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Abstract. This study evaluates the efficacy of bias-correction (BC) and data assimilation (DA) techniques in refining 10 

hydrological model predictions. Both approaches are routinely used to enhance hydrological forecasts, yet there have been no 

studies that have systematically compared their utility. We focus on the application of these techniques to improve operational 

river flow forecasts in a diverse dataset of 316 catchments in the UK, using the Ensemble Streamflow Prediction (ESP) method 

applied to the GR4J hydrological model. This framework is used in operational seasonal forecasting, providing a suitable 

testbed for method application. Assessing the impacts of these two approaches on model performance and forecast skill, we 15 

find that BC yields substantial and generalised improvements by rectifying errors post-simulation. Conversely, DA, adjusting 

model states at the start of the forecast period, provides more subtle enhancements, with the biggest effects seen at short lead 

times in catchments impacted by snow accumulation/melting processes in winter and spring, and catchments with high Base 

Flow Index (BFI) during summer months. The choice between BC and DA involves trade-offs, considering conceptual 

differences, computational demands, and uncertainty handling. Our findings emphasise the need for selective application based 20 

on specific scenarios and user requirements. This underscores the potential for developing a selective system (e.g., decision-

tree) to refine forecasts effectively and deliver user-friendly hydrological predictions. While further work is required to enable 

implementation, this research contributes insights into the relative strengths and weaknesses of these forecast enhancement 

methods. These could find application in other forecasting systems, aiding the refinement of hydrological forecasts and meeting 

the demand for reliable information by end-users. 25 
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1 Introduction 

Hydrological forecasts are a critical tool for water resources management, flood forecasting, and drought mitigation. In a 

warming world, we expect to see an increase in both high and low flow extremes, which will cause a wide range of impacts 

for society and the environment (Kreibich et al., 2022). Therefore, the need for reliable hydrological forecasts is more critical 

than ever, such that proactive action to can be taken to mitigate these impacts. 35 

There are different approaches to operational hydrological forecasting, ranging from process-based models to fully data-driven 

approaches. In the United Kingdom (UK), the Hydrological Outlook UK (HOUK) provides operational forecasts which are 

used by a range of stakeholders supporting their decision-making (Hannaford et al., 2019). The HOUK uses three different 

approaches to produce its forecasts (Prudhomme et al., 2017). For the first approach, hydrological models are driven with 

seasonal weather forecasts produced by the Met Office to derive river flow forecasts (Bell et al., 2013). A second, dual 40 

approach, which is purely data driven and based on statistical methods, generates ‘persistence’ forecasts using flow anomaly 

in the most recent month as well as ‘historical analogue’ forecasts using the most similar historical sequences (Svensson, 

2016). The third approach, which is the approach we are focusing on in this paper, is the Ensemble Streamflow Prediction 

(ESP) where a hydrological model is driven by an ensemble of historical climate time series to generate probabilistic 

streamflow forecasts (Harrigan et al., 2018). The operational ESP uses all available years of historical meteorological data 45 

from 1961 onwards to generate forecasts, currently the period 1961–2024. Each year, a new ensemble is added as more data 

becomes available. The initial hydrological conditions (IHCs) are calculated by driving the hydrological model (currently 

GR6J; previously GR4J until November 2023) with observed meteorological data from the UK Met Office (UKMO) in near-

real time. This data includes provisional, non-quality controlled precipitation and temperature grids (HadUK; Hollis et al., 

2019). Potential evapotranspiration (PET) is calculated using the calibrated McGuinness-Bordne equation, as outlined by 50 

Tanguy et al. (2018). 

Alternative approaches include long-term average scenarios, where catchment hydrological models are driven by rainfall 

scenarios assuming specific percentages of long-term average rainfall (e.g., 60%, 80%, or 100%). This method is used in 

monthly water situation reports by the Environment Agency (e.g., Environment Agency, 2022). Additionally, emerging 

approaches like the use of storylines and large ensembles to explore plausible worst-case scenarios for upcoming months are 55 

gaining popularity in water resources management (e.g., Chan et al., 2024; Kay et al., 2024).  

This study will focus on enhancing hydrological predictions using the ESP method, which has long been used worldwide and 

forms the basis for many operational seasonal forecasting systems (A. Wood, 2016). The UK provides a testbed for application 

given the existence of the operational HOUK, but the results of this study could resonate in many other settings. The ESP 

method, as utilised in this paper, employs historical sequences of climate data (precipitation and potential evapotranspiration) 60 

to drive hydrological models, generating a range of possible future streamflow conditions. The source of forecasting skill of 

ESP method stems from accurate estimation of the initial hydrologic conditions (IHCs), which, depending on the model, can 

include antecedent stores of soil moisture, groundwater, snowpack, and channel streamflow (A. Wood, 2016; A. W. Wood & 
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Lettenmaier, 2008), rather than from skilful atmospheric forecasts. The ESP therefore offers an ideal environment for testing 

forecast enhancement techniques since it isolates the skill associated with Initial Hydrological Conditions (IHCs) from that 65 

stemming from accurate meteorological forcings. The IHCs can be detected up to a year in advance (Staudinger & Seibert, 

2014) depending on catchments characteristics. Harrigan et al. (2018) have shown that in the UK, ESP is particularly skilful 

in catchments with a long ‘memory’ due to their strong groundwater influence. These catchments are concentrated in the 

South-East of the country, where ESP shows forecasting skill for lead times of up to 6 months. In the North-West of the country 

however, the skill of ESP is limited. This part of the country is dominated by ‘flashy’ fast-responding catchments, with steeper 70 

orography and little groundwater storage, where the IHCs have less predictive power and highlights the limitations of ESP 

method. Despite its simplicity, ESP outperforms other hydrological forecasting approaches in many cases, and remains a hard-

to-beat reference, both in terms of skill but also in terms of value (Peñuela et al., 2020). 

The ability of ESP to produce skilful forecasts, as with any model-based forecasting approach, is also inherently linked to the 

capability of the hydrological models used to produce accurate streamflow simulations. Streamflow simulations produced by 75 

hydrological models contain multiple sources of uncertainties, including the model structure, parameterisation, forcing data, 

and initial conditions (Renard et al., 2010).  

GR4J1 (Génie Rural à 4 paramètres Journalier) hydrological model was used in this study, and has been shown to reliably 

simulate the hydrology of a diverse set of catchments (Perrin et al., 2003) including temporal transition between wet and dry 

periods (Broderick et al., 2016). Smith et al. (2019) demonstrated the good performance of the GR4J model over 303 UK 80 

catchments, enabling historic streamflow data reconstruction. However, GR4J is a simple lumped catchment, with only four 

parameters: (i) a soil moisture accounting reservoir, (ii) a water exchange function, (iii) a non-linear routing store to represent 

baseflow, (iv) rainfall-runoff time lags controlled by two-unit hydrographs. This simple model has the advantage of being very 

quick to run, and computationally inexpensive, which is an essential criterion for an operational service, but might not be able 

to capture the complexity of some of the hydrological systems, resulting in some biases, particularly towards the extremes.  85 

While Lane et al. (2019) did not include GR4J in their study, they demonstrated a common challenge in hydrological 

modelling: systematic biases, particularly evident in regions with inadequate snowpack simulation, inter-catchment 

groundwater exchange, or significant human influence on the basin. Figure 1a illustrates the scale of model bias for GR4J. 

Figures A4 and A5 show that the bias is generally greater for low flows when measured as percent bias, whereas it is greater 

for high flows when considering raw bias values. To address this issue of hydrological model biases impacting on predictions, 90 

researchers have developed various approaches to refine forecasts. Two prominent techniques are bias-correction (BC; e.g., 

 
1 When this study was carried out, GR4J (Génie Rural à 4 paramètres Journalier) model (Perrin et al., 2003) was used in the HOUK to 

produce the ESP forecasts, having been used operationally for five years. This has since then been updated to GR6J (Génie Rural à 6 

paramètres Journalier, Pushpalatha et al., 2011) in October 2023. However, the difference in skill between the two model structures is 

minimal (Appendix, Figure A1, A2 and A3), except for some catchments in the South-East for short lead-time. The mean difference in 

skill (measured by CRPSS) between the two models is less than 0.03. In this study, we used GR4J, but given the marginal discrepancy in 

performance between the two models, we anticipate that the findings and conclusions of this study would remain largely applicable when 

employing GR6J. 



