influence on the training of models that employ gradient descent algorithms (Xu et al., 2019). Hence, when the
learning rate is too high, the optimizer may diverge from the local minimum, while setting it too low can result in a protracted
learning process (Zeiler, 2012). To efficiently address this behaviour, a dynamic adjustment of the learning rate was integrated
into the training process using a learning rate scheduler. This algorithm modifies the learning rate based on the current epoch
number. During the warm—up period, the learning rate linearly increased from the initial-rate to the base—rate throughout three
epochs. The warm—up period is followed by a decay period lasting ten epochs, during which the learning rate linearly decreases
from the base-rate to the minimum-rate. Following the decay phase, the learning rate is kept constant at the minimum-rate for

the remaining epochs. Detailed information can be found in Table 4.
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Table 4. Gradual alterations in the learning rate throughout the 60 epochs of the model training process.

Epoch Stage Learning Rate
1-3 Warmup  Linear increase from le % to 5e™*
4-13 Decay Linear decrease from 5¢™* to 5"
14-60  Cool down Constant 5¢~°

3 Results and Discussion
3.1 Model Performance

The analysis depicted in Figure 5 delineates a comparative evaluation of model performance concerning architectural varia-
tions, batch sizing, and the incorporation of supplementary static attributes. The findings reveal that employing CNN models
in conjunction with static features yielded a mean KGE of 0.80 and 0.78 for batch sizes of 256 and 2,048, respectively. The in-
clusion of static features provides a performance benefit because the mean accuracy drops to 0.71 and 0.67 when static features
are omitted for batch sizes of 256 and 2,048, respectively. This aligns with the findings presented by Kratzert et al. (2019b),
who assert that static catchment attributes enhance overall model performance by improving the distinction between different
catchment-specific rainfall-runoff behaviors. Notably, the maximum KGE in the absence of static features reached 0.97 and
0.92 for batch sizes of 256 and 2,048, respectively, highlighting the potential for high model performances even without static
features. On the contrary, the minimum KGE drops when omitting static features to -0.21 and -0.26 for batch sizes of 256
and 2,048, respectively, showing the lowest minimum performance of all models. This suggests a deficiency in the model’s
ability to generalise, a phenomenon frequently observed when overfitting occurs (Srivastava et al., 2014). Regarding the mini-
mum KGE values, when utilising static features, the CNN models demonstrated the third and fourth highest minimum values,
registering at 0.24 and 0.20 for batch sizes of 256 and 2,048, respectively.

In the case of LSTM networks, mean KGE values of 0.78 and 0.73 with static features for batch sizes of 256 and 2,048,
respectively, can be noted. The mean KGE declined to 0.73 and 0.68 when static features were omitted for batch sizes of 256
and 2,048, respectively. Notable is the maximum performance achieved with static features, which reached 0.94 for a batch
sizes of 256. In contrast, the LSTM with a batch size of 2,048 exhibited the lowest minimum value of 0.05 across all models
with static features. For models run without static features, the LSTM with a batch size of 256 recorded the highest minimum
value of 0.09. Conversely, the LSTM model with no static features and a batch size of 2,048 presented the lowest maximum
KGE of 0.86.

For GRU, the mean KGE exhibited similar trends with the inclusion of static features, reaching 0.77 and 0.75 for batch
sizes of 256 and 2,048, respectively. The mean performance declined to 0.71 and 0.69 when static features were omitted for

batch sizes of 256 and 2,048, respectively. The GRU model with a batch size of 2,048 demonstrated the highest minimum
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Figure 5. Evaluation of performance discrepancies in the applied models relative to batch size and additional static catchment attributes

during the testing period. The number represents the average KGE over all 35 catchments. The dotted line displays the percentile intervals.

KGE value of 0.37 among all models when static features were incorporated. Following closely, the GRU model with a
batch size of 256 under the same feature scenario presented the second—highest minimum KGE of 0.28. Upon examining the
performance range, the GRU model with static features and a batch size of 2,048 exhibited the narrowest performance range
of 0.52. Subsequently, the GRU model with static features and a batch size of 256 displayed a performance range of 0.63,
indicating robust generalisation capabilities for these two models. Notably, for both batch sizes, the GRU model demonstrated
a marginally higher maximum KGE when static features were omitted. This finding contradicts the outcomes of all other
models, where the inclusion of static features consistently reduced the maximum KGE, regardless of the batch size. The sole
exception to this pattern was observed in the CNN model with a batch size of 256 utilising no static features.

All together, when analysing the influence of batch size across various models, it becomes evident that an increase in batch
size correlates with a decrease in performance. This observation is confirmed by the study of Masters and Luschi (2018), who
discovered that smaller batch sizes contribute to enhanced training stability and generalisation performance when employing
CNN models for image classification. Additionally, Kandel and Castelli (2020) identified a strong correlation between learning
rate and batch size, proposing that higher learning rates should be employed when utilising larger batch sizes. However, the
learning rate remained constant across varying batch sizes throughout this study.

