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Abstract This study presents a comparative analysis of different neural network models, including Convolutional Neural Net-
works (CNN), Long Shert=Ferm-Short—Term Memory (LSTM) and Gated Recurrent Unit (GRU) in predicting discharge within
ungauged basins in Hesse, Germany. All models were trained on 54 catchments with 28 years of daily meteorological data,
either including or excluding 11 static catchment attributes. The training process ef-for each model scenario combination was
repeated 100 times, using a Latin Hyper-Cube-Sampler-for-the-purpose-of Hypercube Sampler for hyperparameter optimisation
with batch sizes of 256 and 2048. The-evaluation-Evaluation was carried out using data from 35 additional catchments (6-six
years) to ensure predictions in basins that were not part of the training data. This evaluation assesses-assessed predictive ac-
curacy, computational efficiency concerning varying batch sizes and input configurations and eenduets-conducted a sensitivity
analysis of dynamic input features. The findings indicate-indicated that all examined artificial neural networks demenstrate
demonstrated significant predictive capabilities, with a CNN model exhibiting slightly superior performance, closely followed
by LSTM and GRU models. The integration of static features was found to improve performance across all models, highlight-
ing the importance of feature selection. Furthermore, models utilising larger batch sizes displayed reduced performance. The
analysis of computational efficiency revealed that a GRU model s-was 41% faster than the CNN and 59% faster than the LSTM
model. Despite a modest disparity in performance among the models (<3.9%), the GRU model’s advantageous computational

speed rendersrendered it an optimal compromise between predictive accuracy and computational demand.
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1 Introduction

Artificial intelligence (Al) is increasingly being used to answer scientific questions, including those in the realm of hydrology
(Kratzert et al., 2019a, b; Afzaal et al., 2019; Nabipour et al., 2020). The predictive accuracy of Al in these hydrological studies,
particularly concerning discharge, is of paramount importance for flood control, watershed management or the estimation of
water availability (Sharma and Machiwal, 2021; Brunner et al., 2021). In the era of climate change, which causes tremendous
variability in rainfall patterns and increases evapotranspiration, the role of precise hydrological forecasts becomes even more
essential (Tabari, 2020). An area of particular challenge is prediction in ungauged basins (PUB), an endeavour fraught with
substantial uncertainty due to the lack of empirical data for model calibration (Bloschl, 2016). Effective models for PUB
should thus possess robust generalisation capabilities across diverse watershed behaviours, enabling more universal basin-type
predictions (Sivapalan et al., 2003).

As demonstrated by Kratzert et al. (2019a), an artificial neural network (ANN) model, namely Long Short-Term Memory

(LSTM) model-hasshownnetwork (Hochreiter and Schmidhuber, 1997), showed unprecedented accuracy in PUB(Heehreiter-and-Sehmidl

. The employed LSTM model exhibited the ability to generalise rainfall-runoff predictions across a substantial number of basins
(531), surpassing the performance of traditional hydrological models that typically operate best when independently calibrated
for each separate basin. Further comparative analyses, such as those by Le et al. (2023), have-evaluated the performance of
LSTM against other ANNs like multilayer perceptrons (MLP) and convolutional neural networks (CNN) in daily streamflow
prediction. This study revealed superior performance of LSTM and CNN models over conventional ANNs, with LSTM ex-
hibiting a marginal edge over CNN. Moreover, a novel approach proposed by Ghimire et al. (2021) invelves-involved a hybrid
CNN-LSTM model, designed for hourly discharge predictions. When benchmarked against various ANNs (CNN, LSTM,
DNN), traditional Al models (Extreme Learning Machine, MLP) ;-and ensemble methods (Decision Tree, Gradient Boosting
Regression, Extreme Gradient Boosting, Multivariate Adaptive Regression Splines), the CNN-LSTM model displayed superior
performance in multiple evaluation metrics, although all ANNs exhibited high efficacy. This evidences that deep learning, a
subset of machine learning characterised by multilayered ANNs, holds substantial promise for streamflow prediction. However,
while numerous studies have explored discharge prediction using ANNs, only a limited number have conducted comparative
analyses of different ANN architectures. Table 1 summarises these studies from 2020 to December 2023, noting that most
incorporate lagged target variables as inputs. This methodology, though effective, is less applicable for PUB due to the absence
of discharge data in ungauged or poorly gauged regions, necessitating the use of discharge—independent inputs.

Among the studies shown in Table 1, three specifically address-addressed this constraint. The first, by Nguyen et al. (2023a),
evaluates-evaluated CNN and LSTM models for daily discharge prediction in the 3S River Basin, exclusively using daily mean
temperature and precipitation data. This study adopted a "regional" approach, akin to Kratzert et al. (2019a), training both
model architectures with data from all three sub-basins. The LSTM was found to outperform the CNN, although the latter’s
results were not extensively discussed. The second study, by Wegayehu and Muluneh (2023), eontrasts-contrasted three super
ensemble learners against eight base models, including LSTM, Gated Recurrent Unit model (GRU) ;-and a compound CNN-
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GRU model, for daily discharge prediction. Here, the LSTM ranked among the top three in four out of five scenarios based on
R? metrics. However, its performance significantly declined in the absence of feature selection, indicating a-susceptibility to
redundant features. Notably, this study trained separate models for each basin, thus not directly addressing PUB generalisation
capabilities. The third study, by Oliveira et al. (2023), compared three ANN models (LSTM, CNN ;-and MLP) for daily
discharge estimation in a single basin—Fhe-, where the CNN model exhibited superior performance (NSE of 0.86);-hewever,
However, this does not imply generalisability in non-calibrated catchments, as both calibration and testing occurred within the
same basin. Regrettably, this limitation pertains to all three studies.

Consequently, this research aims-aimed to bridge the existing literature gap by comparing the performance of three distinct
ANN architectures for predicting discharge in ungauged basins. Through a comparative analysis, this study not only addresses
a significant gap in hydrological literature but also provides valuable insights into the relative strengths and limitations of
each ANN model, thereby guiding future applications and development in the field of hydrological prediction. Furthermore, a
comprehensive sensitivity analysis was conducted to identify key drivers affecting the prediction of each model. This method-
ological approach contributes to refining model selection and calibration strategies in hydrological forecasting.

The first architecture under examination is-was the LSTM, which has-demonstrated robust performance in numerous studies
(Kratzert et al., 2019a, b; Le et al., 2023; Nguyen et al., 2023a). Although LSTM models demonstrate-demonstrated promising
performance, the inherent sequential architecture of LSTM leads-led to higher computational costs. This results-resulted in
a relative decrease in computational efficiency when compared to feed—forward neural networks or CNNs, as discussed in
Gauehetal(202HGauch et al. (2021). In pursuit of addressing these limitations and challenges inherent to LSTM models, the
second architecture chosen for examination is-was the CNN. This model is characterised by its parallel processing capabilities,
significantly boosting computational efficiency, a critical factor when handling large-scale, high-resolution time series data,
extensive input sequences ;-and a multitude of input features (Bai et al., 2018). The third architecture under consideration s
was the Gated Recurrent Unit. GRU, a variant of LSTM, reeegnized-is recognised for its proficiency in effectively capturing
temporal dependencies in time series data while imposing less computational burden (Cho et al., 2014).

Given that PUB is often characterised by data scarcitythis-study-incorperates-, this study incorporated two distinct scenarios:
the first involving the use of only daily forcing data, and the second extending this with additional static catchment features.
This approach alews-allowed for an evaluation of the model’s generalisation capacity when constrained to minimal data.
Additionally, it prevides-provided insights into the degree to which static catchment features ean-could contribute to enhancing
model performance, as indicated by (Kratzert-et-al-2649a)Kratzert et al. (2019a). Accordingly, the objectives of this study are

were delineated as follows:

i. to evaluate the potential of predicting discharge in ungauged basins by daily forcing data with ANNs, namely LSTM,
CNN ;and GRU,

ii. to compare the computational efficiency of LSTM, CNN ;-and GRU models for daily time series prediction,

iii. to investigate the potential of static features to enhance prediction performance, and



iv. to assess the impact of batch size on model performance and computational efficiency.



Table 1. Overview of recent studies focused on comparing discharge prediction using various artificial neural networks. *Target indepen-
dence’ indicates that discharge data were not utilised as input features during model training/testing. *Ungauged’ implies model evaluation
with catchments, that were not part of the training dataset. ’Multi catchment’ denotes that the models were evaluated on multiple catchments.
ANFIS=Adaptive neuro-fuzzy inference system; ANN=Artificial neural network; BiLSTM=Bidirectional LSTM; CNN=Convolutinal neural network;
DT=Decision tree; DTR=Decision tree regressor; FNN=Feedforward neural network; GB=Gradient boosting; GRU=Gated recurrent unit; LSTM=Long short-

term memory; LR=Linear regression; MLP=Multilayer perceptron; LASSO=Least absolute shrinkage and selection operator; PSO=Particle swarm optimiza-

tion; Res=Residual; RF=Random forest; RNN=Recurrent neural network; SVR=Support vector regression; XGB=Extreme gradient boosting

