
Reply to 3rd and 4th reviewer on the manuscript of title: 
"Soil Moisture consistency for operational drought monitoring" 

We thank the 3rd reviewer Vagner Ferreira and an anonymous fourth reviewer for his 
insightful comments to improve the manuscript and its significance for providing guidance 
for operational users. In the following lines we answer both their major and minor 
comments. 

Major items 

• Page 9: The authors state they use a T-value of 10 days for the SWI calculation, 
which seems arbitrary. Have the authors carried out any sensitivity analysis 
performed to determine the optimal T-value for different regions? Different soil 
types and climate regimes may require different characteristic time lengths. 

The use of the T-value for the exponential filter used to calculate SWI is 
substantiated by specific studies that after having explored the optimal value, 
based on validation against in situ data, indicate that the T=10 days  Albergel et al., 
2010, Brocca et al., 2010 (coauthor of this manuscript)) is the optimal value. The T 
=10 days value is reported to provide an optimal balance between noise reduction 
and signal preservation for the uppermost layer. The use of non-constant T value 
across the areas of interest (depending on the climate, soil type) does not 
significantly increase the performance of results of articles using some of the 
products of this manuscript (i.e. ASCAT) (Brocca et al., 2011; Brocca et al., 2010).  

Nonetheless, since the continuation of this work is devoted to infer the impact of 
multiple physical factors in the differing capabilities of the products, particularly in 
relation to their temporal resolution (e.g. snow and water fraction for thawing and 
flooding circumstances), there are ongoing analysis that will analyze different T-
values, and that for the sake of conciseness are not included in this manuscript. 

 
• Page 10: The triple collocation analysis (TCA) assumes error independence 

between products, but this assumption may be violated, especially between 
remote sensing products that share similar physical principles or between products 
that may use similar auxiliary data. The authors should discuss potential violations 
of TCA assumptions more carefully. 
 
We recall some of the content prepared to improve the manuscript in the revision to 
explain the reasons why we considered TCA assumptions have been handle with 



care so that results in this manuscript are valid: 
 
The TCA model assumes (1) linearity of SM retrievals, (2) stationarity of signal and 
(3) independence of errors (Gruber et al., 2016; Massari et al., 2017; Filippucci et 
al., 2021).  
 
For the first case (1), we selected SM products for triplets based on their reported 
independence. The LISFLOOD model is not used for the processing or validation of 
either the passive and active RS products that complete the product, nor for the 
curation of the ISMN data. The passive subset of CCI included here (‘CCIp’), does 
not contain active remote sensing data (i.e. ASCAT). In this way, independence of 
the datasets ensures non-linearity between the three products of TCA. 
 
The major source of non-linearity can be due to non-stationarity (2). The upgraded 
version of ASCAT active RS SM (H121) filters out the trend existing in earlier 
versions. CCIp trend has been recognized as consistent in multiple works and can 
be considered only marginal due to its dedicated blending methodology. Residual 
trends are principal for long term analysis but are negligible for the short-term 
scope of operational monitoring in this text, and so are they for the TCA results 
exposed. 
 
We additionally evaluated the stationarity of the variance by comparing metrics 
(R_TCA, ‘VAR’iance of the signal, ‘SENSi’tivity of the signal and logarithmic signal to 
noise ratio ‘logSNR’) between two sub-periods of distinct trend magnitude: 2007–
2015 (low trend) and 2015–2022 (high trend). Results show no significant 
differences between periods and in between ‘trendy’ (e.g. ASCAT H120) vs. 
‘stabilized’ products (e.g. H121), confirming that neither the magnitude of the trend 
nor the period selected compromise TCA validity (Section 4.4). 
 
Regarding the assumption of the independence of residuals, overall, the number of 
triplets available in the period of study is far bigger (up to 536) than the 100 -
threshold estimated by Scipal et al. (2008) to ensure the independence and no bias 
of the residual errors (Fig. 1 of this response). Even the regions prone to snow cover 
present enough coverage (far beyond the 100 values of the threshold) to guarantee 
no downgrade in the reliability of the TCA model due to lack of data representativity. 
 