4 

 

Bum Kim et al., 2021) and data assimilation (DA; e.g., Piazzi et al., 2021).  While both methods share the common goal of 

enhancing forecast accuracy, they diverge fundamentally in approach. BC is a statistically-based post-processing step that 

adjusts the forecast based on past performance, whereas DA improves the IHCs and corrects internal model states. This 

fundamental difference may explain why there has been no prior attempt to compare the efficacy of these approaches in 95 

operational settings. However, from a user perspective, where the emphasis lies on the reliability of the final product to aid 

decision-making, such a comparison holds significant value. Ultimately, it can lead to the creation of more reliable end-

products for users. 

Several previous studies have shown the advantages of using BC as a post-processing technique to enhance the skill of 

hydrological forecasts (e.g., Chevuturi et al., 2023; Tiwari et al., 2022). Some operational systems, such as the GEOGloWS 100 

ECMWF Streamflow Service, apply BC to generate their forecasts (Sanchez Lozano et al., 2021). Hashino et al. (2007) 

conducted a study in which they compared various BC methods for ensemble streamflow forecasts, and found that the quantile 

mapping (QM) method outperformed other techniques, resulting in a significant improvement in forecast skill. QM stands out 

as the most frequently employed approach in prior studies using bias-correction for improving streamflow simulations (e.g., 

Chevuturi et al., 2023; Farmer et al., 2018; Usman et al., 2022). While some researchers opt to bias-correct precipitation and 105 

temperature prior to input into hydrological models, Tiwari et al. (2022) found that directly bias-correcting streamflow leads 

to superior results. Li et al. (2017) presents a comprehensive review of forecast post-processing methods. QM stands out as 

one the most popular options in hydrological forecast, due to its simplicity and efficiency (e.g., Hashino et al., 2007; Wood 

and Schaake, 2008). However, as an unconditional method, QM uses the cumulative distribution function to perform the 

correction, and so does not preserve the connection between each pair of simulated and observed values. Thus, QM may adjust 110 

the raw forecasts in the wrong direction for some forecast values (Madadgar et al., 2014). Note that in our study, we apply 

QM-BC using Flow Duration Curves (FDCs) instead of CDFs. While statistically distinct, FDCs are better suited to hydrology 

due to their focus on flow exceedance probabilities. We view this as an extension of the QM framework tailored to hydrological 

data and have retained the term ‘Quantile Mapping’ for consistency with the broader QM literature. 

Unlike BC, which is applied as a post-processing step, the aim of data assimilation (DA) is to improve the IHCs by combining 115 

models with observed data to improve the estimation of the target variable during the forecast period (e.g., Carrassi et al., 

2018). In this way, DA can be seen as an effort to provide a more physically-based improvement of the model predictions, 

rather than a statistically-based post-hoc correction. DA has a long history of application in meteorological (e.g., Navon, 2009) 

and hydrological forecasting (e.g., Liu et al., 2012), but in the latter case has tended to be focused on short lead-time (typically 

the order of days, for flood forecasting applications; e.g., Piazzi et al., 2021). There have been relatively few studies of DA for 120 

sub-seasonal to seasonal forecasts in hydrology.  

DA can be performed sequentially, using observed data as it becomes available, to update the model states and/or parameters. 

In this study, sequential DA of streamflow observations is performed during the model spin-up period to better approximate 

the IHCs at the start of the forecast period and to update model parameter values. Previous research has demonstrated the 

potential of sequential DA approaches to improve model performance by reducing initial condition uncertainty (e.g., Piazzi et 125 
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al., 2021). Two of the most popular methods are Kalman filters (e.g., Maxwell et al., 2018; Thiboult et al., 2016) and particle 

filter (e.g., DeChant and Moradkhani, 2011; Jin et al., 2013).  

Kalman filter approaches for nonlinear systems, such as the extended Kalman filter, are often limited by their high 

computational demand, unbounded error growth, and instability in the error covariance equation (Evensen, 1992). Ensemble 

Kalman filter (EnKf) approaches can be used to overcome some of these issues but rely on the assumption of Gaussian errors 130 

(Evensen, 1994). In contrast, particle filters do not make any assumptions regarding error distributions. However, particle 

filters may struggle in high-dimensional cases, requiring very large ensemble sizes to avoid 'particle weight collapse', where 

most particles end up with similar weights, failing to represent the full range of system states (Snyder et al., 2008). 

For hydrological forecasts, Piazzi et al. (2021) have shown the potential effect of DA on skill improvement for short lead times 

(2 days). Other work has shown that the impact of data assimilation and alternative approaches used to improve model skill, 135 

such as precipitation forcing, varies with lead time. However, the majority of research in this area focusses on short- to medium-

range forecasts (1-31 day lead-time; e.g., Boucher et al., 2020; Clark et al., 2008; Piazzi et al., 2021; Randrianasolo et al., 

2014; Seo et al., 2009; Sun et al., 2015; Thiboult et al., 2016). This is despite the improvements in hydrological forecasting 

making the production of skilful longer-term forecasts possible (e.g., Harrigan et al., 2018). Only a handful of studies have 

investigated the impact of initial condition estimates on longer lead times in hydrological forecasts in the United States 140 

(DeChant & Moradkhani, 2011; Shukla & Lettenmaier, 2011), showing generally improved seasonal predictions with DA, but 

with little added value beyond 1-month forecast. However, beyond this, research into the potential of DA to improve seasonal 

and sub-seasonal hydrological forecasts’ skill is limited. Therefore, there may be potential to improve skill at longer lead times 

by updating model parameters as well as initial streamflow states.  

Note that other approaches, such as multi-model blending, have been used by others to improve forecasts (e.g., Chevuturi et 145 

al., 2023; Roy et al., 2020; Shamseldin, 1997), but will not be considered in this study. 

The overall objective of this paper is to evaluate and compare the utility and effectiveness of BC and DA approaches for 

optimising hydrological forecasts outputs over a range of different lead times. This is achieved through application to a dataset 

of 316 UK catchments, representing a diverse range of catchment properties. We aim to provide guidance on the relative 

performance of these methods, and how this varies according to location and catchment type, lead-time and time of year. As 150 

this is based on an operational seasonal forecasting product, the Hydrological Outlook UK ESP forecasts, it will enable users 

to make informed decisions and will provide insights into the most effective strategies for enhancing UK hydrological 

forecasting. More generally these results can find application for other hydrological seasonal forecasting systems in other 

regions, and can underpin future research in improving operational hydrological forecasts. 

A glossary of key acronyms used in this study is provided at in Table 1 for reference. 155 

 

Table 1: Glossary of acronyms commonly used in this study. 

Acronym Meaning Definition/Comments 
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BC Bias Correction Technique to adjust model outputs to account for systematic errors 

or biases. 

BFI Base Flow Index A measure of the proportion of the river runoff that derives from 

stored sources (catchment with long hydrological memory have a 

high BFI). 

CRPSS Continuous Ranked 

Probability Skill Score 

Forecast skill score used in this study. 

DA Data Assimilation Methodology which integrates observed data into models to 

improve the accuracy of predictions by updating model states and 

parameters. 

ESP 

 

▪ OR-ESP 

▪ BC-ESP 

▪ DA-ESP 

Ensemble Streamflow 

Prediction 

▪ Original-ESP 

▪ Bias-Corrected ESP 

▪ ESP with Data 

Assimilation 

Streamflow forecasting method used in this study, involving the use 

of a hydrological model driven by an ensemble of historical climate 

data to generate probabilistic streamflow forecasts. 

FDC Flow Duration Curve Provides the distribution of flow rates used to apply quantile 

mapping bias correction method. 

HOUK Hydrological Outlook UK Operational service providing seasonal forecasts and assessments of 

future hydrological conditions across the United Kingdom. 

IHC Initial Hydrological Condition The state variables of the hydrological system at the beginning of 

the forecasting period (i.e. initial values of the model parameters). 

PF Particle Filter DA method for estimating the state of a system by representing the 

probability distribution with a set of samples (particles) that evolve 

over time based on observations and model dynamics. 

QM Quantile Mapping BC technique to correct model biases by aligning the quantiles of 

model output with observed data. 

 

 

2 Material and methods 160 

2.1 Data 

2.1.1 River flow data 

Observed daily river flow data were obtained for 316 catchments (Figure 1) from the National River Flow Archive (NRFA, 

https://nrfa.ceh.ac.uk/) database. For the full metadata of these catchments, see supplementary information in Harrigan et al. 

