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Abstract. Floods are among the most hazardous natural disasters worldwide. Accurate and rapid flood predictions are critical

for effective early warning systems and flood management strategies. The high computational cost of hydrodynamic models

often limits their application in real-time flood simulations. Conversely, data-driven models are gaining attention due to their

high computational efficiency. In this study, we aim at assessing the effectiveness of transformer-based models for forecasting

the spatiotemporal evolution of fluvial floods in real-time. To this end, the transformer-based data-driven model FloodSformer5

(FS) has been adapted to predict river flood inundations with negligible computational time. The FS model leverages an au-

toencoder framework to analyze and reduce the dimensionality of spatial information in input water depth maps, while a

transformer architecture captures spatiotemporal correlations between inundation maps and inflow discharges using a cross-

attention mechanism. The trained model can predict long-lasting events using an autoregressive procedure. The model’s perfor-

mance was evaluated in two case studies: an urban flash flood scenario at the laboratory scale and a river flood scenario along10

a segment of the Po River (Italy). Datasets were numerically generated using a two-dimensional hydrodynamic model. Special

attention was given to analyzing how the accuracy of predictions is influenced by the type and severity of flood events used

to create the training dataset. The results show that prediction errors generally align with the uncertainty observed in physi-

cally based models, and that larger and more diverse training datasets help improving the model’s accuracy. Additionally, the

computational time of the real-time forecasting procedure is negligible compared to the physical time of the simulated event.15

The performance of the FS model was also benchmarked against a state-of-the-art convolutional neural network architecture

and showed better accuracy. These findings highlight the potential of transformer-based models in enhancing flood prediction

accuracy and responsiveness, contributing to improve flood management and resilience.

1 Introduction

Floods are the most hazardous natural disasters worldwide (Wallemacq and House, 2018). The catastrophic repercussions of20

flooding events include loss of human lives, economic damage, environmental degradation, and profound social disruptions.

In 2023, over 300 disasters related to floods and storms occurred globally, accounting for approximately 75% of all natural

disasters (CRED, 2024). These catastrophes affected tens of millions of people, resulting in the loss of tens of thousands of

lives and extensive economic damage. Consequently, understanding and accurately simulating floods have become imperative
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for safeguarding communities and enhancing inundation resilience. In addition to structural flood mitigation measures, the25

implementation of efficient emergency action plans, based on Early Warning Systems (EWS), can significantly mitigate the

impact of extreme inundations (Pappenberger et al., 2015), reducing flood damage by up to 35% (Rogers and Tsirkunov,

2011).

The development of effective EWS requires rapid and accurate predictions of flood dynamics. Traditionally, this task has

been approached using physically based models, which rely on the discretization of partial differential equations to describe30

the physical processes. For simulating river floods, hydrodynamic models that solve the two-dimensional (2D) Shallow Wa-

ter Equations (SWE) numerically using Finite Difference, Finite Element or Finite Volume schemes are frequently employed.

These models provide accurate results for simulating flood propagation in regions with complex topographies and flood dynam-

ics. However, their application for real-time forecasting is often hindered by the typically high computational times (Bomers

and Hulscher, 2023), especially when high spatial resolution is required. To address this issue, research has focused on re-35

ducing the computational cost of physically based models by leveraging the efficiency of modern Graphics Processing Units

(GPUs) (e.g., Morales-Hernández et al., 2021; Vacondio et al., 2014; Xia et al., 2019). Despite these efforts, the computational

cost of 2D hydrodynamic models remains significant, and access to High-Performance Computing (HPC) clusters is necessary

to accelerate computations (Turchetto et al., 2020). Consequently, the use of 2D-SWE solvers for early warning is limited and

typically relies on databases composed of pre-simulated scenarios for various severities and inundation characteristics (e.g.,40

Dazzi et al., 2022).

In the last decade, “black-box” models, also known as “data-driven” or “surrogate” models, have gained significant attention

in predicting hydrological variables. These algorithms learn the complex relationships between input and outputs variables

from observed or simulated data, thereby neglecting the physics of the process involved. The high computational efficiency of

surrogate models facilitates their use in forecasting flood scenarios, which is the focus of this study. A wide variety of data-45

driven models for river flood forecasting exist in the literature (Bentivoglio et al., 2022; Mosavi et al., 2018). Early models

focused on forecasting the temporal variation of discharges and/or water stages in specific river sections based on hydrological

variables observed in the upstream catchment (e.g., Campolo et al., 1999; Kratzert et al., 2018) or water levels observed at

previous instants in upstream river sections (e.g., Dazzi et al., 2021b; Tayfur et al., 2018). Various machine-learning (ML)

and deep-learning (DL) models have been employed for these prediction tasks, such as Nonlinear Autoregressive Exogenous50

(NARX) networks (e.g., Bomers, 2021), Long-Short-Term Memory (LSTM) networks (e.g., Kratzert et al., 2018; Nevo et al.,

2022), Convolutional Neural Networks (CNNs; e.g., Wang et al., 2019), and transformer architectures (e.g., Yin et al., 2022).

However, forecasting the temporal variation of hydraulic variables in a specific river section only partially describes the severity

of floods. For effective EWS, understanding the spatial and temporal distribution of hydraulic variables (e.g., water depths

and velocities) is crucial. Consequently, recent studies have increasingly focused on forecasting the temporal variation of55

inundation maps. For pluvial floods, some works (e.g., Burrichter et al., 2023; Hop et al., 2024; Kao et al., 2021) have focused

on predicting inundation maps based on rainfall observations and, in some cases, terrain elevation. Differently, for river floods,

researchers have developed data-driven models that use upstream hydrograph inflows to predict the spatiotemporal propagation

of inundation maps (e.g., Kabir et al., 2020; Wei et al., 2024; Zhou et al., 2022). A first application of a CNN to predict
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inundation maps for a fluvial flood was proposed by Kabir et al. (2020). This surrogate model predicts a water depth map at60

a specific instant using a time series of inflow discharge values at previous time steps as input data. The primary drawback of

this type of surrogate models is their inability to account for spatiotemporal correlations between consecutive inundation maps,

relying solely on the values of the upstream boundary conditions for forecasting.

Innovative methods such as Graph Neural Networks (GNN; Bentivoglio et al., 2023), Gaussian Process (GP) models com-

bined with dimensionality reduction schemes (Donnelly et al., 2022; Fraehr et al., 2023), and transformer architecture (Pi-65

anforini et al., 2024a) have also been explored for flood prediction. Bentivoglio et al. (2023) applied GNN to emulate SWE

solvers for predicting flood dynamics on randomly generated unseen topographies in synthetic case studies. Despite achieving

promising results, the relatively high computational time may restrict the application of GNN in real-time flood forecasting.