About the assumed linearity between the signal and the errors (3), values of the 
logSNR in decibels stay within ranges of linearity of the relationship between 



logSNR and R2 (Mean around 5-7 dB). Debates on the linearity as reported in 
(Gruber et al., 2015) indicate that despite the bias introduced by this assumption 
there is no clear alternative to the consideration of linear models to the relationship 
between the model and the data because other methods also introduce bias 
through matching, scaling and application of polynomials. 
 
 

 
Fig. 1: Coverage in number of valid triplets for the analysis of the three products 
ASCAT H120/H121, CCIp and EDO across Europe in the period 2007-2022. 
 

• Page 11: The merging methodology appears to be primarily based on TCA scores 
(Comment 2). However, this approach may propagate biases in regions where all 
products perform poorly. A more sophisticated merging approach that considers 
the physical basis of errors would improve the quality of the analysis.  
 
We appreciate the reviewer’s concerns regarding the potential propagation of errors 
when merging soil moisture products based on their Triple Collocation Analysis 
(TCA) scores, particularly in regions where individual products exhibit lower 
performance. We acknowledge that low performances may still occur in the results 
based on merging by TCA-score weights, but as section 3.4.3. indicates, the 



merging favors the better-performing products at each pixel, including over the 
error-prone areas. However, we would like to underline that for the focus of this 
manuscript at the continental scale, these regional limitations, that are 
nonetheless specifically warned, do not diminish the worth of highlighting the 
benefit of merging highly performant products in the majority of the areas of the 
continent. In this way, the weighted but distributed approach may counterweigh 
good estimates in the presence of low scores but still provides results dominated 
by the best product across the domain. While more complex methods may achieve 
better results, they often require tricky tuning, assumptions that introduce their own 
uncertainties or validation schemes with ancillary data. Until we get ready the 
insights from other factors, TCA-weighted merging remains a transparent, 
assumption-lean, and computationally efficient alternative, that has been 
acknowledged as reliable ( Yilmaz and Crow, 2014; Gruber et al., 2017; Chen et al., 
2019) and that serves well for the purposes of this manuscript to illustrate how 
merging (regardless of the method) can benefit from combining the virtues of each 
product.  
 
Comparison has been done for the merging method whose results were included in 
the manuscript against a modified version of the merging method considering the 
exclusion of the products that do not achieve tolerable R_TCA scores (e.g. 
R_TCA<0.4) in pixels over areas of difficult SM estimates such as boreal regions. The 
results of this ‘exclusion’ method do offer better overall results by including only 
those remaining areas with more than tolerable R_TCA scores, but with the 
disadvantage of greatly reducing the coverage in area of the estimates (more than 
40% of the coverage of results over even areas of only intermittent snow conditions 
(see the R_TCA scores of EDO during the snow season of most of Central and 
Eastern Europe in the Figure 2 in the next page). We consider that the notable 
reduction of the coverage at the expense of better overall performance jeopardizes 
the aim of maximizing the operational suitability of the products, which is the goal of 
the study. Furthermore, since the performance also varies seasonally, it would be 
necessary to apply also temporal variations in the weighting of the merging, 
something of difficult definition taking into consideration the weights are precisely 
defined based on calculating the R_TCA per pixel along the time series.  
 
Nonetheless, we are aiming to adopt more flexible merging methods to deal with 
these challenging considerations of the sensitivity of merging to the inputs and to 
the definition of the combination in order to prevent the buildup of uncertainty in the 
merging process.  We acknowledge the relevance of tackling these matters, 



especially in focus of particularly challenging regions (e.g. snow-prone areas where 
most products perform poorly) that are of interest. Consequently, since the 
evaluation of the characteristics of the input datasets has been extensively 
described in this manuscript, the continuation of this study will primarily focus on 
the comparison of merging techniques for an optimal combination of the input data. 
 