Altogether, these results suggest that:

i. the smaller batch size of 256 contributes to better model performance with regard to mean KGE values.

ii. Static features generally improved the mean KGE across all architectures and batch sizes.
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iii. The CNN model with static features and a batch size of 256 showed the highest mean KGE and therefore slightly
outperforms LSTM and GRU models.

iv. The KGE performance ranges for models with static feature are substantially smaller and on a higher level than the

ranges for models without static features.

v. Overall, the GRU model with a batch size of 256 and static features exhibited favourable KGE performances akin to

LSTM and CNN models and mitigated poor predictions across all test catchments.

Comparing evaluation metrics

To further investigate the efficacy of the applied models, additional performance metrics were incorporated. Among these, the
NSE was selected to facilitate comparison with prior studies that conventionally utilise this metric. Moreover, the Percent Bias
(PBIAS) was employed to gauge the systematic deviation of the modelled data from observed values, indicating whether the
model predictions consistently overestimate or underestimate the observations (Moriasi et al., 2007). The Mean Absolute Error
(MAE) was integrated as a metric to quantify the absolute discrepancies between model predictions and actual observations,
serving as a direct assessment of model precision (Siqueira et al., 2016). Lastly, the Coefficient of Determination (R?) was
adopted as an indicator for evaluating the degree of alignment between simulations and observed data, reflecting the model’s
’goodness—of—fit’ (Onyutha, 2022). A comparative view of the results of all the used performance metrics is shown in Table 5.
Overall, the presented data indicates, that NSE metrics are marginally lower than the KGE values. This phenomenon could
potentially stem from the presence of counterbalancing errors, an inherent limitation associated with KGE metric. Such coun-
terbalancing errors materialise through concurrent overestimation and underestimation of the predicting target. Given that bias
and variability collectively constitute two-thirds of the KGE, their effects may augment the aggregate score, without necessarily

indicating a more accurate or relevant model (Cinkus et al., 2022).

Zfil (obs; — sim;)?

NSE=1— L. .
ZZ]-V:1(0581‘ — obs)?
N .
PBIAS = 100 x Zi:1(§$mz obs;) .
i=1 obs;
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— . 2
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Notably, the CNN and LSTM models, when configured with a batch size of 256 and incorporating static features, achieved
the highest NSE (see Equation 3) values of 0.76 and 0.75, respectively. In comparison, the GRU model under identical con-
figurations exhibits a slightly inferior performance, marked by an NSE of 0.72. In the context of existing literature, Nguyen
et al. (2023a) reported an NSE of 0.66 for an LSTM model calibrated across three distinct catchments, each with its own sep-
arate calibration and not extending to ungauged scenarios. While models calibrated to individual basins often perform better
than those generalised across multiple catchments, particularly in PUB, our results demonstrate that the generalised models
trained here achieves even better results than these specialized models. Kratzert et al. (2019a) documented an NSE of 0.54
for an LSTM model, which, despite being lower, is deemed more robust due to its validation across 531 catchments using
k-fold cross-validation. Nonetheless, the observation that NSE values surpassing 0.7 in the most efficacious model across each
architecture underscores the potential of these artificial models, provided that optimal hyperparameter tuning is applied and
sufficient data is available to support the learning process.

All CNN models universally exhibit a positive PBIAS (see Equation 4), signifying a consistent underestimation of discharge
rates, regardless of variations in batch size or feature scenarios. Notably, CNN models lacking static features manifest on
average smaller discharge of approximately 7%, marking them as the models with the most significant underestimations.
Conversely, the CNN model employing a batch size of 256 alongside static features demonstrates the smallest PBIAS, recorded
at 0.06%.

In contrast, LSTM models display a PBIAS pattern that does not adhere to a discernible trend. The LSTM model achieving
the highest KGE metric overestimates the discharge by an average of 3.46%. The LSTM models with a batch size of 2,048 and
inclusion of static features exhibits the most substantial overestimation, with a PBIAS of -5.1%. The absence of static features
in LSTM models tends to yield PBIAS values closer to zero, which is preferable.

GRU models reveal a negative PBIAS when static features are incorporated and positive PBIAS without them. The most
favourable PBIAS among GRU models, -0.48%, is observed in the model with a batch size of 256 and static features, closely
aligning with the best—performing CNN model’s PBIAS of 0.06%. Overall, GRU models display the least average deviation in
PBIAS.