Furthermore, their applicability to real-word cases remains to be investigated. Differently, Donnelly et al. (2022) combined a

GP framework with a principal component analysis to emulate numerical model results and quantify prediction uncertainty.70

Similarly, Fraehr et al. (2023) employed a low-resolution hydrodynamic model to provide a preliminary estimation of flood

inundation, which is then enhanced to high resolution using empirical orthogonal function analysis and GP models, aiming

to replicate the results of a high-resolution hydrodynamic model. However, when combining a DL model with a numeri-

cal scheme, the prediction’s efficiency may be hindered by the computational time and stability of the hydrodynamic model

(Fraehr et al., 2023). Therefore, the adoption of a rapid and accurate numerical model is fundamental to speed up the prediction75

process.

Transformer architectures, initially proposed by Vaswani et al. (2017) for natural language processing tasks, have been

applied to various hydrological applications due to their ability to analyze long-range dependencies and attend to different

spatiotemporal information in input sequences. These models have been used in tasks such as rainfall-runoff modeling (Li

et al., 2024; Xu et al., 2023; Yin et al., 2022, 2023), dam-break scenarios (Pianforini et al., 2024a), pluvial floods (Burrichter80

et al., 2024; Chaudhary et al., 2024; Jin et al., 2024), and streamflow or water level prediction in rivers (Castangia et al.,

2023; Liu et al., 2022). Some studies have shown that transformer-based models generally outperform other DL models in

prediction tasks (e.g., Li et al., 2024; Yin et al., 2022). However, this type of model has not been applied to fluvial flood maps

yet. Furthermore, existing frameworks typically handle homogeneous data in terms of dimensionality (either all matrices or

all vectors), whereas simulating river floods involves the challenge of correlating information from heterogeneous data sources85

(i.e., time series of upstream inflows and sequences of inundation maps).

In this work, we aim at assessing the effectiveness of transformer-based models for forecasting the spatiotemporal evolution

of fluvial floods in real-time. To this end, we started from the FloodSformer (FS) model (Pianforini et al., 2024a), which

was successfully developed and applied to predict inundation maps for dam-break scenarios. A limitation associated with this

initial version of the FS model is its inability to incorporate upstream boundary conditions as input data, as such information90

was not used in dam-break studies. In contrast, the FS model has been substantially modified in this work to address fluvial

floods, for which the inclusion of time-varying boundary conditions (i.e., inflow hydrographs) is fundamental. The enhanced

architecture combines an autoencoder and a transformer-based framework to analyze spatiotemporal information from input

inundation maps and the temporal correlation of upstream boundary data, predicting long sequences of future water depth
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maps using an autoregressive procedure. Unlike the original model, the adapted architecture employs the cross-attention (CA)95

mechanism (Vaswani et al., 2017) to capture dependencies between different input sequences, namely inundation maps and

discharge values, allowing the model to effectively consider and correlate heterogeneous input data. This innovation enables

the prediction of long-lasting river flood events with complex flow dynamics and topographies. We analyzed two case studies:

an urban flash flood scenario at the laboratory scale and a river flood scenario along a stretch of the Po River (Italy). For each

case study, we considered different training datasets (i.e., varying the type, number, and intensity of flood scenarios) to analyze100

the influence of these configurations on the surrogate model’s capability to generalize to unseen flood maps. Furthermore, the

performance of the FS model was benchmarked against the CNN architecture proposed by Kabir et al. (2020). The inundation

maps used to train and evaluate the FS model were generated with a 2D SWE solver (i.e., PARFLOOD code; Vacondio et al.,

2014). This approach allows for generating large datasets, including both real events and synthetic scenarios, thus addressing

the issue of scarce observed inundation maps for real flood events.105

The paper is structured as follows: Section 2 describes the FS model and the case studies. Section 3 and Section 4 present

and discuss the results, respectively. Finally, conclusions are drawn in Section 5.

2 Methods and materials

2.1 FloodSformer model description

The FloodSformer framework introduced by Pianforini et al. (2024a) represents a data-driven model designed to forecast the110

temporal evolution of inundation maps, emulating the results of physically based schemes. This surrogate model operates

under the assumption that inundation maps can be conceptualized as images with dimensions H ×W , wherein each pixel

corresponds to a computational cell of a Cartesian grid. Consequently, the model draws inspiration from transformer-based

architectures commonly employed for video frame prediction tasks (Ye and Bilodeau, 2023). The FS model is composed of

three consecutive blocks (Figure 1a): a 2D CNN encoder, a video prediction transformer (VPTR) framework (Ye and Bilodeau,115

2023), and a 2D CNN decoder. The first and last blocks constitute the ResNet-based autoencoder (AE) of the Pix2Pix model

(Isola et al., 2017), and are used to analyse spatial information in the input maps and reduce their dimensionality, decreasing

the memory and time consumption required for the training process. In the original implementation, the second block is the

fully autoregressive VPTR model proposed by Ye and Bilodeau (2023), employed to learn the spatiotemporal relationships

between consecutive maps thanks to the self-attention (SA) mechanism (Vaswani et al., 2017).120

The FS model was initially developed to forecast inundations resulting from dam-break scenarios (Pianforini et al., 2024a).

In that context, the description of the flood propagation exclusively relies on the initial conditions within the upstream reservoir.

In contrast, when addressing river floods, the incorporation of time-varying open boundary conditions in the data-driven model

is fundamental for ensuring the surrogate model’s ability to learn the flood propagation. Consequently, in the current study, we

modified the original FS model to deal with open boundary conditions. Specifically, the SA mechanism of the VPTR framework125

has been replaced with a cross-attention (CA) mechanism (see Section 2.1.1). This enhancement enables the handling of

different data types (i.e., sequence of maps and time series of discharge values) to predict future maps.
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Figure 1 illustrates the general workflow of the modified version of the FS model. Considering a sequence I + 1 frames

(water depth maps at consecutive instants), the 2D CNN encoder takes the first I ground-truth maps (t = 1, . . . , I) and, for each

of them, extracts the spatial information creating the latent features. These features are then passed as value (V) and key (K)130

matrices to the VPTR framework, together with the inflow discharges at instants t = 2, . . . , I + 1, passed as query (Q) matrix.