 

• Page 12-13: The negative correlations between products in snow-dominated 
regions are concerning, which has been attributed to the known difficulties with 
EDO-Lisflood  in snow regions. However, this raises questions about the reliability 
of any of these products for drought monitoring in such regions. This limitation 
should be more prominently acknowledged. 
 
We have compared TCA results of the period of maximum snow cover likelihood (15 
of December to 15 of March) compared to the TCA results of the snow-free season 
(15 of May to 15 of Oct) to better illustrate the impact of snow cover in the suitability 
of each product. The periods were defined based on ERA5L avg. Snow-cover. 
The Snow-covered period (‘SP’ from 15th of December to the 15th of March), displays 
the clear struggle of EDO product over lands that experience transient snow cover 
(yellow colors from Germany eastward). SM estimates from this product over these 
areas primarily formed by Dfb climate type, may be particularly unreliable during 
the period which is relevant to explain the gradients west-east obtained for the 
results of the entire year. Interestingly, ASCAT estimates remain reliable even during 
this period, which may suggest that despite the limitations of ASCAT over 
permanent snow-cover, ASCAT, followed by CCIp outperforms EDO on 
characterizing transitions of snow cover (the majority of the yellow area of Dfb 
climate type does not show permanent winter snow cover but episodic (intermitent, 
non-permanent along the whole winter season). 



Fig. 2: R_TCA scores of the two triplets considered (with the old and new versions of H SAF product) 
over the snow-prevalent season. 

 
Fig. 3: R_TCA scores of the two triplets considered (with the old and new versions of H SAF product) 
over the snow-free season. 

The snow-free period (‘NSP’ from 15th of May to the 15th of October) displayed above 
suggests a balanced performance of the three products across most areas of the 



continent, with the comparatively better performance of ASCAT over the other two 
products, especially after the update from version H120 to H121, whose increase 
was already visible in Fig. 4 of the manuscript. Nonetheless, the R_TCA values in the 
Finno-Scandinavian region remain comparatively lower than those of other 
continental areas with the exception to the regions also affected by specific 
sensitivity of each product, which indeed leads to raise awareness about its 
reliability over the boreal belt, which has been further expanded in Lines 388-390, 
L401-404, L483-485, L618-619. 
 

• Page 15: The authors suggest that the west-east gradient in product performance 
may be related to SM regimes, but this connection is not explored further. So, it 
would be interesting to see a more detailed analysis of how different SM regimes 
affect product performance would support this claim. 
 
We indicated before that the influence of physical factors is being explored, in 
particular in relation to the distinct soil moisture regimes determined by the 
climatic type (among other factors). Our preliminary results from Intensity-
Frequency (I-F) curves of SM change along the whole time series and across 
climates indicate that there are significant differences in the frequency and 
intensity of soil moisture change for both rewetting and dry down conditions 
depending on the climatic areas, specially across the West-East gradient in 
between oceanic (Cfb) and continental climates (DS), or in between them and the 
Mediterranean climate (Bs).  
 
The oceanic climate type (the west part of the gradient, first figure below) shows the 
broader range of suitable applicability of the products compared to those climates 
in the east (second figure below) and south of the continent (third figure below). This 
meaning that the SM products can be used with greater confidence even for the 
upper percentiles of SM change values (more extreme SM change values) while 
results in the east and south climates of the continent become less reliable with 
lower changes in SM  (i.e. for a given intensity of SM change the return period 
becomes more different between products, as seen in the differences in color of the 
maps of the upper row of subplots of the figures below). Thus, the accurate range of 
use of the products across climates differs according to the differing accurate range 
identified from the intensity-frequency (return period) curves and plots. 
 
To some extent, this outcome suggests current SM products perform best in the 
relatively progressive SM changes characteristic of Oceanic SM regimes compare to 



those of Continental and Mediterranean characteristics experiencing sharper SM 
changes due to the influence of sudden meltdowns or torrential rains, respectively. 
 

Fig. 4a: Percentiles of Intensity-Frequency (I-F) characteristics of the positive SM changes (delta SWI) 
in the temperate climate and threshold of concurrence (return period) of the SM products on the 
range of I-F values. 