Target Multi Lead time step
Ungauged Time scale Prediction algorithm Reference
independent catchment Single Multi
v v v Daily 4 CNN, GRU, LSTM This study
v v Daily, 4 CNN, LSTM Nguyen et al. (2023a)®
Monthly
v Daily 4 CNN-GRU, GRU, LR, = Wegayehu and Muluneh
LSTM, LASSO, MLP, (2023)®
SVR, XGB
(4 Daily (4 CNN, LSTM, MLP Oliveira et al. (2023)
v Daily v v CNN, LSTM, MLP, Nguyen et al. (2023b)
Transformer
v Daily, v v ANN,LSTM Cheng et al. (2020)°
Monthly
Daily v ANFIS, ANN, Vatanchi et al. (2023)°
BIiLSTM,
CNN-GRU-LSTM
Daily 4 ANN, CNN, LSTM Le et al. (2023)
Daily 4 ANFIS, LSTM-PSO Haznedar et al. (2023)°
Daily 4 CNN-LSTM, DT, GB, Hong et al. (2020)°
LSTM, MLP, RF
Daily v 4 BiLSTM, CNN, FNN, Le et al. (2021)
GRU, LSTM,
StackedLSTM
Daily v CNN, DTR, LSTM, RF  Li et al. (2022)°
Daily v CNN-LSTM, DT, GB, ~ Hong et al. (2021)°
MLP, RF, RNN-LSTM
Daily v CNN-LSTM, LSTM Deng et al. (2022)°
Daily v BiLSTM, CNN-LSTM, Herbert et al. (2021)

ResBiLSTM,
ResCNN-LSTM

@ QOnly results of LSTM model is stated, ® hyperparamter configuration nontransparent
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2 Materials and Methods
2.1 Study Area

All basins analysed in this study are located in the federal state of Hesse, Germany (Figure 1). The climate of this region is
temperate—humid and characterised by moderate temperature and precipitation levels (Heitkamp et al., 2020). The topography
of Hesse, characterised by a complex blend of lowlands, hilly terrains and modest mountain ranges, fosters a multifaceted
hydrological setting. A variety of geological formations and soil types within the region contribute to the mixed pattern of

infiltration rates, groundwater recharge and surface runoff (Jehn et al., 2021).

e =]
15 30 km

Catchments

Training -
Testing -
Intersections

Figure 1. Geographic distribution of the catchments in Hesse and Hesse’s location within Germany. Darker shades represent nested catch-

ments, while intersections indicate catchments partially incorporated in both training and testing phases.



90 2.2 Data Sources

The-data—set-The dataset used in this study is-was derived from Jehn et al. (2021). For each catchment, daily sum-sums of
precipitation [mm], daily sur-sums of evapotranspiration [mm] and soil temperature in-at 5 cm soil depths-depth [°C] are-were
available along with the corresponding discharge [mm]. The discharge data is-were obtained from a gauging station located
within the respective catchment. In addition, the datasetinehides-dataset included 11 static catchment features corresponding
95 to every catchment (Table 2). As suggested by Kratzert et al. (2019a), the inclusion of static catchment attributes can improve
the performance of machine learning models. Fable-2-Table 2 provides an understanding of the underlying aggregation of data,
spatial resolution and units. Apart from discharge data, which is-are accessible upon contacting the Hessian Agency for Nature
Conservation, Environment and Geology, all other data-sets-datasets are publicly available within the associated repository of

Jehn (2020).

Table 2. Summary of Daily Forcing Data and Static Catchment Attributes Utilised for Modelling: Detailing the Spatial Resolution of the
Original Data Sources with the Aggregation Methods and the Respective Units.

Feature Spatial resolution Aggregation Unit
precipitation 1,000 m daily sum mm
evapotranspiration 1,000 m daily sum mm
soil temperature (5 cm) 1,000 m daily mean °C
soil type 1:500,000 spatial majority classes (n=5)
soil texture 1:1,000,000 spatial majority classes (n=4)
geology type 1:250,000 spatial majority classes (n=2)
land use 1:100,000 spatial majority classes (n=3)
permeability 1:250,000 spatial majority classes (n=0)
average precipitation 1,000 m annual mean mm
catchment size 40m at reach pour point m?
elongation ratio 40 m at reach pour point /
soil depth 1:1,000,000 spatial mean m
average slope 40 m spatial mean °
average evapotranspiration 1,000 m annual mean mm

100 2.3 Data preprocessing

The preprocessing of the input data is-was an essential step -as-it-ensures-to ensure that the quality and integrity of the data is
were maintained. This process entails-entailed a detailed analysis of data continuity, encoding rennumerical-of non-numerical
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values, splitting the-data-set-of the dataset into training and validation subsets, followed by data normalisation and subsequent
transformation. The data analysis revealed discontinuities in the discharge data across the time series of 39 catchments. In
order to provide the longest possible time series for the training process, a total of 54 out of the full set of 95 catchments were
selected for model training. These catchments eover-covered 28 years (1991-2648-2018). Of the remaining 39 catchments,
35 were utilised for testing, each with a temporal resolution spanning six years from 1997 to 2002. Rivers containing artificial
constructions that impede discharge through impoundments (e.g., reservoirs) were not considered in this analysis. However, it
should be noted that a subset of the selected rivers might be equipped with hydraulic control mechanisms, such as floodgates
(Jehn et al., 2021).

For both training and testing data-setsdatasets, all categorical features (Table 2) were encoded with-using label encoding.
For-thatln this approach, every unique variable of a categorical feature was replaced by a non-repeatable integer value (Lin
et al., 2020). This approach-method was preferred over the frequently recommended one-hot—hot—encoding technique (Duan,
2019; Cerda and Varoquaux, 2022), in order to circumvent an increase in the total feature count equivalent to the number of
unique feature variables, as occurs with one—het—hot—encoding (Ul Haq et al., 2019). Moreover, label encoding accommodates
ordinal scales, which is-are better suited for hierarchical features such as permeability. In contrast, categorical features without
a meaningful order, such as soil type or soil texture, are better handled by one-hoet—hot—encoding, which treats each category
independently. Furthermore, Potdar et al. (2017) indieate-indicated that label encoding yields-yielded the lowest performance
in-the-context-of-among various investigated encoding methods. Consequently, it cannot be unequivocally asserted that this
method stands-stood as the optimal approach. To avoid further increasing the number of static input features, label encoding
was selected. The-training-dataset

The training dataset of 54 catchments was then further divided, using 80% of the data for training and 20% for validation.
Subsequently, the two data—sets-datasets were normalised by employing a min—max scaling method, with a range of [0, 1]

chosen as the boundaries.

#The choice of this scaling method

was made empirically based on observed performance in the dataset and model configuration. Concurrently, the precision of the
data representation was configured to adhere to a float32 format. The target variable was scaled independently of the features.

Moreover, to prevent data leakage, each feature normalisation was established solely based on the training data-set-—dataset._

The normalised training data-set-dataset exhibited a shape of N x D for each catchment, where N signified the number of
samples in time and D represented the number of features. To assess the impact of additional static features, two distinct data
sets-datasets were created. The first data-set-dataset included only three features with daily forcing data and assumed a shape
of N x 3, while the second ene-incorporated all 11 static features and took a shape of IV x 14.

To transform the data—sets-datasets into training batchesa—twe—, a two—dimensional moving window, characterised by di-
mensions 1" x D, was subsequently implemented, where 71" represents the moving window size, also known as look—back
period or sequence length (Figure 2). This window is continuously incremented by a single period in the dimension of IV, with

the initial window encompassing observations [Ny, Nr]. The consecutive window encapsulates observations [Na, Np41], and



this pattern is maintained until the window reaches the final element of the data-set-dataset (/V,,). Consequently, the entire data

set-dataset was partitioned into #—=-Np—=71m = N, 741 subsamples for every catchment. All subsamples were combined

into a three—dimensional array (Nyp=r51F <P N,_141 X T x D). The transformed catchment data—sets-werestacked-to
140 datasets were stacked into one final training set with the shape of G-<Np=rrxF<DC X N,,_741 x T x D, where C' was

equal to the number of catchments. The identical transformation was implemented for both validation and test data-setsdatasets,

encompassing those with and these-without static features.

It is important to know-note that the transformation of the data is already part of the hyperparamterisation-hyperparameterisation
process, a concept further elucidated below.

. initial -7 window
window --- slide

-——r-
T x Dk T x Dk
mg mp mp.T+1
L n-rYy

.
Nn.T+1XxTxDg

Figure 2. Schematic procedure of data transformation by applying a moving window: This procedure primarily involves the partitioning of
the data into distinct sections, employing a window (blue) that slides across the data-setdataset, effectively creating a temporal snapshot ().
T delineates the window size within the temporal dimension, D represents the feature dimension, and NV signifies the temporal samples with

a daily resolution.
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2.4 HyperparametrisationHyperparameterisation

The performance of machine learning models is influenced by the optimisation of their respective hyperparameters (Shekhar
et al., 2022; Ozaki et al., 2021). In the domain of machine learning, hyperparameters are variables that define the config-
uration of the models and are set prior to the training process (Bhattacharjee et al., 2021), while the term parameter refers
to the variables that the model learns via-during training (Goodfellow et al., 2016). The selection of an appropriate tool for
hyperparameter optimisation is a critical step. Consequently, this task was conducted utilising a Python framework known as
Spotpy (Houska et al., 2015). The framework offers computational optimisation techniques for calibrating models, such as a
Latin Hyper Cube Sampler (LHS), an appropriate method for selecting input variable values within a specified range, given its
ability to generate near—random samples from a multidimensional hyperparameter distribution (McKay et al., 1979).

The hyperparameters of the models are contingent upon the architectural design.

In this study, three distinct model architectures were explored: LSTM, GRU and CNN. LSTM and GRU are both types
of Recurrent Neural Networks (RNNs), specifically designed to handle sequential data, such as time series. Beeatse-As the
employed LSTM and GRU models possess an identical layer structure, both models share an equivalent set of hyperparameters.
A detailed overview of the utilised hyperparameters can be found in Table 3.

