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Abstract This study presents a comparative analysis of different neural network models, including Convolutional Neural Net-

works (CNN), Long Short-Term
::::::::::
Short–Term Memory (LSTM) and Gated Recurrent Unit (GRU) in predicting discharge within

ungauged basins in Hesse, Germany. All models were trained on 54 catchments with 28 years of daily meteorological data,

either including or excluding 11 static catchment attributes. The training process of
:::
for each model scenario combination was

repeated 100 times, using a Latin Hyper Cube Sampler for the purpose of
::::::::
Hypercube

:::::::
Sampler

:::
for

:
hyperparameter optimisation5

with batch sizes of 256 and 2048. The evaluation
:::::::::
Evaluation was carried out using data from 35 additional catchments (6

:::
six

years) to ensure predictions in basins that were not part of the training data. This evaluation assesses
:::::::
assessed

:
predictive ac-

curacy, computational efficiency concerning varying batch sizes and input configurations and conducts
:::::::::
conducted a sensitivity

analysis of dynamic input features. The findings indicate
::::::::
indicated that all examined artificial neural networks demonstrate

:::::::::::
demonstrated significant predictive capabilities, with a CNN model exhibiting slightly superior performance, closely followed10

by LSTM and GRU models. The integration of static features was found to improve performance across all models, highlight-

ing the importance of feature selection. Furthermore, models utilising larger batch sizes displayed reduced performance. The

analysis of computational efficiency revealed that a GRU model is
:::
was 41% faster than the CNN and 59% faster than the LSTM

model. Despite a modest disparity in performance among the models (<3.9%), the GRU model’s advantageous computational

speed renders
:::::::
rendered

:
it an optimal compromise between predictive accuracy and computational demand.15
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1 Introduction

Artificial intelligence (AI) is increasingly being used to answer scientific questions, including those in the realm of hydrology

(Kratzert et al., 2019a, b; Afzaal et al., 2019; Nabipour et al., 2020). The predictive accuracy of AI in these hydrological studies,

particularly concerning discharge, is of paramount importance for flood control, watershed management or the estimation of

water availability (Sharma and Machiwal, 2021; Brunner et al., 2021). In the era of climate change, which causes tremendous20

variability in rainfall patterns and increases evapotranspiration, the role of precise hydrological forecasts becomes even more

essential (Tabari, 2020). An area of particular challenge is prediction in ungauged basins (PUB), an endeavour fraught with

substantial uncertainty due to the lack of empirical data for model calibration (Blöschl, 2016). Effective models for PUB

should thus possess robust generalisation capabilities across diverse watershed behaviours, enabling more universal basin-type

predictions (Sivapalan et al., 2003).25

As demonstrated by Kratzert et al. (2019a), an artificial neural network (ANN) model, namely Long Short–Term Memory

(LSTM) model, has shown
::::::
network

::::::::::::::::::::::::::::::
(Hochreiter and Schmidhuber, 1997),

:::::::
showed unprecedented accuracy in PUB(Hochreiter and Schmidhuber, 1997)

. The employed LSTM model exhibited the ability to generalise rainfall–runoff predictions across a substantial number of basins

(531), surpassing the performance of traditional hydrological models that typically operate best when independently calibrated

for each separate basin. Further comparative analyses, such as those by Le et al. (2023), have evaluated the performance of30

LSTM against other ANNs like multilayer perceptrons (MLP) and convolutional neural networks (CNN) in daily streamflow

prediction. This study revealed superior performance of LSTM and CNN models over conventional ANNs, with LSTM ex-

hibiting a marginal edge over CNN. Moreover, a novel approach proposed by Ghimire et al. (2021) involves
:::::::
involved a hybrid

CNN-LSTM model, designed for hourly discharge predictions. When benchmarked against various ANNs (CNN, LSTM,

DNN), traditional AI models (Extreme Learning Machine, MLP) , and ensemble methods (Decision Tree, Gradient Boosting35

Regression, Extreme Gradient Boosting, Multivariate Adaptive Regression Splines), the CNN-LSTM model displayed superior

performance in multiple evaluation metrics, although all ANNs exhibited high efficacy. This evidences that deep learning, a

subset of machine learning characterised by multilayered ANNs, holds substantial promise for streamflow prediction. However,

while numerous studies have explored discharge prediction using ANNs,
::::
only a limited number have conducted comparative

analyses of different ANN architectures. Table 1 summarises these studies from 2020 to December 2023, noting that most40

incorporate lagged target variables as inputs. This methodology, though effective, is less applicable for PUB due to the absence

of discharge data in ungauged or poorly gauged regions, necessitating the use of discharge–
:
–independent inputs.

Among the studies shown in Table 1, three specifically address
::::::::
addressed

:
this constraint. The first, by Nguyen et al. (2023a),

evaluates
:::::::
evaluated

:
CNN and LSTM models for daily discharge prediction in the 3S River Basin, exclusively using daily mean

temperature and precipitation data. This study adopted a "regional" approach, akin to Kratzert et al. (2019a), training both45

model architectures with data from all three sub-basins. The LSTM was found to outperform the CNN, although the latter’s

results were not extensively discussed. The second study, by Wegayehu and Muluneh (2023), contrasts
::::::::
contrasted

:
three super

ensemble learners against eight base models, including LSTM, Gated Recurrent Unit model (GRU) , and a compound CNN-
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GRU model, for daily discharge prediction. Here, the LSTM ranked among the top three in four out of five scenarios based on

R2 metrics. However, its performance significantly declined in the absence of feature selection, indicating a susceptibility to50

redundant features. Notably, this study trained separate models for each basin, thus not directly addressing PUB generalisation

capabilities. The third study, by Oliveira et al. (2023), compared three ANN models (LSTM, CNN , and MLP) for daily

discharge estimation in a single basin. The
:
,
:::::
where

:::
the

:
CNN model exhibited superior performance (NSE of 0.86); however

:
.

:::::::
However, this does not imply generalisability in non-calibrated catchments,

:
as both calibration and testing occurred within the

same basin. Regrettably, this limitation pertains to all three studies.55

Consequently, this research aims
:::::
aimed to bridge the existing literature gap by comparing the performance of three distinct

ANN architectures for predicting discharge in ungauged basins. Through a comparative analysis, this study not only addresses

a significant gap in hydrological literature but also provides valuable insights into the relative strengths and limitations of

each ANN model, thereby guiding future applications and development in the field of hydrological prediction. Furthermore, a

comprehensive sensitivity analysis was conducted to identify key drivers affecting the prediction of each model. This method-60

ological approach contributes to refining model selection and calibration strategies in hydrological forecasting.

The first architecture under examination is
:::
was

:
the LSTM, which has demonstrated robust performance in numerous studies

(Kratzert et al., 2019a, b; Le et al., 2023; Nguyen et al., 2023a). Although LSTM models demonstrate
:::::::::::
demonstrated

:
promising

performance, the inherent sequential architecture of LSTM leads
::
led

:
to higher computational costs. This results

::::::
resulted

:
in

a relative decrease in computational efficiency when compared to feed–
:
–forward neural networks or CNNs, as discussed in65

Gauch et al. (2021)
::::::::::::::::
Gauch et al. (2021). In pursuit of addressing these limitations and challenges inherent to LSTM models, the

second architecture chosen for examination is
:::
was the CNN. This model is characterised by its parallel processing capabilities,

significantly boosting computational efficiency, a critical factor when handling large-scale, high-resolution time series data,

extensive input sequences , and a multitude of input features (Bai et al., 2018). The third architecture under consideration is

:::
was

:
the Gated Recurrent Unit. GRU, a variant of LSTM, recognized

:
is
::::::::::
recognised for its proficiency in effectively capturing70

temporal dependencies in time series data while imposing less computational burden (Cho et al., 2014).

Given that PUB is often characterised by data scarcitythis study incorporates
:
,
:::
this

:::::
study

:::::::::::
incorporated two distinct scenarios:

the first involving the use of only daily forcing data, and the second extending this with additional static catchment features.

This approach allows
:::::::
allowed for an evaluation of the model’s generalisation capacity when constrained to minimal data.

Additionally, it provides
:::::::
provided insights into the degree to which static catchment features can

::::
could

:
contribute to enhancing75

model performance, as indicated by (Kratzert et al., 2019a)
::::::::::::::::::
Kratzert et al. (2019a). Accordingly, the objectives of this study are

::::
were delineated as follows:

i. to evaluate the potential of predicting discharge in ungauged basins by daily forcing data with ANNs, namely LSTM,

CNN , and GRU,

ii. to compare the computational efficiency of LSTM, CNN , and GRU models for daily time series prediction,80

iii. to investigate the potential of static features to enhance prediction performance, and
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iv. to assess the impact of batch size on model performance and computational efficiency.
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Table 1. Overview of recent studies focused on comparing discharge prediction using various artificial neural networks. ’Target indepen-

dence’ indicates that discharge data were not utilised as input features during model training/testing. ’Ungauged’ implies model evaluation

with catchments, that were not part of the training dataset. ’Multi catchment’ denotes that the models were evaluated on multiple catchments.

ANFIS=Adaptive neuro-fuzzy inference system; ANN=Artificial neural network; BiLSTM=Bidirectional LSTM; CNN=Convolutinal neural network;

DT=Decision tree; DTR=Decision tree regressor; FNN=Feedforward neural network; GB=Gradient boosting; GRU=Gated recurrent unit; LSTM=Long short-

term memory; LR=Linear regression; MLP=Multilayer perceptron; LASSO=Least absolute shrinkage and selection operator; PSO=Particle swarm optimiza-

tion; Res=Residual; RF=Random forest; RNN=Recurrent neural network; SVR=Support vector regression; XGB=Extreme gradient boosting

Target
Ungauged

Multi
Time scale

Lead time step
Prediction algorithm Reference

independent catchment Single Multi

✔ ✔ ✔ Daily ✔ CNN, GRU, LSTM This study

✔ ✔ Daily,

Monthly

✔ CNN, LSTM Nguyen et al. (2023a)a

✔ Daily ✔ CNN-GRU, GRU, LR,

LSTM, LASSO, MLP,

SVR, XGB

Wegayehu and Muluneh

(2023)b

✔ Daily ✔ CNN, LSTM, MLP Oliveira et al. (2023)

✔ Daily ✔ ✔ CNN, LSTM, MLP,

Transformer

Nguyen et al. (2023b)

✔ Daily,

Monthly

✔ ✔ ANN, LSTM Cheng et al. (2020)b

Daily ✔ ANFIS, ANN,

BiLSTM,

CNN-GRU-LSTM

Vatanchi et al. (2023)b

Daily ✔ ANN, CNN, LSTM Le et al. (2023)

Daily ✔ ANFIS, LSTM-PSO Haznedar et al. (2023)b

Daily ✔ CNN-LSTM, DT, GB,

LSTM, MLP, RF

Hong et al. (2020)b

Daily ✔ ✔ BiLSTM, CNN, FNN,

GRU, LSTM,

StackedLSTM

Le et al. (2021)

Daily ✔ CNN, DTR, LSTM, RF Li et al. (2022)b

Daily ✔ CNN-LSTM, DT, GB,

MLP, RF, RNN-LSTM

Hong et al. (2021)b

Daily ✔ CNN-LSTM, LSTM Deng et al. (2022)b

Daily ✔ BiLSTM, CNN-LSTM,

ResBiLSTM,

ResCNN-LSTM

Herbert et al. (2021)

a Only results of LSTM model is stated, b hyperparamter configuration nontransparent
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2 Materials and Methods

2.1 Study Area

All basins analysed in this study are located in the federal state of Hesse, Germany (Figure 1). The climate of this region is85

temperate–
:
–humid and characterised by moderate temperature and precipitation levels (Heitkamp et al., 2020). The topography

of Hesse, characterised by a complex blend of lowlands, hilly terrains and modest mountain ranges, fosters a multifaceted

hydrological setting. A variety of geological formations and soil types within the region contribute to the mixed pattern of

infiltration rates, groundwater recharge and surface runoff (Jehn et al., 2021).