Regarding MAE (see Equation 5), most models exhibit comparable outcomes with an MAE around 0.3 mm. However,
LSTM and GRU models with a batch size of 2,048 are exceptions, showing a slightly elevated MAE around 0.4 mm. Despite
this, the models generally demonstrate an ability to minimise this error metric, particularly evident in CNN models with higher
PBIAS values where the cancellation of positive and negative predictive errors does not occur.

The R? (see Equation 6) scores of every model architecture show always a slightly better fit without static features, when
comparing equal batch sizes. One exception to this trend are the GRU models with a batch size of 2048, where the model
incorporating static features shows a higher fit than without static features. Furthermore, the R? values confirm the analysis of
the KGE performance, which showed better performance with smaller batch sizes.

After considering the effects of batch size, feature scenarios and resulting performance metrics, it is also instructive to ex-

amine the chosen window sizes across the employed models, which may offer further insight into how each model processes
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temporal dependencies. Across architectures, CNN models generally utilize smaller window sizes compared to LSTM models,
with GRU models employing window sizes that lie between the two. This trend might reflect the intrinsic architectural efficien-
cies of CNN models in handling spatial-temporal data more compactly, while LSTM models, designed to capture long—term
dependencies, benefit from broader temporal windows. The GRU models, with their simpler architectural design, may not
manage extensive temporal sequences as effectively as the more complex LSTM models. Regarding batch sizes, there is an
observable trend where smaller window sizes are generally favored when larger batch sizes are used, with the exception of
GRU models. The usage of static features does not directly influence the choice of window size but consistently correlates
with enhanced performance across all window sizes and models. Furthermore, for GRU models, and to a certain extent for
LSTM models at a batch size of 256, a decline in performance with increasing window size is observed, suggesting a potential
overload of contextual information that may not be essential for accurate predictions. Conversely, for CNN and LSTM models
at a batch size of 2048, an increase in window size correlates with improved performance.

Overall, these observations indicate that while window size is a critical parameter in model configuration, its impact on
performance is significantly modulated by other factors such as model architecture, batch size, and especially the inclusion of
static features. In summary, the insights of Table 5 corroborates that CNN models, when incorporating static features, manifest

superior efficacy, particularly in the context of the metrics assessed for validation.

Table 5. Synthesis of performance metrics across models, batch sizes, and feature scenarios during the testing period. Numbers shaded blue

denote higher scores for each metric.

Mean Median
Model Batchsize Features

KGE NSE PBIAS MAE R? KGE NSE PBIAS MAE R’

256
+SF
2048
CNN
256
-SF
2048
256
+SF
2048
LSTM
256
-SF
2048
256 0.32
+SF
GRU 2048 0.75 0.69 -2.75 0.37 0.77 0.73 -2.96 0.30 0.77
256 SF 0.67 0.32 -3.40 0.32
2048 -3.22
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Statistical Variability Across Model Runs

To assess whether the differences in performance among the best performing CNN, LSTM, and GRU model with a batch
size of 256 and incorporating static features stems from random initialization, each model was trained 20 times with distinct
random seeds. The results are summarized in Figure 6, which illustrates the distribution of KGE values across the repeated
runs. The mean KGE for CNN, LSTM, and GRU models remained consistent within the range of the initial single-run results,
registering at 0.76, 0.75, and 0.76, respectively. The interquartile range (IQR) for each model is relatively small, indicating
low variability in performance due to random initialization. Notably, the GRU model exhibits the narrowest IQR, reflecting
its robustness across multiple runs. The LSTM model exhibits slightly greater variability, though its performance distribution
largely overlaps with that of the GRU model. In comparison, the CNN model displays the widest IQR. However, the majority
of its distribution is positioned at higher KGE values relative to the other models. Furthermore, the CNN model achieves the
highest reported KGE value (0.80) but also includes the lowest outlier at 0.62. These findings confirm that the CNN model
exhibits a slight performance advantage over the LSTM and GRU models in terms of KGE. This observed difference is not
predominantly influenced by random initialization but instead reflects distinctions in the architectural design of the models and
their respective capacities for generalization. However, while the observed difference is relatively small, it is important to note

that the overall performance of all models is strong, inherently leaving limited room for substantial improvement.
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w
9 o
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Model architecture

Figure 6. Distribution of KGE values for CNN, LSTM, and GRU models across 20 independent runs with different random seeds, using a

batch size of 256 and incorporating static features. The number represents the average KGE over all 20 runs.
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3.2 Runtime

To investigate the computational efficiency associated with the models employed, the runtime of the training process was
measured for each model, considering variations in both batch size and the combination of features.

Both the batch size and the integration of additional static features significantly influence the runtime of models across all
employed architectures, as evidenced in Figure 7. The CNN model with a batch size of 2,048 and without static features pre-
sented the shortest runtime of approximately 2.3 minutes. Although the CNN model demonstrated rapid convergence towards
its optimal minimum error, it simultaneously exhibited the lowest performance as delineated in Figure 5. This suggests that the
conditions were not sufficiently robust to discern the intrinsic patterns. Using an identical batch size and feature configuration,
the GRU model, along with the CNN model configured with a batch size of 256 and no static features, had the second shortest
runtimes of approximately 4.2 minutes.