The hyperparameter 7' denotes the window size employed in the moving window mechanism and signifies the length of the
sequence, representing how many time steps (past days) are used to predict the discharge of the following day. This-sequence
encapsulates-the-historical-information-—considered-duringprediction—The feature maps F' quantify the number of results or
features generated within the convolution process. This is achieved by utilising a kernel of size k, referred to as the filter size,
which is systematically applied over the data to extract essential patterns and characteristics, thereby transforming the input
data.

In the context of LSTM and GRU models, the unit U refers to the number of hidden neurons within the RNN layer. This
quantity not only characterises the internal complexity of the layer but also corresponds to the output dimension. The fast-final
hyperparameter under consideration is the dropout rate p, which represents the fraction of the neurons that are randomly set to
zero during training (Srivastava et al., 2014).

The ranges of the hyperparameters were delineated in preliminary experiments by repeatedly training each model employing
LHS over wider ranges. Any hyperparameter that fell below or exceeded the minimum and maximum bounds of Table 3
respeetively-demonstrated inferior performance on average. The final training process was executed with a sampling size of
100 for each model and batch size combination, with and without static features. This culminated in a total of twelve distinct

sampling processes.
2.5 Model architectures

The architecture of the LSTM was first introduced by Hochreiter and Schmidhuber (1997). An LSTM consists of a memory

cell governed by four specific gate units, thus-granting the capacity to preserve information over extended periods (Cho et al.,

10
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Table 3. Ranges of hyperparameters deployed across different neural network models within the Latin Hypercube sampling framework.

Model Hyperparameter Min Max

Window size (T) 50 300

CNN Feature maps (F) 100 500
kernel-Kernel size (k) 3 9

Window size (T) 50 300

LSTM / GRU Units (U) 10 500

Dropout rate (p) 0.05 0.5

2014). Through this architectural design, LSTMs possess the capability to mitigate the challenges associated with exploding or
vanishing gradients, as encountered with-in traditional RNNs. While the nuanced workings of LSTM cells and their concomi-
tant advantages are pertinent (Hochreiter and Schmidhuber, 1997), they have been extensively discussed in prior research and
thus will not be repeated within this study.

The architectural design of a GRU model is inspired by the structure of LSTMs, with the distinction that it incorporates
only two gates to regulate the information flow. This results in reduced computational complexityand-thereby-rendering-GRU-,
thereby rendering GRUs more computationally efficient, while still addressing the exploding 7and vanishing gradient problem
(Cho et al., 2014).

In contrast, CNNs are tailored for grid—Iike data structures, including images. The CNN architecture was first introduced
by Fukushima (1980). The term convolutional neural network was introduced by LeCun et al. (1989), who developed a model
for handwritten digit recognition.

CNN models possess a significant berefitadvantage in that the convolution operation is inherently paratetizableparallelisable,
allowing for the simultaneous execution of numerous calculations. An additional merit is the ability to extract features +-irre-
spective of the exact location where the feature was-is found. This reduces the number of input samples needed for training
the-networksize-and-thus—further-and thus improves computational efficiency (Lecun et al., 1998). Note that these extracted
features are notthe-same-as-features-distinct from those listed in Table 2.

The architectural configurations of the three models employed in this study are depicted in Figure 3, with further explanations

provided in the subsequent sections.
251 LSTM

The LSTM model comprises a single LSTM layer configured with a designated number of hidden units (U). To mitigate
overfitting and promote generalisation, a dropout layer is directly connected to the LSTM layer, introducing regularisation by

randomly deactivating a specific fraction (dropout rate) of the hidden units (Srivastava et al., 2014).

11
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Figure 3. Schematic diagrams of the architectures of the three wtilized-utilised models: (a) Long Short-Term Memory (LSTM), (b) Gated
Recurrent Unit (GRU), and (c) Convolutional Neural Network (CNN).

The final layer is a dense layer that applies a Sigmeid-sigmoid activation function, which converts the output into a proba-
bility value between zero and one (Figure 4c). The adoption of this specific activation function was motivated by the need to
prevent the generation of negative discharge predictions, which were previously encountered with the use of alternative activa-
tion functions like LeakyReLU or a linear function. Such negative predictions are hydrologically implausible and undermine
the validity of the model outputs. However, the utilization-utilisation of a sigmoid function, in conjunction with a min-max
min—max scaling technique, introduces a structural limitation wherein the model is incapable of extrapolating beyond the max-
imum discharge values observed during the training phase. Considering these trade-offs, the sigmoid function was chosen as a
compromise to balance model stability and physical realism.

A comprehensive examination of all activation functions employed within the models is provided in Figure 4. This illus-
tration delineates the specific characteristics of each function, highlighting that both the Rectified Linear Unit (ReLU) and
Stgmotd-sigmoid functions are designed to avoid negative values. The ReL.U function, in particular, suppresses negative val-
ues by setting them to zero, while the Sigmeoid-sigmoid function, recognised by its characteristic S—shape, maps any input

into values between zero and one. Pertinent to the context of deep learning, especially in image recognition, Relu-ReLU is

12
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often favoured for its expedited learning capabilities, yielding enhanced performance and superior generalisation attributes
(Krizhevsky et al., 2017). However, it has-been-was observed in preliminary experimental setups that the Sigmeid-function

exhibits-a-greater-degree-of-sigmoid function exhibits greater stability, while ReLU demonstrated a higher propensity to induce
gradient exploding. The complete architectural design of the LSTM model is illustrated in Figure 3a.

2.5.2 GRU

The architecture of the GRU model shares a structure similar to that of the previously described LSTM model, with the
primary difference being the substitution of the LSTM layer with a GRU layer (Figure 3b). Similar to the LSTM model, the
GRU model contains a single layer configured with a designated number of hidden units (U) and employs a dropout layer
directly connected to the GRU layer to mitigate overfitting and promote generalisation. The final dense layer similarly employs

a sigmoid activation function to ensure that all predicted discharge values remain within a physically plausible range.
2.5.3 CNN

The CNN is composed of a series of three convolution cells, each containing a one—dimensional convolution layer followed
by a pooling layer. The convolution layers incorporate a ReLLU activation function (Figure 4b) and employ a sliding window
mechanism known as a kernel that traverses the input data for processing. As previously elucidated, this kernel is responsible
for extracting feature maps (£) from time—dependent input features. The kernel, with a size of k, is applied uniformly across
all convolution layers. In each successive convolution layer, the quantity of feature maps is increased by a factor of two, thereby
inereasing-enhancing the model’s capacity to extract and represent complex features.

In the initial pair of convolution cells, the temporal dimension (I'—array) within the pooling layer is reduced by a factor of
two by employing a stride of size two across each T—array, while the third pooling layer extracts a single set of feature maps
along the temporal axis of all T—arrays. To preserve the temporal dimension during the convolution process, each convolution
layer incorporates symmetric zero—padding. This technique involves adding zeros around the input data, ensuring that the
processed dimension remains unchanged after applying the convolution operation.

The last layer of the model is a dense layer that compresses the model dimensions to produce a single output value for each
prediction. This layer is fully connected to the preceding layer and uses a leaky rectified linear unit (LeakyReLU) activation
function as depicted in Figure 4b. The LeakyReLU, akin to the standard ReLU (shown in the same figure), differs by introducing
a small, non—zero slope for negative values. This characteristic enhances gradient propagation and mitigates the issue of
vanishing gradients (Ramachandran et al., 2021).

The selection of the LeakyReLLU over the standard linear activation function (Figure 4a) was driven by the latter’s propensity
to generate negative predictions for the discharge values. Although LeakyReLU does not entirely preclude negative predic-
tions, it effectively modulates them into marginally negative outputs and therefore reduces the extent of negative predictions.

Although the Sigmeid-sigmoid function is effectively utilised in LSTM and GRU models to prevent negative discharge predic-

13



tions, its application within the CNN model framework yielded suboptimal results in preliminary trials, espeeiatty-particularly
when compared to the performance achieved using the LeakyReLU activation function. This informed the decision to opt for
245 LeakyReLU in our work.

A visual representation of the complete architectural design of the CNN model is presented in Figure 3c.

a) Linear Activation Function b) ReLU Activation Functions c) Sigmoid Activation Function
10 10 1.0
— RelU
8 —— LeakyRelU 0.8
5
0.6
y 0 y y
0.4
-5
0.2
-10 0.0
-10 -5 0 5 10 10 -10 =5 0 5 10
X X X

Figure 4. Visualizatton-Visualisation of the three activation functions utitized-utilised within the employed models. The diagrams show the
graphical representations and functional ranges of (a) the linear function, which preserves the raw, untransformed input; (b) the Rectified
Linear Unit (ReLU) function, which maps negative inputs to zero and passes positive inputs unchanged; and (c) the sigmoid function,
charaeterized-characterised by its distinct “S*-shape—shape, which compresses any input into a range between zero and one. Note: different

Y-axis scales.