Catchments
Training

Testing

Intersections

Figure 1. Geographic distribution of the catchments in Hesse and Hesse’s location within Germany. Darker shades represent nested catch-

ments, while intersections indicate catchments partially incorporated in both training and testing phases.
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2.2 Data Sources90

The data set
:::
The

::::::
dataset

:
used in this study is

:::
was

:
derived from Jehn et al. (2021). For each catchment, daily sum

::::
sums

:
of

precipitation [mm], daily sum
::::
sums

:
of evapotranspiration [mm] and soil temperature in

:
at
:
5 cm soil depths

:::::
depth [°C] are

::::
were

available along with the corresponding discharge [mm]. The discharge data is
::::
were obtained from a gauging station located

within the respective catchment. In addition, the data set includes
:::::
dataset

::::::::
included 11 static catchment features corresponding

to every catchment (Table 2). As suggested by Kratzert et al. (2019a), the inclusion of static catchment attributes can improve95

the performance of machine learning models. Table 2 Table 2 provides an understanding of the underlying aggregation of data,

spatial resolution and units. Apart from discharge data, which is
:::
are accessible upon contacting the Hessian Agency for Nature

Conservation, Environment and Geology, all other data sets
:::::::
datasets are publicly available within the associated repository of

Jehn (2020).

Table 2. Summary of Daily Forcing Data and Static Catchment Attributes Utilised for Modelling: Detailing the Spatial Resolution of the

Original Data Sources with the Aggregation Methods and the Respective Units.

Feature Spatial resolution Aggregation Unit

precipitation 1,000 m daily sum mm

evapotranspiration 1,000 m daily sum mm

soil temperature (5 cm) 1,000 m daily mean °C

soil type 1:500,000 spatial majority classes (n=5)

soil texture 1:1,000,000 spatial majority classes (n=4)

geology type 1:250,000 spatial majority classes (n=2)

land use 1:100,000 spatial majority classes (n=3)

permeability 1:250,000 spatial majority classes (n=6)

average precipitation 1,000 m annual mean mm

catchment size 40 m at reach pour point m2

elongation ratio 40 m at reach pour point /

soil depth 1:1,000,000 spatial mean m

average slope 40 m spatial mean ◦

average evapotranspiration 1,000 m annual mean mm

2.3 Data preprocessing100

The preprocessing of the input data is
:::
was an essential step , as it ensures

::
to

::::::
ensure that the quality and integrity of the data is

::::
were maintained. This process entails

::::::
entailed a detailed analysis of data continuity, encoding nonnumerical

::
of

::::::::::::
non-numerical
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values, splitting the data set
:
of

:::
the

::::::
dataset

:
into training and validation subsets, followed by data normalisation and subsequent

transformation. The data analysis revealed discontinuities in the discharge data across the time series of 39 catchments. In

order to provide the longest possible time series for the training process, a total of 54 out of the full set of 95 catchments were105

selected for model training. These catchments cover
::::::
covered

:
28 years (1991–2018

:::::
–2018). Of the remaining 39 catchments,

35 were utilised for testing, each with a temporal resolution spanning six years from 1997 to 2002. Rivers containing artificial

constructions that impede discharge through impoundments (e.g., reservoirs) were not considered in this analysis. However, it

should be noted that a subset of the selected rivers might be equipped with hydraulic control mechanisms, such as floodgates

(Jehn et al., 2021).110

For both training and testing data sets
::::::
datasets, all categorical features (Table 2) were encoded with

:::::
using label encoding.

For that
::
In

::::
this

::::::::
approach, every unique variable of a categorical feature was replaced by a non-repeatable integer value (Lin

et al., 2020). This approach
::::::
method

:
was preferred over the frequently recommended one–hot–

::::
–hot–encoding technique (Duan,

2019; Cerda and Varoquaux, 2022)
:
,
::
in

:::::
order to circumvent an increase in the total feature count equivalent to the number of

unique feature variables, as occurs with one–hot–
::::
–hot–encoding (Ul Haq et al., 2019). Moreover, label encoding accommodates115

ordinal scales, which is
:::
are better suited for hierarchical features such as permeability. In contrast, categorical features without

a meaningful order, such as soil type or soil texture, are better handled by one–hot–
::::
–hot–encoding, which treats each category

independently. Furthermore, Potdar et al. (2017) indicate
::::::::
indicated that label encoding yields

::::::
yielded

:
the lowest performance

in the context of
::::::
among various investigated encoding methods. Consequently, it cannot be unequivocally asserted that this

method stands
:::::
stood as the optimal approach. To avoid further increasing the number of static input features, label encoding120

was selected. The training data set

:::
The

:::::::
training

::::::
dataset

:
of 54 catchments was then further divided, using 80% of the data for training and 20% for validation.

Subsequently, the two data sets
:::::::
datasets were normalised by employing a min–

:
–max scaling method, with a range of [0,1]

chosen as the boundaries. This method was favoured over the standardization approach employed by Kratzert et al. (2019a), as

it consistently yielded superior predictive performance across all models utilized in the study
:::
The

::::::
choice

::
of

:::
this

::::::
scaling

:::::::
method125

:::
was

:::::
made

:::::::::
empirically

:::::
based

:::
on

:::::::
observed

:::::::::::
performance

::
in

:::
the

::::::
dataset

:::
and

:::::
model

:::::::::::
configuration. Concurrently, the precision of the

data representation was configured to adhere to a float32 format. The target variable was scaled independently of the features.

Moreover, to prevent data leakage, each feature normalisation was established solely based on the training data set.
::::::
dataset.

:

The normalised training data set
:::::
dataset

:
exhibited a shape of N ×D for each catchment, where N signified the number of

samples in time and D represented the number of features. To assess the impact of additional static features, two distinct data130

sets
::::::
datasets were created. The first data set

:::::
dataset

:
included only three features with daily forcing data and assumed a shape

of N × 3, while the second one incorporated all 11 static features and took a shape of N × 14.

To transform the data sets
::::::
datasets

:
into training batchesa two–

:
,
:
a
:::::
two–dimensional moving window, characterised by di-

mensions T ×D, was subsequently implemented, where T represents the moving window size, also known as look–
:
–back

period or sequence length (Figure 2). This window is continuously incremented by a single period in the dimension of N , with135

the initial window encompassing observations [N1, NT ]. The consecutive window encapsulates observations [N2, NT+1], :::
and
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this pattern is maintained until the window reaches the final element of the data set
::::::
dataset

:
(Nn). Consequently, the entire data

set
:::::
dataset

:
was partitioned into m=Nn−T+1 :::::::::::

m=Nn−T+1:
subsamples for every catchment. All subsamples were combined

into a three–
:
–dimensional array (Nn−T+1 ×T ×D

::::::::::::::
Nn−T+1 ×T ×D). The transformed catchment data sets were stacked to

::::::
datasets

:::::
were

::::::
stacked

::::
into one final training set with the shape of C ×Nn−T+1 ×T ×D

::::::::::::::::::
C ×Nn−T+1 ×T ×D, where C was140

equal to the number of catchments. The identical transformation was implemented for both validation and test data sets
::::::
datasets,

encompassing those with and those without static features.

It is important to know
::::
note that the transformation of the data is already part of the hyperparamterisation

::::::::::::::::::
hyperparameterisation

process, a concept further elucidated below.

Dk

Dk-1

...

D3

D2

D1

NnNn-1N5N4 ...N1 N3N2

initial
window

window
slideT

T x Dk

Nn - T + 1 x T x Dk

Nn x Dk

m1 m2 mn - T + 1

T x Dk T x Dk

Figure 2. Schematic procedure of data transformation by applying a moving window: This procedure primarily involves the partitioning of

the data into distinct sections, employing a window (blue) that slides across the data set
:::::
dataset, effectively creating a temporal snapshot (m).

T delineates the window size within the temporal dimension, D represents the feature dimension, and N signifies the temporal samples with

a daily resolution.
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2.4 Hyperparametrisation
::::::::::::::::::::
Hyperparameterisation145

The performance of machine learning models is influenced by the optimisation of their respective hyperparameters (Shekhar

et al., 2022; Ozaki et al., 2021). In the domain of machine learning, hyperparameters are variables that define the config-

uration of the models and are set prior to the training process (Bhattacharjee et al., 2021), while the term parameter refers

to the variables that the model learns via
:::::
during

:
training (Goodfellow et al., 2016). The selection of an appropriate tool for

hyperparameter optimisation is a critical step. Consequently, this task was conducted utilising a Python framework known as150

Spotpy (Houska et al., 2015). The framework offers computational optimisation techniques for calibrating models
:
, such as a

Latin Hyper Cube Sampler (LHS), an appropriate method for selecting input variable values within a specified range, given its

ability to generate near–
:
–random samples from a multidimensional hyperparameter distribution (McKay et al., 1979).

The hyperparameters of the models are contingent upon the architectural design.

In this study, three distinct model architectures were explored: LSTM, GRU and CNN. LSTM and GRU are both types155

of Recurrent Neural Networks (RNNs), specifically designed to handle sequential data, such as time series. Because
:::
As the

employed LSTM and GRU models possess an identical layer structure, both models share an equivalent set of hyperparameters.

A detailed overview of the utilised hyperparameters can be found in Table 3.

The hyperparameter T denotes the window size employed in the moving window mechanism and signifies the length of the

sequence, representing how many time steps (past days) are used to predict the discharge of the following day. This sequence160

encapsulates the historical information considered during prediction. The feature maps F quantify the number of results or

features generated within the convolution process. This is achieved by utilising a kernel of size k, referred to as the filter size,

which is systematically applied over the data to extract essential patterns and characteristics, thereby transforming the input

data.

In the context of LSTM and GRU models, the unit U refers to the number of hidden neurons within the RNN layer. This165

quantity not only characterises the internal complexity of the layer but also corresponds to the output dimension. The last
::::
final

hyperparameter under consideration is the dropout rate p, which represents the fraction of the neurons that are randomly set to

zero during training (Srivastava et al., 2014).

The ranges of the hyperparameters were delineated in preliminary experiments by repeatedly training each model employing

LHS over wider ranges. Any hyperparameter that fell below or exceeded the minimum and maximum bounds of Table 3170

respectively, demonstrated inferior performance on average. The final training process was executed with a sampling size of

100 for each model and batch size combination, with and without static features. This culminated in a total of twelve distinct

sampling processes.

2.5 Model architectures

The architecture of the LSTM was first introduced by Hochreiter and Schmidhuber (1997). An LSTM consists of a memory175

cell governed by four specific gate units, thus granting the capacity to preserve information over extended periods (Cho et al.,

10



Table 3. Ranges of hyperparameters deployed across different neural network models within the Latin Hypercube sampling framework.

Model Hyperparameter Min Max

CNN

Window size (T) 50 300

Feature maps (F) 100 500

kernel
:::::
Kernel size (k) 3 9

LSTM / GRU

Window size (T) 50 300

Units (U) 10 500

Dropout rate (p) 0.05 0.5

2014). Through this architectural design, LSTMs possess the capability to mitigate the challenges associated with exploding or

vanishing gradients, as encountered with
::
in traditional RNNs. While the nuanced workings of LSTM cells and their concomi-

tant advantages are pertinent (Hochreiter and Schmidhuber, 1997), they have been extensively discussed in prior research and

thus will not be repeated within this study.180

The architectural design of a GRU model is inspired by the structure of LSTMs,
:
with the distinction that it incorporates

only two gates to regulate the information flow. This results in reduced computational complexityand thereby rendering GRU
:
,

::::::
thereby

::::::::
rendering

::::::
GRUs more computationally efficient,

:
while still addressing the exploding /

:::
and

:
vanishing gradient problem

(Cho et al., 2014).