The introduction of static features resulted in a notable increase in the runtime for all models, barring the GRU model with
a batch size of 256, where the inclusion of static features marginally reduced the runtime, rendering it the fastest among all
models that utilised static features. The runtime augmentation was especially pronounced in the CNN model with a batch size
of 2,048, showing a more than twelve fold increase, thereby marking it as the most time—consuming model across all evaluated

scenarios. LSTM models exhibited also a substantial increase in runtime across both batch sizes upon the incorporation of

static features.
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Figure 7. Comparison of model runtime across three different architectures (CNN, LSTM, and GRU) with varying batch sizes (256 and

2048) and the presence or absence of static features.

21



435

440

445

450

455

460

465

Within identical model architectures, it is observed that larger batch sizes contribute to faster runtimes in the absence of
static features. Conversely, when static features are employed, models tend to exhibit faster runtimes with smaller batch sizes,
with the exception of the LSTM models. For these models, an escalation in batch size consistently results in accelerated run-
times, irrespective of the feature configuration. The different behaviour of additional features towards training runtime while
using different batch sizes is unexpected and cannot be explained solely by considering the batch size and feature scenarios.
As reported by Radiuk (2017), larger batch sizes correlate with increased runtimes, which is attributable to the higher com-
putational utilisation required to process an increased quantity of training samples for the purpose of updating model weights.
Nonetheless, this assertion assumes that the models under comparison diverge only in terms of batch and feature size. This
presumption does not apply to the present study, where each model is also characterised by a unique optimised combination
of hyperparameters (Table 3). A possible explanation might be that all models exhibiting a more protracted runtime require
additional epochs to converge. This phenomenon could be facilitated by the early—stopping mechanism deployed in model
training, which permits the termination of the training process when the optimised metric ceases to demonstrate improvement.

Altogether, when static features are incorporated, the GRU model utilising a batch size of 256 demonstrates the fastest
runtime (9.5 minutes). In contrast, the CNN model, configured identically with respect to batch size and employed features,
exhibited a runtime of 16.1 minutes, consequently rendering the runtime of the GRU model 41% faster. In the final analysis, it
becomes evident that the GRU model exhibits superior runtime performance compared to both the CNN and LSTM models,
specifically when employing a batch size of 256 and utilising static features. In the context of RNN models, with a focus on
runtime, GRU models were found to be superior in efficiency compared to LSTM models. This stands in alignment to the
findings of Yang et al. (2020), who reported that GRU was 29% faster than LSTM when processing the identical data set.
However, as stated before, the examined models in this study exhibit disparities not only in terms of batch size but also encom-
pass other architectural parameters such as the number of utilised epochs, hidden units and the window size (Table 6). These
differences may result in altered computational efforts. Apart from the different model architectures, the specific configuration
of hyperparameters in each model yields varying computational effort. For example, an increase in window size results in a
more extended sequence to process, thereby necessitating additional computational effort. In the context of the CNN models,
the computational effort is contingent on the window size, feature maps, kernel size and the quantity of input features. Models
incorporating static features (+SF) possess 14 input features, whereas those without static features (-SF) contain only three
dynamic features. In contrast, the computational effort of the LSTM and GRU models is determined by the units within the
corresponding cell, the input feature size and the window size.

The observed increase in computational time for the GRU model, when running with a batch size of 256 and no static
features, is mainly due to a significantly larger window size, which increased from 87 to 298. This expansion, in the absence
of static features, requires a more extensive computational effort. In contrast, for CNN models employing a batch size of
2,048, the pronounced augmentation in execution time is primarily induced by an increase in the quantity of feature maps,
presenting a 2.3 fold increase. Generally, the marked prolongation in computational duration for CNN models incorporating

static features, as opposed to those excluding them, can be elucidated by the incorporation of a considerably higher number of
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feature maps in the former. This enlargement is a direct consequence of the increased data volume processed by the models
when supplemented with static features. Notably, CNN models utilising a batch size of 2,048 manifest a reduction in window
size, implying that the model may encounter challenges in generalising from extended input sequences due to potentially
excessive variability among the samples within a batch. For the LSTM models with a batch size of 2,048, an 83% increase in
the number of hidden units, when static features are introduced, is the primary factor contributing to the substantial increase in
runtime for this configuration. Notably, the GRU model with a batch size of 256 and static features, which exhibits the smallest
window size of 87 among all recurrent models, achieves the fastest runtime for models incorporating static features, a result

directly attributable to its reduced window size, while still maintaining commendable predictive performance.