(2018). The catchment observations were used to calibrate the model (see section 2.2), for bias-correcting the streamflow 165 

https://nrfa.ceh.ac.uk/
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simulations (see section 2.3), for model performance evaluation (see section 2.5) and forecast skill assessment (see section 

2.6). The study period used was from 1st January 1961 to 31st December 2015. 

For the forecast skill assessment, complete observed time series were needed (see section 2.6), so gap-filling, using simple 

linear interpolation, was applied to the missing data in the observed river flow time series (the limitations of this method are 

discussed in section 4.4). The gap-filled version of the dataset was only used for the forecast skill assessment, not for the other 170 

applications (model calibration, BC and model performance evaluation). 

Considering the amount of missing data in the observational dataset and the diverse hydrological characteristics of catchments, 

we defined four different subsets of catchments (see Figure 1b):  

(i) The full set of catchments (316 catchments); 

(ii) Catchments with less than 5% missing observed river flow data (139 catchments); 175 

(iii) Catchments with Base Flow Index (BFI) greater than 0.6 (70 catchments). The BFI is a measure of the proportion of 

the river runoff that derives from stored sources; the more permeable the rock, superficial deposits and soils in a catchment, 

the higher the baseflow and the more sustained the river’s flow during periods of dry weather (Gustard, 1992). In other 

words, the higher the BFI, the longer the catchment memory, and therefore improving the IHCs in these catchments has 

the potential to improve the hydrological forecasts for longer lead times. 180 

(iv) Catchments with BFI greater than 0.6 and missing observed river flow data less than 5% (29 catchments). 

 

 

 

Figure 1: (a) Absolute percent bias (absPBIAS) in the 316 study catchments for streamflow simulated with GR4J model, calculated 185 
based on the current analysis and (b) location of gauging stations for the 316 NRFA catchments used in this study and their categories 

based on amount of missing data and value of BFI. 
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2.1.2 Meteorological data 

To run the hydrological model (see section 2.2), precipitation (P) and Potential Evapotranspiration (PET) data is needed. For 190 

P data, we used CEH-GEAR daily rainfall data (Keller et al., 2015; Tanguy et al., 2019). For PET data, we used CHESS-PET 

(Robinson et al., 2017, 2020) data for Great Britain, and the Historic PET dataset (Tanguy et al., 2017) for Northern Ireland, 

where CHESS-PET is not available. Tanguy et al. (2018) describe how the Historic PET dataset was derived using a 

temperature-based PET equation calibrated using CHESS-PET. Consequently, these two datasets can be regarded as almost 

equivalent, and sufficiently similar for our purposes. The meteorological data used also covered the period from 1961-2015. 195 

 

2.2 Hydrological model, river flow simulations and ESP hindcasts 

2.2.1 Simulated observed river flows 

The hydrological model used to simulate river flow was the GR4J model (Perrin et al., 2003), which served as the operational 

model for producing ESP forecasts in the HOUK until September 2023. The calibration approach adopted was consistent with 200 

Harrigan et al. (2018), where the modified Kling-Gupta efficiency (KGEmod; Gupta et al., 2009; Kling et al., 2012), applied 

to root squared transformed flows (KGEmod[sqrt]), was used as the objective function for automatic fitting. This approach 

places weight evenly across the flow regime, rather than focussing on high or low flows, a decision made considering that ESP 

forecasts are generated throughout the year, encompassing both dry and wet conditions. 

Daily river flow simulations were produced for the period 1st Jan 1964 to 31st December 2015. The initial 3 years (1961-1963) 205 

served as a spin-up period to allow the internal stores to transition from an initial state of unusual conditions to one of 

equilibrium (Rahman et al., 2016). 

2.2.2 ESP hindcasts from historical climate 

Three versions of ESP hindcasts were used for the period 1964-2014: (i) the hindcasts produced from Harrigan et al. (2018), 

referred to as ‘Original ESP’ (OR-ESP) in the rest of the manuscript; (ii) a bias-corrected version of these hindcasts using the 210 

method described in section 2.3, referred to as ‘Bias-Corrected ESP’ (BC-ESP); and (ii) new hindcasts where the initial 

conditions at the start of the forecast are corrected using DA method described in 2.4, referred to as ‘Data Assimilated ESP’  

(DA-ESP). Note that what we call ‘Original’ (OR) is the model simulations with no correction (neither BC nor DA), this is 

often referred to as ‘open-loop’ in the literature related to DA (e.g., Boucher et al., 2020). 

Each set of hindcasts comprised a 51-member ensemble of streamflow predictions, initiated on the first of each month. These 215 

predictions were generated by forcing GR4J with 51 54 historic climate sequences (P and PET pairs) extracted for each historic 

year from 1961 to 20152014, projected out to a 12-month lead time at a daily time step. As in Harrigan et al. (2018), to ensure 

historic climate sequences did not artificially inflate skill (Robertson, 2016), we used a leave-three-years-out cross-validation 

(L3OCV) approach, whereby the 12-month forecast window and the two succeeding years were not used as climate forcings, 
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resulting in a final count of 51 ensembles. This was done to account for persistence from known large-scale climate–streamflow 220 

teleconnections such as the North Atlantic Oscillation with influences lasting from several seasons to years (Dunstone et al., 

2016). Each of the 51 generated hindcast time series (54 years minus 3 years for model spin-up) were then temporally 

aggregated to provide a forecast of mean streamflow over seamless lead times of 1 day to 12 months, resulting in 365 lead 

times per forecast (leap days were removed). Following convention in the HOUK, lead time in this paper refers to the 

streamflow (expressed as mean daily streamflow) over the period from the forecast initialisation date to n days (or months) 225 

ahead in time. So, for example, a January ESP forecast with 1-month lead time is the mean daily streamflow from 1 January 

to the end of January and a January forecast with 2-month lead time is the mean daily streamflow from 1 January to the end of 

February. A total of 612 forecasts (51 years x 12 initialisation dates) with simulations for 365 days were therefore generated 

for our analysis. 

The main differences between the operational ESP and experimental set-ups in this paper are: (i) the ESP in the experimental 230 

set-up is constructed from 54 years of historical meteorological data (1961–2014), whereas the operational ESP currently uses 

1961-2024, with a new ensemble added every year; (ii) the GR4J model is used in our analysis, as it was the operational model 

at the time, whereas the operational ESP uses GR6J since November 2023; and (iii) in our experiments, PET is derived from 

the Penman-Monteith based CHESS-PE, except in Northern Ireland, where McGuinness-Bordne PET was used due to data 

availability. For the operational ESP, McGuinness-Bordne PET is used over the whole of the UK. Since the McGuinness-235 

Bordne equation is calibrated against CHESS-PE, we do not expect significant biases between the two PET calculation 

methods. 

 

2.3 Bias-correction 

The BC methodology applied in this study is a quantile-mapping (QM) approach, similar to that employed by Farmer et al. 240 

(2018). This method was selected for its simplicity of implementation, and its popularity in hydrological applications. QM BC 

is applied by Sanchez Lozano et al. (2021) to operationally bias-correct the GEO Global Water Sustainability (GEOGloWS) 

streamflow forecasts. Farmer et al. (2018) recommend 14 complete years of observed data to apply this method. This condition 

is verified satisfied in our dataset, where the shortest record is of 23 years of complete data.        

BC was applied separately to each of the 12 months using the observed distribution specific to that month, aiming to capture 245 

seasonality in flow. The decision to apply bias correction (BC) on a monthly basis was motivated by the seasonal variability 

in the UK hydrological system, with wet winters, drier summers, and transitional spring and autumn periods. Monthly BC 

effectively captures these seasonal changes while avoiding overfitting to short-term fluctuations. While more frequent 

corrections could improve short-term forecasts, the high variability in the UK climate suggests that weekly or bi-weekly BC 

might introduce noise rather than enhance accuracy. Monthly BC provides a balanced approach by adjusting for seasonality 250 

without overreacting to short-term extremes. 
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Figure 2 shows the conceptual diagram of how QM BC works. Each flow value on the simulated Flow Duration Curve (FDC) 

is replaced by the flow value of the observed FDC for the corresponding non-exceedance level. 

 

 255 

Figure 2: Conceptual diagram of Quantile Mapping Bias-correction (QM BC), showing the percentage of non-exceedance against 

the streamflow rate for observed (blue) and simulated (red) streamflow for GR4J over an example catchment 12001 for the month 

of May. The purple arrows show the steps involved in the bias-correction process: (1) For a given native simulated flow, the point 

on the simulated Flow Duration Curve (FDC) (red line) is identified; (2) the non-exceedance corresponding to that simulated flow is 

determined, and (3) the observed flow for that same non-exceedance is determined from the observed FDC (blue line), and this value 260 
corresponds to the bias-corrected flow. 