In contrast, CNNs are tailored for grid–
:
–like data structures, including images. The CNN architecture was first introduced185

by Fukushima (1980). The term convolutional neural network was introduced by LeCun et al. (1989), who developed a model

for handwritten digit recognition.

CNN models possess a significant benefit
::::::::
advantage in that the convolution operation is inherently parallelizable

:::::::::::
parallelisable,

allowing for the simultaneous execution of numerous calculations. An additional merit is the ability to extract features , irre-

spective of the exact location where the feature was
:
is

:
found. This reduces the number of input samples needed for training190

the network size and thus further
:::
and

::::
thus

:
improves computational efficiency (Lecun et al., 1998). Note that these extracted

features are not the same as features
::::::
distinct

:::::
from

::::
those

:
listed in Table 2.

The architectural configurations of the three models employed in this study are depicted in Figure 3, with further explanations

provided in the subsequent sections.

2.5.1 LSTM195

The LSTM model comprises a single LSTM layer configured with a designated number of hidden units (U ). To mitigate

overfitting and promote generalisation, a dropout layer is directly connected to the LSTM layer, introducing regularisation by

randomly deactivating a specific fraction (dropout rate) of the hidden units (Srivastava et al., 2014).
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Input

Convolution 1D

Max Pooling 1D

Convolution 1D

Max Pooling 1D

Convolution 1D

Global Max Pooling 1D

Dense

Output

Input

LSTM

Dropout

Dense

Output

Input

GRU

Dropout

Dense

Output

c)a) b)

Figure 3. Schematic diagrams of the architectures of the three utilized
:::::
utilised

:
models: (a) Long Short-Term Memory (LSTM), (b) Gated

Recurrent Unit (GRU), and (c) Convolutional Neural Network (CNN).

The final layer is a dense layer that applies a Sigmoid
::::::
sigmoid

:
activation function, which converts the output into a proba-

bility value between zero and one (Figure 4c). The adoption of this specific activation function was motivated by the need to200

prevent the generation of negative discharge predictions, which were previously encountered with the use of alternative activa-

tion functions like LeakyReLU or a linear function. Such negative predictions are hydrologically implausible and undermine

the validity of the model outputs. However, the utilization
::::::::
utilisation

:
of a sigmoid function, in conjunction with a min-max

::::::::
min–max scaling technique, introduces a structural limitation wherein the model is incapable of extrapolating beyond the max-

imum discharge values observed during the training phase. Considering these trade-offs, the sigmoid function was chosen as a205

compromise to balance model stability and physical realism.

A comprehensive examination of all activation functions employed within the models is provided in Figure 4. This illus-

tration delineates the specific characteristics of each function, highlighting that both the Rectified Linear Unit (ReLU) and

Sigmoid
:::::::
sigmoid functions are designed to avoid negative values. The ReLU function, in particular, suppresses negative val-

ues by setting them to zero, while the Sigmoid
::::::
sigmoid

:
function, recognised by its characteristic S–

:
–shape, maps any input210

into values between zero and one. Pertinent to the context of deep learning, especially
:
in
:

image recognition, ReLu
:::::
ReLU is

12



often favoured for its expedited learning capabilities, yielding enhanced performance and superior generalisation attributes

(Krizhevsky et al., 2017). However, it has been
:::
was

:
observed in preliminary experimental setups that the Sigmoid function

exhibits a greater degree of
::::::
sigmoid

::::::::
function

::::::
exhibits

::::::
greater

:
stability, while ReLU demonstrated a higher propensity to induce

gradient exploding. The complete architectural design of the LSTM model is illustrated in Figure 3a.215

2.5.2 GRU

The architecture of the GRU model shares a structure similar to that of the previously described LSTM model, with the

primary difference being the substitution of the LSTM layer with a GRU layer (Figure 3b). Similar to the LSTM model, the

GRU model contains a single layer configured with a designated number of hidden units (U ) and employs a dropout layer

directly connected to the GRU layer to mitigate overfitting and promote generalisation. The final dense layer similarly employs220

a sigmoid activation function to ensure that all predicted discharge values remain within a physically plausible range.

2.5.3 CNN

The CNN is composed of a series of three convolution cells, each containing a one–
:
–dimensional convolution layer followed

by a pooling layer. The convolution layers incorporate a ReLU activation function (Figure 4b) and employ a sliding window

mechanism known as a kernel that traverses the input data for processing. As previously elucidated, this kernel is responsible225

for extracting feature maps (F ) from time–
:
–dependent input features. The kernel, with a size of k, is applied uniformly across

all convolution layers. In each successive convolution layer, the quantity of feature maps is increased by a factor of two, thereby

increasing
::::::::
enhancing the model’s capacity to extract and represent complex features.

In the initial pair of convolution cells, the temporal dimension (T–
:
–array) within the pooling layer is reduced by a factor of

two by employing a stride of size two across each T–
:
–array, while the third pooling layer extracts a single set of feature maps230

along the temporal axis of all T–
:
–arrays. To preserve the temporal dimension during the convolution process, each convolution

layer incorporates symmetric zero–
:
–padding. This technique involves adding zeros around the input data, ensuring that the

processed dimension remains unchanged after applying the convolution operation.

The last layer of the model is a dense layer that compresses the model dimensions to produce a single output value for each

prediction. This layer is fully connected to the preceding layer and uses a leaky rectified linear unit (LeakyReLU) activation235

function as depicted in Figure 4b. The LeakyReLU, akin to the standard ReLU (shown in the same figure), differs by introducing

a small, non–
:
–zero slope for negative values. This characteristic enhances gradient propagation and mitigates the issue of

vanishing gradients (Ramachandran et al., 2021).

The selection of the LeakyReLU over the standard linear activation function (Figure 4a) was driven by the latter’s propensity

to generate negative predictions for the discharge values. Although LeakyReLU does not entirely preclude negative predic-240

tions, it effectively modulates them into marginally negative outputs and therefore reduces the extent of negative predictions.

Although the Sigmoid
:::::::
sigmoid function is effectively utilised in LSTM and GRU models to prevent negative discharge predic-
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tions, its application within the CNN model framework yielded suboptimal results in preliminary trials, especially
:::::::::
particularly

when compared to the performance achieved using the LeakyReLU activation function. This informed the decision to opt for

LeakyReLU in our work.245

A visual representation of the complete architectural design of the CNN model is presented in Figure 3c.
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Figure 4. Visualization
::::::::::
Visualisation of the three activation functions utilized

:::::
utilised within the employed models. The diagrams show the

graphical representations and functional ranges of (a) the linear function, which preserves the raw, untransformed input; (b) the Rectified

Linear Unit (ReLU) function, which maps negative inputs to zero and passes positive inputs unchanged; and (c) the sigmoid function,

characterized
::::::::::
characterised by its distinct ’S’-shape

:::::
–shape, which compresses any input into a range between zero and one. Note: different

Y-axis scales.

2.6 Loss function

In machine learning algorithms, the role of the loss function is paramount as it quantifies the discrepancy between the model’s

predictions and the actual data (Wang et al., 2022). The optimizer
:::::::
optimiser, an algorithm designed to minimize

::::::::
minimise

the loss, regulates the process of updating the model’s parameters. This optimizer
:::::::
optimiser

:
strives to enhance the model250

performance by iteratively determining the loss and then adjusting the model parameter
::::::::
parameters

:
to reduce this loss. This is

achieved by identifying the gradient or derivative of the loss function, which denotes the local minimum (least steep ascent).

Thus, by minimising the loss, the machine learning model can improve its predictive accuracy. The optimizer

:::
The

::::::::
optimiser

:
used for all models in this study is the Adam–optimizer

:::::::::
–optimiser

:
(Kingma and Ba, 2017). This algorithm

provides high computational efficiency for gradient–
:
–based optimisation and is suitable for large models that include a high255

number of parameter sets.

The choice of loss function is dictated by the specific task at hand. A commonly used loss function when predicting con-

tinuous data is the Mean Square Error (MSE), which is favoured for its computational efficiency. However, MSE suffers from
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sensitivity to outliers due to its quadratic penalty and exhibits scale–
:
–dependence, rendering it less interpretable and compara-

bly challenging when evaluating models across disparate output scales (Liano, 1996; Gupta et al., 2009).260

Another metric used to capture model performance, traditionally used
::::::::
employed in hydrology, is the Nash–Sutcliffe effi-

ciency (NSE) (Knoben et al., 2019). Based on the close similarities between MSE and NSE and hence the inherent disadvan-

tages, NSE is not an ideal choice as
:
a loss function either (Gupta et al., 2009).

To mitigate the systematic issues encountered in optimisation processes that arise from formulations linked to the MSE or

NSE, we decided to utilise the more resilient Kling–
:
–Gupta efficiency (KGE). The KGE corrects for underestimation of vari-265

ability , by providing a direct evaluation of four different facets of the discharge time series, which encompass
::::::::::::
encompassing

shape, timing, water balance and variability (Santos et al., 2018). The definition of KGE is delineated in Equation 1.

KGE = 1−
√
(r− 1)

2
+(α− 1)

2
+(β− 1)

2 (1)

with:

r =
Cov(obs, sim)

σobs ·σsim
270

α=
σsim

σobs

β =
µsim

µobs

where µ is the mean, σ is
:::
the standard deviation, and r is the linear correlation factor between observations and simulations.

The variable α is a measure of how well the model captures the variability of the observed data and β defines a bias term

indicating how much the model’s predictions systematically deviate from the true values (Knoben et al., 2019).275

Analogous to NSE, KGE also indicates the highest performance when equal to one. However, the goal of the loss func-

tion is to minimise the error; thus, the discrepancy between simulation and observation should approach zero. Therefore, the

implemented loss function L results in Equation 2.

L(obs, sim) =

√
(r− 1)

2
+

(
σsim

σobs
− 1

)2

+

(
µsim

µobs
− 1

)2

(2)

2.7 Model training280

The training process was conducted using a GeForce RTX 3090 graphics card equipped with 24 GB of memory. Each model

was subjected to training with batch sizes of 256 and 2,048. The batch size is a fraction of the total number of training samples

and represents the number of samples utilised to train the model prior to an update of the internal parameters (Radiuk, 2017).

The batch size has no physical interpretation in the context of hydrological processes but functions as a crucial hyperpa-

rameter in the training of neural networks. Prior studies, such as Kratzert et al. (2019a, b), have demonstrated the successful285

15



application of a batch size of 256. In this study, this batch size was also adopted and served as the baseline. To further explore

the impact of larger batch sizes, a multiple of 256 was employed. A batch size of 2048 was then utilized, as this represents

:::::
2,048

:::
was

::::
then

:::::::
utilised,

::::::::::
representing

:
the upper limit of the memory capacity of the graphics card used.

The maximum number of epochs designated for training was set to 60. An epoch refers to a single iteration over the entire

training data set during which the model’s parameters are adjusted to minimise loss. However, the training process was config-290

ured to terminate when the validation loss failed to show improvement throughout five consecutive epochs. An enhancement

was recognised when the validation loss decreased by a minimum of 0.001 during these five epochs. This mechanism is called

early–stopping.
::::::::
–stopping.

:

Given that the input data for the training procedure are arranged by catchments, shuffling of data was implemented to

circumvent the potential for overfitting to a specific catchment. Furthermore, each model was trained both with and without295

the inclusion of static features for the two specified batch sizes. This leads to a total of four distinct training phases for every

model with a specific hyperparameter set.