 

Fig. 4a: Percentiles of Intensity-Frequency (I-F) characteristics of the positive SM changes (delta SWI) 
in the continental climate and threshold of concurrence (return period) of the SM products on the 
range of I-F values. 

 



Fig. 4a: Percentiles of Intensity-Frequency (I-F) characteristics of the positive SM changes (delta SWI) 
in the  Mediterranean semiarid climate and threshold of concurrence (return period) of the SM 
products on the range of I-F values. 

 
• Page 21-23: The interpretation of diverging trends between products is problematic. 

For example, if EDO shows drying trends while H120 shows wetting trends, this 
fundamental disagreement raises serious questions about using either product for 
climate change studies. The authors acknowledge this issue but should provide 
clearer guidance on how to interpret these conflicting signals. 
 
The diverging trends between products is the reality we illustrate with this study. 
Multiple reliable soil moisture datasets indeed present diverging trends. Some of 
the residual trends may be related to internal characteristics of each product. 
Thanks to the permanent revision of the products some of these internal issues 
become solved and decrease the residual trend (e.g. HSAF update from H120 to 
H121 greatly diminishes the residual trend of the product). The study does indicate 
that the residual trends of the remote sensing products (CCIp, H SAF H121) present 
the less area of significance trends, better range of trends and better agreement in 
between them than model-based products (Lines 543-552). ERA5L cannot be used 
as reference of trends because EDO partly ingests its data, and to some extent also 
reproduces the patterns, and residual trend of ERA5L (although of enhanced 
magnitude in EDO’s case). However, the trends of ERA5L may have their own level 
of uncertainty for diverse reasons (e.g. model intervention in the reanalysis) not only 
for soil moisture, but also for commonly observed variables (e.g. due to data 



regularization). The manuscript further emphasizes that the existence of these 
trends recommends careful application of the data (L21-23, L127-128 extended in 
Lines 36-38, Line 585-87) by understanding their uncertainties and their possible 
impact on the outcomes of the analysis, which, of course, would be of major 
relevance for climate change studies. 
 
Nonetheless, despite of the impossibility to further extend this manuscript with a 
section focused on the correspondence of trends with possible drivers of SM 
change such as the well reported changes in temperature, we provide a simple 
explorative correlation analysis of the trends of SM products in relation to the trends 
of two proxies of the water balance: total precipitation and total evaporation from 
ERA5-Land (ERA5L). The analysis circumscribes to exploring correlation since 
causality may require dedicated studies beyond the purpose of this manuscript.  
 
Precipitation trends from ERA5L primarily show regional patterns of limited area 
(barely a  14% of the study area shows significant precipitation trends, with a 5% of 
positive trend  limited to boreal and Mediterranean areas, and negative trends up to 
9% over areas of central Europe, south Mediterranean and the Caucasus, in all 
cases of low magnitude. In this way, given the SM products tend to display a much 
larger extent of the study area affected by trends (H120: 66%, of which 61% positive 
and 5% negative; EDO: 65%, of which 5% positive and 60% negative, H121: 23%, of 
which 19% positive and 4% negative), the joint patterns are mostly defined by the 
few areas affected of  precipitation and evaporation trends. However, since the 
signs of the trends can concur or not, there can be four classes of trends: coinciding 
positive trend (in blue), coinciding negative trends (in red), positive SM and negative 
proxy trend (orange) and negative SM with positive proxy trend (green).  
 
To be concise, we show below only selected cases from all the SM products 
evaluated. The first one is that of the EDO model-based product, selected to 
illustrate how having vast areas of trends in SM products do not automatically imply 
broad agreement with proxies. While for precipitation and SM there are multiple 
areas of coinciding negative trends, for evaporation the results are more balanced 
in between coinciding and differing signs of the trends, which casts doubt on the 
physical meaning of the correlation of SM trends with those of the proxy. 