2.6 Loss function

In machine learning algorithms, the role of the loss function is paramount as it quantifies the discrepancy between the model’s
predictions and the actual data (Wang et al., 2022). The eptimizeroptimiser, an algorithm designed to mintmize-minimise
250 the loss, regulates the process of updating the model’s parameters. This eptimizer-optimiser strives to enhance the-model
performance by iteratively determining the loss and then adjusting the model parameter-parameters to reduce this loss. This is
achieved by identifying the gradient or derivative of the loss function, which denotes the local minimum (least steep ascent).
Thus, by minimising the loss, the machine learning model can improve its predictive accuracy. The-optimizer-
The optimiser used for all models in this study is the Adam—eptimizer—optimiser (Kingma and Ba, 2017). This algorithm
255 provides high computational efficiency for gradient—based optimisation and is suitable for large models that include a high
number of parameter sets.
The choice of loss function is dictated by the specific task at hand. A commonly used loss function when predicting con-

tinuous data is the Mean Square Error (MSE), which is favoured for its computational efficiency. However, MSE suffers from
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sensitivity to outliers due to its quadratic penalty and exhibits scale—dependence, rendering it less interpretable and compara-
bly challenging when evaluating models across disparate output scales (Liano, 1996; Gupta et al., 2009).

Another metric used to capture model performance, traditionally t#sed-employed in hydrology, is the Nash—Sutcliffe effi-
ciency (NSE) (Knoben et al., 2019). Based on the close similarities between MSE and NSE and hence the inherent disadvan-
tages, NSE is not an ideal choice as a loss function either (Gupta et al., 2009).

To mitigate the systematic issues encountered in optimisation processes that arise from formulations linked to the MSE or
NSE, we decided to utilise the more resilient Kling—Gupta efficiency (KGE). The KGE corrects for underestimation of vari-
ability +-by providing a direct evaluation of four different facets of the discharge time series, which-encompass-encompassing
shape, timing, water balance and variability (Santos et al., 2018). The definition of KGE is delineated in Equation 1.

KGE:l—\/(r—1)2+(a—1)2+(5—1)2 (1

with:

o C(Ov(obs, sim)
Oobs * Osim
Osim

Oobs
B o Hsim
Hobs

where £ is the mean, o is the standard deviation, and r is the linear correlation factor between observations and simulations.
The variable « is a measure of how well the model captures the variability of the observed data and 3 defines a bias term
indicating how much the model’s predictions systematically deviate from the true values (Knoben et al., 2019).

Analogous to NSE, KGE also indicates the highest performance when equal to one. However, the goal of the loss func-
tion is to minimise the error; thus, the discrepancy between simulation and observation should approach zero. Therefore, the

implemented loss function L results in Equation 2.

2 2
L(obs, sim) — \/(T - ]-)2 + (O—blm - 1) + (M&m — 1) (2)
Oobs Hobs

2.7 Model training

The training process was conducted using a GeForce RTX 3090 graphics card equipped with 24 GB of memory. Each model

was subjected to training with batch sizes of 256 and 2,048. The batch size is a fraction of the total number of training samples

and represents the number of samples utilised to train the model prior to an update of the internal parameters (Radiuk, 2017).
The batch size has no physical interpretation in the context of hydrological processes but functions as a crucial hyperpa-

rameter in the training of neural networks. Prior studies, such as Kratzert et al. (2019a, b), have demonstrated the successful
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application of a batch size of 256. In this study, this batch size was also adopted and served as the baseline. To further explore
the impact of larger batch sizes, a multiple of 256 was employed. A batch size of 2048—was-then—utilized;-as—thisrepresents
2,048 was then utilised, representing the upper limit of the memory capacity of the graphics card used.

The maximum number of epochs designated for training was set to 60. An epoch refers to a single iteration over the entire
training data set during which the model’s parameters are adjusted to minimise loss. However, the training process was config-
ured to terminate when the validation loss failed to show improvement throughout five consecutive epochs. An enhancement
was recognised when the validation loss decreased by a minimum of 0.001 during these five epochs. This mechanism is called
early—stopping—stopping.

Given that the input data for the training procedure are arranged by catchments, shuffling of data was implemented to
circumvent the potential for overfitting to a specific catchment. Furthermore, each model was trained both with and without
the inclusion of static features for the two specified batch sizes. This leads to a total of four distinct training phases for every
model with a specific hyperparameter set.

The static features were analogoushy-processed-processed analogously within the models to the treatment of the daily fea-
tures. The learning rate, frequently acknowledged as the paramount hyperparameter to tune, exerts a considerable influence on
the training of models that employ gradient descent algorithms (Xu et al., 2019). Henee;when-

When the learning rate is too high, the optimizer-optimiser may diverge from the local minimum, while setting it too low
can result in a protracted learning process (Zeiler, 2012). To efficiently address this behaviour, a dynamic adjustment of the
learning rate was integrated into the training process using a learning rate scheduler.

This algorithm modifies the learning rate based on the current epoch number. During the warm—up period, the learning
rate linearly increased from the initial—rate to the base—rate throughout three epochs. The warm—up-period-is—up period
was followed by a decay period lasting ten epochs, during which the learning rate linearly deereases—decreased from the
base—rate to the minimum——rate. Following the decay phase, the learning rate is-was kept constant at the minimum—rate for

the remaining epochs. Detailed information can be found in Table 4.

Table 4. Gradual alterations in the learning rate throughout the 60 epochs of the model training process.

Epoch Stage Learning Rate
1-3 Warm up Linear increase from 1e =% to 5e =%
4-13 Decay Linear decrease from 5¢~* to 5¢~°
14-60  Cool down Constant 5¢~°
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3 Results and Discussion
310 3.1 Model Performance

The analysis depicted in Figure 5 delineates a comparative evaluation of model performance concerning architectural varia-
tions, batch sizing --and the incorporation of supplementary static attributes. The findings reveal that employing CNN models
in conjunction with static features yielded a mean KGE of 0.80 and 0.78 for batch sizes of 256 and 2,048, respectively. The
inclusion of static features provides a performance benefitbecatse-, as the mean accuracy drops to 0.71 and 0.67 when static
315 features are omitted for batch sizes of 256 and 2,048, respectively. This aligns with the findings presented by Kratzert et al.
(2019b), who assert that static catchment attributes enhance overall model performance by improving the distinction between
different catchment-specific rainfall-runoff behaviors-behaviours.
Notably, the maximum KGE in the absence of static features reached 0.97 and 0.92 for batch sizes of 256 and 2,048,
respectively, highlighting the potential for high model performances even without static features. On the contrary, the minimum
320 KGE drops when omitting static features to -0-2+-and—06:26—0.21 and —0.26 for batch sizes of 256 and 2,048, respectively,
showing the lowest minimum performance of all models. This suggests a deficiency in the model’s ability to generalise, a
phenomenon frequently observed when overfitting occurs (Srivastava et al., 2014).
Regarding the minimum KGE values -when utilising static features, the CNN models demonstrated the third and fourth

highest minimum values, registering at 0.24 and 0.20 for batch sizes of 256 and 2,048, respectively.

I \With Static Features I Without Static Features

1.0

0.8

0.6

0.4

KGE

0.2

0.0

-0.2

CNN CNN LSTM LSTM GRU GRU
BS=256 BS=2048 BS=256 BS=2048 BS=256 BS=2048

Model architecture - batch size

Figure 5. Evaluation of performance discrepancies in the applied models relative to batch size and additional static catchment attributes

during the testing period. The number represents the average KGE over all 35 catchments. The dotted line displays the percentile intervals.
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In the case of LSTM networks, mean KGE values of 0.78 and 0.73 with static features for batch sizes of 256 and 2,048,
respectively, can be noted. The mean KGE declined to 0.73 and 0.68 when static features were omitted for batch sizes of 256
and 2,048, respectively. Notable is the maximum performance achieved with static features, which reached 0.94 for a batch
sizes-size of 256. In contrast, the LSTM with a batch size of 2,048 exhibited the lowest minimum value of 0.05 across all
models with static features. For models run without static features, the LSTM with a batch size of 256 recorded the highest
minimum value of 0.09. Conversely, the LSTM model with no static features and a batch size of 2,048 presented the lowest
maximum KGE of 0.86.

For GRU, the mean KGE exhibited similar trends with the inclusion of static features, reaching 0.77 and 0.75 for batch sizes
of 256 and 2,048, respectively. The mean performance declined to 0.71 and 0.69 when static features were omitted for batch
sizes of 256 and 2,048, respectively. The GRU model with a batch size of 2,048 demonstrated the highest minimum KGE value
of 0.37 among all models when static features were incorporated. Following closely, the GRU model with a batch size of 256
under the same feature scenario presented the second—highest minimum KGE of 0.28.

Upon examining the performance range, the GRU model with static features and a batch size of 2,048 exhibited the narrowest
performance range of 0.52. Subsequently, the GRU model with static features and a batch size of 256 displayed a performance
range of 0.63, indicating robust generalisation capabilities for these two models. Notably, for both batch sizes, the GRU model
demonstrated a marginally higher maximum KGE when static features were omitted. This finding contradicts the outcomes of
all other models, where the inclusion of static features consistently reduced the maximum KGE, regardless of the-batch size.
The sole exception to this pattern was observed in the CNN model with a batch size of 256 utilising no static features.

All-togetherAltogether, when analysing the influence of batch size across various models, it becomes evident that an in-
crease in batch size correlates with a decrease in performance. This observation is confirmed by the study of Masters and
Luschi (2018), who discovered that smaller batch sizes contribute to enhanced training stability and generalisation perfor-
mance when employing CNN models for image classification. Additionally, Kandel and Castelli (2020) identified a strong
correlation between learning rate and batch size, proposing that higher learning rates should be employed when utilising larger
batch sizes. However, the learning rate remained constant across varying batch sizes throughout this study.