The VPTR combines this information using the cross-attention mechanism and predicts the latent features at the next instants

(t = 2, . . . , I + 1). Finally, the predicted water depth maps are reconstructed by the 2D CNN decoder.

The structure of the FS model can be summarized with the following equations:

zt = Enc(xt), t ∈ [1, . . . , I] (1)135

ẑt = T(K,V : [z1, . . . ,zt−1];Q : [q2, . . . , qt]), t ∈ [2, . . . , I + 1] (2)

x̂t = Dec(x̂t), t ∈ [2, . . . , I + 1] (3)

where xt ∈ RH×W and x̂t ∈ RH×W are the ground-truth and predicted maps at time t, respectively. zt ∈ Rh×w×dmodel and

ẑt ∈ Rh×w×dmodel are the latent features at time t in input and output from the VPTR block, respectively. qt ∈ R1 is the inflow

discharge at time t. Enc(. . .), Dec(. . .) and T(. . .) are the encoder, decoder and VPTR blocks, respectively. Q, K and V are the140

query, key, and value matrices of the cross-attention computation, respectively. H and W are the height and width (in pixels) of

the water depth maps along the south-north and west-east directions, while h = H/2k and w = W/2k are the height and width

of the latent features, respectively. k is the number of convolutional layers of the AE, and dmodel is the number of channels

of the latent features. The hyperparameter I represents the number of input frames, i.e., the maximum length of the sequence

of input maps for the FS model. Consequently, a higher value for I allows the model to extract spatiotemporal information145

from a longer sequence of maps, enhancing its ability to predict the map at time I +1. However, increasing I results in longer

computational times and greater memory requirements for the training process, thus an optimal value should be defined (see

Section 2.1.4).

The training process aims to minimize the differences between the maps predicted by the surrogate model and the ground-

truth maps obtained from a hydrodynamic model. More details about the training strategy are available in Section 2.1.2.150

Once the surrogate model is trained, real-time forecasting of future frames is achieved through an autoregressive (AR) proce-

dure, described in detail in Section 2.1.3. This technique utilizes a recursive method wherein input frames are substituted with

predicted ones. As a result, beginning from P past frames, the AR procedure iteratively predicts F future frames. The total lead

time of this prediction is constrained by the potential loss of accuracy stemming from error accumulation and the length of the

inflow discharge forecast. Notably, the AR procedure relies on the availability of the entire time series of upstream discharges,155

which is provided as input data to the surrogate model. This is in line with the approaches commonly employed in EWS based

on physically-based hydrodynamic models, in which the inflow time series derives from meteorological/hydrological models.

2.1.1 Cross-attention mechanism and VPTR module

Pianforini et al. (2024a) employed the self-attention (SA) mechanism (Vaswani et al., 2017) within the VPTR framework to

capture the dependencies in a single embedding sequence representing latent features derived from the encoder block. As160
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Figure 1. Overview of the FloodSformer model architecture. (a) Schematic depiction of the model’s overall workflow. Input maps are

transformed into key (K) and value (V) matrices for the VPTR block, while discharge values serve as the query (Q) matrix. (b) Detailed

illustration of the layers within a VidHRFormer block. The video prediction Transformer (VPTR) module comprises a sequence of B

consecutive VidHRFormer blocks.

already mentioned, accurate prediction of river floods necessitates integrating inflow discharge values into the data-driven

model. In this study, we address this challenge by replacing the SA mechanism with the cross-attention (CA) one (Vaswani

et al., 2017). Unlike SA, CA facilitates attention across distinct input sequences, namely latent features and discharge values.

Considering two different input matrices XQ and XKV , the cross-attention process can be formulated as:

Q = XQWQ; K = XKV WK ; V = XKV WV ;

CA(Q,K,V) = Softmax

(
QKT

√
dk

)
V

(4)165
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where Q, K, V are query, key, and value matrices, obtained by a linear transformation of the input matrices through the

trainable weight matrices WQ, WK , WV . dk is the embedding dimension of the key matrix. To attend information from

different representation subspaces simultaneously, the transformer adopts the multi-head cross-attention (MHCA) mechanism,

where several CA computations, called “heads”, are performed in parallel:

MHCA(Q,K,V) = Concat(CA1, . . . ,CAp)WMHCA (5)170

where WMHCA is a projection matrix to integrate the outputs of all attention processes, while p is the number of heads.

In the FS model, the input matrix XKV represents the sequence of latent features Z = [z1, . . . ,zI ] ∈ RI×h×w×dmodel provided

by the CNN encoder layer, while the XQ is obtained expanding and reshaping the sequence of discharge values [q2, . . . , qI+1] ∈
RI in order to obtain the same dimensions of XKV . Consequently, the VPTR block takes in input the embedded water depth

maps [z1, . . . ,zI ], and the corresponding inflow discharge values [q2, . . . , qI+1], and predicts the embedded maps [̂z2, . . . , ẑI+1]175

(see Figure 1b). We emphasize that the temporal translation of one frame between maps and discharge values used as input

data (e.g., the MHCA correlates the feature at time t = 1 with the discharge at instant t = 2) is essential to predict the map at

the subsequent instant (e.g., t = 2).

The VPTR module is composed of B consecutive VidHRFormer blocks (Ye and Bilodeau, 2023), represented in Figure 1b.

The key layers of the VidHRFormer block are the local spatial MHCA and the temporal MHCA, which apply the attention180

computation in space and time, respectively. With the aim of reducing the overall complexity compared to a standard joint

space-time attention scheme, the use of two different layers for the spatial and temporal CA analysis has been adopted (Ye and

Bilodeau, 2023). Masking is employed within the attention mechanism of the temporal MHSA layer to prevent the prediction

at a specific time from being influenced by subsequent instants. A convolutional feed-forward neural network (Conv FFN), a

multilayer perceptron (MLP) and normalization layers complete the VidHRFormer block. Furthermore, a 2D relative positional185

encoding (RPE) and a fixed absolute 1D positional encoding (PE) are used in the spatial and temporal MHSA, respectively.

2.1.2 Training methodology

Both the computational time and GPU memory demands necessary for model training have been minimized by dividing the

training process in two distinct stages.

The first stage, denoted as “AE training”, focuses on training the encoder and decoder blocks, concatenated to form a con-190

ventional AE. During this phase, the primary objective is to analyze spatial information within the input maps and undertake

feature extraction neglecting temporal information and boundary conditions. The batch consists of randomly selected N indi-

vidual frames X ∈ RN×H×W . During the training process, the encoder extracts the latent feature z from a map x in the dataset.