Table 6. Selection of utilized hyperparameters for the employed CNN, LSTM, and GRU models: A comparative examination of different
feature scenarios, including scenarios with static features (+SF) and without static features (-SF), across two distinct batch sizes (256 and

2048).

Batch size 256 Batch size 2048
+SF -SF +SF -SF

Model Hyperparameter

Window size (T) 179 183 86 70

CNN Feature maps (F) 346 105 466 205
Kernel size (k) 4 6 8 8

Window size (T) 232 288 168 159

LSTM Units (U) 491 377 453 248

Dropout rate (p)  0.37 0.34 0.29 0.23
Window size (T) 87 209 150 229
GRU Units (U) 373 364 480 172
Dropoutrate (p)  0.48 0.11 0.27 0.17

The architectural differences between CNN models and recurrent models (LSTM and GRU) render direct comparisons of
their hyperparameter configurations impracticable, with the exception of window size. As indicated in Table 6, the window
sizes of CNN models are smaller than those observed in recurrent models, except for the GRU model utilising a batch size of
256 and incorporating static features.

Moreover, an assessment of the best—performing models within each architecture (all configured with a batch size of 256
and incorporating static features) with regard to their hyperparameter configurations, reveals that it is the aforementioned GRU
model that possesses the smallest window size (87), succeeded by the CNN (179) and LSTM (232) models. The increased
length of input sequences implies greater computational demands, which partly accounts for the elevated runtime observed in
the specified CNN model, despite its inherent capacity for parallel processing. As outlined in subsection 2.5, this attribute is

typical of CNN models, in contrast to the sequential processing nature of LSTM and GRU models limits such parallelization.
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In conclusion, the comparative analysis suggests that the GRU model, particularly with a batch size of 256 and the inclusion
of static features, emerges as the optimal choice for hydrological applications that prioritise computational efficiency alongside
predictive performance. Furthermore, the differential impact of batch sizes and feature configurations on the runtime across
CNN, GRU, and LSTM models underscores the critical role of tailored hyperparameter optimisation in achieving computa-
tional efficiency without compromising model performance.

Given the observed favourable outcomes when utilising a batch size of 256 with static features, subsequent analyses will

focus exclusively on models adhering to this configuration.
Assessment of Flow Segment Performance

To reinforce the analysis of performance, the recorded discharge data from all evaluated catchments, corresponding to the
highest—performing model within each architectural category, were divided into quartiles. First, the discharge data for each
catchment were sorted in ascending order. Then, the sorted data were divided into four quartiles, with each quartile representing
a 25% portion of the data range for each catchment, thereby forming four distinct segments. Subsequently, for each segment,
KGE and PBIAS of the predicted discharge were calculated in relation to the observed values, as illustrated in Figure 8. Across
all models, a noticeable increase in KGE is observed from the lowest to the highest flow segments, with the exception of
Q2, which represents lower flow levels and records the lowest KGE values. Remarkably, only within the highest flows is a
positive KGE observed. This implies that the models predominantly discern peak flow events as critical data for learning,
treating low flows as less significant or noise, which the models aim to diminish. This phenomenon may be attributed to a
bias in the KGE towards elevated flows, thereby inadequately penalising inaccuracies in lower flow predictions. Specifically,
KGE includes three parts, the Pearson correlation coefficient r, variability «, and bias 3 (Equation 1). Because peak flows
typically exhibit larger numerical values than lower flows, which might dominate the overall variance, slight improvements
in capturing these high—flow events can yield relatively large gains in all three components, thereby improving the overall
KGE score. Consequently, forthcoming research should explore evaluation metrics that facilitate a more holistic optimisation
approach. With regard to the highest flows, the KGE metrics exhibit close resemblance across models, with the CNN model
slightly leading with a KGE of 0.69. Conversely, the LSTM model demonstrates superior efficacy in modelling Q1 and Q2
flow segments.

Addressing the PBIAS, the pattern of enhanced model performance with increasing flow magnitudes, as noted with KGE
metrics, persists. This is evidenced by the narrowing spread of the violin plots. Intriguingly, except for the Q4 segment, the
PBIAS remains positive across all models for each flow segment, indicating a general overestimation of lowest to higher
flows and a mild underestimation of peak flows. This phenomenon may be attributed to the limitation described in section
2.5.1, whereby the integration of a sigmoid activation function with a min—max scaler inherently limits the highest possible
prediction value to the maximum observed during the training phase. Notably, the predictions by the CNN model for lowest
flow exhibit the most pronounced bias, particularly on the positive spectrum, pointing to a lack of adequate generalisation

capabilities.
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Figure 8. Comparative performance of CNN, LSTM, and GRU models incorporating static features across different flow segments. The top
row displays the Kling-Gupta Efficiency (KGE) and the bottom row shows the Percent Bias (PBIAS) for the lowest flows (Q1), lower flows
(Q2), higher flows (Q3), and highest flows (Q4). Each violin plot represents the distribution of model performance metrics for all evaluated

catchments within each flow segment. The black dots indicate the mean values for each segment.