The static features were analogously processed
::::::::
processed

::::::::::
analogously within the models to the treatment of the daily fea-

tures. The learning rate, frequently acknowledged as the paramount hyperparameter to tune, exerts a considerable influence on

the training of models that employ gradient descent algorithms (Xu et al., 2019). Hence, when300

:::::
When the learning rate is too high, the optimizer

::::::::
optimiser may diverge from the local minimum, while setting it too low

can result in a protracted learning process (Zeiler, 2012). To efficiently address this behaviour, a dynamic adjustment of the

learning rate was integrated into the training process using a learning rate scheduler.

This algorithm modifies the learning rate based on the current epoch number. During the warm–
:
–up period, the learning

rate linearly increased from the initial–
:
–rate to the base–

:
–rate throughout three epochs. The warm–up period is

:::
–up

::::::
period305

:::
was

:
followed by a decay period lasting ten epochs, during which the learning rate linearly decreases

::::::::
decreased

:
from the

base–
:
–rate to the minimum–

:
–rate. Following the decay phase, the learning rate is

:::
was kept constant at the minimum–

:
–rate for

the remaining epochs. Detailed information can be found in Table 4.

Table 4. Gradual alterations in the learning rate throughout the 60 epochs of the model training process.

Epoch Stage Learning Rate

1-3 Warm up Linear increase from 1e−6 to 5e−4

4-13 Decay Linear decrease from 5e−4 to 5e−5

14-60 Cool down Constant 5e−5

16



3 Results and Discussion

3.1 Model Performance310

The analysis depicted in Figure 5 delineates a comparative evaluation of model performance concerning architectural varia-

tions, batch sizing , and the incorporation of supplementary static attributes. The findings reveal that employing CNN models

in conjunction with static features yielded a mean KGE of 0.80 and 0.78 for batch sizes of 256 and 2,048, respectively. The

inclusion of static features provides a performance benefitbecause ,
:::
as the mean accuracy drops to 0.71 and 0.67 when static

features are omitted for batch sizes of 256 and 2,048, respectively. This aligns with the findings presented by Kratzert et al.315

(2019b), who assert that static catchment attributes enhance overall model performance by improving the distinction between

different catchment-specific rainfall–runoff behaviors.
:::::::::
behaviours.

:

Notably, the maximum KGE in the absence of static features reached 0.97 and 0.92 for batch sizes of 256 and 2,048,

respectively, highlighting the potential for high model performances even without static features. On the contrary, the minimum

KGE drops when omitting static features to -0.21 and -0.26
:::::
−0.21

:::
and

::::::
−0.26 for batch sizes of 256 and 2,048, respectively,320

showing the lowest minimum performance of all models. This suggests a deficiency in the model’s ability to generalise, a

phenomenon frequently observed when overfitting occurs (Srivastava et al., 2014).

Regarding the minimum KGE values , when utilising static features, the CNN models demonstrated the third and fourth

highest minimum values, registering at 0.24 and 0.20 for batch sizes of 256 and 2,048, respectively.
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Figure 5. Evaluation of performance discrepancies in the applied models relative to batch size and additional static catchment attributes

during the testing period. The number represents the average KGE over all 35 catchments. The dotted line displays the percentile intervals.
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In the case of LSTM networks, mean KGE values of 0.78 and 0.73 with static features for batch sizes of 256 and 2,048,325

respectively, can be noted. The mean KGE declined to 0.73 and 0.68 when static features were omitted for batch sizes of 256

and 2,048, respectively. Notable is the maximum performance achieved with static features, which reached 0.94 for a batch

sizes
:::
size of 256. In contrast, the LSTM with a batch size of 2,048 exhibited the lowest minimum value of 0.05 across all

models with static features. For models run without static features, the LSTM with a batch size of 256 recorded the highest

minimum value of 0.09. Conversely, the LSTM model with no static features and a batch size of 2,048 presented the lowest330

maximum KGE of 0.86.

For GRU, the mean KGE exhibited similar trends with the inclusion of static features, reaching 0.77 and 0.75 for batch sizes

of 256 and 2,048, respectively. The mean performance declined to 0.71 and 0.69 when static features were omitted for batch

sizes of 256 and 2,048, respectively. The GRU model with a batch size of 2,048 demonstrated the highest minimum KGE value

of 0.37 among all models when static features were incorporated. Following closely, the GRU model with a batch size of 256335

under the same feature scenario presented the second–
:
–highest minimum KGE of 0.28.

Upon examining the performance range, the GRU model with static features and a batch size of 2,048 exhibited the narrowest

performance range of 0.52. Subsequently, the GRU model with static features and a batch size of 256 displayed a performance

range of 0.63, indicating robust generalisation capabilities for these two models. Notably, for both batch sizes, the GRU model

demonstrated a marginally higher maximum KGE when static features were omitted. This finding contradicts the outcomes of340

all other models, where the inclusion of static features consistently reduced the maximum KGE, regardless of the batch size.

The sole exception to this pattern was observed in the CNN model with a batch size of 256 utilising no static features.

All together
::::::::
Altogether, when analysing the influence of batch size across various models, it becomes evident that an in-

crease in batch size correlates with a decrease in performance. This observation is confirmed by the study of Masters and

Luschi (2018), who discovered that smaller batch sizes contribute to enhanced training stability and generalisation perfor-345

mance when employing CNN models for image classification. Additionally, Kandel and Castelli (2020) identified a strong

correlation between learning rate and batch size, proposing that higher learning rates should be employed when utilising larger

batch sizes. However, the learning rate remained constant across varying batch sizes throughout this study.

Altogether, these results suggest that:

i. the smaller batch size of 256 contributes to better model performance with regard to mean KGE values .350

ii. Static
::::
static

:
features generally improved the mean KGE across all architectures and batch sizes .

iii. The
::
the

:
CNN model with static features and a batch size of 256 showed the highest mean KGE and therefore slightly

outperforms LSTM and GRU models .

iv. The
::
the KGE performance ranges for models with static feature

::::::
features

:
are substantially smaller and on

::
at a higher level

than the ranges for models without static features .355
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v. Overall
:::::
overall, the GRU model with a batch size of 256 and static features exhibited favourable KGE performances akin

to LSTM and CNN models and mitigated poor predictions across all test catchments .

Comparing evaluation metrics
:::::::::
Evaluation

:::::::
Metrics

To further investigate the efficacy of the applied models, additional performance metrics were incorporated. Among these, the

NSE was selected to facilitate comparison with prior studies that conventionally utilise this metric. Moreover, the Percent Bias360

(PBIAS) was employed to gauge the systematic deviation of the modelled data from observed values, indicating whether the

model predictions consistently overestimate or underestimate the observations (Moriasi et al., 2007). The Mean Absolute Error

(MAE) was integrated as a metric to quantify the absolute discrepancies between model predictions and actual observations,

serving as a direct assessment of model precision (Siqueira et al., 2016). Lastly, the Coefficient of Determination (R2) was

adopted as an indicator for evaluating the degree of alignment between simulations and observed data, reflecting the model’s365

’goodness–of–fit’ (Onyutha, 2022). A comparative view of the results of all the used
::::::::
employed

:
performance metrics is shown

in Table 5.

Overall, the presented data indicates,
::::::
indicate that NSE metrics are marginally lower than the KGE values. This phenomenon

could potentially stem from the presence of counterbalancing errors, an inherent limitation associated with
:::
the KGE metric.

Such counterbalancing errors materialise through concurrent overestimation and underestimation of the predicting
::::::::
predictive370

target. Given that bias and variability collectively constitute two-thirds of the KGE, their effects may augment the aggregate

score , without necessarily indicating a more accurate or relevant model (Cinkus et al., 2022).

NSE = 1−
∑N

i=1(obsi − simi)
2∑N

i=1(obsi − obs)2

∑N
i=1(obsi − simi)

2∑N
i=1(obsi − obs)2

:::::::::::::::::

(3)

PBIAS = 100×
∑N

i=1(simi − obsi)∑N
i=1 obsi

(4)

MAE =
1

N

N∑
i=1

|obsi − simi| (5)375

R2 =

 ∑N
i=1(obsi − obs)(simi − sim)√∑N

i=1(obsi − obs)2
√∑N

i=1(simi − sim)2

2

(6)

Notably, the CNN and LSTM models, when configured with a batch size of 256 and incorporating static features, achieved

the highest NSE (see Equation 3) values of 0.76 and 0.75, respectively. In comparison, the GRU model under identical con-

figurations exhibits
:::::::
exhibited

:
a slightly inferior performance, marked by an NSE of 0.72. In the context of existing literature,
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Nguyen et al. (2023a) reported an NSE of 0.66 for an LSTM model calibrated across three distinct catchments, each with its380

own separate calibration and not extending to ungauged scenarios.

While models calibrated to individual basins often perform better than those generalised across multiple catchments, par-

ticularly in PUB, our results demonstrate that the generalised models trained here achieves
::::::
achieve

:
even better results than

these specialized
:::::::::
specialised models. Kratzert et al. (2019a) documented an NSE of 0.54 for an LSTM model, which, despite

being lower, is deemed more robust due to its validation across 531 catchments using k-fold cross-validation. Nonetheless, the385

observation that NSE values surpassing 0.7 in the most efficacious model across each architecture underscores the potential of

these artificial models, provided that optimal hyperparameter tuning is applied and sufficient data is
::
are

:
available to support

the learning process.

All CNN models universally exhibit a positive PBIAS (see Equation 4), signifying a consistent underestimation of discharge

rates, regardless of variations in batch size or feature scenarios. Notably, CNN models lacking static features manifeston390

average smaller discharge
:
,
::
on

::::::::
average,

::::::
smaller

::::::::
discharge

:::::::::
deviations

:
of approximately 7%, marking them as the models with

the most significant underestimations. Conversely, the CNN model employing a batch size of 256 alongside static features

demonstrates the smallest PBIAS, recorded at 0.06%.

In contrast, LSTM models display a PBIAS pattern that does not adhere to a discernible trend. The LSTM model achieving

the highest KGE metric overestimates the discharge by an average of 3.46%. The LSTM models with a batch size of 2,048 and395

inclusion of static features exhibits
:::::
exhibit

:
the most substantial overestimation, with a PBIAS of -5.1

::::
−5.1%. The absence of

static features in LSTM models tends to yield PBIAS values closer to zero, which is preferable.

GRU models reveal a negative PBIAS when static features are incorporated and
:
a positive PBIAS without them. The most

favourable PBIAS among GRU models, -0.48
:::::
−0.48%, is observed in the model with a batch size of 256 and static features,

closely aligning with the best–performing CNN model’s PBIAS of 0.06%. Overall, GRU models display the least average400

deviation in PBIAS.

Regarding MAE (see Equation 5), most models exhibit comparable outcomes with an MAE around 0.3 mm. However,

LSTM and GRU models with a batch size of 2,048 are exceptions, showing a slightly elevated MAE around 0.4 mm. Despite

this, the models generally demonstrate an ability to minimise this error metric, particularly evident in CNN models with higher

PBIAS values where the cancellation of positive and negative predictive errors does not occur.405

The R2 (see Equation 6) scores of every model architecture show always a slightly better fit without static features , when

comparing equal batch sizes. One exception to this trend are the GRU models
::
is

::
the

:::::
GRU

:::::
model

:
with a batch size of 2048,

:::::
2,048,

where the model incorporating static features shows a higher fit than without static features. Furthermore, the R2 values confirm

the analysis of the KGE performance, which showed better performance with smaller batch sizes.