Then, this feature is used by the decoder to reconstruct the input map x̂. The AE training procedure aims at minimizing the

following loss function (Ye and Bilodeau, 2023):195

LAE = LMSE + λGDLLGDL + λGAN argmin
G

max
D

LGAN (D,G) (6)
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where:

LMSE =
1
N

N∑

n=1

(xn− x̂n)2 (7)

LGDL =
1
N

N∑

n=1




W∑

i=1

H∑

j=1

(∣∣|xn
i,j − xn

i−1,j | − |x̂n
i,j − x̂n

i−1,j |
∣∣α +

∣∣|xn
i,j−1− xn

i,j | − |x̂n
i,j−1− x̂n

i,j |
∣∣α)

 (8)

LGAN (D,G) = EX [logD(X)] + EX̂ [log(1−D(G(X)))] (9)200

LMSE , LGDL and LGAN are the mean square error (MSE), the image gradient difference loss (GDL), and the generative

adversarial network (GAN) loss, respectively. The GDL is designed to minimize differences between the gradients of water

depths in the original (x) and reconstructed (x̂) maps. The GAN loss encompasses both a generator G, which represents the AE,

and the PatchGAN discriminator D, as proposed by Isola et al. (2017). X = [x1, . . . ,xN ] and X̂ = [x̂1, . . . , x̂N ] are the original

and reconstructed maps, respectively. λGDL, λGAN and α are hyperparameters (see Section 2.1.4).205

During the second training phase (“VPTR training”), only the VPTR block is trained, and the parameters of the encoder

and decoder blocks remain fixed and equal to the optimized weights obtained from the AE training. This phase prioritizes the

analysis of temporal information between subsequent water depth maps and the upstream boundary condition. Consequently,

each batch in the VPTR training comprises a sequence of I +1 consecutive maps X ∈ RN×(I+1)×H×W , and the corresponding

inflow discharges shifted of one time step. The VPTR block takes the latent features in output from the trained encoder210

[z1, . . . ,zI ] and the inflow discharge values [q2, . . . , qI+1] to predict the latent features [̂z2, . . . , ẑI+1] (see Figure 2a). These

latent features are then used to reconstruct the predicted maps [x̂2, . . . , x̂I+1] through the previously trained decoder. The

VPTR training procedure aims at minimizing the following loss function:

LV PTR =
1
I

I+1∑

t=2

(LMSE(xt, x̂t)) +λGDL
1
I

I+1∑

t=2

(LGDL(xt, x̂t)) (10)

For practical applications, the predicted frames within the range of 2≤ t≤ I are typically not of primary interest during the215

forecasting procedure, as the corresponding target maps are already known, and they are provided within the input sequence.

However, including these forecasted frames in the loss computation improves the prediction performance and, during the

autoregressive procedure, allows to consider a lower number of frames used as initial conditions (i.e., the hyperparameter P )

than the total sequence length I of the training process (see Section 2.1.3).

Once the FS model is trained (i.e., both training stages are completed), the accuracy in predicting the map at time I + 1 is220

assessed using the unseen samples in the testing dataset. This procedure is referred to as “FS test”.

2.1.3 Autoregressive prediction

Once trained and tested, the FS model can be applied for real-time inundation forecasting using an autoregressive (AR) proce-

dure for producing water depth maps in F future frames. This involves substituting observed frames with predicted frames as

input maps to recursively forecast subsequent maps (Figure 2b). Starting with P past frames (i.e., a few maps used as initial225
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represent the discharge values. For simplicity, only the input and output maps of the prediction are illustrated, neglecting the latent feature

computations. (a) Illustration of the VPTR training procedure on a sequence of I +1 frames. For example, the forecast of the frame at time

t = I +1 (red square) is achieved by considering the ground-truth maps at instants t ∈ [1, I] (green squares) and the discharge values at time

t ∈ [2, I+1] (green circles) as inputs. (b) Real-time forecasting of F future maps conducted through the autoregressive procedure. The inflow

hydrograph spanning the entire duration of the prediction must be known (green circles). Each forecasted future frame (orange squares) is

concatenated with the inflow discharge value of the following instant and used to predict the next future map (red squares). Starting from the

prediction of the frame at time t = I +2, a sliding window is introduced to constrain the length of the input sequence to I . In this illustration

we assumed P < I < F .
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condition, with P ≤ I) and the sequence of upstream discharge values for the entire flood event (i.e., P +F values), the proce-

dure recursively generates up to F forecasted future frames. The number of future frames that can be predicted is constrained

by the availability of a sufficiently extended forecasting period for the inflow hydrograph and by the loss of accuracy due to

the error accumulation during the AR procedure. We emphasize that the entire sequence of upstream inflow must be provided

as input data to the surrogate model (green circles in Figure 2b); this is not a limitation of the surrogate model herein proposed230

but a necessity coming from the physics of the phenomenon we are trying to reproduce.

Figure 2b presents a sketch of the AR prediction process using the FS model. In the initial step of the recursive procedure

(at t = P + 1), the FS model takes the ground-truth maps of the past frames [x1, . . . ,xP ] (green squares) and the correspond-

ing inflow discharges [q2, . . . , qP+1] (green circles) to predict the first unknown future map x̂P+1 (red square at t = P + 1).

Subsequently, the forecasted map x̂P+1 (orange square at t = P + 2) is associated to the discharge qP+2, and concatenated at235

the end of the sequence of past frames. This new sequence of P + 1 frames and discharges is then fed into the FS model to

predict the map x̂P+2 (red square at t = P + 2). This process continues until all the F future frames are predicted. It is worth

noting that, starting from the prediction of the frame at instant t = I +2 (i.e., when the sum of past frames P and concatenated

ones exceeds I), the oldest maps are discarded to constrain the length of the input sequence to I , which is the maximum value

allowed from the training phase.240

Generally, the AR procedure can be summarized with the following formulation:

x̂j =





Dec(T(K,V : Enc([x1, . . . ,xj−1]); Q : [q2, . . . , qj ])) if P + 1 < j ≤ I + 1

Dec(T(K,V : Enc([xj−P , . . . ,xP , x̂P+1, . . . , x̂j−1]); Q : [qj−P+1, . . . , qj ])) if I + 1 < j ≤ I + P

Dec(T(K,V : Enc([x̂j−I , . . . , x̂j−1]); Q : [qj−I+1, . . . , qj ])) if j > I + P

(11)

We emphasize that the AR procedure works even when P < I , i.e. when only a shorter sequence of initial condition maps is

available. This ability stems from the methodology used for the loss computation during the VPTR training procedure. Indeed,

as already mentioned in Section 2.1.2, the training loss is computed considering all the predicted frames in range 2≤ t≤ I+1.245

2.1.4 Surrogate model implementation details

One of the primary objectives of the AE framework is to reduce the size of the input maps, thereby limiting the time and

memory consumption during training. Hence, the number of convolutional layers (k) in the AE and the number of channels of

the latent features (dmodel) must be proportional to the dimensions of the input maps. Specifically, a higher value of k yields

a lower dimension of the height and width of the latent features and a higher value of dmodel. Therefore, the values of these250

hyperparameters depend on the size of the case study analyzed (refer to Table 1).