Altogether, these results suggest that:

i. the smaller batch size of 256 contributes to better model performance with regard to mean KGE values -
ii. Statie-static features generally improved the mean KGE across all architectures and batch sizes -

iii. The-the CNN model with static features and a batch size of 256 showed the highest mean KGE and therefore slightly
outperforms LSTM and GRU models -

iv. Fhe-the KGE performance ranges for models with static featare-features are substantially smaller and en-at a higher level

than the ranges for models without static features —
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v. Overalloverall, the GRU model with a batch size of 256 and static features exhibited favourable KGE performances akin

to LSTM and CNN models and mitigated poor predictions across all test catchments -

Comparing evaluation-metriesEvaluation Metrics

To further investigate the efficacy of the applied models, additional performance metrics were incorporated. Among these, the
NSE was selected to facilitate comparison with prior studies that conventionally utilise this metric. Moreover, the Percent Bias
(PBIAS) was employed to gauge the systematic deviation of the modelled data from observed values, indicating whether the
model predictions consistently overestimate or underestimate the observations (Moriasi et al., 2007). The Mean Absolute Error
(MAE) was integrated as a metric to quantify the absolute discrepancies between model predictions and actual observations,
serving as a direct assessment of model precision (Siqueira et al., 2016). Lastly, the Coefficient of Determination (R?) was
adopted as an indicator for evaluating the degree of alignment between simulations and observed data, reflecting the model’s
’goodness—of—fit” (Onyutha, 2022). A comparative view of the results of all the used-employed performance metrics is shown
in Table 5.

Overall, the presented data indieates;-indicate that NSE metrics are marginally lower than the KGE values. This phenomenon
could potentially stem from the presence of counterbalancing errors, an inherent limitation associated with the KGE metric.
Such counterbalancing errors materialise through concurrent overestimation and underestimation of the predieting-predictive
target. Given that bias and variability collectively constitute two-thirds of the KGE, their effects may augment the aggregate

score -without necessarily indicating a more accurate or relevant model (Cinkus et al., 2022).

Zf\:l (0bs; — sim;)? Zﬁvzl(obs,,; — sim;)?

NSE=1-— : L im .
Eim o 00! 3 o o)t
N [
PBIAS = 100 x Zi:1(%mz obs;) .
i—10bs;
X
MAE = N Z lobs; — sim; .
i=1
N — N 2
. bs; — ob im; — si
R? > i1 (0bs; —obs)(sim; — sim) .

= \/Zfil(obsi 7%)2\/Z£\L1(5imi — sim)?

Notably, the CNN and LSTM models, when configured with a batch size of 256 and incorporating static features, achieved
the highest NSE (see-Equation 3) values of 0.76 and 0.75, respectively. In comparison, the GRU model under identical con-
figurations exhibits-exhibited a slightly inferior performance, marked by an NSE of 0.72. In the context of existing literature,
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Nguyen et al. (2023a) reported an NSE of 0.66 for an LSTM model calibrated across three distinct catchments, each with its
own separate calibration and not extending to ungauged scenarios.

While models calibrated to individual basins often perform better than those generalised across multiple catchments, par-
ticularly in PUB, our results demonstrate that the generalised models trained here achieves-achieve even better results than
these speeialized-specialised models. Kratzert et al. (2019a) documented an NSE of 0.54 for an LSTM model, which, despite
being lower, is deemed more robust due to its validation across 531 catchments using k-fold cross-validation. Nonetheless, the
observation that NSE values surpassing 0.7 in the most efficacious model across each architecture underscores the potential of
these artificial models, provided that optimal hyperparameter tuning is applied and sufficient data is-are available to support
the learning process.

All CNN models universally exhibit a positive PBIAS (see-Equation 4), signifying a consistent underestimation of discharge
rates, regardless of variations in batch size or feature scenarios. Notably, CNN models lacking static features manifesten
average-smaller-diseharge-, on average, smaller discharge deviations of approximately 7%, marking them as the models with
the most significant underestimations. Conversely, the CNN model employing a batch size of 256 alongside static features
demonstrates the smallest PBIAS, recorded at 0.06%.

In contrast, LSTM models display a PBIAS pattern that does not adhere to a discernible trend. The LSTM model achieving
the highest KGE metric overestimates the discharge by an average of 3.46%. The LSTM models with a batch size of 2,048 and
inclusion of static features exhibits-exhibit the most substantial overestimation, with a PBIAS of -5-4=5.1%. The absence of
static features in LSTM models tends to yield PBIAS values closer to zero, which is preferable.

GRU models reveal a negative PBIAS when static features are incorporated and a positive PBIAS without them. The most
favourable PBIAS among GRU models, -6-48—0.48%, is observed in the model with a batch size of 256 and static features,
closely aligning with the best—performing CNN model’s PBIAS of 0.06%. Overall, GRU models display the least average
deviation in PBIAS.

Regarding MAE (see-Equation 5), most models exhibit comparable outcomes with an MAE around 0.3 mm. However,
LSTM and GRU models with a batch size of 2,048 are exceptions, showing a slightly elevated MAE around 0.4 mm. Despite
this, the models generally demonstrate an ability to minimise this error metric, particularly evident in CNN models with higher
PBIAS values where the cancellation of positive and negative predictive errors does not occur.

The R? (see-Equation 6) scores of every model architecture show always-a slightly better fit without static features --when
comparing equal batch sizes. One exception to this trend are-the-GRU-models-is the GRU model with a batch size of 2048;2,048,
where the model incorporating static features shows a higher fit than without static features. Furthermore, the R? values confirm
the analysis of the KGE performance, which showed better performance with smaller batch sizes.

After considering the effects of batch size, feature scenarios and resulting performance metrics, it is also instructive to
examine the chosen window sizes across the employed models, which may offer further insight into how each model processes

temporal dependencies.
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Across architectures, CNN models generally utilize-utilise smaller window sizes compared to LSTM models, with GRU
models employing window sizes that lie between the two. This trend might reflect the intrinsic architectural efficiencies of
CNN models in handling spatial—temporal data more compactly, while LSTM models, designed to capture long—term de-
pendencies, benefit from broader temporal windows. The GRU models, with their simpler architectural design, may not manage
extensive temporal sequences as effectively as the more complex LSTM models. Regarding batch sizes, there is an observable
trend where smaller window sizes are generally favored-favoured when larger batch sizes are used, with the exception of GRU
models. The usage of static features does not directly influence the choice of window size but consistently correlates with
enhanced performance across all window sizes and models.

Furthermore, for GRU models, and to a certain extent for LSTM models at a batch size of 256, a decline in performance
with increasing window size is observed, suggesting a potential overload of contextual information that may not be essential
for accurate predictions. Conversely, for CNN and LSTM models at a batch size of 20648;2,048, an increase in window size
correlates with improved performance.

Overall, these observations indicate that while window size is a critical parameter in model configuration, its impact on
performance is significantly modulated by other factors such as model architecture, batch size ;-and especially the inclusion
of static features. In summary, the insights of Table 5 eorroborates-corroborate that CNN models, when incorporating static

features, manifest superior efficacy, particularly in the context of the metrics assessed for validation.

Table 5. Synthesis of performance metrics across models, batch sizes, and feature scenarios during the testing period. Numbers shaded blue

denote higher scores for each metric.

Mean Median

Model Batchsize Features
KGE NSE PBIAS MAE R? KGE NSE PBIAS MAE R?

256
+SF
2048
CNN
256
-SF
2048
256
+SF
2048
LSTM
256
-SF
2048
256 SF 0.32 0.77 0.79
+
GRU 2048 0.69 -2.75 0.37 0.77 0.73 -2.96 0.30 0.77
256 SF 0.67 0.32 -3.40 0.32
2048 -3.22
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Statistical Variability Across Model Runs

To assess whether the differences in performance among the best—performing CNN, LSTM, and GRU medel-models with
a batch size of 256 and incorporating static features stems—from-random-initializationstem from random initialisation, each
model was trained 20 times with distinct random seeds. The results are summarized-summarised in Figure 6, which illustrates
the distribution of KGE values across the repeated runs.

The mean KGE for CNN, LSTM, and GRU models remained consistent within the range of the initial single-run results,
registering at 0.76, 0.75, and 0.76, respectively. The interquartile range (IQR) for each model is relatively small, indicating
low variability in performance due to random inttiatizatteninitialisation. Notably, the GRU model exhibits the narrowest IQR,
reflecting its robustness across multiple runs. The LSTM model exhibits slightly greater variability, though its performance
distribution largely overlaps with that of the GRU model. In comparison, the CNN model displays the widest IQR-—Hewever;
however, the majority of its distribution is positioned at higher KGE values relative to the other models. Furthermore, the CNN
model achieves the highest reported KGE value (0.80) but also includes the lowest outlier at 0.62.

These findings confirm that the CNN model exhibits a slight performance advantage over the LSTM and GRU models in
terms of KGE. This observed difference is not predominantly influenced by random initializatien-initialisation but instead
reflects distinctions in the architectural design of the models and their respective capacities for generalizationgeneralisation.
However, while the observed difference is relatively small, it is important to note that the overall performance of all models is

strong, inherently leaving limited room for substantial improvement.

0.85

0.80

w
o °
¥
0.70
0.65
0.60
CNN LSTM GRU

Model architecture

Figure 6. Distribution of KGE values for CNN, LSTM, and GRU models across 20 independent runs with different random seeds, using a

batch size of 256 and incorporating static features. The number represents the average KGE over all 20 runs.
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3.2 Runtime

To investigate the computational efficiency associated with the models employed, the runtime of the training process was
measured for each model, considering variations in both batch size and the combination of features.