A further decomposition of the KGE is illustrated in Figure 9, where each of the three components of the KGE (Pearson
correlation coefficient (r), variability («), and bias (3)) are presented separately. These components offer insights into distinct
aspects of the model’s performance. The Pearson correlation coefficient (r) measures the strength and direction of the linear
relationship between the observed and simulated data. A value of 1 indicates perfect positive correlation, -1 indicates perfect
negative correlation, and 0 indicates no correlation. The variability (o) measures the ability of the model to capture the observed
variability. A value of 1 indicates that the model’s variability matches the observed variability. Values greater than 1 indicate
the model has higher variability, while values less than 1 indicate lower variability. The bias term (5) indicates the systematic
overestimation or underestimation by the model. A bias value of 1 means there is no bias, values greater than 1 indicate
overestimation, and values less than 1 indicate underestimation. Figure 9 reveals that r is more consistent across Q1 to Q4
for the LSTM model, unlike the CNN and GRU models, which display a wider range for r below 0.25. This indicates that

the LSTM model is better at matching the timing of prediction for low flows. A similar trend is observed for «, where the
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LSTM and GRU model exhibit higher variability, particularly for the lowest flows (Q1). However, the GRU model shows
difficulties in capturing variability for lower and higher flows (Q2 and Q3), with values of 3.96 and 2.63, respectively, compared
to the LSTM and CNN models. The bias term [ shows that the CNN model achieves the best score for the highest flows
(Q4). Nevertheless, it also exhibits the largest bias for the lowest flows (Q1) among all models. Conversely, the LSTM model
demonstrates superior performance for Q1 through Q3. Overall, this analysis suggests that the LSTM model exhibits favourable
results across all KGE components. Appendix A presents the three best-performing and three worst-performing hydrographs of
each model. Within the poorly performing hydrographs, it becomes evident that while the timing of the flow events is mostly
accurate, the magnitude is poorly captured, and the base flow is often underestimated. This suggests that these catchments
might exhibit different hydrological behaviors compared to the better-predicted catchments, indicating the need for more
diverse catchments in the training dataset. Furthermore, appendix A4 presents a comparison of the simulated hydrographs for
the same basin. Consistent performance trends are observed across all models, with either poor or high performance in the
same basin. However, one plot exhibits mixed performance, where both LSTM and GRU models perform well, while the CNN
model shows poor performance. Notably, this is the only validated catchment where such a strong discrepancy is observed.

In summary, the evaluation of flow segment performance has provided valuable insights into the performance distribution.
While the CNN model showed superior average performance, as demonstrated within the preceding sections, the LSTM model
exhibited a higher degree of consistent performance across all flow segments. Additionally, the recurrent models displayed

enhanced generalisation capabilities for the lowest flow rates in each catchment.
3.3 Model Sensitivity

To elucidate the effect of the input features on discharge prediction, a sensitivity analysis was conducted. For that, each daily
input feature was uniformly increased by 10% and subsequently, the prediction was executed again with the modified inputs.
The newly predicted discharge values were then systematically averaged over both time and all catchments resulting in one
metric. Variations in the mean discharge resulting from these adjustments yield insights into the comparative significance
of each evaluated feature within the model. This analysis focuses solely on dynamic features due to the limited number of
catchments (35). With only 35 samples for static features, the models lack sufficient variability in the input to reliably interpret
these features. The results of this analysis are shown in Figure 10, representing the mean percentage change in discharge,
calculated by averaging over all daily predictions and across all 35 catchments.

For the CNN model the meteorological feature precipitation exhibited the most positive impacts on the model, with changes
of 11.1% (Figure 10a). This underscores its pivotal role in influencing the output of the CNN model. Increasing the daily
feature soil temperature led to a decline in the discharge of -2%, likely related to increasing atmospheric water losses with
rising temperature through increasing actual soil evaporation and plant transpiration. The daily forcing evapotranspiration
showed a small positive impact of 0.4%. The observation that daily evapotranspiration increases with discharge is seemingly
counterintuitive. However, daily evapotranspiration derived from Jehn et al. (2021) represents actual evapotranspiration, which

can increase with wetter conditions and therefor also correlate positively with discharge. Although this may offer a plausible
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Figure 9. Components of the Kling-Gupta Efficiency (KGE) for the employed CNN, LSTM, and GRU models with a batch size of 256
incorporating static features, evaluated across four flow segments: lowest flows (Q1), lower flows (Q2), higher flows (Q3), and highest flows
(Q4). From top to bottom, the rows represent the Pearson correlation coefficient (r), the variability ratio («), and the bias (). Each violin
plot illustrates the distribution of these metrics for all evaluated catchments within each flow segment, with black dots indicating the mean

values for each segment. The ideal value for all three metrics is 1, indicating perfect performance.

explanation for the observed anomalous behavior, it is unlikely within the context of this study. Given that all models share the
same input features, both the LSTM and GRU models should exhibit similar behavior, which is not observed (see Figure 10).