EDO SM (left) and ERA5L (right) Precipitation significant trends 2007-2022

 
Joint EDO SM - ERA5L Precipitation significant trends 2007-2022 (Theil-Sen slopes)

 
Fig. 5a: (upper left) Trends in EDO SM product, (upper right (trend in ERA5-Land Total precipitation) 
and (bottom) joint concurrence of trends between the above SM and Precipitation products. 
EDO SM (left) and ERA5L (right) Evaporation significant trends 2007-2022 

 
Joint EDO SM - ERA5L Evaporation significant trends 2007-2022 (Theil-Sen slopes) 



 

Fig. 5b: (upper left) Trends in EDO SM product, (upper right (trend in ERA5-Land Total evaporation) 
and (bottom) joint concurrence of trends between the above SM and Evaporation products. 
 

In the second case, we provide the joint trends with precipitation and evaporation of 
the HSAF products: the H120 recently updated to version H121. In this way we can 
see the notable decrease in trends from H120 to H121, and how this upgrade limits 
the areas indicating concurrence of the trends. In H120, despite the general upward 
trend in SM, the areas with significant and noticeable joint SM-precipitation 
negative trends point again to areas of central Europe, south Mediterranean and the 
Caucasus, in full concurrence with EDO results. For evaporation, despite the class 
of the sign concurrence differs with EDO, the same trends areas are indicated, 
which highlights the consistency in between SM products (the proxy is common). 
 



H120 SM (left) and ERA5L (right) Precipitation significant trends 2007-2022

 
Joint H120 SM - ERA5L Precipitation significant trends 2007-2022 (Theil-Sen slopes)

 
Fig. 6a: (upper left) Trends in H120 SM product, (upper right (trend in ERA5-Land Total precipitation) 
and (bottom) joint concurrence of trends between the above SM and Precipitation products.  



H120 SM (left) and ERA5L (right) Evaporation significant trends 2007-2022 

 
Joint H120 SM - ERA5L Evaporation significant trends 2007-2022 (Theil-Sen slopes) 

 
Fig. 6b: (upper left) Trends in EDO SM product, (upper right (trend in ERA5-Land Total evaporation) 
and (bottom) joint concurrence of trends between the above SM and Evaporation products. 

The H121 upgraded version of HSAF SM product illustrates the great reduction on 
the extent of the areas affected by trends, while confirming the trend in those areas 
where the magnitude of trend was most prominent in the previous version. By doing 
so, there is an obvious reduction in the areas affected by joint trends, still over the 
areas previously identified by the other products (including CCIp, not shown), both 
for precipitation and evaporation. It can be emphasized that by just the upgrade of 
this ASCAT HSAF product from H120 to H121, the areas affected by joint trends 
reduce from the 14% to the 3% (precipitation) and 18% and 5% (evaporation). This 



reduction may indicate the secondary relevance of trend analysis for the purpose of 
change analysis (and subsequently of the interaction between SM and drivers of its 
change) compared to the relevance of trend analysis for the aim of evaluating the 
evolving capabilities of SM products, particularly when subject to updates in the 
internal characteristics of the products (changes in the parametrization of model-
based ones like EDO, or in the  signal processing algorithms of the RS SM ones). 

H121 SM (left) and ERA5L (right) Precipitation significant trends 2007-2022

 
Joint H121 SM - ERA5L Precipitation significant trends 2007-2022 (Theil-Sen slopes)

 
Fig. 7a: (upper left) Trends in H121 SM product, (upper right (trend in ERA5-Land Total precipitation) 
and (bottom) joint concurrence of trends between the above SM and Precipitation products.  



H121 SM (left) and ERA5L (right) Evaporation significant trends 2007-2022 

 
Joint H121 SM - ERA5L Evaporation significant trends 2007-2022 (Theil-Sen slopes) 

 
Fig. 7b: (upper left) Trends in H121 SM product, (upper right (trend in ERA5-Land Total evaporation) 
and (bottom) joint concurrence of trends between the above SM and Evaporation products. 