 

2.4 Data assimilation 

DA is a group of mathematical methods which can be used to combine information from a numerical model (here a 

hydrological model) with available observations to generate an improved estimate of the system’s state and, consequently, 265 

more accurate forecasts. DA methods can account for uncertainties associated with model structure, initial conditions, and 

observations and provide a probabilistic representation of the hydrological state. Here we used a Particle Filter (PF) technique, 

which uses a set of computational particles (representing possible states of the hydrological system) to estimate the most likely 

current state of the system.  

The PF works by simulating multiple potential scenarios (particles) of the hydrological system based on the underlying model 270 

but with different sets of model parameters. The method then assigns probabilities to these scenarios based on how well they 

match the observed data. As new observations become available, the PF updates the particle set, giving more weight to 

scenarios that align with the most recent data. We updated model parameters (production store, routing store, unit hydrograph 

1 level and unit hydrograph 2 level) in GR4J, following the implementation of Piazzi et al. (2021). We applied the particle 

filter approach on daily data throughout the model spin up period (4 years), We used a daily updating timestep in the model 275 
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spin up period (4 years), in order to improve the IHCs for the seasonal forecast. A sequential importance sampling approach 

was used to assign weights to individual particle states according to their likelihoods. This method is explained in more detail 

in Piazzi et al. (2021). We chose a PF method over a Kalman filter approach to avoid the restriction of assumed gaussian errors, 

and so that no mass constraints needed to be applied (see e.g., Piazzi et al., 2021). To generate the ‘Simulated Observed River 

Flows’, the PF was applied once a day during the full evaluation period (1964-2015), i.e. using daily streamflow observations. 280 

Then the IHCs produced in this way at the start of each month was used to run our 612 ESP forecasts (DA-ESP). 

 

2.5 Model performance evaluation 

To assess model performance, and in particular, compare the improvement provided in the simulated observed flows by BC 

and DA, we computed a range of performance metrics, detailed in Table 2. These are all metrics commonly used in 285 

hydrological assessments (e.g., Hannaford et al., 2023).  

 

Table 2: List of performance metrics calculated with their corresponding equation. 𝑸𝒊 and 𝒒𝒊 are observed and modelled flows for 

day 𝒊 of an 𝒏 daily record. 𝑸 ̅̅̅and 𝒒 ̅ are the mean observed and modelled flows. 

Metric Abbreviation Equation Range and 

optimum 

Focus 

Root Mean 
Square Error 

rmse 

𝑟𝑚𝑠𝑒 = √
1

𝑛
∑ (𝑄𝑖 − 𝑞𝑖)2

𝑛

𝑖=1
 

 

Optimum in 0 
(perfect fit). 

Lower values are 

better. Range 

depends on scale 

of the 

observations. 

Measures the 
accuracy of the 

model predictions. 

Pearson’s 

correlation 
Correlation or 𝑟 

𝑟 =
∑(𝑄𝑖 − �̅�) (𝑞𝑖 − �̅�)

√∑(𝑄𝑖 − �̅�)2 ∑(𝑞𝑖 − �̅�)2
 

Ranges from -1 to 

1, where 1 

indicates a perfect 
positive 

correlation, -1 

indicates a perfect 
negative 

correlation, and 0 

indicates no 
correlation. 

Measures the linear 

relationship between 

observed (O) and 
predicted (P) values. 

Bias Ratio bias or 𝛽 𝛽 =
𝜇√𝑞

𝜇√𝑄

 

𝜇 is the mean flow (here the square root of the 

modelled and observed flows as indicated by the 
suffix). 

Can be positive or 

negative. 

Optimum is 0, 
indicating no bias. 

Measures the 

systematic 

overestimation or 
underestimation of 

the model. 

Absolute 

Percentage 
Bias 

 

absPBIAS 
𝑎𝑏𝑠𝑃𝐵𝐼𝐴𝑆 = | 

∑ (𝑄𝑖 − 𝑞𝑖)𝑛
𝑖=1

∑ 𝑄𝑖
𝑛
𝑖=1

 100 | 
Percentage values, 

lower values are 
better. Optimum is 

0, indicating a 

perfect fit. 

Measures the total 

percentage 
difference between 

observed (𝑄𝑖) and 

predicted (𝑞𝑖) 

values. 

Mean 

Absolute 

Percent Error 

MAPE 
𝑀𝐴𝑃𝐸 = (

1

𝑛
∑ |

𝑄𝑖 − 𝑞𝑖

𝑄𝑖

|

𝑛

𝑖=1

) 100 
Percentage values, 

lower values are 

better. Optimum is 
0, indicating a 

perfect fit. 

Measures the 

average percentage 

difference between 

observed (𝑄𝑖) and 

predicted (𝑞𝑖) 

values. 
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Modified 

Kling-Gupta 
Efficiency 

KGE2 𝐾𝐺𝐸2 = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 

where 𝑟  is the correlation coefficient, 𝛽  is the 

bias ratio, and 𝛾  is the variability ratio 
𝐶𝑉

√𝑞

𝐶𝑉
√𝑞

 or 

𝜎
√𝑞

𝜇
√𝑞

⁄

𝜎
√𝑄

𝜇
√𝑄

⁄
 

𝜇 , 𝜎  and 𝐶𝑉  are the mean, standard deviation 

and coefficient of variation of flow (here the 

square root of the modelled and observed flows 

as indicated by the suffix). 

Ranges from -∞ to 

1. Higher values 
are better, with 1 

indicating a 

perfect fit. 

Comprehensive 

metric considering 
correlation, 

variability, and bias. 

Absolute 

Percent Error 

in Q95 (flow 
exceeded 

95% of the 

time) 

Q95_APE 
𝑄95𝐴𝑃𝐸 = |

𝑄95 − 𝑞95

𝑄95
| 100 

𝑄95  and 𝑞95 are the 95th percent exceedance 

for the observed and modelled flow (or 5th 

percentile). 

Percentage values, 

lower values are 

better. Optimum is 
0, indicating a 

perfect fit. 

Specifically targets 

errors in predicting 

low-flow events. 

Absolute 

Percent Error 

in Q05 (flow 

exceeded 5% 
of the time) 

Q05_APE 
𝑄05𝐴𝑃𝐸 = |

𝑄05 − 𝑞05

𝑄05
| 100 

𝑄05 and 𝑞05 are the 5th percent exceedance for 

the observed and modelled flow (or 95th 
percentile). 

Percentage values, 

lower values are 

better. Optimum is 

0, indicating a 
perfect fit. 

Specifically targets 

errors in predicting 

high-flow events. 

 290 

 

2.6 Forecasts skill assessment 

Forecast skill refers to the relative accuracy of a set of forecasts, with respect to some set of standard reference forecasts (Wilks, 

2019). Even if the model performance metrics (presented in 2.5) improve with BC and DA, it is not necessarily going to 

translate into direct improvement in forecasting skill. This is because the enhancement achieved through DA focuses in 295 

improving IHCs, whose impact decays over lead time. Conversely, while BC is expected to enhance simulations across all 

lead times, its effectiveness is constrained by the inherent limitations linked to the lack of skill in the meteorological forcings, 

particularly in the case of ESP which relies on climatological data.  

The Continuous Ranked Probability Skill Score (CRPSS; Hersbach, 2000) was used in our study for evaluating the 

probabilistic skill of OR-ESP, DA-ESP and BC-ESP, using climatology as our reference forecast like in Harrigan et al. (2018).  300 

The CRPSS measures the relative skill of the forecast compared to a benchmark, in this case, climatology. It is defined as: 

 

𝐶𝑅𝑃𝑆𝑆 = 1 −
𝐶𝑅𝑃𝑆𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝐶𝑅𝑃𝑆𝑐𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦

 

 

where: 305 

▪ CRPSforecast is the Continuous Ranked Probability Score (CRPS) of the forecast ensemble, calculated by comparing the 

Cumulative Distribution Function (CDF) of the forecast to the observed data over the evaluation period. 

▪ CRPSclimatology is the CRPS for the climatology (our benchmark), calculated by comparing the CDF of the climatology 

(our benchmark) to the observed data over the same period. 

 310 
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The CRPSS values are interpreted as follows: 

▪ CRPSS=1: The forecast has perfect skill compared to climatology. 