Analogous to the findings from the CNN model analysis, the LSTM model further corroborated that precipitation exerts
the most substantial positive impacts on discharge, registering enhancements of 15% (Figure 10b). Conversely, daily sum
evapotranspiration negatively impacted discharge, resulting in decreases of -2.2%. In comparison to the CNN model, the LSTM
model displays a substantially higher sensitivity to precipitation, implying that this feature serves as the principal driving force
for this model. The daily feature soil temperature revealed a decrease of -3.3%.

The sensitivity analysis of the GRU model parallels the findings of the LSTM model. Precipitation exerts a strong positive

effects on discharge, with increases of 13.3% (Figure 10c). Evapotranspiration demonstrated a negative impact on discharge by
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Figure 10. Sensitivity analysis of the CNN (a), LSTM (b) and GRU model (c) with static features and a batch size of 256. All features have

been uniformly increased by 10% to evaluate their impact on discharge prediction.

-3.1%. This makes the GRU model the most sensitive model to this feature. The Soil temperature exhibited a uniform reduction
in discharge of -3.3%.

In summary, the GRU model’s sensitivity analysis reveals a high degree of concordance with the LSTM model in terms
of feature influences on discharge predictions. All daily input features of these both models exhibited expected behaviours,
aligning with established hydrological principles. This indicates a robust understanding of the input features influences by both
models. The similarity in effects across all input features suggests, that GRU models are also adept at accurately discerning
hydrological processes, despite their simpler architecture compared to LSTM models. The CNN model exhibits counterintu-
itive results with the daily evapotranspiration feature, indicating potential limitations in handling these inputs. Although, it
is possible that certain static features had a greater influence on this model’s performance. Overall, the sensitivity analysis
of the LSTM and GRU models revealed a more realistic representation for evapotranspiration compared to the CNN model.
These findings emphasise the importance of considering various input parameters and their interactions in improving discharge

prediction models for hydrological applications.
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4 Conclusions

This study examined the differences among various neural network architectures, including CNN, LSTM and GRU, in the
context of predicting discharge within ungauged basins in Hesse, Germany. The research has shown that all employed ANNs
exhibit the capability to accurately discern hydrological processes for discharge prediction over multiple catchments, regard-
less of the specific architecture. Despite the general use of LSTM models, this study demonstrated that CNN models offer
advantages in terms of performance and runtime for time series prediction. In particular, a CNN model showed the highest per-
formance (KGE=0.8), followed by a LSTM model (KGE=0.78) and the GRU model (KGE=0.77). The GRU model generally
showed a slightly lower performance with regard to most evaluation metrics. However, given the fact the performance gap is
relatively small and that the runtime of the GRU model is 41% faster than the CNN and 59% than the LSTM model, it becomes
clear that GRU mode offers a promising balance between predictive accuracy and computational demand. This advantage in
runtime becomes particularly salient when dealing with high-resolution time series or when predictions are required on an
extensive scale. Conversely, the examination of the flow segment performance distribution revealed that the LSTM model ex-
hibits superior generalization capabilities across the entire spectrum of flow data, rather than disproportionately depending on
peak flow events.

The sensitivity analysis provided valuable insights into the interpretability of the models, demonstrating that all model
architectures accurately capture the impact of dynamic input features, with the exception of daily evapotranspiration in the
CNN model. Precipitation emerged as the most significant driver of discharge predictions across all models.

The results of this study lend additional support to the propositions made by Kratzert et al. (2019a), which advocate that
the incorporation of static features can enhance the efficacy of ANNs. Additionally, the relationship between batch size and
runtime exhibited distinct variations across the examined models, highlighting the complex interplay between architectural
design and hyperparameter configuration. However, an increase in batch size was found to diminish the performance in terms
of discharge prediction. Additional exploration may more accurately assess the impact of varying batch sizes by maintaining a
consistent set of hyperparameters while altering the batch size.