After considering the effects of batch size, feature scenarios and resulting performance metrics, it is also instructive to410

examine the chosen window sizes across the employed models, which may offer further insight into how each model processes

temporal dependencies.
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Across architectures, CNN models generally utilize
:::::
utilise smaller window sizes compared to LSTM models, with GRU

models employing window sizes that lie between the two. This trend might reflect the intrinsic architectural efficiencies of

CNN models in handling spatial–
:
–temporal data more compactly, while LSTM models, designed to capture long–

:
–term de-415

pendencies, benefit from broader temporal windows. The GRU models, with their simpler architectural design, may not manage

extensive temporal sequences as effectively as the more complex LSTM models. Regarding batch sizes, there is an observable

trend where smaller window sizes are generally favored
:::::::
favoured when larger batch sizes are used, with the exception of GRU

models. The usage of static features does not directly influence the choice of window size but consistently correlates with

enhanced performance across all window sizes and models.420

Furthermore, for GRU models, and to a certain extent for LSTM models at a batch size of 256, a decline in performance

with increasing window size is observed, suggesting a potential overload of contextual information that may not be essential

for accurate predictions. Conversely, for CNN and LSTM models at a batch size of 2048,
:::::
2,048,

:
an increase in window size

correlates with improved performance.

Overall, these observations indicate that while window size is a critical parameter in model configuration, its impact on425

performance is significantly modulated by other factors such as model architecture, batch size , and especially the inclusion

of static features. In summary, the insights of Table 5 corroborates
:::::::::
corroborate

:
that CNN models, when incorporating static

features, manifest superior efficacy, particularly in the context of the metrics assessed for validation.

Table 5. Synthesis of performance metrics across models, batch sizes, and feature scenarios during the testing period. Numbers shaded blue

denote higher scores for each metric.

Model Batch size Features
Mean Median

KGE NSE PBIAS MAE R2 KGE NSE PBIAS MAE R2

CNN

256
+SF

0.8 0.76 3.82 0.29 0.82 0.82 0.82 1.89 0.26 0.84

2048 0.78 0.72 0.06 0.3 0.79 0.81 0.78 -0.64 0.30 0.81

256
-SF

0.71 0.66 7.13 0.3 0.84 0.82 0.80 2.52 0.29 0.85

2048 0.67 0.61 7.78 0.32 0.82 0.77 0.74 2.38 0.31 0.83

LSTM

256
+SF

0.78 0.75 -3.46 0.3 0.82 0.80 0.80 -3.71 0.26 0.83

2048 0.73 0.63 -5.1 0.4 0.71 0.77 0.67 -5.58 0.37 0.71

256
-SF

0.73 0.7 1.87 0.31 0.82 0.82 0.79 -3.38 0.30 0.82

2048 0.68 0.59 -1.21 0.39 0.72 0.73 0.64 -5.36 0.36 0.71

GRU

256
+SF

0.77 0.72 -0.48 0.32 0.79 0.81 0.77 -0.69 0.27 0.79

2048 0.75 0.69 -2.75 0.37 0.77 0.77 0.73 -2.96 0.30 0.77

256
-SF

0.71 0.67 1.65 0.32 0.82 0.81 0.78 -3.40 0.32 0.82

2048 0.69 0.59 1.24 0.39 0.73 0.75 0.67 -3.22 0.35 0.73
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Statistical Variability Across Model Runs

To assess whether the differences in performance among the best
:
–performing CNN, LSTM, and GRU model

:::::
models

:
with430

a batch size of 256 and incorporating static features stems from random initialization
::::
stem

::::
from

:::::::
random

:::::::::::
initialisation, each

model was trained 20 times with distinct random seeds. The results are summarized
:::::::::
summarised

:
in Figure 6, which illustrates

the distribution of KGE values across the repeated runs.

The mean KGE for CNN, LSTM, and GRU models remained consistent within the range of the initial single-run results,

registering at 0.76, 0.75, and 0.76, respectively. The interquartile range (IQR) for each model is relatively small, indicating435

low variability in performance due to random initialization
::::::::::
initialisation. Notably, the GRU model exhibits the narrowest IQR,

reflecting its robustness across multiple runs. The LSTM model exhibits slightly greater variability, though its performance

distribution largely overlaps with that of the GRU model. In comparison, the CNN model displays the widest IQR. However
:
;

:::::::
however, the majority of its distribution is positioned at higher KGE values relative to the other models. Furthermore, the CNN

model achieves the highest reported KGE value (0.80) but also includes the lowest outlier at 0.62.440

These findings confirm that the CNN model exhibits a slight performance advantage over the LSTM and GRU models in

terms of KGE. This observed difference is not predominantly influenced by random initialization
::::::::::
initialisation

:
but instead

reflects distinctions in the architectural design of the models and their respective capacities for generalization
:::::::::::
generalisation.

However, while the observed difference is relatively small, it is important to note that the overall performance of all models is

strong, inherently leaving limited room for substantial improvement.445
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Figure 6. Distribution of KGE values for CNN, LSTM, and GRU models across 20 independent runs with different random seeds, using a

batch size of 256 and incorporating static features. The number represents the average KGE over all 20 runs.
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3.2 Runtime

To investigate the computational efficiency associated with the models employed, the runtime of the training process was

measured for each model, considering variations in both batch size and the combination of features.

Both the batch size and the integration of additional static features significantly influence the runtime of models across all

employed architectures, as evidenced in Figure 7. The CNN model with a batch size of 2,048 and without static features pre-450

sented the shortest runtime of approximately 2.3 minutes. Although the CNN model demonstrated rapid convergence towards

its optimal minimum error, it simultaneously exhibited the lowest performance as delineated in Figure 5. This suggests that the

conditions were not sufficiently robust to discern the intrinsic patterns.

Using an identical batch size and feature configuration, the GRU model, along with the CNN model configured with a batch

size of 256 and no static features, had the second shortest runtimes of approximately 4.2 minutes.455

The introduction of static features resulted in a notable increase in the runtime for all models, barring the GRU model with

a batch size of 256, where the inclusion of static features marginally reduced the runtime, rendering it the fastest among all

models that utilised static features. The runtime augmentation was especially pronounced in the CNN model with a batch

size of 2,048, showing a more than twelve fold
:::::::::
twelvefold increase, thereby marking it as the most time–consuming model

across all evaluated scenarios. LSTM models exhibited also a substantial increase in runtime across both batch sizes upon the460

incorporation of static features.
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Figure 7. Comparison of model runtime across three different architectures (CNN, LSTM, and GRU) with varying batch sizes (256 and

2048) and the presence or absence of static features.
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Within identical model architectures, it is observed that larger batch sizes contribute to faster runtimes in the absence of static

features. Conversely, when static features are employed, models tend to exhibit faster runtimes with smaller batch sizes, with

the exception of the LSTM models. For these models, an escalation in batch size consistently results in accelerated runtimes,

irrespective of the feature configuration.465

The different behaviour of additional features towards training runtime while using different batch sizes is unexpected and

cannot be explained solely by considering the batch size and feature scenarios. As reported by Radiuk (2017), larger batch sizes

correlate with increased runtimes, which is attributable to the higher computational utilisation required to process an increased

quantity of training samples for the purpose of updating model weights. Nonetheless, this assertion assumes that the models

under comparison diverge only in terms of batch and feature size. This presumption does not apply to the present study, where470

each model is also characterised by a unique optimised combination of hyperparameters (Table 3). A possible explanation

might be that all models exhibiting a more protracted runtime require additional epochs to converge. This phenomenon could

be facilitated by the early–stopping mechanism deployed in model training, which permits the termination of the training

process when the optimised metric ceases to demonstrate improvement.

Altogether, when static features are incorporated, the GRU model utilising a batch size of 256 demonstrates the fastest475

runtime (9.5 minutes). In contrast, the CNN model, configured identically with respect to batch size and employed features,

exhibited a runtime of 16.1 minutes, consequently rendering the runtime of the GRU model 41% faster. In the final analysis, it

becomes evident that the GRU model exhibits superior runtime performance compared to both the CNN and LSTM models,

specifically when employing a batch size of 256 and utilising static features. In the context of RNN models, with a focus on

runtime, GRU models were found to be superior in efficiency compared to LSTM models. This stands in alignment to
::::
with480

the findings of Yang et al. (2020), who reported that GRU was 29% faster than LSTM when processing the identical data

set
::::::
dataset. However, as stated before, the examined models in this study exhibit disparities not only in terms of batch size

but also encompass other architectural parameters such as the number of utilised epochs, hidden units and the window size

(Table 6). These differences may result in altered computational efforts.

Apart from the different model architectures, the specific configuration of hyperparameters in each model yields varying485

computational effort. For example, an increase in window size results in a more extended sequence to process, thereby necessi-

tating additional computational effort. In the context of the CNN models, the computational effort is contingent on the window

size, feature maps, kernel size and the quantity of input features. Models incorporating static features (+SF) possess 14 input

features, whereas those without static features (-SF) contain only three dynamic features. In contrast, the computational effort

of the LSTM and GRU models is determined by the units within the corresponding cell, the input feature size and the window490

size.

The observed increase in computational time for the GRU model, when running with a batch size of 256 and no static

features, is mainly due to a significantly larger window size, which increased from 87 to 298. This expansion, in the absence of

static features, requires a more extensive computational effort. In contrast, for CNN models employing a batch size of 2,048,

the pronounced augmentation in execution time is primarily induced by an increase in the quantity of feature maps, presenting a495
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2.3
:

–fold increase. Generally, the marked prolongation in computational duration for CNN models incorporating static features,

as opposed to those excluding them, can be elucidated by the incorporation of a considerably higher number of feature maps in

the former. This enlargement is a direct consequence of the increased data volume processed by the models when supplemented

with static features. Notably, CNN models utilising a batch size of 2,048 manifest a reduction in window size, implying that the

model may encounter challenges in generalising from extended input sequences due to potentially excessive variability among500

the samples within a batch.

For the LSTM models with a batch size of 2,048, an 83% increase in the number of hidden units, when static features are

introduced, is the primary factor contributing to the substantial increase in runtime for this configuration. Notably, the GRU

model with a batch size of 256 and static features, which exhibits the smallest window size of 87 among all recurrent models,

achieves the fastest runtime for models incorporating static features, a result directly attributable to its reduced window size ,505

while still maintaining commendable predictive performance.

Table 6. Selection of utilized
:::::
utilised

:
hyperparameters for the employed CNN, LSTM, and GRU models: A comparative examination of

different feature scenarios, including scenarios with static features (+SF) and without static features (-SF), across two distinct batch sizes

(256 and 2048).

Model Hyperparameter
Batch size 256 Batch size 2048

+SF -SF +SF -SF

CNN

Window size (T) 179 183 86 70

Feature maps (F) 346 105 466 205

Kernel size (k) 4 6 8 8

LSTM

Window size (T) 232 288 168 159

Units (U) 491 377 453 248

Dropout rate (p) 0.37 0.34 0.29 0.23

GRU

Window size (T) 87 209 150 229

Units (U) 373 364 480 172

Dropout rate (p) 0.48 0.11 0.27 0.17

The architectural differences between CNN models and recurrent models (LSTM and GRU) render direct comparisons of

their hyperparameter configurations impracticable, with the exception of window size. As indicated in Table 6, the window

sizes of CNN models are smaller than those observed in recurrent models, except for the GRU model utilising
::::::::
employing

:
a

batch size of 256 and incorporating static features.510

Moreover, an assessment of the best–performing models within each architecture (all configured with a batch size of 256

and incorporating static features) with regard to their hyperparameter configurations, reveals that it is
::::::
reveals

:::
that

:
the afore-

mentioned GRU model that possesses the smallest window size (87), succeeded
:::::::
followed by the CNN (179) and

:::
the LSTM
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(232) models. The increased length of input sequences implies greater computational demands, which partly accounts for the

elevated runtime observed in the specified CNN model, despite its inherent capacity for parallel processing. As outlined in515

subsection 2.5, this attribute is typical of CNN models, in contrast to
:::::::
whereas the sequential processing nature of LSTM and

GRU models limits such parallelization
:::::::::::
parallelisation.