Following the original implementation of the video prediction transformer framework (Ye and Bilodeau, 2023), the VPTR

module, whose structure has been previously described in Section 2.1.1, comprises 12 consecutive VidHRFormer blocks. The

number of parallel attention heads (p) for the MHCA computation is set to 8. Additionally, the local spatial MHCA uses a local

patch size of 4. A Sigmoid function serves as the output layer of the surrogate model. This activation function returns values255
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within the range of 0− 1. Consequently, given a normalization of the samples in the dataset in the same range of values, the

creation of non-physical negative water depths is automatically prevented.

Developing a large transformer-based model from scratch presents considerable challenges, often resulting in compromised

predictive performance, especially when data resources are constrained, as noted by Bertasius et al. (2021). As the datasets

utilized in our study contain significantly fewer samples compared to those typically employed for tasks such as video clas-260

sification and video prediction, addressing the potential for overfitting (i.e., the model’s reduced capability to generalize to

unseen data) and minimizing training costs are pivotal considerations. Therefore, the AE and VPTR models were initialized

with weights pretrained on a large dataset composed of thousands of sequences of video frames provided by Ye and Bilodeau

(2023).

The number of input frames (I) was set to 8, based on a sensitivity analysis conducted by Pianforini et al. (2024a), which265

identified this value as optimal for balancing result accuracy with the memory and time consumption required for the training

process. Similarly, we selected a batch size of 4 for analogous reasons.

As previously mentioned, the training procedure is divided into two phases. For the initial phase (AE training), we employed

the Adam optimizer with beta values set to (0.5, 0.999) and a learning rate of 2e-4. Differently, for the training of the VPTR

framework, we employed the AdamW optimizer with beta values set to (0.9, 0.999) and learning rate value of 1e-3. This training270

configuration is consistent with that employed in a previous study which applied the FS model to predict dam-break scenarios

(Pianforini et al., 2024a). For the VPTR training, we implemented an early stopping technique with automatic training restarts,

in order to stop the training process after a specified number of epochs without metric improvement and to subsequently

restart it for a predetermined number of iterations. This approach aims to mitigate overfitting and enhance the accuracy of the

autoregressive procedure of the surrogate model (Goodfellow et al., 2016).275

For the loss computation (Eq. 6 and Eq. 10), we set λGDL = 0.01 and α = 1.0 for both training phases. The value of λGDL

was calibrated to obtain the same order of magnitude between LMSE (Eq. 7) and LGDL (Eq. 8) losses. Differently, the value

of λGAN varies during the AE training procedure. Specifically, until the LGAN loss (Eq. 9) converges, we set λGAN to 0.1.

Then, we set λGAN = 0 to exclude its influence in the total loss computation (Eq. 6). The number of epochs required for the

LGAN loss convergence depends on the case study and the dimension of the AE model, typically ranging between 5 to 50280

epochs. The values of all hyperparameters related to the loss computation were determined through a trial-and-error process.

2.2 Hydrodynamic Model

The water depth maps used as samples for the training and testing phases of the surrogate model were obtained through the

PARFLOOD code (Vacondio et al., 2014, 2017), a hydrodynamic model that solves the fully dynamic SWE using the Finite

Volume methodology. The efficient implementation of this model using the Computer Unified Device Architecture (CUDA)285

language implies a significant reduction in simulation time compared to conventional serial codes, owing to the exploitation of

GPUs (Vacondio et al., 2014). The accuracy and efficiency of the PARFLOOD code have undergone rigorous validation through

various challenging case studies, including river flood scenarios (e.g., Dazzi et al., 2021a, 2022; Ferrari et al., 2020, 2023). For

an in-depth description on the model’s details, the reader is referred to Vacondio et al. (2014).
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Table 1. Case studies summary and surrogate model hyperparameters.

Toce River flood Po River flood

Res. 20 m Res. 10 m

Spatial resolution [m] 0.05 20 10

Number of cells 16,384 1,306,624 5,226,496

Temporal resolution 0.5 s 3 h 3 h

Maximum water depth in test dataset [m] 0.14 25.6 25.6

Depth normalization value [m] 0.18 28.0 28.0

Discharge normalization value [m3/s] 0.25 13,000 13,000

ϵwet (for metric computation) [m] 0.001 0.2 0.2

CNN layers (k) 3 5 6

Latent feature size (h×w× dmodel) 16 × 16 × 256 44 × 29 × 1024 44 × 29 × 1280

AE parameters [million] 11 182 300

VPTR parameters [million] 33 585 826

2.3 1D CNN model290

In the present study, the 1D CNN model proposed by Kabir et al. (2020) is used to benchmark the accuracy of the FS model.

The 1D CNN model predicts a water depth map at time t by using the series of inflow discharges between instants t and

t− r as input data. Input data are processed using a sequence of two convolutional layers and three fully connected layers

to produce the corresponding inundation map. Consequently, the forecast relies solely on the temporal information of the

boundary conditions, without considering neither the previous maps nor the spatiotemporal correlation between consecutive295

maps. This architecture was used as benchmark model in different studies concerning the simulation of flood events on study

areas with various extensions, up to approximately 1,500 km2, with a number of cells ranging from 100k to 3.7M (e.g.,

Donnelly et al., 2022; Fraehr et al., 2024).

2.4 Case studies

The FS model was trained and tested considering two very different case studies. The first case study involves impulsive flood300

events in the urbanized valley of the Toce River (Italy), reproduced at the laboratory scale (see Section 2.4.1). The Toce River

case has been widely used in the literature for the validation of numerical models (e.g., Costabile et al., 2017; Ferrari et al.,

2019; Xia et al., 2017). Consequently, it was adopted in this work to evaluate the proposed surrogate model. The second case

study focuses on predicting river flood events along a stretch of the Po River in Italy (see Section 2.4.2). Unlike the Toce River

case, Po River floods are characterized by slow flow dynamics and long propagation times, with flood events lasting from days305

to weeks. Additionally, the presence of defended floodplains in the study area significantly increases the prediction difficulty.
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The overall goal is to assess the surrogate model’s capability to predict flood events with varying flow dynamics and different

topographies.