These insights not only serve as guidance for researchers utilising neural networks in hydrology but also contribute to
a comprehensive framework for evaluating different algorithms. Furthermore, this research bridges a critical gap in hydro-
logical modelling literature by systematically comparing the efficacy of different neural network architectures in predicting
discharge in ungauged basins, thereby paving the way for more informed and effective application of artificial intelligence in
hydrology. Future research may delve into the exploration of other neural network architectures and techniques, such as trans-
former models. While the sigmoid activation function provided stable performance, its combination with Min—Max scaling
constrained discharge predictions. Employing LeakyReLU could allow for greater flexibility in discharge predictions, albeit
with the trade—off of potential negative values. In summary, successful prediction in ungauged basins accentuates the potential

of neural networks in the field of hydrology.
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Code and data availability. The entire code, along with the data sets upon which this study relies, except for the discharge data, can be

615 accessed publicly in the following repository: Neural-networks-in-catchment-hydrology.git.
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Appendix A
Al Hydrographs of the CNN model with static features and batch size of 256

Al.1 Highest performance

CNN with static features and batch size of 256 for Gauge 25840253
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Figure Al. Hydrograph at gauge 25840253 illustrating high performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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CNN with static features and batch size of 256 for Gauge 25840650
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Figure A2. Hydrograph at gauge 25840650 illustrating high performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A3. Hydrograph at gauge 24870055 illustrating high performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Al.2 Lowest performance

CNN with static features and batch size of 256 for Gauge 41510205
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Figure A4. Hydrograph at gauge 41510205 illustrating low performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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CNN with static features and batch size of 256 for Gauge 41860900
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Figure AS. Hydrograph at gauge 41860900 illustrating low performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).

CNN with static features and batch size of 256 for Gauge 25140058
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Figure A6. Hydrograph at gauge 25140058 illustrating low performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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620 A2 Hydrographs of the LSTM model with static features and batch size of 256

A2.1 Highest performance

LSTM with static features and batch size of 256 for Gauge 25840708
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Figure A7. Hydrograph at gauge 25840708 illustrating high performance of the LSTM model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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LSTM with static features and batch size of 256 for Gauge 25810558
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Figure A8. Hydrograph at gauge 25810558 illustrating high performance of the LSTM model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A9. Hydrograph at gauge 25840650 illustrating high performance of the LSTM model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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A2.2 Lowest performance

LSTM with static features and batch size of 256 for Gauge 24880208
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Figure A10. Hydrograph at gauge 24880208 illustrating low performance of the LSTM model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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LSTM with static features and batch size of 256 for Gauge 41510205
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Figure A11. Hydrograph at gauge 41510205 illustrating low performance of the LSTM model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).

LSTM with static features and batch size of 256 for Gauge 41860900

KGE: 0.18
8 —— observation
—— simulation
I 6
€
£
()
2
24
b
2
2 ‘ l
, | l e
. N W '\l‘v>“ W | h \ ™ H|l \J :
Ve Vi N \ N Y “\.p i Y'Q\ VW “'b'u Ul
0 s Yo\ ey i) \NWRA Wy W
0 250 500 750 1000 1250 1500 1750 2000

Days

Figure A12. Hydrograph at gauge 41860900 illustrating low performance of the LSTM model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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A3 Hydrographs of the GRU model with static features and batch size of 256

A3.1 Highest performance

GRU with static features and batch size of 256 for Gauge 25840708
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Figure A13. Hydrograph at gauge 25840708 illustrating high performance of the GRU model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).

39



GRU with static features and batch size of 256 for Gauge 25880305
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Figure A14. Hydrograph at gauge 25880305 illustrating high performance of the GRU model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).

GRU with static features and batch size of 256 for Gauge 25811255
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Figure A15. Hydrograph at gauge 25811255 illustrating high performance of the GRU model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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625 A3.2 Lowest performance

GRU with static features and batch size of 256 for Gauge 44950055
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Figure A16. Hydrograph at gauge 44950055 illustrating low performance of the GRU model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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GRU with static features and batch size of 256 for Gauge 24480695
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Figure A17. Hydrograph at gauge 24480695 illustrating low performance of the GRU model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A18. Hydrograph at gauge 41860900 illustrating low performance of the GRU model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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A4 Hydrograph comparison of the best performing models with static features and batch size of 256

A4.1 Mixed performance
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Figure A19. Hydrograph comparison at gauge 25140058 for the CNN, LSTM, and GRU models, highlighting varying performance across

the models. Performance is measured using the Kling-Gupta Efficiency (KGE), with *+SF’ denoting the inclusion of static features.
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A4.2 High performance for all models
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Figure A20. Hydrograph comparison at gauge 25850257 for the CNN, LSTM, and GRU models, illustrating uniformly high performance

across all models. Performance is quantified using the Kling-Gupta Efficiency (KGE), with *+SF’ indicating the integration of static features.
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A4.3 Low performance of all models
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Figure A21. Hydrograph comparison at gauge 41860900 for the CNN, LSTM, and GRU models, illustrating uniformly low performance

across all models. Performance is quantified using the Kling-Gupta Efficiency (KGE), with *+SF’ indicating the integration of static features.
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