In conclusion, the comparative analysis suggests that the GRU model, particularly with
:::::
when

:::::::
utilising a batch size of 256

and the inclusion of
:::::::::::
incorporating static features, emerges as the optimal choice for hydrological applications that prioritise

:::::::::
prioritising

:
computational efficiency alongside predictive performance. Furthermore, the differential impact of batch sizes520

and feature configurations on the runtime across CNN, GRU , and LSTM models underscores the critical role of tailored

hyperparameter optimisation in achieving computational efficiency without compromising model performance.

Given the observed favourable outcomes when utilising
::::::::
employing

:
a batch size of 256 with static features, subsequent

analyses will focus exclusively on models adhering to this configuration.

Assessment of Flow Segment Performance525

To reinforce the analysis of performance, the recorded discharge data from all evaluated catchments, corresponding to the

highest–performing model within each architectural category, were divided into quartiles. First, the discharge data for each

catchment were sorted in ascending order. Then, the sorted data were divided into four quartiles, with each quartile representing

a 25% portion of the data range for each catchment, thereby forming four distinct segments. Subsequently, for each segment,

KGE and PBIAS of the predicted discharge were calculated in relation to the observed values, as illustrated in Figure 8.530

Across all models, a noticeable increase in KGE is observed from the lowest to the highest flow segments, with the exception

of Q2, which represents lower flow levels and records the lowest KGE values. Remarkably, only within the highest flows is

a positive KGE observed. This implies that the models predominantly discern peak flow events as critical data for learning,

treating low flows as less significant or noise, which the models aim to diminish.

This phenomenon may be attributed to a bias in the KGE towards elevated flows, thereby inadequately penalising inaccu-535

racies in lower flow predictions. Specifically, KGE includes three parts, the Pearson correlation coefficient r, variability α
::
r,

::::::::
variability

::
α, and bias β

:
β
:
(Equation 1). Because peak flows typically exhibit larger numerical values than lower flows, which

:::
they

:
might dominate the overall variance,

:
; slight improvements in capturing these high–flow events can

:::
thus

:
yield relatively

large gains in all three components, thereby improving the overall KGE score.

Consequently, forthcoming research should explore evaluation metrics that facilitate a more holistic optimisation approach.540

With regard to
:::::::::
Regarding the highest flows, the KGE metrics exhibit close resemblance across models, with the CNN model

slightly leading with a KGE of 0.69. Conversely, the LSTM model demonstrates superior efficacy in modelling Q1 and Q2

flow segments.

Addressing the PBIAS, the pattern of enhanced model performance with increasing flow magnitudes, as noted with KGE

metrics, persists. This is evidenced by the narrowing spread of the violin plots. Intriguingly, except for the Q4 segment, the545

PBIAS remains positive across all models for each flow segment, indicating a general overestimation of lowest to higher flows
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Figure 8. Comparative performance of CNN, LSTM, and GRU models incorporating static features across different flow segments. The top

row displays the Kling-Gupta Efficiency (KGE) and the bottom row shows the Percent Bias (PBIAS) for the lowest flows (Q1), lower flows

(Q2), higher flows (Q3), and highest flows (Q4). Each violin plot represents the distribution of model performance metrics for all evaluated

catchments within each flow segment. The black dots indicate the mean values for each segment.

and a mild underestimation of peak flows. This phenomenon may be attributed to the limitation described in section
::::::
Section

2.5.1, whereby the integration of a sigmoid activation function with a min–max scaler inherently limits the highest possible

prediction value to the maximum observed during the training phase.

Notably, the predictions by the CNN model for lowest flow exhibit the most pronounced bias, particularly on the positive550

spectrum, pointing to a lack of adequate generalisation capabilities.

A further decomposition of the KGE is illustrated in Figure 9, where each of the three components of the KGE (Pearson

correlation coefficient (r
:
r), variability (α

:
α), and bias (β

:
β)) are presented separately. These components offer insights into

distinct aspects of the model’s performance. The Pearson correlation coefficient (r
:
r) measures the strength and direction of the

linear relationship between the observed and simulated data. A value of 1 indicates perfect positive correlation, -1 indicates555

perfect negative correlation, and 0 indicates no correlation. The variability (α
:
α) measures the ability of the model to capture

the observed variability. A value of 1 indicates that the model’s variability matches the observed variability. Values greater than
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1 indicate the model has higher variability, while values less than 1 indicate lower variability. The bias term (β
:
β) indicates

the systematic overestimation or underestimation by the model. A bias value of 1 means there is no bias, values greater than 1

indicate overestimation, and values less than 1 indicate underestimation.560

Figure 9 reveals that r
:
r
:
is more consistent across Q1 to Q4 for the LSTM model, unlike the CNN and GRU models, which

display a wider range for r
:
r below 0.25. This indicates that the LSTM model is better at matching the timing of prediction for

low flows. A similar trend is observed for α
:
α, where the LSTM and GRU model

:::::
models

:
exhibit higher variability, particularly

for the lowest flows (Q1). However, the GRU model shows difficulties in capturing variability for lower and higher flows (Q2

and Q3), with values of 3.96 and 2.63, respectively, compared to the LSTM and CNN models.565

The bias term β
:::
(β) shows that the CNN model achieves the best score for the highest flows (Q4). Nevertheless, it also

exhibits the largest bias for the lowest flows (Q1) among all models. Conversely, the LSTM model demonstrates superior

performance for Q1 through Q3.

Overall, this analysis suggests that the LSTM model exhibits favourable results across all KGE components. Appendix

A presents the three best-performing and three worst-performing hydrographs of each model. Within the poorly performing570

hydrographs, it becomes evident that while the timing of the flow events is mostly accurate, the magnitude is poorly captured,

and the base flow is often underestimated. This suggests that these catchments might exhibit different hydrological behaviors

:::::::::
behaviours compared to the better-predicted catchments, indicating the need for more diverse catchments in the training dataset.

Furthermore, appendix
::::::::
Appendix

:
A4 presents a comparison of the simulated hydrographs for the same basin. Consistent

performance trends are observed across all models, with either poor or high performance in the same basin. However, one plot575

exhibits mixed performance, where both LSTM and GRU models perform well, while the CNN model shows poor performance.

Notably, this is the only validated catchment where such a strong discrepancy is observed.

In summary, the evaluation of flow segment performance has provided valuable insights into the performance distribution.

While the CNN model showed superior average performance, as demonstrated within the preceding sections, the LSTM model

exhibited a higher degree of consistent performance across all flow segments. Additionally, the recurrent models displayed580

enhanced generalisation capabilities for the lowest flow rates in each catchment.

3.3 Model Sensitivity

To elucidate the effect of the input features on discharge prediction, a sensitivity analysis was conducted. For that, each daily

input feature was uniformly increased by 10%
:
, and subsequently, the prediction was executed again with the modified inputs.

The newly predicted discharge values were then systematically averaged over both time and all catchments,
:

resulting in one585

metric. Variations in the mean discharge resulting from these adjustments yield insights into the comparative significance

of each evaluated feature within the model. This analysis focuses solely on dynamic features due to the limited number of

catchments (35). With only 35 samples for static features, the models lack sufficient variability in the input to reliably interpret

these features.
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Figure 9. Components of the Kling-Gupta Efficiency (KGE) for the employed CNN, LSTM, and GRU models with a batch size of 256

incorporating static features, evaluated across four flow segments: lowest flows (Q1), lower flows (Q2), higher flows (Q3), and highest flows

(Q4). From top to bottom, the rows represent the Pearson correlation coefficient (r
:
r), the variability ratio (α

:
α), and the bias (β

:
β). Each violin

plot illustrates the distribution of these metrics for all evaluated catchments within each flow segment, with black dots indicating the mean

values for each segment. The ideal value for all three metrics is 1, indicating perfect performance.

The results of this analysis are shown in Figure 10, representing the mean percentage change in discharge, calculated by590

averaging over all daily predictions and across all 35 catchments.

For the CNN model,
:
the meteorological feature precipitation exhibited the most positive impacts on the model, with changes

of 11.1% (Figure 10a). This underscores its pivotal role in influencing the output of the CNN model. Increasing the daily

feature soil temperature led to a decline in the discharge of -2%, likely related to increasing atmospheric water losses with

rising temperature through increasing actual soil evaporation and plant transpiration. The daily forcing evapotranspiration595

showed a small positive impact of 0.4%. The observation that daily evapotranspiration increases with discharge is seemingly

counterintuitive. However, daily evapotranspiration derived from Jehn et al. (2021) represents actual evapotranspiration, which

can increase with wetter conditions and therefor
:::::::
therefore

:
also correlate positively with discharge.
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Although this may offer a plausible explanation for the observed anomalous behavior
::::::::
behaviour, it is unlikely within the

context of this study. Given that all models share the same input features, both the LSTM and GRU models should exhibit600

similar behavior
::::::::
behaviour, which is not observed (see Figure 10).

Analogous to the findings from the CNN model analysis, the LSTM model further corroborated that precipitation exerts

the most substantial positive impacts on discharge, registering enhancements of 15% (Figure 10b). Conversely, daily sum

evapotranspiration negatively impacted discharge, resulting in decreases of -2.2%. In comparison to the CNN model, the LSTM

model displays a substantially higher sensitivity to precipitation, implying that this feature serves as the principal driving force605

for this model. The daily feature soil temperature revealed a decrease of -3.3%.

Sensitivity analysis of the CNN (a), LSTM (b) and GRU model (c) with static features and a batch size of 256. All features

have been uniformly increased by 10% to evaluate their impact on discharge prediction.

The sensitivity analysis of the GRU model parallels the findings of the LSTM model. Precipitation exerts a strong positive

effects on discharge, with increases of 13.3% (Figure 10c). Evapotranspiration demonstrated a negative impact on discharge610

by -3.1%. This makes the GRU model the most sensitive model to this feature. The Soil
:::
soil

:
temperature exhibited a uniform

reduction in discharge of -3.3%.

In summary, the GRU model’s sensitivity analysis reveals a high degree of concordance with the LSTM model in terms of

feature influences on discharge predictions. All daily input features of these both
:::
two models exhibited expected behaviours,

aligning with established hydrological principles. This indicates a robust understanding of the input features’
:
influences by615

both models.

The similarity in effects across all input features suggests , that GRU models are also adept at accurately discerning hydrolog-

ical processes, despite their simpler architecture compared to LSTM models. The CNN model exhibits counterintuitive results

with the daily evapotranspiration feature, indicating potential limitations in handling these inputs. Although , it is possible that

certain static features had a greater influence on this model’s performance.620

Overall, the sensitivity analysis of the LSTM and GRU models revealed a more realistic representation for evapotranspiration

compared to the CNN model. These findings emphasise the importance of considering various input parameters and their

interactions in improving discharge prediction models for hydrological applications.