For each case study, the water depth maps comprising the datasets were generated by running the hydrodynamic model

multiple times with different upstream boundary condition (i.e., considering different flood events) and producing water depth310

maps at predefined time intervals. The samples for the training dataset were obtained by extracting sequences of I consecutive

water depth maps from the numerical results and associating them with the corresponding series of inflow discharge values to

create the input data, while the output data only includes the water depth map at time I + 1. The sliding window of length I is

moved in time to extract several samples for each simulation, and the procedure is repeated for all simulations. Overall, each

flood event of duration T +I provides T samples. To ensure a robust training procedure, several real and synthetic flood events315

were included in the dataset formation (see Table 2). The corresponding samples were randomly divided to form the training

and validation datasets, with a ratio of 95% for the training and 5% for validation.

To assess the FS model’s capability to generalize beyond the training data, we evaluated the performance of the surrogate

model using the testing dataset, which comprises additional flood events unseen during the training process (see Table 2).

The testing samples used for the FS test (i.e., evaluation of the model’s performance in predicting the frame at time I + 1;320

see Appendix A) were created following the same procedure described for the training dataset generation. Please notice that,

to evaluate the surrogate model’s ability to predict floods with different levels of severity, testing events with varying flood

intensities and dynamics were considered.

The testing events were also used for the application to forecasting entire flood events using the autoregressive procedure.

In this case, no samples are necessary. The recursive procedure only requires one water depth map representing the initial325

condition and the full time series of inflow discharges (i.e., for the entire event duration). The accuracy of the AR procedure is

evaluated by computing the errors of recursively predicted sequence of inundation maps for the entire event duration against

the ground-truth numerical results.

The water depth maps in the datasets are non-dimensionalized dividing them by a value slightly higher than the maximum

simulated water depth for the specific case study (see Table 1). Similarly, for the inflow discharges, a value exceeding the330

largest peak discharge was chosen (see Table 1). This normalization procedure ensures that the samples are scaled within the

range [0,1], thereby enhancing the effectiveness of the training process and ensuring consistency with the activation function

used in the output layer (i.e., the Sigmoid function; see Section 2.1.4).

We filtered out insignificant water depths in the numerical model’s output maps by zeroing values lower than a predefined

threshold. Specifically, we set thresholds equal to 1e-5 m and 0.05 m for the Toce and Po case studies, respectively.335

Table 1 provides a summary of the different configurations and hyperparameters adopted. It is important to note that the

two case studies have different spatial and temporal scales. Therefore, parameters such as spatial and temporal resolutions,

normalization values, and the wet-dry threshold (ϵwet) need to be appropriately scaled to suit the specific characteristics of

each case study.
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Table 2. Training configurations for the two case studies. The training and validation datasets were obtained by dividing the total number

of samples with a ratio of 95% for the training and 5% for the validation. The flood events included in the testing datasets differ from those

used to generate the training datasets.

Training

case

Spatial

resolution [m]

Training and validation Testing Autoregressive

prediction
Flood events # of samples Flood events # of samples

Toce River

Toce1 0.05 15 Rapid 1056 3 Rapid (Low, Medium,

High) + 1 Gradual
396

Testing events

(i.e., 4)Toce2 0.05 15 Rapid + 7 Gradual 1782

Po River

Po1 20 19 real 2320
3 real (Nov 2011,

Nov 2014, and Jun 2020)
423

Testing events

(i.e., 3)
Po2 20 19 real + 6 synthetic 3144

Po3 10 19 real + 6 synthetic 3144

2.4.1 Toce River flood340

The first case study involves an urban flash flood at the laboratory scale. The geometry is derived from a physical model

developed by Testa et al. (2007), representing a 1:100 scale replica of a stretch of the Toce River valley in Italy. In the model,

18 concrete cubic blocks arranged in a staggered configuration were positioned in the centre of the domain to reproduce an

urban district (Figure 3a). During their experiments, Testa et al. (2007) examined three inflow hydrographs with different values

of the peak discharge (named as Low, Medium, and High in Figure 4c). Water depths were consistently monitored at 9 gauge345

points (labelled P2 to P10 in Figure 3a) throughout the entire duration of the experiments.

To generate the “ground-truth” water depth maps used for training and testing the surrogate model, the PARFLOOD model

was setup using a Digital Terrain Model (DTM) with a spatial resolution of 0.05 m. A calibration process was conducted by

comparing experimental and simulated water depths at control points P2−P10, to ensure the reliability of the ground-truth

maps for the surrogate model’s training. The results of the calibration confirmed the adoption of a uniform Manning roughness350

coefficient equal to 0.0162 sm−1/3, as suggested by Testa et al. (2007). In all numerical simulations, a far-field boundary

condition was imposed downstream, and the domain was considered initially dry. The water depth maps were sampled at

intervals of 0.5 s. This temporal resolution is needed to adequately describe the rapid flood propagation within the study

domain.

To build a comprehensive dataset of water depth maps sequences, we considered different inflow hydrographs (illustrated in355

Figure 4), derived from recorded discharges in a gauge station on the Toce River, which were then scaled in time and magnitude

to reproduce a type of flood compatible with the scale of the physical model. The three inflow hydrographs recorded by Testa

et al. (2007) during their experiments and 23 synthetic events were used as upstream boundary conditions to run the numerical

simulations for the dataset creation.
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Figure 3. Study area for the two case studies. (a) Toce River case study. The black squares represent the urban district. (b) Po River case

study. The black lines represent the Po River levees.

The present case study is used to: (a) verify the performance of the FS model in predicting impulsive flood events with com-360

plex flow dynamics, and (b) assess how the type of flood events in the training dataset influences the accuracy of the FS model

in forecasting unseen floods with varying characteristics. Consequently, the surrogate model underwent two distinct training

processes based on two different training datasets (see Table 2). The first training case, denoted as Toce1, is characterised by

a dataset encompassing 15 synthetic events (Figure 4a), referred to as Rapid hydrographs, which feature a steep rising limb

and a peak occurring within the initial 6 s, similar to the trend of the experimental tests. Differently, the second training case,365

named Toce2, considers a training dataset comprising the previous 15 Rapid flood events along with additional 7 synthetic

hydrographs, named as Gradual (Figure 4b), with slower rising limb compared to the Rapid hydrographs.