Both the batch size and the integration of additional static features significantly influence the runtime of models across all
employed architectures, as evidenced in Figure 7. The CNN model with a batch size of 2,048 and without static features pre-
sented the shortest runtime of approximately 2.3 minutes. Although the CNN model demonstrated rapid convergence towards
its optimal minimum error, it simultaneously exhibited the lowest performance as delineated in Figure 5. This suggests that the
conditions were not sufficiently robust to discern the intrinsic patterns.

Using an identical batch size and feature configuration, the GRU model, along with the CNN model configured with a batch
size of 256 and no static features, had the second shortest runtimes of approximately 4.2 minutes.

The introduction of static features resulted in a notable increase in the runtime for all models, barring the GRU model with
a batch size of 256, where the inclusion of static features marginally reduced the runtime, rendering it the fastest among all
models that utilised static features. The runtime augmentation was especially pronounced in the CNN model with a batch
size of 2,048, showing a more than twelvefold-twelvefold increase, thereby marking it as the most time—consuming model
across all evaluated scenarios. LSTM models exhibited also a substantial increase in runtime across both batch sizes upon the

incorporation of static features.

30
I \With Static Features I Without Static Features

thL

CNN CNN LSTM LSTM GRU GRU
BS=256 BS=2048 BS=256 BS=2048 BS=256 BS=2048

25

20
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Runtime [min]

10
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Model architecture - batch size

Figure 7. Comparison of model runtime across three different architectures (CNN, LSTM, and GRU) with varying batch sizes (256 and

2048) and the presence or absence of static features.
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Within identical model architectures, it is observed that larger batch sizes contribute to faster runtimes in the absence of static
features. Conversely, when static features are employed, models tend to exhibit faster runtimes with smaller batch sizes, with
the exception of the LSTM models. For these models, an escalation in batch size consistently results in accelerated runtimes,
irrespective of the feature configuration.

The different behaviour of additional features towards training runtime while using different batch sizes is unexpected and
cannot be explained solely by considering the batch size and feature scenarios. As reported by Radiuk (2017), larger batch sizes
correlate with increased runtimes, which is attributable to the higher computational utilisation required to process an increased
quantity of training samples for the purpose of updating model weights. Nonetheless, this assertion assumes that the models
under comparison diverge only in terms of batch and feature size. This presumption does not apply to the present study, where
each model is also characterised by a unique optimised combination of hyperparameters (Table 3). A possible explanation
might be that all models exhibiting a more protracted runtime require additional epochs to converge. This phenomenon could
be facilitated by the early—stopping mechanism deployed in model training, which permits the termination of the training
process when the optimised metric ceases to demonstrate improvement.

Altogether, when static features are incorporated, the GRU model utilising a batch size of 256 demonstrates the fastest
runtime (9.5 minutes). In contrast, the CNN model, configured identically with respect to batch size and employed features,
exhibited a runtime of 16.1 minutes, consequently rendering the runtime of the GRU model 41% faster. In the final analysis, it
becomes evident that the GRU model exhibits superior runtime performance compared to both the CNN and LSTM models,
specifically when employing a batch size of 256 and utilising static features. In the context of RNN models, with a focus on
runtime, GRU models were found to be superior in efficiency compared to LSTM models. This stands in alignment te-with
the findings of Yang et al. (2020), who reported that GRU was 29% faster than LSTM when processing the identical data
setdataset. However, as stated before, the examined models in this study exhibit disparities not only in terms of batch size
but also encompass other architectural parameters such as the number of utilised epochs, hidden units and the window size
(Table 6). These differences may result in altered computational efforts.

Apart from the different model architectures, the specific configuration of hyperparameters in each model yields varying
computational effort. For example, an increase in window size results in a more extended sequence to process, thereby necessi-
tating additional computational effort. In the context of the CNN models, the computational effort is contingent on the window
size, feature maps, kernel size and the quantity of input features. Models incorporating static features (+SF) possess 14 input
features, whereas those without static features (-SF) contain only three dynamic features. In contrast, the computational effort
of the LSTM and GRU models is determined by the units within the corresponding cell, the input feature size and the window
size.

The observed increase in computational time for the GRU model, when running with a batch size of 256 and no static
features, is mainly due to a significantly larger window size, which increased from 87 to 298. This expansion, in the absence of
static features, requires a more extensive computational effort. In contrast, for CNN models employing a batch size of 2,048,

the pronounced augmentation in execution time is primarily induced by an increase in the quantity of feature maps, presenting a
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2.3—fold increase. Generally, the marked prolongation in computational duration for CNN models incorporating static features,
as opposed to those excluding them, can be elucidated by the incorporation of a considerably higher number of feature maps in
the former. This enlargement is a direct consequence of the increased data volume processed by the models when supplemented
with static features. Notably, CNN models utilising a batch size of 2,048 manifest a reduction in window size, implying that the
model may encounter challenges in generalising from extended input sequences due to potentially excessive variability among
the samples within a batch.

For the LSTM models with a batch size of 2,048, an 83% increase in the number of hidden units, when static features are
introduced, is the primary factor contributing to the substantial increase in runtime for this configuration. Notably, the GRU
model with a batch size of 256 and static features, which exhibits the smallest window size of 87 among all recurrent models,
achieves the fastest runtime for models incorporating static features, a result directly attributable to its reduced window size ;

while still maintaining commendable predictive performance.

Table 6. Selection of titized-utilised hyperparameters for the employed CNN, LSTM, and GRU models: A comparative examination of
different feature scenarios, including scenarios with static features (+SF) and without static features (-SF), across two distinct batch sizes

(256 and 2048).

Batch size 256  Batch size 2048
+SF -SF +SF -SF

Model Hyperparameter

Window size (T) 179 183 86 70

CNN Feature maps (F) 346 105 466 205
Kernel size (k) 4 6 8 8

Window size (T) 232 288 168 159

LSTM Units (U) 491 377 453 248

Dropout rate (p) 0.37 0.34 0.29 0.23
Window size (T) 87 209 150 229
GRU Units (U) 373 364 480 172
Dropout rate (p)  0.48 0.11 0.27 0.17

The architectural differences between CNN models and recurrent models (LSTM and GRU) render direct comparisons of
their hyperparameter configurations impracticable, with the exception of window size. As indicated in Table 6, the window
sizes of CNN models are smaller than those observed in recurrent models, except for the GRU model utilising-employing a
batch size of 256 and incorporating static features.

Moreover, an assessment of the best—performing models within each architecture (all configured with a batch size of 256

and incorporating static features) with-regard-to-their-hyperparameter-configurations; reveals-thatitis-reveals that the afore-
mentioned GRU model that-possesses the smallest window size (87), sueceeded-followed by the CNN (179) and the LSTM
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(232) models. The increased length of input sequences implies greater computational demands, which partly accounts for the
elevated runtime observed in the specified CNN model, despite its inherent capacity for parallel processing. As outlined in
subsection 2.5, this attribute is typical of CNN models, in-eentrast-to-whereas the sequential processing nature of LSTM and
GRU models limits such paralielizationparallelisation.

In conclusion, the comparative analysis suggests that the GRU model, particularly with-when utilising a batch size of 256
and the-inehiston-of-incorporating static features, emerges as the optimal choice for hydrological applications thatprieritise
prioritising computational efficiency alongside predictive performance. Furthermore, the differential impact of batch sizes
and feature configurations on the runtime across CNN, GRU ;-and LSTM models underscores the critical role of tailored
hyperparameter optimisation in achieving computational efficiency without compromising model performance.

Given the observed favourable outcomes when utitising-employing a batch size of 256 with static features, subsequent

analyses will focus exclusively on models adhering to this configuration.
Assessment of Flow Segment Performance

To reinforce the analysis of performance, the recorded discharge data from all evaluated catchments, corresponding to the
highest—performing model within each architectural category, were divided into quartiles. First, the discharge data for each
catchment were sorted in ascending order. Then, the sorted data were divided into four quartiles, with each quartile representing
a 25% portion of the data range for each catchment, thereby forming four distinct segments. Subsequently, for each segment,
KGE and PBIAS of the predicted discharge were calculated in relation to the observed values, as illustrated in Figure 8.

Across all models, a noticeable increase in KGE is observed from the lowest to the highest flow segments, with the exception
of Q2, which represents lower flow levels and records the lowest KGE values. Remarkably, only within the highest flows is
a positive KGE observed. This implies that the models predominantly discern peak flow events as critical data for learning,
treating low flows as less significant or noise, which the models aim to diminish.

This phenomenon may be attributed to a bias in the KGE towards elevated flows, thereby inadequately penalising inaccu-
racies in lower flow predictions. Specifically, KGE includes three parts, the Pearson correlation coefficient r-variability-ar,
variability o, and bias 5-3 (Equation 1). Because peak flows typically exhibit larger numerical values than lower flows, which
they might dominate the overall variance;; slight improvements in capturing these high—flow events can thus yield relatively
large gains in all three components, thereby improving the overall KGE score.

Consequently, forthcoming research should explore evaluation metrics that facilitate a more holistic optimisation approach.
With-regard-to-Regarding the highest flows, the KGE metrics exhibit close resemblance across models, with the CNN model
slightly leading with a KGE of 0.69. Conversely, the LSTM model demonstrates superior efficacy in modelling Q1 and Q2
flow segments.