▪ CRPSS=0: The forecast has no skill compared to climatology (forecast is as good as using climatology). 

▪ CRPSS<0: The forecast is less accurate than climatology (forecast is misleading, and has no skill). 

 315 

CRPSS penalizes biased forecasts and those with low sharpness (Wilks, 2019). The Ferro et al. (2008) ensemble size correction 

for CRPS was applied to account for differences between the number of members in the hindcasts (51 members, corresponding 

to the historic period from 1961-2015 with L3OCV approach) and the benchmark (47 members, corresponding to the period 

of 1965-2015 with L3OCV approach and four years were removed for the spin-up period), as done in evaluation of 

hydrological ensemble forecasting elsewhere (e.g., Crochemore et al., 2017). Calculation of skill scores was undertaken using 320 

the open source “easyVerification” package v0.4.2 in R (MeteoSwiss, 2017). 

To construct the time series for the CRPSS calculation, the model forecast is initialised on the 1st day of each month, after 

which the model runs freely for a lead time of up to 365 days, producing a forecast for each subsequent day at progressively 

longer lead times. For that month, no further initialisations are performed beyond the 1st day. Thus, all lead times (e.g., 1-day, 

3-day, 7-day) are calculated relative to the 1st of the month. The CRPSS was then calculated based on the accumulated flow 325 

over the full forecast period, rather than point values on specific days. For example, for the 7-day forecast horizon, the skill 

score is based on the total flow accumulated over the first 7 days of the forecast, not the streamflow value at precisely day 7. 

This approach better reflects the overall forecast performance for each lead-time by considering the cumulative discharge over 

the given period. 

The calculation of CRPSS requires selecting a benchmark against which the forecasting system is evaluated. A forecast system 330 

is considered ‘skilful’ if its performance surpasses that of the chosen benchmark. Common benchmarks for hydrological 

forecast evaluation include climatology (long-term average flows), persistence forecasts (assuming the current state remains 

constant and commonly used for short-range forecasts), and gain-based benchmarks (using simpler models to quantify the 

added value of more complex models; Pappenberger et al., 2015). In this study, we selected climatology as the benchmark for 

evaluation, as it is a widely used reference for assessing sub-seasonal to seasonal forecasts.  335 

 

Unlike Harrigan et al. (2018), who employed simulated observed river flows as the 'truth' for skill evaluation, our study relies 

on observed flows. This choice ensures a fair comparison between OR-ESP, DA-ESP and BC-ESP. Considering DA’s 

objective of using observations to enhance models, using simulated observed data as the reference would have adversely 

affected the skill assessment of DA.  340 

The performance metrics (Section 2.5) were calculated for the simulated observed flows produced by the three methods (OR, 

BC and DA), and skill scores (Section 2.6) were calculated for all three versions of the hindcasts (OR-ESP, BC-ESP and DA-

ESP). To assess whether the differences in performance metrics and forecast skills are statistically significant, we applied a 

paired t-test to the performance metrics and CRPSS values calculated across the 316 catchments. In all cases, we compared 
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the OR simulations with the DA and BC simulations to evaluate the overall improvements introduced by the new approaches 345 

relative to the original method, and to determine if these differences are statistically significant. 

 

We have also calculated other skill scores, namely the mean absolute error skill score (MAESS) and the mean square error 

skill score (MSESS). However, these are deterministic skill scores, and therefore less suited than CRPSS for ensemble forecast 

verification. Hence, we only show CRPSS results in the following sections for brevity. The results were very similar to the 350 

ones presented here when using alternative skill scores. 

  

3 Results 

3.1 Model performance 

BC and DA both improve overall model performance in the simulated observed flows (Figure 3), though in DA the 355 

improvement is only marginal and not for all metrics, whereas for BC the difference is more substantial and generalised for 

all metrics considered.  

The greater impact on model performance observed in BC compared to DA is unsurprising given their fundamental differences 

in their approaches. In BC, observations serve as the absolute ‘truth’, guiding adjustments to align simulations with the 

observed Flow Duration Curves (FDCs). As its name implies, BC is explicitly designed to rectify predictions by conforming 360 

them to observations, thus naturally yielding improvement in overall performance. Conversely, DA endeavours to enhance 

predictions through a mechanistic, physically-informed approach during model simulation. In DA, both model-generated and 

observed values are weighed, aiming to refine the model’s alignment with observed data while preserving the hydrological 

model’s structural integrity. Consequently, it is expected that DA may exhibit comparatively lower performance due to the 

complex interplay between model fidelity and alignment to observed data. 365 
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Figure 3: Model performance metrics for river flow simulations produced by the GR4J model with no additional processing (dark 

pink), GR4J with BC (blue) and GR4J with DA (orange) for all 316 catchments (Figure1b). The period used to produce the 370 
simulations and calculate the metrics is 1964-2015 (1961-1963 used as spin-up period) with observed rainfall and PET as driving 

data. For The operational ESP uses all available years almost all the performance metrics, the GR4J with BC and GR4J with DA 

differ significantly from GR4J model with no additional processing at the 5% significance level, based on a Student's t-test.   
 

3.2 Forecast skill improvement with Data Assimilation 375 

Figure 4a shows the evolution of the skill score (CRPSS) with lead time for OR-ESP and DA-ESP for all catchments with less 

than 5% missing data. We can see in this figure that overall, there is not a big improvement in skill with DA (no difference in 

the median skill score). However, the envelope is wider at the top end, especially for very short lead-times, suggesting that 

DA does make a different for some catchments.  

If we look at the same comparison for only catchments with BFI > 0.6 (Figure 4b), the improvement with DA is more notable. 380 

This improvement is observed for lead time up to a season (~3 months). After that, the effect of improved initial conditions 

diminishes. 
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Figure 4:  (a) CRPSS for all stations with <5% missing observations, for OR-ESP (red) and DA-ESP (orange) simulations over lead 385 
time; (b) CRPSS for all stations with <5% missing observations and BFI >0.6, for OR-ESP (red) and DA-ESP (orange) simulations 

over lead time; (c) CRPSS for all stations with <5% missing observations, for OR-ESP (red) and BC-ESP (blue) simulations over 

lead time; (d) CRPSS for all stations with <5% missing observations and BFI >0.6, for OR-ESP (red) and BC-ESP (blue) simulations 

over lead time. The solid lines show the median CRPSS, whereas the shaded areas show the catchment spread of 5th-95th percentiles. 

Black plus markers indicates the lead time where BC-ESP or DA-ESP differ significantly from OR-ESP at the 5% significance level, 390 
based on a Student's t-test. 

 

Figure 5a-f shows difference in skill (comparing skill for the OR-ESP on the x-axis against skill for the DA-ESP on the y-axis) 

in more detail for different types of catchments (low and high BFI) and different lead times. The improvement in skill with 

DA is more apparent for higher BFI catchments, especially for lead-times 3 to 30 days (as there are more green triangles above 395 

the 1:1 line). We also observe that catchments with high Base Flow Index (BFI) exhibit greater overall skill, reflected in higher 

CRPSS values for both OR-ESP and DA-ESP, which is in line with findings from Harrigan et al. (2018). Figure 5g-l shows 

results for high BFI catchments only, and with a breakdown between seasons; winter (green triangles) and summer (brown 

dots), with forecasts initialised the 1st of each month within these seasons. We can see that the improvement brought by DA is 

much stronger in summer, especially at short lead-times. 400 
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Figure 5: (a to f) Scatter plots of CRPSS between OR-ESP and DA-ESP for all catchments with less than 5% missing observation 

data, broken down according to the BFI of the station, with low BFI < 0.6 (brown dots) and high BFI > 0.6 (green triangles); (g to l) 

Scatter plots of CRPSS between OR-ESP and DA-ESP for all stations with <5% missing observations and a BFI greater than 0.6, 405 
broken down according to season, December, January, February start months (DJF, winter; green triangle); June, July, August 

start months (JJA, summer; brown dots); (m to r) Same as a-f but for BC-ESP instead of DA-ESP; (s to x) Same as g-l but for BC-

ESP instead of DA-ESP. Forecasts are initialised the 1st of each month. The subplots within each category show increasing lead time 

(in days). 