The testing dataset remains consistent across both training processes (Table 2) and includes samples from 3 simulations

of experimental tests and 1 synthetic hydrograph exhibiting a Gradual trend (Figure 4c), which were unseen during the two

training processes.370

2.4.2 Po River flood

The second case study focuses on fluvial flood prediction in a 48 km-long stretch of the Po River in Italy, situated between

the stations of Casalmaggiore and Borgoforte (Figure 3b). In the study area the river varies in width from 300 m to 3 km,

whereas the main channel itself maintains a width of approximately 300 m. Additionally, the study area includes defended

floodplains, confined by minor levees designed to withstand floods with a return period higher than 50 years. Moreover, main375

embankments exceeding 8 m in height protect the extensive lowland surrounding the Po River from a 1 in 200 years’ flood.
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Training case: Toce1

Training case: Toce2
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Figure 4. Inflow hydrographs of the Toce River case study. (a) 15 Rapid hydrographs used to generate the training dataset for the Toce1 case.

(b) 7 additional Gradual hydrographs utilized for creating the Toce2 training dataset. (c) 3 recorded hydrographs (Low, Medium, and High)

and one synthetic hydrograph (Gradual) used to generate the testing dataset.

The presence of these elements significantly complicates the dynamics of flood propagation, which requires fully 2D hydraulic

models for accurate simulation (Dazzi et al., 2021a). Therefore, the ground-truth maps were obtained using the 2D SWE solver

PARFLOOD.

A 2 m resolution DTM of the study area was created by merging LIDAR and bathymetric surveys. To alleviate the com-380

putational load, the original DTM was downsampled to resolutions of 10 m and 20 m, leading to grids with approximately

5.2M and 1.3M cells, respectively (see Table 1). These spatial resolutions were deemed suitable for accurately simulating flood

propagation in the Po River region, given the main channel’s width exceeding 200 meters. To ensure accurate representation

of levee overtopping, the crest elevations of the main and minor embankments were retained in the downsampled grids, uti-

lizing data from terrestrial surveys. All numerical simulations assume the presence of non-erodible embankments. Therefore,385

defended floodplains are inundated only after the overtopping of minor levees.

The upstream boundary condition was imposed at the Casalmaggiore section, while a rating curve was applied at the Bor-

goforte section downstream. To construct the datasets, 22 historical flood events occurring between 2000 and 2021 were con-

sidered. The corresponding water levels, recorded by the Casalmaggiore gauge station, were converted into discharge values

using a rating curve (Figure 5a,c). Additionally, 6 synthetic events with peak discharge exceeding 8,000 m3/s were considered390

(Figure 5b). The temporal resolution of all inflow hydrographs and output water depth maps was 3 hours, which is deemed

suitable to describe the rather slow propagation of the Po River floods. For each numerical simulation, a water depth map

obtained from steady-flow discharge values ranging from 500 m3/s to 2,500 m3/s was considered as initial condition.

The FS model was trained three times (see Table 2) with the purpose of: (a) analyzing the influence of the training dataset

(type and severity of flood events) on the ability of the model to generalize on unseen floods, and (b) examining how the accu-395
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racy and computational times are influenced by the spatial resolution (i.e. number of cells) used to discretize the domain. For

the first purpose, we compared training cases Po1 and Po2. The first one (Po1) was conducted employing a dataset exclusively

comprised of 19 historical flood events. The corresponding inflow hydrographs, depicted in Figure 5a, exhibited peak dis-

charges ranging from approximately 2,000 m3/s to 13,000 m3/s, with total flood duration spanning between 11 and 30 days.

Moreover, many events displayed multiple peaks and an oscillatory trend in inflow discharges. Since the observation period is400

characterized by a scarcity of low-frequency and high-intensity floods, the FS model was also trained using a second dataset

(Po2) incorporating 6 additional synthetic hydrographs with high peak discharges, as depicted in Figure 5b. The purpose was to

determine if a surrogate model trained on a wider and more balanced dataset is characterized by higher accuracy compared to a

model trained on historical data only. For the second purpose, we considered a third training case (Po3) that exploits inundation

maps with doubled the spatial resolution (from 20 m to 10 m). The model was trained with samples obtained from the same405

flood events as the Po2 and thus we compared the performance of the last two configurations.

The accuracy in predicting unseen flood events was assessed by simulating three real floods (Figure 5c), which occurred in

November 2011, November 2014, and June 2020. These hydrographs exhibited varying discharge peak values ranging between

2,500 m3/s and 9,700 m3/s, with flood event duration spanning from 13 to 22 days. Furthermore, the maximum extent of the

inundation differed quite significantly across these events. For the June 2020 flood, which had the lowest peak discharge,410

flooding was confined in the main channel. In contrast, the November 2011 flood affected open floodplains due to the higher

peak discharge value. The most severe event, the November 2014 flood, caused inundation of most of the defended floodplains.

These diverse testing events thus allow for a comprehensive assessment of the surrogate model’s performance across different

types of floods, ranging from minor to severe events. The testing dataset includes unseen flood events and remains consistent

across all the three training processes (Table 2).415

Please notice that the roughness coefficients of the numerical model were calibrated by simulating the three real flood events

of the testing dataset. Two distinct Manning coefficients were employed for the main channel and floodplains, set at 0.03

sm−1/3 and 0.045 sm−1/3, respectively. These values were determined to minimize the differences between simulated and

recorded water levels at the Boretto gauge station, located few kilometres downstream the Casalmaggiore section (see point

G1 in Figure 3b). The results of the calibration procedure are shown in Section 3.2.420

To facilitate a comprehensive comparison between the results obtained with the numerical and surrogate models, water

depths were extracted at 6 predefined control points situated along the main channel and within the defended floodplains

(named G1−G6 in Figure 3b). Notably, point G1 is positioned at the Boretto gauge station, enabling the additional direct

comparison with recorded measurements.

2.5 Performance indicators425

The accuracy of the FS model is evaluated by comparing the water depth maps predicted by the surrogate model with those

simulated by the hydrodynamic model, assumed as ground truth. Two metrics are employed for assessment: the root-mean

square error (RMSE), which is a regression metric quantifying differences between target and predicted maps, and the F1

score, a classification metric providing an estimation of the surrogate model’s capability to predict the extent of flooded areas.