Consequently, since the purpose of this manuscript is primarily devoted to the 
intercomparison of SM products in terms of consistency, we suggest to keep the 
above analysis of joint concurrence of trends for the studies that being interested in 
long term evolution of SM devote to specific and more precise techniques of SM 
analysis and causality. Therefore, while comments have been included in the text 



about the main messages of the analysis (L585-605, 615-625), these results at 
maximum may get included as supportive material in the manuscript. 

Minor comments: 

7. The abstract could present more clear messages about the practical implications for 
drought monitoring applications. 

We thank the reviewer for identifying the need to expand the implications of the article in 
the abstract. The following lines have been added to the last paragraph of the abstract 
(L36-38): 

 “We obtained that even these popular datasets are subject to patches of spatial 
inconsistency and residual trends when compared to the in-situ data from the International 
Soil Moisture Network (ISMN). These uncertainties have minimal impact on drought 
monitoring in most of Europe, except in snow-prone regions and for the assessment of 
long-term soil moisture trends used to design climate adaptation policies. “  

Nonetheless, in view of the great complementarity shown by the active and passive remote 
sensing and the modelled SM estimates, two merged products are proposed and tested 
against in-situ data. Results indicate that combining H SAF ASCAT, CCIp and EDO equals 
or surpasses the spatial and temporal consistency of the individual SM products alone, 
even when only the near-real-time products of H SAF ASCAT and EDO are combined. 
“Thus, merging remote sensing and modelled SM products enhances spatial consistency, 
resolution, temporal coverage, and near-real-time capabilities for better European-scale 
drought monitoring, strengthening the early warning and risk management systems 
devoted to improving societal and environmental resilience.” (L47-51) 

 
8. The conclusion section repeats much of the discussion and it could provide more clear 
recommendations for operational users. 

The conclusion has been carefully revised to better convey the benefits of the approach for 
operational users. (L636-678) 

 
9. Page 9: The use of flags from ESA CCIp as a mask for other products requires 
justification. Do these flags accurately represent data quality issues for other products? 

We understand the reviewer’s concerns regarding our use of CCI flags over other products 
(ASCAT H120 and H121, and EDO). However, we selected CCIp flags because they are the 
most sensitive and restrictive for snow detection. Specifically, ESA CCIp assesses snow 



and frozen soil using both temperature and freeze-thaw conditions (via Ku-, K-, and Ka-
band retrievals, as noted in the CCIp ATDB guide). This criterion of applying CCI flags to 
eliminate areas seasonally affected by snow cover to all SM products in boreal regions 
ensures consistency in the filtered areas.  

It was indicated in the manuscript not in page 9 but in lines L256-259: “The different 
product additionally provides metrics of the error characteristics to identify the areas and 
periods affected by relevant impactful factors such as snow cover. The flag scheme of ESA 
CCIp exemplifies the detailed procedures devoted to distinguishing when the data is 
subject to further filtering. Consequently, considering the notable importance of the snow 
cover factor in our analysis over the boreal and mountainous areas of Europe, we have 
applied the flags of ESA CCIp as mask to the data coverage of the other products of the 
analysis over the snow-prone regions. “  However, we have included also the text: 
“Specifically, ESA CCIp assesses snow and frozen soil using both temperature and freeze-
thaw conditions (via Ku-, K-, and Ka-band retrievals, as noted in the CCIp ATDB guide)” 
within those lines. 
 
10. Page 15: The statement that "none of the products alone can fully characterize SM 
across Europe with the same accuracy" is important but should be better quantified. What 
are the accuracy thresholds for different applications? 

There are still no accuracy thresholds at all for the application of different products aiming 
to cover different applications. Acceptable overall values of error variance in the estimates 
are often assumed as appropriate below 0.04m3/m3 for calibration /validation of remote 
sensing products against in situ data, but considering estimates using only multiple types 
of remote sensing sources (e.g. with CCIp and H SAF H120 or H121) as well as model-
based ones (e.g. EDO) recommend considering a maximum of 0.1 m3/m3 as acceptable 
tolerance. Having generated also maps of noise,  sensitivity for the different products, our 
results for error variance stay below that threshold generally for most values showing 
R_TCA values over 0.6 (threshold common in remote sensing studies). 