 410 

3.3 Forecast skill improvement with Bias-Correction 

In the case of BC, the improvement in skill is longer lasting and more generalised (Figure 4c). Moreover, there is not such a 

clear difference in improvement between catchments with BFI>0.6 and the rest of the catchments (Figure 4c vs 4d). Notably, 
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BC improves even the skill of the most poorly performing catchments, as evidenced by the upward shift of the lower bound of 

the skill envelope (Figure 4c), ensuring that all catchments achieve positive skill scores, a contrast to the performance of DA. 415 

Figure 5m-x mirrors Figure 5a-l, but focuses on BC instead of DA, comparing the skill of OR-ESP and BC-ESP across various 

catchment types (Fig. 5m-r) and seasons (Fig. 5s-x). In this case, no discernible difference in skill improvement between high 

and low BFI catchments is evident with BC (Fig. 5m-r). However, we can see that the improvement in skill is greater for 

catchments with poor original performance. When narrowing our focus to high BFI catchments alone (Fig. 5s-x) and 

investigating the seasonal effect, we observe that, similarly to DA, skill enhancements are more prominent in summer with 420 

BC as well, although to a lesser extent than with DA. This general tendency of better skill in summer is also true for all 

catchments in the case of BC (not shown). 

The greater predictive ability of the bias-corrected forecast, compared to climatology, can be attributed to the role of initial 

conditions in hydrological forecasting. The GR4J model is initialised using hydrological simulations driven by observed 

meteorological data, providing a strong foundation for the forecast. This accurate initialisation, combined with the hydrological 425 

memory of the system, enhances forecast skill, even at longer lead times. In contrast, climatological forecasts do not adjust 

initial conditions and lack this model-based foundation, which is why the bias-corrected model outperforms climatology, 

despite being driven by historical meteorology. 

 

3.4 Data Assimilation vs Bias-Correction 430 
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Figure 6: CRPSS of OR-ESP, BC-ESP and DA-ESP forecasts at different lead times and initialisation months, for catchments with 

<5% of missing data and BFI>0.6. Grey stars indicate where BC-ESP or DA-ESP differ significantly from OR-ESP at the 5% 

significance level, based on a Student's t-test. The 'initialisation month' here refers to the month when the forecast was launched. 435 
This month marks the beginning of the forecast period, and it coincides with the start of the forecast time series data.   (the equivalent 

figure for all catchments with <5% of missing data can be found in the Appendix Figure A6) 

 

In comparing forecast skills for DA and BC at different lead-times and seasons for catchments with BFI > 0.6 (Figure 6), 

distinctive patterns emerge: in summer, up to 1-month lead time, DA-ESP outperforms OR-ESP and BC-ESP; whereas BC 440 

exhibits higher improvement in skill over winter and at longer lead times. The notable suitability of DA for summer months 

in high BFI catchments (i.e. with high hydrological memory) underscores the importance of accurate IHCs during drier periods. 

During such periods, precipitation tends to be closer to climatology, which is what is used to drive ESP. Getting IHCs right 

through DA in these situations will have a long-lasting effect.  
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Figure 7 (which displays all 316 catchments) shows spatial differences, notably with DA showing better performance in snow-445 

dominated catchments during winter and spring, especially for short lead times in north-eastern Scotland (Figure 7a). Figure 

A7 shows the fraction of precipitation falling as snow for catchments across Britain. The version of GR4J used in this study 

lacks the capability to model snow accumulation and snowmelt processes, making it less reliable in catchments affected by 

them. DA is especially effective in adjusting the IHCs during seasons influenced by snow, such as winter accumulation and 

spring melting, when errors in IHCs can be large. However, for longer lead times (Figure 7b), while no distinct patterns emerge, 450 

BC generally exhibits better performance across the majority of catchments over most months. This observation suggests a 

nuanced interplay of factors influencing forecast skill, with BC showing a more consistent advantage in extended lead times 

across diverse catchment conditions. As mentioned previously, this can be attributed to the fundamental differences in both 

methodologies. 

It is also interesting to note that there are cases where OR-ESP is better than both DA-ESP and BC-ESP (magenta points in 455 

Figure 7), especially in autumn, winter and beginning of spring (October to March) in the western part of the country for short 

lead-times (Figure 7a); and in spring for longer lead-times (Figure 7b) with no clear spatial pattern. 
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Figure 7: Each catchment showing of the best performing method (OR-ESP: Red; BC-ESP: Blue and DA-ESP: Yellow) basd on 460 
CRPSS for each month at lead time of (a) 3 days and (b) 30 days. 
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Figure 8 presents a series of histograms illustrating the differences in CRPSS across various versions of ESP for all 316 

catchments, showcasing the extent and variations in improvement offered by BC and DA across different seasons and lead 

times. Examining the first two columns of subplots (1st column comparing BC-ESP vs OR-ESP, and 2nd column comparing 465 

DA-ESP vs OR-ESP), we observe some similarities: (i) the range of differences between the corrected (BC or DA) and original 

(OR) ESP is narrower in winter (dark blue) and widest in autumn (orange); (ii) spring (light blue) exhibits the most cases 

where OR-ESP outperforms both BC-ESP and DA-ESP (indicated by negative values in the histograms); (iii) for both methods 

(BC and DA), the greater gains in skill are achieved in summer and autumn; (iv) for lead times longer than 3 months, the 

differences between different ESP versions are minimal, with absolute values < 0.08 for BC-ESP vs OR-ESP and < 0.03 for 470 

DA-ESP vs OR-ESP, suggesting negligible improvement beyond this point. Therefore, the gain achieved beyond 3 months 

using either technique is marginal.  

 

Figure 8: Histogram showing the difference in CRPSS values across 316 catchments between BC-ESP and OR-ESP (first column), 

DA-ESP and OR-ESP (second column), and DA-ESP and BC-ESP (third column), across various lead times (rows) and seasons 475 
(colours). Positive values indicate that the CRPSS value of the first ESP version in each pair is greater than the second (indicating 

higher skill). 
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Focusing now on the differences between DA and BC, we can see that, in general, BC presents fewer negative instances 

compared to DA, indicating that BC-ESP outperforms OR-ESP more frequently than DA-ESP. However, the magnitudes of 480 

improvement are typically comparable for lead times under 3 months for both methods. Directly comparing the CRPSS of 

DA-ESP and BC-ESP (third column of subplots in Figure 8), we observe a skew towards negative values, indicating more 

instances where BC outperforms DA. Nonetheless, beyond a 2-week lead time, the absolute differences are negligible (<0.08), 

suggesting that both methods yield similar outcomes. 

4 Discussion 485 

4.1 Bias-Correction vs Data Assimilation 

Despite their shared goal of enhancing forecast accuracy, it is important to recognise the fundamental and conceptual 

differences between DA and BC methodologies. As already mentioned previously, BC operates as a post-processing technique, 

rectifying model errors after simulations, while DA intervenes during model initialisations, adjusting model internal states to 

nudge the simulations towards observed data. DA, as used here, primarily focuses on refining initial conditions, and hence 490 

yields more significant impacts in catchments with high BFI due to their extended hydrological memory. DA also proves 

superior at short lead times for snow-dominated catchments, where the IHCs can be widely wrong due to the lack of explicit 

representation of snow accumulation and snowmelt processes in the hydrological modelling used in this study. Although the 

GR4J model does not include a dedicated snow module, snowmelt and accumulation processes are likely captured indirectly 

through other model dynamics. Data assimilation updates the model state, improving the simulation of these processes even 495 

without explicit representation. As Cooper et al. (2021) note, updated parameters in models like JULES can implicitly correct 

for processes not directly included in the model, such as groundwater dynamics. Similarly, GR4J may implicitly account for 

snow-related processes through data assimilation, provided there is sufficient observational signal. A future improvement 

would be to explicitly include snow processes, for example, by using GR4J-CemaNeige. This would enable a comparison of 

updated parameters and provide insight into how snow processes influence parameter values. 500 

In contrast to these enhancements at short lead time yielded by DA, BC extends its improvement beyond the initial conditions, 

improving the quality of simulations throughout the entire time series. However, it is noteworthy that DA and BC methods 

also fundamentally differ in their handling of uncertainties. DA methodologies based on Bayesian statistics, such as PF, 

account for uncertainties associated with model structures, initial conditions, and observations, providing a probabilistic 

representation of the hydrological state. This probabilistic nature enables a more thorough understanding of the forecast, 505 

acknowledging the inherent uncertainty in predicting natural systems. Additionally, DA offers the advantage of maintaining 

the structural integrity of the hydrological model. In other words, a model with a DA-updated initial conditions preserves the 

relationships between the model state and the target variable, while BC can alter them. Moreover, BC, while effectively 

aligning model outputs with observations, may inadvertently mask or underestimate the uncertainties in the hydrological model 

and observational data. The deterministic nature of BC can oversimplify the complex interplay of factors influencing 510 
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streamflow predictions and uncertainties in observations, potentially leading to an overconfident representation of forecast 

accuracy.  