Addressing the PBIAS, the pattern of enhanced model performance with increasing flow magnitudes, as noted with KGE
metrics, persists. This is evidenced by the narrowing spread of the violin plots. Intriguingly, except for the Q4 segment, the

PBIAS remains positive across all models for each flow segment, indicating a general overestimation of lowest to higher flows
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Figure 8. Comparative performance of CNN, LSTM, and GRU models incorporating static features across different flow segments. The top
row displays the Kling-Gupta Efficiency (KGE) and the bottom row shows the Percent Bias (PBIAS) for the lowest flows (Q1), lower flows
(Q2), higher flows (Q3), and highest flows (Q4). Each violin plot represents the distribution of model performance metrics for all evaluated

catchments within each flow segment. The black dots indicate the mean values for each segment.

and a mild underestimation of peak flows. This phenomenon may be attributed to the limitation described in seetten-Section
2.5.1, whereby the integration of a sigmoid activation function with a min—max scaler inherently limits the highest possible
prediction value to the maximum observed during the training phase.

Notably, the predictions by the CNN model for lowest flow exhibit the most pronounced bias, particularly on the positive
spectrum, pointing to a lack of adequate generalisation capabilities.

A further decomposition of the KGE is illustrated in Figure 9, where each of the three components of the KGE (Pearson
correlation coefficient (1), variability (ecer), and bias (5/3)) are presented separately. These components offer insights into
distinct aspects of the model’s performance. The Pearson correlation coefficient (¥7) measures the strength and direction of the
linear relationship between the observed and simulated data. A value of 1 indicates perfect positive correlation, -1 indicates
perfect negative correlation, and 0 indicates no correlation. The variability (erqr) measures the ability of the model to capture

the observed variability. A value of 1 indicates that the model’s variability matches the observed variability. Values greater than
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1 indicate the model has higher variability, while values less than 1 indicate lower variability. The bias term (543) indicates
the systematic overestimation or underestimation by the model. A bias value of 1 means there is no bias, values greater than 1
indicate overestimation, and values less than 1 indicate underestimation.

Figure 9 reveals that #r is more consistent across Q1 to Q4 for the LSTM model, unlike the CNN and GRU models, which
display a wider range for 7 below 0.25. This indicates that the LSTM model is better at matching the timing of prediction for
low flows. A similar trend is observed for erar, where the LSTM and GRU medetmodels exhibit higher variability, particularly
for the lowest flows (Q1). However, the GRU model shows difficulties in capturing variability for lower and higher flows (Q2
and Q3), with values of 3.96 and 2.63, respectively, compared to the LSTM and CNN models.

The bias term 5-(3) shows that the CNN model achieves the best score for the highest flows (Q4). Nevertheless, it also
exhibits the largest bias for the lowest flows (Q1) among all models. Conversely, the LSTM model demonstrates superior
performance for Q1 through Q3.

Overall, this analysis suggests that the LSTM model exhibits favourable results across all KGE components. Appendix
A presents the three best-performing and three worst-performing hydrographs of each model. Within the poorly performing
hydrographs, it becomes evident that while the timing of the flow events is mostly accurate, the magnitude is poorly captured,
and the base flow is often underestimated. This suggests that these catchments might exhibit different hydrological behaviors
behaviours compared to the better-predicted catchments, indicating the need for more diverse catchments in the training dataset.
Furthermore, appendix-Appendix A4 presents a comparison of the simulated hydrographs for the same basin. Consistent
performance trends are observed across all models, with either poor or high performance in the same basin. However, one plot
exhibits mixed performance, where both LSTM and GRU models perform well, while the CNN model shows poor performance.
Notably, this is the only validated catchment where such a strong discrepancy is observed.

In summary, the evaluation of flow segment performance has provided valuable insights into the performance distribution.
While the CNN model showed superior average performance, as demonstrated within the preceding sections, the LSTM model
exhibited a higher degree of consistent performance across all flow segments. Additionally, the recurrent models displayed

enhanced generalisation capabilities for the lowest flow rates in each catchment.
3.3 Model Sensitivity

To elucidate the effect of the input features on discharge prediction, a sensitivity analysis was conducted. For that, each daily
input feature was uniformly increased by 10%, and subsequently, the prediction was executed again with the modified inputs.
The newly predicted discharge values were then systematically averaged over both time and all catchments, resulting in one
metric. Variations in the mean discharge resulting from these adjustments yield insights into the comparative significance
of each evaluated feature within the model. This analysis focuses solely on dynamic features due to the limited number of
catchments (35). With only 35 samples for static features, the models lack sufficient variability in the input to reliably interpret

these features.
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Figure 9. Components of the Kling-Gupta Efficiency (KGE) for the employed CNN, LSTM, and GRU models with a batch size of 256
incorporating static features, evaluated across four flow segments: lowest flows (Q1), lower flows (Q2), higher flows (Q3), and highest flows
(Q4). From top to bottom, the rows represent the Pearson correlation coefficient (¢7), the variability ratio (ercr), and the bias (33). Each violin
plot illustrates the distribution of these metrics for all evaluated catchments within each flow segment, with black dots indicating the mean

values for each segment. The ideal value for all three metrics is 1, indicating perfect performance.

The results of this analysis are shown in Figure 10, representing the mean percentage change in discharge, calculated by
averaging over all daily predictions and across all 35 catchments.

For the CNN model, the meteorological feature precipitation exhibited the most positive impacts on the model, with changes
of 11.1% (Figure 10a). This underscores its pivotal role in influencing the output of the CNN model. Increasing the daily
feature soil temperature led to a decline in the-discharge of -2%, likely related to increasing atmospheric water losses with
rising temperature through increasing actual soil evaporation and plant transpiration. The daily forcing evapotranspiration
showed a small positive impact of 0.4%. The observation that daily evapotranspiration increases with discharge is seemingly
counterintuitive. However, daily evapotranspiration derived from Jehn et al. (2021) represents actual evapotranspiration, which

can increase with wetter conditions and therefor-therefore also correlate positively with discharge.
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Although this may offer a plausible explanation for the observed anomalous behavierbehaviour, it is unlikely within the
context of this study. Given that all models share the same input features, both the LSTM and GRU models should exhibit
similar behaviorbehaviour, which is not observed (see Figure 10).

Analogous to the findings from the CNN model analysis, the LSTM model further corroborated that precipitation exerts
the most substantial positive impacts on discharge, registering enhancements of 15% (Figure 10b). Conversely, daily sum
evapotranspiration negatively impacted discharge, resulting in decreases of -2.2%. In comparison to the CNN model, the LSTM
model displays a substantially higher sensitivity to precipitation, implying that this feature serves as the principal driving force

for this model. The daily feature soil temperature revealed a decrease of -3.3%.

The sensitivity analysis of the GRU model parallels the findings of the LSTM model. Precipitation exerts a-strong positive

effects on discharge, with increases of 13.3% (Figure 10c). Evapotranspiration demonstrated a negative impact on discharge
by -3.1%. This makes the GRU model the most sensitive model-to this feature. The Seil-soil temperature exhibited a uniform
reduction in discharge of -3.3%.

In summary, the GRU model’s sensitivity analysis reveals a high degree of concordance with the LSTM model in terms of
feature influences on discharge predictions. All daily input features of these beth-two models exhibited expected behaviours,
aligning with established hydrological principles. This indicates a robust understanding of the input features’ influences by
both models.

The similarity in effects across all input features suggests -that GRU models are also adept at accurately discerning hydrolog-
ical processes, despite their simpler architecture compared to LSTM models. The CNN model exhibits counterintuitive results
with the daily evapotranspiration feature, indicating potential limitations in handling these inputs. Although it is possible that
certain static features had a greater influence on this model’s performance.

Overall, the sensitivity analysis of the LSTM and GRU models revealed a more realistic representation for evapotranspiration
compared to the CNN model. These findings emphasise the importance of considering various input parameters and their

interactions in improving discharge prediction models for hydrological applications.

4 Conclusions

This study exa
of CNN, LSTMan

ading-conducted a comparative evaluation
-, and GRU models for predictin,

daily discharge in ungauged basins across Hesse, Germany %%e&el%ha&shew&ﬂﬁ%empleye&%&eﬁdﬂbwme
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Figure 10. Sensitivity analysis of the CNN (a), LSTM (b), and GRU (c) models with static features and a batch size of 256. All features have

been uniformly increased by 10% to evaluate their impact on discharge prediction.

three deep learning architectures exhibited significant predictive capabilities. Specifically, the CNN model yielded marginall

higher accuracy (KGE = 0.8) -feHowed-by-a-compared to the recurrent models, effectively capturing local short—term rainfall-runoff
dynamics. Conversely, the LSTM model (KGE = 0.78) and-the-demonstrated superior consistency across the entire flow

spectrum, maintaining balanced performance from low to high flows rather than disproportionately excelling at peak events, as

635 observed with CNN models. The GRU model (KGE = 0.77) -

640 rovided a robust balance between computational efficienc

and predictive accuracy. The minor performance gaps observed indicate that no single architecture significantly dominates in
redictive skills.
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Consistent with the findings of Kratzert et al. (2019a), augmenting models with static catchment attributes improved prediction

performance, underscoring the critical importance of integrating catchment-specific information in ungauged basin modelling.
645 Additionally, models trained with smaller batch sizes yielded better KGE scores compared to larger batch sizes, suggesting
that optimisation dynamics such as gradient noise and update frequency substantially influenced generalisation performance.
These results reinforce existing evidence that modern deep learning methods achieve robust streamflow predictions even in
data_scarce basins (Nabipour et al., 2020; Afzaal et al., 2019).
Evaluation across varying flow conditions further revealed that the ESTM-model-exhibitssuperiorgeneralization-capabilities

650 onately-depending-en—peak-model architecture substantiall

a5 The LSTM demonstrated superior

655 generalisation across lowest—flow conditions, indicating reduced systematic errors during extended dry spells. This generalisation
capability can be attributed to the LSTM model’s gated recurrent structure, effectively capturing long—term dependencies
associated with baseflow and recession periods. Conversely, the CNN model employs fixed—size convolutional filters optimised
for identifying short—term flow patterns, particularly sharp increases from precipitation events, but exhibited limited capability.
in capturing slower hydrological processes such as evapotranspiration—driven drawdown.