Nonetheless, we consider the thresholds 0.9, 0.6 and 0.4 in R_TCA as the thresholds for 
minimum, acceptable and optimal values. The three main products involved in the study 
provide the following percentages of area within the previous thresholds: 

EDO: more than 52% of data over R_TCA 0.6, 68% over 0.4, and 12% over 0.9 

H121: more than 65% of area over R_TCA 0.6, 67% over 0.4, and 38% over 0.9 

CCIp: more than 60% of area over R_TCA 0.6, 70% over 0.4, and 20% over 0.9 



We have further specified the % of areas experimenting valid values based on R_TCA and 
error variance among the different products in several comments along section 4.1.2 
(L400-404).  
 

 
11. The discussion of ISMN network representativity is important but could be expanded to 
address how spatially limited in-situ data should be used for validating continental-scale 
products. 
 
Regarding the quality uncertainties of the ISMN, fortunately the database provides flags of 
for multiple factors of influence beyond the features of SM series themselves (e.g. 
temperature and rainfall threshold beyond for instance SM series characteristics such as 
saturation). Data of all stations included in the ISMN database are harmonized and 
checked for quality control across Europe, and thus the ones included in the study also 
include these flags. This means that when certain stations whose flags indicated dubious 
values of SM or of associated variables (such as BIEBRZA network which is known for 
providing very high SM values) were included based on the criteria of representativity , 
since in some environmental conditions there is no abundance of stations over all the 
climate types of Europe. Therefore, it was preferred to deal with uncertainty in a few 
stations of known factors of uncertainty (e.g. the high values in flood-prone stations like 
BIEBRZA) than losing the power of valuable yet not optimal SM data from non-key ISMN 
stations for validating the remote-sensing and model-based products across such a wide 
range of conditions from boreal to semi-arid conditions.  Therefore, given the few 
exceptions showing high uncertainty rates under exceptional environmental conditions, 
flags were waived for the vast majority of stations as it has been already indicated in the 
manuscript: 
 
L263-268: “Conversely to the case of the distributed datasets, the point data from the 
ISMN database has not been severely restricted with flags due to the general consistency 
of most stations in common environmental conditions and the scarcity of stations with 
severe indications of uncertainty from the flags. In such cases, the inclusion of the stations 
was decided based on the existence of alternative stations with similar environmental 
conditions, and if not available included based on the criteria of consistency between the 
factors of uncertainty causing the flag and the characteristics of the environment. Multiple 
areas where snow and icing processes are frequent are barely observed in situ, and 
consequently, even despite the seasonal uncertainties, RS products provide much more 
coverage of these areas than the few ISMN stations over these areas. Therefore, including 



all ISMN networks and data available was the decision adopted to ensure sufficient 
amount of data for validation over every climatic type and ensure the representativity of a 
wide range of observed soil moisture conditions.” 
 

Among the factors considered for the selection criteria based on the match between flags 
and the characteristics of the environment, the land cover was considered. For instance, 
Fig 2 primarily aimed to illustrate the location of the ISMN networks used for the study 
while providing secondary information about the dominant land use in such location. The 
land cover recognition aimed to differentiate if the ISMN locations correspond to areas 
with canopy (green) or without canopy (yellows) given that vegetation can be the most 
influential factor over the SM retrievals with remote sensing. In that way, the interpretation 
of results considered which stations (e.g. primarily some of Scandinavia) were most 
impacted by dense canopy cover, and accordingly, indicated in the manuscript (L480-481, 
L514-518). 

 
12. The analysis of trends could benefit from comparison with independent climate 
variables (precipitation, temperature) to help determine which product trends are more 
realistic. 
 
Already addressed in the last point of major comments. 

 
13. Page 26, section 6, revise the title for this section regarding the conflict of interest. 

The title and text have been revised for clarity. 

 