While the handling of uncertainties distinguishes DA from BC, it is imperative to consider the associated computational 

demands and implementation complexities, especially if they are to be implemented operationally. This introduces a pragmatic 

dimension to the comparison, as the choice between DA and BC necessitates a nuanced evaluation of their distinct features 515 

and trade-offs. DA’s computational demands and implementation complexity starkly contrast with the simplicity and ease of 

implementation offered by BC, positioning the latter as an accessible 'easy-win' for swiftly enhancing forecasting products. 

Our results reveal an absence of universal superiority for one method over the other, underscoring their dependency on 

catchment characteristics, seasonal dynamics, and lead times. Interestingly, there are cases where the uncorrected OR-ESP 

outperforms both DA-ESP and BC-ESP, even at shorter lead times (Figure 7). Therefore, based on our findings, for the UK, 520 

we recommend selectively applying DA for short lead times in summer and catchments with high BFI, and for catchments 

affected by snow accumulation/snowmelt in winter and spring at short lead times, which is where the greatest benefit of DA 

was observed (Figure 6). In the rest of the cases, BC is the recommended method. Alternatively, the exclusive use of BC is 

advocated as a pragmatic, efficient solution, particularly where computational costs pose a limitation. Figure 8 has shown that 

even in the rare cases where OR-ESP outperforms BC-ESP, it does so with only marginal differences in CRPSS. This ensures 525 

that the hydrological post-processing is not “doing any harm” to the inherent skill of the raw model outputs (Hopson et al., 

2020). 

It should be noted that applying both BC and DA simultaneously to harness their combined effect isn’t straightforward. This 

complexity arises from the fact that the FDC used for quantile mapping relies on observed flow data without incorporating 

data assimilation. Thus, introducing data assimilation would disrupt the established relationships that underpin quantile 530 

mapping method. However, the two methods are not mutually exclusive, and combining them could be evaluated in future 

work. This would require a different experimental setting to ensure the applicability of QM BC in simulations that have 

undergone data assimilation. 

 

4.2 Model Improvements vs Practical needs: A Fine Balance 535 

Many argue that science should focus on the enhancement of hydrological models rather than correcting their errors by post-

processing (BC) or “nudging” their parameters through data assimilation (Refsgaard et al., 2023). While such advancement is 

undoubtedly crucial for deepening our comprehension of the physical world (Beven, 2019), this type of research is much 

slower to conduct, and incremental improvements take time to translate into impact for users. We could even argue that no 

model will ever perfectly model the physical world, e.g., human influence is notoriously difficult to account for in hydrology. 540 

This slow-evolving advancement of the models is asynchronous with the urgent need from end-users to have reliable outputs 

that they can trust to base their decision-making on (e.g., Cassagnole et al., 2021; Li et al., 2019; Pappenberger, 2024). It is 

worth noting the practical implications of improving hydrological forecasts (Lopez & Haines, 2017; Neumann et al., 2018), 
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particularly in the context of operational use by decision-makers, whereby the difference between correcting or not correcting 

the forecast – regardless of the method being used – can determine whether they are deemed useful and consequently used by 545 

stakeholders or not (Hopson et al., 2020). The Hydrological Outlook UK, which is the subject of this case study, serves as a 

pertinent example of the real-world application of forecast products. 

Moreover, incremental refinements in hydrological models often result in only marginal enhancements to forecast skill, as 

illustrated by plots comparing the GR4J and GR6J models in the Appendix (Figure A1). Notably, the difference in forecasting 

skill between these models is minimal, highlighting the challenge of achieving substantial gains through model enhancements 550 

alone. In contrast, our assessment demonstrates that methods like BC yield more significant and immediate improvements in 

forecast accuracy. Therefore, in parallel with the ongoing efforts to enhance the core of hydrological models, exploring 

methods – such as BC and DA – to refine existing forecasting products, becomes justified. This paper consistently assesses 

and compares two of these methods, offering evidence of the benefits they deliver, and providing a pragmatic solution to refine 

existing forecasting products, meeting the pressing demand from end-users for reliable outputs that inform their decision-555 

making. 

 

4.3 Postprocessing Methods in Hydrological forecasting 

In the broader context of hydrological research, our study’s exploration of BC and DA methods contributes to the ongoing 

dialogue surrounding hydrological forecast post-processing techniques. While machine learning (ML) methods like 560 

Convolutional Neural Networks (CNN) and Support Vector Regression (SVR) have shown promise in enhancing forecast 

accuracy (Liu et al., 2022), their computational demands present challenges. Notably, our study employs quantile mapping 

(QM) for BC, a computationally efficient method, distinguishing it from more resource-intensive ML approaches.  

In similar work, Matthews et al. (2022) adopt a post-processing method derived from the Multi-Temporal Model Conditional 

Processor (MT-MCP; Coccia and Todini, 2011). They found a pronounced impact in catchments with high hydrological 565 

memory. A key difference with our work lies in their use of Numerical Weather Prediction (NWP) as driving data, contrasting 

with our reliance on climatological weather input for the ESP method. This distinction implies that their hydrological forecasts, 

particularly in dynamic or 'flashy' catchments, are sensitive to the skill of NWP input, potentially diminishing the relative 

effectiveness of post-processing compared to our experimental setting in those catchments. In that sense, ESP serves as an 

ideal test case to isolate the value of DA and BC methods, given the absence of skill from the meteorological forecast to “take 570 

over” from the IHCs. 

Additionally, we acknowledge the challenge of non-stationarity in QM, a concern highlighted by Ceola et al. (2014). To 

address this, in an operational setting, incorporating real-time updates by dynamically adding the newest observed data would 

be implemented, allowing the Flow Duration Curve (FDC) to adapt monthly. A potential refinement could be explored by 

changing reference periods, such as the most recent 30-year period, offering a dynamic approach to account for non-575 

stationarity, albeit with the associated risk of overlooking rarer extreme events.  
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To the best of our knowledge, no prior study has undertaken a direct comparison between BC and DA, a gap that might be 

attributed, in part, to the inherent disparities between these two methodologies, as mentioned already. Nevertheless, from a 

users’ standpoint, such a comparative analysis holds significant value. It facilitates the selection of the optimal forecasting 

product tailored to distinct situations, offering valuable insights for decision-makers seeking to enhance the reliability of their 580 

hydrological forecasts. 

4.4 Limitations and future work 

The present study naturally has some limitations given the practicalities of applying multiple approaches across many 

catchments/lead-times and seasons. Firstly, the gap-filling approach employed to address missing data in the observed river 

flow time series is quite rudimentary, relying on a simple linear interpolation method. While this method is commonly used 585 

for gap-filling (Niedzielski & Halicki, 2023), it comes with inherent limitations, such as its sensitivity to outliers and 

oversimplification of the underlying hydrological processes, especially when gap-filling longer time periods. Note that both 

techniques (BC and DA) can be applied even if the observed data has some missing data (DA is not applied where no data is 

available, and BC uses whatever data is available to construct the FDC). Full time series were only needed to calculate the 

skill score CRPSS used to carry out the comparative analysis. While more sophisticated techniques for handling missing data, 590 

such as data-driven methods or advanced statistical approaches, could have been considered to enhance the accuracy of the 

reconstructed time series (e.g., Dembélé et al., 2019; Luna et al., 2020), such methods would have significantly increased the 

complexity of the analysis. To mitigate this limitation, the study has focused much of its analysis on a subset of the dataset, 

where less than 5% of the data was missing (Figure 1b), minimising in that way the effect of the gap-filling (Arriagada et al., 

2021). Consequently, using an alternative gap-filling method would have likely yielded comparable conclusions. 595 

Secondly, the DA methodology implemented in this study, the PF technique, is used in a deterministic manner (where we have 

used the PF ensemble mean to avoid having an ensemble of ensembles) to ensure comparability with BC results. However, the 

PF method inherently provides valuable information on uncertainty associated with the hydrological state (e.g., Moradkhani 

et al., 2012). In the current study, this information on uncertainty is not fully exploited, as the analysis primarily focuses on 

the comparison with BC. Future investigations could explore more sophisticated approaches within DA that capitalise on the 600 

uncertainty estimates provided by PF.  