4 Conclusions

This study examined the differences among various neural network architectures, including
:::::::::
conducted

:
a
::::::::::
comparative

:::::::::
evaluation625

::
of CNN, LSTMand GRU, in the context of predicting discharge within ungauged basins in

:
,
:::
and

:::::
GRU

::::::
models

:::
for

:::::::::
predicting

::::
daily

::::::::
discharge

:::
in

::::::::
ungauged

::::::
basins

::::::
across

:
Hesse, Germany. The research has shown that all employed ANNs exhibit the

capability to accurately discern hydrological processes for discharge prediction over multiple catchments, regardless of the

specific architecture. Despite the general use of LSTM models, this study demonstrated that CNN models offer advantages in

terms of performance and runtime for time series prediction. In particular, a CNN model showed the highest performance
:::
All630
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Figure 10.
::::::::
Sensitivity

::::::
analysis

::
of

:::
the

::::
CNN

:::
(a),

:::::
LSTM

:::
(b),

:::
and

::::
GRU

::
(c)

::::::
models

::::
with

::::
static

::::::
features

:::
and

:
a
::::
batch

::::
size

::
of

:::
256.

:::
All

::::::
features

::::
have

:::
been

::::::::
uniformly

:::::::
increased

:::
by

:::
10%

::
to

:::::::
evaluate

:::
their

::::::
impact

::
on

:::::::
discharge

::::::::
prediction.

::::
three

::::
deep

:::::::
learning

:::::::::::
architectures

::::::::
exhibited

:::::::::
significant

::::::::
predictive

:::::::::::
capabilities.

::::::::::
Specifically,

:::
the

:::::
CNN

:::::
model

:::::::
yielded

:::::::::
marginally

:::::
higher

::::::::
accuracy (KGE = 0.8) , followed by a

::::::::
compared

::
to

:::
the

:::::::
recurrent

:::::::
models,

:::::::::
effectively

::::::::
capturing

::::
local

:::::::::
short–term

::::::::::::
rainfall–runoff

::::::::
dynamics.

::::::::::
Conversely,

::::
the LSTM model (KGE = 0.78) and the

:::::::::::
demonstrated

:::::::
superior

::::::::::
consistency

::::::
across

:::
the

:::::
entire

:::::
flow

::::::::
spectrum,

::::::::::
maintaining

:::::::
balanced

:::::::::::
performance

::::
from

::::
low

::
to

::::
high

:::::
flows

:::::
rather

::::
than

:::::::::::::::
disproportionately

:::::::
excelling

::
at
:::::
peak

::::::
events,

::
as

:::::::
observed

::::
with

:::::
CNN

:::::::
models.

:::
The

:
GRU model (KGE = 0.77) . The GRU model generally showed a slightly lower performance635

with regard to most evaluation metrics. However, given the fact the performancegap is relatively small and that the runtime

of the GRU model is 41% faster than the CNN and 59% than the LSTM model, it becomes clear that GRU model offers a

promising balance between predictive accuracy and computational demand. This advantage in runtime becomes particularly

salient when dealing with high–resolution time series or when predictions are required on an extensive scale. Conversely,

the examination of the flow segment performance distribution
:::::::
provided

:
a
::::::
robust

:::::::
balance

:::::::
between

::::::::::::
computational

:::::::::
efficiency640

:::
and

::::::::
predictive

::::::::
accuracy.

::::
The

:::::
minor

:::::::::::
performance

::::
gaps

::::::::
observed

:::::::
indicate

:::
that

:::
no

:::::
single

::::::::::
architecture

:::::::::::
significantly

:::::::::
dominates

::
in

::::::::
predictive

:::::
skills.

:
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::::::::
Consistent

::::
with

:::
the

:::::::
findings

::
of

::::::::::::::::::
Kratzert et al. (2019a)

:
,
:::::::::
augmenting

:::::::
models

::::
with

::::
static

:::::::::
catchment

::::::::
attributes

::::::::
improved

::::::::
prediction

:::::::::::
performance,

:::::::::::
underscoring

::
the

::::::
critical

::::::::::
importance

::
of

:::::::::
integrating

::::::::::::::::
catchment–specific

::::::::::
information

::
in

::::::::
ungauged

:::::
basin

:::::::::
modelling.

::::::::::
Additionally,

:::::::
models

::::::
trained

::::
with

:::::::
smaller

:::::
batch

::::
sizes

:::::::
yielded

:::::
better

:::::
KGE

:::::
scores

:::::::::
compared

::
to

::::::
larger

::::
batch

::::::
sizes,

:::::::::
suggesting645

:::
that

:::::::::::
optimisation

::::::::
dynamics

::::
such

::
as

:::::::
gradient

:::::
noise

::::
and

::::::
update

::::::::
frequency

:::::::::::
substantially

:::::::::
influenced

::::::::::::
generalisation

:::::::::::
performance.

:::::
These

::::::
results

::::::::
reinforce

:::::::
existing

:::::::
evidence

::::
that

:::::::
modern

::::
deep

:::::::
learning

::::::::
methods

::::::
achieve

::::::
robust

::::::::::
streamflow

:::::::::
predictions

:::::
even

::
in

:::::::::
data–scarce

::::::
basins

::::::::::::::::::::::::::::::::::
(Nabipour et al., 2020; Afzaal et al., 2019)

:
.

:::::::::
Evaluation

:::::
across

:::::::
varying

:::
flow

:::::::::
conditions

::::::
further

:
revealed that the LSTM model exhibits superior generalization capabilities

across the entire spectrum of flow data, rather than disproportionately depending on peak
:::::
model

::::::::::
architecture

:::::::::::
substantially650

::::::::
influenced

:::
the

:::::::::
prediction

:::::::
accuracy

:::
of

::::
peak

:::
and

:::::
low–flow events.

The sensitivity analysis provided valuable insights into the interpretability of the models, demonstrating that all model

architectures accurately capture the impact of dynamic input features, with the exception of daily evapotranspiration in the

CNN model . Precipitation emerged as the most significant driver of discharge predictions
:::
The

::::::
LSTM

::::::::::::
demonstrated

:::::::
superior

:::::::::::
generalisation

::::::
across

::::::::::
lowest–flow

:::::::::
conditions,

::::::::
indicating

:::::::
reduced

:::::::::
systematic

:::::
errors

:::::
during

::::::::
extended

:::
dry

:::::
spells.

::::
This

::::::::::::
generalisation655

::::::::
capability

:::
can

:::
be

:::::::::
attributed

::
to

:::
the

::::::
LSTM

:::::::
model’s

:::::
gated

::::::::
recurrent

:::::::::
structure,

:::::::::
effectively

::::::::
capturing

:::::::::
long–term

::::::::::::
dependencies

::::::::
associated

::::
with

::::::::
baseflow

:::
and

::::::::
recession

:::::::
periods.

:::::::::
Conversely,

:::
the

:::::
CNN

:::::
model

::::::::
employs

::::::::
fixed–size

:::::::::::
convolutional

:::::
filters

:::::::::
optimised

::
for

::::::::::
identifying

:::::::::
short–term

::::
flow

:::::::
patterns,

::::::::::
particularly

:::::
sharp

:::::::
increases

:::::
from

::::::::::
precipitation

::::::
events,

:::
but

::::::::
exhibited

::::::
limited

:::::::::
capability

::
in

::::::::
capturing

:::::
slower

:::::::::::
hydrological

::::::::
processes

::::
such

::
as
::::::::::::::::::::::
evapotranspiration–driven

:::::::::
drawdown.

:

:::::::::
Sensitivity

:::::::
analyses

::::::::
confirmed

:::::::::::
precipitation

::
as

:::
the

:::::::
primary

::::::::
discharge

:::::
driver

:
across all models.660

The results of this study lend additional support to
:::::::
However,

:::::
CNN

::::::
models

::::::
showed

:::::::
reduced

:::::::::
sensitivity

::
to

::::
daily

:::::::::::::::
evapotranspiration

::::::
signals.

::::
This

:::::::::::
characteristic

:::::::
suggests

::::
that

::
the

:::::
CNN

::::::::::
architecture

::::
may

::::::::::
inadequately

::::::::
represent

:::::::::
cumulative

::::::
drying

::::::
effects,

:::::::::
potentially

::::::::
explaining

:::
its

::::::::::::
comparatively

:::::::
weaker

:::::::::::
performance

::::::
during

::::::::
low–flow

:::::::
periods.

::::::
These

:::::::::::
architectural

::::::::::
distinctions

::::::::
highlight

::::
how

::::::
internal

::::::
model

::::::
designs

:::::::::::
significantly

:::::
affect

::::::
learned

:::::::::::
hydrological

::::::::::
behaviours.

::::::::
Recurrent

::::::::
networks

:::::::::
inherently

:::::::
integrate

::::::::
temporal

::::::::::
information,

::::::
aiding

:::
the

:::::::::
modelling

:::
of

::::::::
sustained

:::::::::
processes,

:::::::
whereas

::::::::::::::::
convolution–based

:::::::
models

::::
may

::::::::::
necessitate

:::::::::
additional665

::::::::::
mechanisms

::
or

::::::::
expanded

::::::::
receptive

:::::
fields

::
to

::::::
achieve

:::::::::
equivalent

:::::::::
long–term

:::::::::
awareness.

::::::
Despite

:::::
these

:::::::
nuances,

:::::
CNN

::::::
models

::::
still

::::::
attained

:::
the

::::::
highest

::::::::
aggregate

::::::::
accuracy

::::::
(KGE),

:::::::::
suggesting

:::::::
accurate

:::::::::
peak–flow

:::::::::
predictions

:::::::::::
compensated

:::
for

::::::
deficits

::
in

::::::::
low–flow

::::::::::
estimations.

:::::::::::
Consequently,

:::::::::
alternative

::::::
metrics

:::::::
focused

::::::::::
specifically

::
on

::::::::
low–flow

::::::::::
performance

:::::
might

::::
rank

:::
the

::::::
LSTM

:::::
ahead

::
of the

propositions made by Kratzert et al. (2019a), which advocate that the incorporation of static features can enhance the efficacy of

ANNs. Additionally, the relationship between batch size and runtime exhibited distinct variations across the examined models,670

highlighting the complex interplay between architectural design and hyperparameter configuration. However, an increase in

batch size was found to diminish the performancein terms of discharge prediction. Additional exploration may more accurately

assess the impact of varying batch sizes by maintaining a consistent set of hyperparameters while altering the batch size
::::
CNN.

:

::::::::
Regarding

:::::::::::::
computational

:::::::::
efficiency,

::::
clear

::::::::::
distinctions

::::::::
emerged.

::::
The

:::::
GRU

::::::
model

::::::
trained

:::::::::::
significantly

:::::
faster

:::::
(over

:::::
40%

::::::
runtime

::::::::
reduction

:::::::::
compared

::
to

:::
the

:::::
CNN

:::::
model

::::
and

:::::
nearly

:::::
60%

:::::
faster

::::
than

:::
the

::::::
LSTM

:::::::
model),

:::::::::
attributable

::
to

:::
its

::::::::::
streamlined675

:::::
gating

::::::::::
mechanism

::::
with

:::::
fewer

:::::::::
parameters

:::
and

:::::::
simpler

:::::::::
operations

::::::::::::::::
(Chung et al., 2014)

:
.
:::::
CNN

::::::
models,

:::::::
despite

:::::
being

:::::::::
marginally
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:::::
slower

::::
than

:::::
GRU

:::::::
models,

::::::::
benefited

::::
from

:::::::::::
parallelisable

::::::::::::
convolutional

:::::::::
operations

:::
and

::::::::
exhibited

::::::::::
competitive

::::::::
runtimes

:::::::
coupled

::::
with

::
the

:::::::
highest

:::::::
accuracy.