660  Sensitivity analyses confirmed precipitation as the primary discharge driver across all models.

Theresults-of this study lend additionalsupport to However, CNN models showed reduced sensitivity to daily evapotranspiration
signals. This characteristic suggests that the CNN architecture may inadequately represent cumulative drying effects, potentially
explaining its comparatively weaker performance during low—flow periods. These architectural distinctions highlight how
internal model designs significantly affect learned hydrological behaviours. Recurrent networks inherently integrate temporal

665 information, aiding the modelling of sustained processes, whereas convolution—based models may necessitate additional
mechanisms or expanded receptive fields to achieve equivalent long—term awareness. Despite these nuances, CNN models still
attained the highest aggregate accuracy (KGE), suggesting accurate peak—flow predictions compensated for deficits in low—flow
estimations. Consequently, alternative metrics focused specifically on low—flow performance might rank the LSTM ahead of the

670

CNN.

Regarding computational efficiency, clear distinctions emerged. The GRU model trained significantly faster (over 40%
675 runtime reduction compared to the CNN model and nearly 60% faster than the LSTM model), attributable to its streamlined
ating mechanism with fewer parameters and simpler operations (Chung et al., 2014). CNN models, despite being marginall
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slower than GRU models, benefited from parallelisable convolutional operations and exhibited competitive runtimes coupled
with the highest accuracy. In contrast, LSTM models’ sequential processing and complex gating incurred greater computational
demands (Goodfellow et al., 2016). Additionally, Ebtehaj and Bonakdari (2024) reported equivalent performance of LSTM

680 and CNN models for high precipitation events yet observed that CNN models outperformed LSTM models for significant
precipitation events at short lead times, thereby reinforcing our results.

Furthermore, our findings align with recent literature on data—driven streamflow forecasting. Oliveira et al. (2023) similarl
reported superior CNN model performance relative to LSTM and multilayer perceptron models within calibrated basins.
However, that result, obtained from a calibrated basin, did not guarantee broader generalisability. Our multi-basin_study

685 confirms CNN model efficacy even in ungauged basins, alongside consistently strong performances by LSTM and GRU

models. The minor accuracy differences align with Farfan-Durdn and Cea (2024), emphasising context—dependent model performance.
For example, the GRU model excelled at very short lead times in one basin (Spain), whereas in another basin CNN, LSTM,
and GRU performed comparably. Additionally, the computational efficiency advantages observed for GRU and CNN models
corroborate prior studies, highlighting parallelism and simplified gating mechanisms as significant computational benefits.

690 Nonetheless, GRU models” simplified gating may reduce performance relative to LSTM models, as Wegayehu and Muluneh (2023)
demonstrated that LSTM models generally outperform GRU models regardless of input data,

Certain design choices and limitations must be acknowledged. Both recurrent models (LSTM and GRU) constrained outputs
to non-—negative discharges within the training data range using sigmoid activation and min—max normalisation. This constraint
ensures physically plausible predictions but restricts extrapolation beyond maximum observed flows. This saturation effect

695 may attenuate extreme flood peaks, limiting the model’s extrapolation capacity. For practical applications requiring accurate
flood forecasting (primarily focusing on high discharge), alternative activation functions such as LeakyReLU, which allow
unbounded outputs, may offer greater flexibility and should be considered in future model designs.

Furthermore, our analysis was confined to Hesse, Germany, potentially limiting generalisability to different hydro—climatic
contexts such as arid or monsoon climates. Hybrid or ensemble models combining CNN and LSTM layers were outside the

700 scope of this comparison.

Future research should explore loss functions better aligned with hydrological objectives and sequence_length handling
through longer sliding windows or emerging self-attention transformers (Lim et al., 2021). Investigating architectures that
seamlessly fuse static and dynamic inputs via attention mechanisms or dedicated subnetworks could improve the use of
catchment attributes and remote sensing data, thereby enhancing generalisation (Lim et al., 2021).

705 These insights rot-only—serve as guidance for researchers utilising neural networks in hydrology but-atse-and contribute
to a comprehensive framework for evaluating different-atgorithms—Furthermore;-thisreseareh-algorithms. By systematically
comparing CNN, LSTM, and GRU models in multiple ungauged basins, this work bridges a critical gap in hydrological

modelling literature = —r=rmmmenll oo mme s b e S e e ol e e e e Tl
in-ungatged-basins;-thereby-paving-the-and paves the way for more informed and effective application of artificial intelligence
710 in hydrology. Futureresearch-may-delveinto-the-exploration-of-other neural network-architeetares-and-techniques;such-a




~In summary, successful prediction in ungauged basins accentuates the potential

of neural networks in the-field-ef-hydrelogyadvancing streamflow forecasting.

715 Code and data availability. The entire code, along with the data sets upon which this study relies, except for the discharge data, can be

accessed publicly in the following repository: Neural-networks-in-catchment-hydrology.git.
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Appendix A
Al Hydrographs of the CNN model with static features and batch size of 256

Al.1 Highest performance

CNN with static features and batch size of 256 for Gauge 25840253
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Figure Al. Hydrograph at gauge 25840253 illustrating high performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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CNN with static features and batch size of 256 for Gauge 25840650
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Figure A2. Hydrograph at gauge 25840650 illustrating high performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A3. Hydrograph at gauge 24870055 illustrating high performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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720 Al.2 Lowest performance

CNN with static features and batch size of 256 for Gauge 41510205
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Figure A4. Hydrograph at gauge 41510205 illustrating low performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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CNN with static features and batch size of 256 for Gauge 41860900
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Figure AS. Hydrograph at gauge 41860900 illustrating low performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).

CNN with static features and batch size of 256 for Gauge 25140058
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Figure A6. Hydrograph at gauge 25140058 illustrating low performance of the CNN model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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A2 Hydrographs of the LSTM model with static features and batch size of 256

A2.1 Highest performance

LSTM with static features and batch size of 256 for Gauge 25840708
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Figure A7. Hydrograph at gauge 25840708 illustrating high performance of the LSTM model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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LSTM with static features and batch size of 256 for Gauge 25810558
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Figure A8. Hydrograph at gauge 25810558 illustrating high performance of the LSTM model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A9. Hydrograph at gauge 25840650 illustrating high performance of the LSTM model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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A2.2 Lowest performance

LSTM with static features and batch size of 256 for Gauge 24880208
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Figure A10. Hydrograph at gauge 24880208 illustrating low performance of the LSTM model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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LSTM with static features and batch size of 256 for Gauge 41510205
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Figure A11. Hydrograph at gauge 41510205 illustrating low performance of the LSTM model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).

LSTM with static features and batch size of 256 for Gauge 41860900

KGE: 0.18
8 —— observation
—— simulation
I 6
€
£
()
2
24
b
2
2 ‘ l
, | l e
. N W '\l‘v>“ W | h \ ™ H|l \J :
Ve Vi N \ N Y “\.p i Y'Q\ VW “'b'u Ul
0 s Yo\ ey i) \NWRA Wy W
0 250 500 750 1000 1250 1500 1750 2000

Days

Figure A12. Hydrograph at gauge 41860900 illustrating low performance of the LSTM model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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A3 Hydrographs of the GRU model with static features and batch size of 256

725 A3.1 Highest performance

GRU with static features and batch size of 256 for Gauge 25840708
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Figure A13. Hydrograph at gauge 25840708 illustrating high performance of the GRU model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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GRU with static features and batch size of 256 for Gauge 25880305
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Figure A14. Hydrograph at gauge 25880305 illustrating high performance of the GRU model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).

GRU with static features and batch size of 256 for Gauge 25811255
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Figure A15. Hydrograph at gauge 25811255 illustrating high performance of the GRU model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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A3.2 Lowest performance

GRU with static features and batch size of 256 for Gauge 44950055
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Figure A16. Hydrograph at gauge 44950055 illustrating low performance of the GRU model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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GRU with static features and batch size of 256 for Gauge 24480695
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Figure A17. Hydrograph at gauge 24480695 illustrating low performance of the GRU model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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Figure A18. Hydrograph at gauge 41860900 illustrating low performance of the GRU model, with observed discharge (blue) and predicted
discharge (orange), evaluated using the Kling-Gupta Efficiency (KGE).
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A4 Hydrograph comparison of the best performing models with static features and batch size of 256

A4.1 Mixed performance
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Figure A19. Hydrograph comparison at gauge 25140058 for the CNN, LSTM, and GRU models, highlighting varying performance across

the models. Performance is measured using the Kling-Gupta Efficiency (KGE), with *+SF’ denoting the inclusion of static features.
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A4.2 High performance for all models
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Figure A20. Hydrograph comparison at gauge 25850257 for the CNN, LSTM, and GRU models, illustrating uniformly high performance

across all models. Performance is quantified using the Kling-Gupta Efficiency (KGE), with *+SF’ indicating the integration of static features.
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730 A4.3 Low performance of all models
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Figure A21. Hydrograph comparison at gauge 41860900 for the CNN, LSTM, and GRU models, illustrating uniformly low performance

across all models. Performance is quantified using the Kling-Gupta Efficiency (KGE), with *+SF’ indicating the integration of static features.
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