Building on our analysis of the comparative strengths of DA and BC, our study identified the specific scenarios where each 

method improves the forecasts the most. Depending on the resources available for implementation, we summarise our 

recommendations based on our findings in Table 3. This lays the groundwork for a prospective user-friendly hydrological 

forecasting system in the future, which could be implemented in the operational HOUK setting. Recognising that end-users 605 

and non-specialists often prioritise a simplified and trustworthy message (Hannaford et al., 2019), we envision the 

implementation of a flexible, combinatory (e.g., decision tree-based) forecasting system that would dynamically choose the 

most effective method based on specific factors such as catchment characteristics, time of year, and lead-time. For end-users 

seeking 'the best answer' without delving into the intricacies of methodology, this streamlined approach aims to provide the 
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most reliable forecast available in a clear and simple manner. While this concept would require rigorous testing and 610 

development first, it highlights a potential avenue for future research in tailoring hydrological forecasts to meet the practical 

needs and expectations of end-users. The cheaper, more immediate solution would be to blanket apply BC to improve all 

catchments indiscriminately. 

 

 615 

Table 3: ‘Best’ method and recommended implementation based on available resources. 

 OR-ESP DA-ESP BC-ESP 

Where and when is each method 

recommended? 

 

For a few cases, OR-ESP 

outperforms other 

methods, but generally 

only marginally compared 

to BC-ESP. 

 

Best method for the following two 

cases: 

 

1) High BFI (>0.6) catchments: 

▪ Season: summer  
▪ Lead times: up to 1-month 

 

2) Catchments where 
snowpack/snowmelt processes are 

important: 

▪ Season: winter and spring 
▪ Lead time: up to a few days 

 

 

General improvement for all 

seasons. 

 

Lead times:  

▪ Up to 6 months in summer 
and autumn. 

▪ Up to 1-3 months in 

winter and spring. 

Recommended 

implementation 
depending on 

available 

resources for 
development and 

implementation  

 
(UKHO as 

example 

operational 
forecasting 

system) 

Limited 

resources 

Not used Not used Applied everywhere 

 

Development needed: minimal. 
▪ Plug-in BC code to the end of current UKHO operational workflow; 

▪ Optionally: implementation of time-varying reference period for constructing FDC. 

 
Running cost: minimal. The BC is cheap and quick to run. 

 

Unlimited 
resources 

 
Develop a system which will select the ‘best’ method (OR-ESP or DA-ESP or BC-ESP) for each 

catchment depending on season and lead time (e.g., decision tree), where the user clicks on their 

selected catchment and receives a single, user-friendly ‘best possible’ answer. This might need a 
‘seamless’ toggle option using a single method for all lead times if step-changes are to be avoided. 

 

Development needed:  

- Development of the decision tree; 

- Development of the ‘seamless’ toggle option; 
- New design and deployment of web-interface delivering the forecasts, with careful 

consideration of how to communicate the underlying methods to the users. This would 

require stakeholders’ engagement to make sure the new product is intuitive and 
understandable by end-users. 

 

Running cost: 

- Running DA operationally will have a substantial cost, and might require the use of 
HPC facilities in order to deliver forecasts in time. 

 

 

Furthermore, future studies could explore alternative post-processing methods (Li et al., 2017), such as copula-based 

approaches and machine learning techniques (S. Liu et al., 2022), or statistical and empirical post-processing methods, such 
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as the Hydrological Uncertainty Processor (HUP; Krzysztofowicz, 1999) and its variants, such as Model Conditional Processor 620 

(MCP, Todini, 2008). All these options, while potentially offering improved forecast accuracy, come with varying 

computational expenses. Investigations into diverse post-processing methodologies can enhance our understanding of their 

applicability and effectiveness in different hydrological contexts, providing valuable options for refining forecasting products 

in the future. 

5 Conclusion 625 

In this study, we have explored the effectiveness of Quantile Mapping (QM) Bias-Correction (BC) and Particle Filter (PF) 

data assimilation (DA) techniques in enhancing hydrological model performance and forecast skill, specifically focusing on 

improving hydrological forecasts using the Ensemble Streamflow Prediction (ESP) method with GR4J model for the 

Hydrological Outlook UK operational service. Our findings reveal that both BC and DA contribute to improvements, yet their 

impacts vary across different metrics and catchment characteristics. 630 

BC, operating as a post-processing method, demonstrates substantial and generalised improvements across various 

performance metrics. It rectifies model errors after simulations, extending its positive influence beyond initial conditions 

throughout the entire time series. However, while QM BC effectively aligns statistical properties, it may oversimplify the 

complexity of hydrological systems by neglecting to capture the physical processes and interactions, consequently leading to 

an underestimation of uncertainties. 635 

On the other hand, DA, which adjusts model internal states during initialisations to align simulations with observed data, 

exhibits more subtle and marginal improvements. The positive effects of DA are particularly notable in catchments with high 

Base Flow Index (BFI) and up to the seasonal scale, and DA often yields more improvement than BC at short lead times (up 

to one month) in summer. DA also outperforms BC for catchments where snow processes are important, mainly in north-

eastern Scotland, in winter (snow accumulation) and spring (snowmelt) at short lead times. The probabilistic nature of DA, 640 

considering uncertainties associated with model structures, initial conditions, and observations, provides a comprehensive 

representation of the hydrological state. 

The choice between BC and DA involves trade-offs, considering their conceptual differences, computational demands, and 

handling of uncertainties. While DA offers a more sophisticated approach, BC presents a pragmatic and computationally 

efficient solution, especially when computational costs pose a limitation. The absence of universal superiority for one method 645 

over the other emphasises the importance of selectively applying these techniques based on specific scenarios, user 

requirements, and operational constraints. Future work could explore the combined use of both techniques, though it would 

need to first address the challenge of constructing the Flow Duration Curve used in the QM method for flow simulations 

modified by data assimilation. 

In the broader context of hydrological research, our study contributes valuable insights to the body of literature on forecast 650 

enhancement techniques. Our findings can pave the way for more objective, on-the-fly selective forecasting system, tailored 
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to catchment characteristics, time of year, and lead time, which would be a step towards user-friendly and practical hydrological 

forecasting systems. 

In conclusion, this research provides a novel intercomparison of QM BC and PF DA, offering an assessment of their strengths 

and limitations when applied to UK streamflow forecasting. By recognising the diverse contexts where each method excels, 655 

hydrologists and decision-makers can make informed choices to refine forecasting products, aligning with the ever-growing 

demand for reliable and actionable hydrological information. 
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Figure A1: Change in forecasting skill (CRPSS) at different lead time when transitioning from GR4J to GR6J to produce ESP 

forecasts in the different UK hydroclimate regions. Blue signifies improved forecast skill with GR6J compared to GR4J, while orange 

shades represent the reverse. 940 
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Figure A2: Boxplots showing the range of CRPSS for all catchments used in the UKHO at different lead times in ESP forecasts 

generated using GR4J (in red) and GR6J (in blue). 945 
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Figure A3: Map of difference in skill (CRPSS) between ESP forecasts generated using GR6J and GR4J at (left) 1-month lead time 

and (right) 3-month lead time. Blue shades signify improved forecast skill with GR6J compared to GR4J, red shades represent the 

reverse, while white signifies negligeable differences (source: https://hydoutuk.net/about/methods/river-flows).  950 
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Figure A4: Percent bias for each season for low flows (Q95) and high flows (Q05) in streamflow simulated by GR4J. The percent 

bias is calculated as (q – Q)/Q*100, for the low flows (Q95) and high flows (Q05), where q is simulated flow and Q is observed flow. 

The percent bias can be negative when simulated flow is lower than observed flow. 955 
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Figure A5: Bias (m3 s-1) for each season for low flows (Q95) and high flows (Q05) in streamflow simulated by GR4J. 

The bias shown here is the raw bias, defined as (q – Q), for the low flows (Q95) and high flows (Q05); where q is simulated flow and 

Q is observed flow. The bias can be negative when simulated flow is lower than observed flow. 960 
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Figure A6: CRPSS of OR-ESP, BC-ESP and DA-ESP forecasts at different lead times and initialisation months, for catchments with 

<5% of missing data. Grey stars indicate where BC-ESP or DA-ESP differ significantly from OR-ESP at the 5% significance level, 

based on a Student's t-test. 965 
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Figure A7: Fraction of precipitation falling as snow for catchments across Great Britain, where a value of 0.15 indicates that 15 % 

of the catchment precipitation falls on days when the temperature is below zero (source: Lane et al., 2019) 
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