:::
In

:::::::
contrast,

::::::
LSTM

::::::
models’

:::::::::
sequential

:::::::::
processing

:::
and

:::::::
complex

::::::
gating

:::::::
incurred

::::::
greater

::::::::::::
computational

:::::::
demands

:::::::::::::::::::::
(Goodfellow et al., 2016)

:
.
:::::::::::
Additionally,

:::::::::::::::::::::::::
Ebtehaj and Bonakdari (2024)

:::::::
reported

:::::::::
equivalent

:::::::::::
performance

:::
of

::::::
LSTM

:::
and

:::::
CNN

::::::
models

:::
for

:::::
high

::::::::::
precipitation

::::::
events

:::
yet

::::::::
observed

::::
that

:::::
CNN

::::::
models

::::::::::::
outperformed

::::::
LSTM

:::::::
models

:::
for

:::::::::
significant680

::::::::::
precipitation

::::::
events

::
at

::::
short

::::
lead

:::::
times,

:::::::
thereby

:::::::::
reinforcing

:::
our

:::::::
results.

::::::::::
Furthermore,

::::
our

:::::::
findings

::::
align

::::
with

::::::
recent

:::::::
literature

:::
on

::::::::::
data–driven

:::::::::
streamflow

::::::::::
forecasting.

::::::::::::::::::
Oliveira et al. (2023)

:::::::
similarly

:::::::
reported

:::::::
superior

:::::
CNN

::::::
model

:::::::::::
performance

:::::::
relative

::
to

::::::
LSTM

::::
and

:::::::::
multilayer

:::::::::
perceptron

:::::::
models

::::::
within

::::::::
calibrated

:::::::
basins.

::::::::
However,

:::
that

::::::
result,

::::::::
obtained

:::::
from

:
a
:::::::::

calibrated
::::::
basin,

:::
did

:::
not

:::::::::
guarantee

:::::::
broader

:::::::::::::
generalisability.

::::
Our

:::::::::::
multi–basin

:::::
study

:::::::
confirms

:::::
CNN

::::::
model

:::::::
efficacy

::::
even

:::
in

::::::::
ungauged

:::::::
basins,

::::::::
alongside

:::::::::::
consistently

:::::
strong

::::::::::::
performances

:::
by

::::::
LSTM

::::
and

:::::
GRU685

::::::
models.

::::
The

:::::
minor

:::::::
accuracy

::::::::::
differences

::::
align

::::
with

::::::::::::::::::::::::
Farfán-Durán and Cea (2024),

:::::::::::
emphasising

:::::::::::::::
context–dependent

::::::
model

:::::::::::
performance.

:::
For

::::::::
example,

:::
the

::::
GRU

::::::
model

:::::::
excelled

::
at

::::
very

:::::
short

::::
lead

:::::
times

::
in

:::
one

:::::
basin

:::::::
(Spain),

:::::::
whereas

:::
in

::::::
another

:::::
basin

:::::
CNN,

:::::::
LSTM,

:::
and

:::::
GRU

:::::::::
performed

::::::::::
comparably.

:::::::::::
Additionally,

:::
the

::::::::::::
computational

::::::::
efficiency

::::::::::
advantages

::::::::
observed

::
for

:::::
GRU

::::
and

::::
CNN

:::::::
models

:::::::::
corroborate

:::::
prior

:::::::
studies,

::::::::::
highlighting

::::::::::
parallelism

:::
and

:::::::::
simplified

::::::
gating

:::::::::::
mechanisms

::
as

:::::::::
significant

::::::::::::
computational

::::::::
benefits.

::::::::::
Nonetheless,

:::::
GRU

:::::::
models’

::::::::
simplified

:::::
gating

::::
may

::::::
reduce

::::::::::
performance

:::::::
relative

::
to

:::::
LSTM

:::::::
models,

::
as

::::::::::::::::::::::::::
Wegayehu and Muluneh (2023)690

:::::::::::
demonstrated

:::
that

::::::
LSTM

::::::
models

::::::::
generally

::::::::::
outperform

::::
GRU

:::::::
models

::::::::
regardless

::
of
:::::
input

::::
data.

:

::::::
Certain

::::::
design

::::::
choices

:::
and

:::::::::
limitations

:::::
must

::
be

::::::::::::
acknowledged.

:::::
Both

:::::::
recurrent

:::::::
models

::::::
(LSTM

:::
and

::::::
GRU)

:::::::::
constrained

:::::::
outputs

::
to

:::::::::::
non–negative

::::::::
discharges

::::::
within

:::
the

:::::::
training

:::
data

:::::
range

:::::
using

:::::::
sigmoid

::::::::
activation

:::
and

::::::::
min–max

::::::::::::
normalisation.

::::
This

:::::::::
constraint

::::::
ensures

:::::::::
physically

::::::::
plausible

:::::::::
predictions

::::
but

:::::::
restricts

:::::::::::
extrapolation

::::::
beyond

:::::::::
maximum

::::::::
observed

::::::
flows.

::::
This

:::::::::
saturation

:::::
effect

:::
may

::::::::
attenuate

:::::::
extreme

:::::
flood

::::::
peaks,

:::::::
limiting

:::
the

:::::::
model’s

:::::::::::
extrapolation

:::::::
capacity.

::::
For

:::::::
practical

:::::::::::
applications

:::::::
requiring

::::::::
accurate695

::::
flood

::::::::::
forecasting

:::::::::
(primarily

:::::::
focusing

:::
on

::::
high

::::::::::
discharge),

:::::::::
alternative

::::::::
activation

::::::::
functions

:::::
such

::
as

:::::::::::
LeakyReLU,

::::::
which

:::::
allow

:::::::::
unbounded

:::::::
outputs,

::::
may

::::
offer

::::::
greater

::::::::
flexibility

::::
and

::::::
should

::
be

:::::::::
considered

::
in

:::::
future

::::::
model

:::::::
designs.

::::::::::
Furthermore,

::::
our

:::::::
analysis

:::
was

::::::::
confined

::
to

::::::
Hesse,

::::::::
Germany,

:::::::::
potentially

:::::::
limiting

:::::::::::::
generalisability

::
to

:::::::
different

:::::::::::::
hydro–climatic

:::::::
contexts

::::
such

::
as

::::
arid

::
or

::::::::
monsoon

::::::::
climates.

::::::
Hybrid

::
or

:::::::::
ensemble

::::::
models

:::::::::
combining

:::::
CNN

:::
and

::::::
LSTM

::::::
layers

::::
were

:::::::
outside

:::
the

:::::
scope

::
of

:::
this

::::::::::
comparison.

:
700

:::::
Future

::::::::
research

::::::
should

::::::
explore

::::
loss

::::::::
functions

::::::
better

::::::
aligned

:::::
with

:::::::::::
hydrological

::::::::
objectives

::::
and

::::::::::::::
sequence–length

::::::::
handling

::::::
through

::::::
longer

::::::
sliding

::::::::
windows

:::
or

::::::::
emerging

::::::::::::
self–attention

:::::::::::
transformers

::::::::::::::
(Lim et al., 2021)

:
.
:::::::::::
Investigating

:::::::::::
architectures

::::
that

:::::::::
seamlessly

::::
fuse

:::::
static

::::
and

:::::::
dynamic

::::::
inputs

:::
via

::::::::
attention

:::::::::::
mechanisms

::
or

:::::::::
dedicated

:::::::::::
subnetworks

:::::
could

:::::::
improve

::::
the

:::
use

:::
of

::::::::
catchment

::::::::
attributes

::::
and

::::::
remote

::::::
sensing

::::
data,

:::::::
thereby

:::::::::
enhancing

:::::::::::
generalisation

:::::::::::::::
(Lim et al., 2021).

These insights not only serve as guidance for researchers utilising neural networks in hydrology but also
:::
and

:
contribute705

to a comprehensive framework for evaluating different algorithms. Furthermore, this research
:::::::::
algorithms.

:::
By

::::::::::::
systematically

:::::::::
comparing

:::::
CNN,

:::::::
LSTM,

:::
and

:::::
GRU

:::::::
models

::
in

::::::::
multiple

::::::::
ungauged

:::::::
basins,

:::
this

:::::
work

:
bridges a critical gap in hydrological

modelling literature by systematically comparing the efficacy of different neural network architectures in predicting discharge

in ungauged basins, thereby paving the
:::
and

::::
paves

:::
the

:
way for more informed and effective application of artificial intelligence

in hydrology. Future research may delve into the exploration of other neural network architectures and techniques, such as710
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transformer models. While the sigmoid activation function provided stable performance, its combination with Min–Max scaling

constrained discharge predictions. Employing LeakyReLU could allow for greater flexibility in discharge predictions, albeit

with the trade–off of potential negative values. In summary, successful prediction in ungauged basins accentuates the potential

of neural networks in the field of hydrology
::::::::
advancing

:::::::::
streamflow

::::::::::
forecasting.

Code and data availability. The entire code, along with the data sets upon which this study relies, except for the discharge data, can be715

accessed publicly in the following repository: Neural-networks-in-catchment-hydrology.git.
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Appendix A

A1 Hydrographs of the CNN model with static features and batch size of 256

A1.1 Highest performance
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Figure A1. Hydrograph at gauge 25840253 illustrating high performance of the CNN model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A2. Hydrograph at gauge 25840650 illustrating high performance of the CNN model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A3. Hydrograph at gauge 24870055 illustrating high performance of the CNN model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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A1.2 Lowest performance720
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Figure A4. Hydrograph at gauge 41510205 illustrating low performance of the CNN model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A5. Hydrograph at gauge 41860900 illustrating low performance of the CNN model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A6. Hydrograph at gauge 25140058 illustrating low performance of the CNN model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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A2 Hydrographs of the LSTM model with static features and batch size of 256

A2.1 Highest performance
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Figure A7. Hydrograph at gauge 25840708 illustrating high performance of the LSTM model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A8. Hydrograph at gauge 25810558 illustrating high performance of the LSTM model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A9. Hydrograph at gauge 25840650 illustrating high performance of the LSTM model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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A2.2 Lowest performance
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Figure A10. Hydrograph at gauge 24880208 illustrating low performance of the LSTM model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).

41



0 250 500 750 1000 1250 1500 1750 2000
Days

0

2

4

6

8

10

12
Di

sc
ha

rg
e 

in
 m

m
LSTM with static features and batch size of 256 for Gauge 41510205

KGE: 0.531
observation
simulation

Figure A11. Hydrograph at gauge 41510205 illustrating low performance of the LSTM model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A12. Hydrograph at gauge 41860900 illustrating low performance of the LSTM model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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A3 Hydrographs of the GRU model with static features and batch size of 256

A3.1 Highest performance725
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Figure A13. Hydrograph at gauge 25840708 illustrating high performance of the GRU model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A14. Hydrograph at gauge 25880305 illustrating high performance of the GRU model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A15. Hydrograph at gauge 25811255 illustrating high performance of the GRU model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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A3.2 Lowest performance
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Figure A16. Hydrograph at gauge 44950055 illustrating low performance of the GRU model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A17. Hydrograph at gauge 24480695 illustrating low performance of the GRU model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A18. Hydrograph at gauge 41860900 illustrating low performance of the GRU model, with observed discharge (blue) and predicted

discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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A4 Hydrograph comparison of the best performing models with static features and batch size of 256

A4.1 Mixed performance
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Figure A19. Hydrograph comparison at gauge 25140058 for the CNN, LSTM, and GRU models, highlighting varying performance across

the models. Performance is measured using the Kling-Gupta Efficiency (KGE), with ’+SF’ denoting the inclusion of static features.
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A4.2 High performance for all models
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Figure A20. Hydrograph comparison at gauge 25850257 for the CNN, LSTM, and GRU models, illustrating uniformly high performance

across all models. Performance is quantified using the Kling-Gupta Efficiency (KGE), with ’+SF’ indicating the integration of static features.
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A4.3 Low performance of all models730
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Figure A21. Hydrograph comparison at gauge 41860900 for the CNN, LSTM, and GRU models, illustrating uniformly low performance

across all models. Performance is quantified using the Kling-Gupta Efficiency (KGE), with ’+SF’ indicating the integration of static features.
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