17

https://doi.org/10.5194/hess-2024-176
Preprint. Discussion started: 5 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Training case: Po1
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Figure 5. Inflow hydrographs of the Po River case study. (a) 19 real events occurring between 2000 and 2021 used to create the training

dataset for the Po1 case. (b) 6 additional synthetic scenarios in the training dataset for the Po2 and Po3 cases. (c) November 2011, November

2014, and June 2020 recorded events (unseen during training processes) used to generate the testing dataset.

The two metrics are defined as follows:430

RMSEt =

√√√√ 1
N

N∑

n=1

(yn
t − ŷn

t )2 for t ∈ [1,T ] (12)

F1 =
2×TP

2×TP + FN + FP
(13)

where yn
t and ŷn

t denote the ground-truth and predicted water depths in the n-th wet cell at instant t, respectively. N represents

the number of wet cells (i.e., cells with water depth higher than a specified threshold ϵwet) in the map. T indicates the total

number of temporal frames considered in the analysis. In Eq. 13, TP denotes the number of cells correctly predicted as flooded435

(i.e., true positives), FN represents the count of cells wrongly predicted as non-flooded (i.e., false negatives), and FP is the

number of cells wrongly predicted as flooded (i.e., false positives).

As anticipated, to differentiate between wet and dry cells in both the predicted and ground-truth maps during metrics cal-

culation, a water depth threshold ϵwet was employed. The threshold value should be a small fraction of the maximum water

depth expected in the dataset, denoted as Hmax. For the case studies here considered, the ratio ϵwet

Hmax
ranged between 0.60%440

and 0.75% (see Table 1).

To facilitate the comparison across different flood magnitudes, a non-dimensional RMSE was also computed by dividing the

RMSE of a specific instant t by the average water depth of the ground-truth map at the same instant:

RMSE_NDt =
RMSEt

1
N

∑N
n=1 yn

t

(14)
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3 Results445

In this Section, we present the outcomes of the autoregressive forecasting performed by the FloodSformer model. As regards

the FS test, whose purpose is to check the accuracy of the trained model in predicting only the maps at time I +1 (see Section

2.1.2), results are presented in Appendix A.

Once the data-driven model is trained and tested, it can be applied to forecast unseen sequences of water depth maps of flood

events with an autoregressive procedure. The flood events of the testing dataset were also used to assess the model’s accuracy450

for this procedure, which starts with only 1 frame as initial condition (i.e., P = 1). This means that the FS model can predict the

water depth maps of an entire flood event starting from just one map of initial conditions and from the discharge hydrograph at

the upstream boundary condition, making the model suitable for real-time forecasting applications.

Please notice that the FS model provides water depth maps as output. However, in order to ease the analysis of results, only

selected examples of maps are shown in this Section, while a more in-depth discussion is based on the water depth values at455

selected control points. Furthermore, it is important to note that the two cases analyzed have different spatial and temporal

scales. Consequently, the results and errors are characterized by different orders of magnitude.

3.1 Toce River flood

For the Toce River case study, the PARFLOOD code was calibrated by comparing the simulated water depths at 9 gauge points

(refer to Figure 3a for locations) for the three experimental hydrographs (i.e., Low, Medium, and High) with the corresponding460

observed values obtained from experiments conducted in the physical model by Testa et al. (2007). This comparison is funda-

mental to verify the reliability of the ground-truth maps used for training the surrogate model. Figure 6 shows the results for 3

control points (P3, P7, P10), while the remaining points are presented in Figures S1-S4 in the Supplement. The results show

that, although some discrepancies are observed within the urban area (e.g., gauge P7 in Figure 6), which are common to other

numerical models (e.g., Xia et al., 2017), the PARFLOOD code captures the general flood dynamics quite accurately. Con-465

sequently, the datasets used for the surrogate model training and testing were generated numerically with this hydrodynamic

model, as detailed in Section 2.4.1.

The surrogate model was trained twice, with different training configurations (i.e., Toce1 and Toce2 in Table 2). The pre-

diction accuracy of the FS models was evaluated by forecasting the four flood events of the testing dataset (Figure 4c). The

number of future frames (F ) recursively predicted by the surrogate model was set to 106, corresponding to a lead time of 53 s.470

Table 3 summarises the average metrics computed for the autoregressive predictions of the different testing scenarios. Gen-

erally, RMSE values depend on the type of scenario (Rapid or Gradual), as well as on the dataset used for training the surrogate

model. The extremely high F1 score confirms the FS model’s high accuracy in predicting the temporal variation of the flood

extent throughout the entire duration of the flood scenario.

Initially, we focused on the FS model trained using the Toce1 configuration. As already mentioned, the dataset for this475

training case comprises only Rapid hydrographs (i.e., discharge peaks occurring within the initial 6 s of the flood). Figure 6

shows the water depths extracted from the ground-truth (dashed black lines) and predicted (red lines) maps in three control
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Figure 6. Comparison of recorded and simulated water depths at 3 control points (P3−P7−P10) for the Toce River case study. Each row

corresponds to one of the four inflow hydrographs in the testing dataset (i.e., Low, Medium, High, and Gradual). The magenta circles represent

the recorded water depths from the experimental analysis in the physical model (Testa et al., 2007). Each graph includes the RMSE values

computed by comparing the time series of ground-truth and predicted water depths for both the Toce1 and Toce2 training configurations.

20

https://doi.org/10.5194/hess-2024-176
Preprint. Discussion started: 5 August 2024
c© Author(s) 2024. CC BY 4.0 License.



Table 3. Toce River case study: average RMSE, RMSE_ND (Eq. 14), and F1 score computed for the 106 recursively forecasted maps across

the four flood events.

Training

case

RMSE (mm) RMSE_ND (-) F1 (-)

Low Medium High Gradual Low Medium High Gradual Low Medium High Gradual

Toce1 2.1 2.0 3.5 4.8 0.061 0.044 0.067 0.123 0.994 0.995 0.991 0.988

Toce2 1.8 2.6 3.2 3.6 0.056 0.060 0.061 0.083 0.995 0.995 0.991 0.991

points (P3, P7, P10; see Figure 3a for locations), for all testing events, while the results for the other control points are plotted

in Figures S1-S4 in the Supplement. For the Low, Medium, and High hydrographs, the surrogate model shows remarkable

accuracy in predicting the arrival time of the flood at each point. Additionally, the model accurately reproduces the water depth480

peaks, particularly notable for point P3, situated just upstream of the urban district. Among these hydrographs, the FS model

exhibits the highest accuracy in predicting the Medium event. Comparing the time series of ground-truth and predicted water

depths at control points, the average RMSEs are found to be lower than 1.6 mm. If the average RMSE of a control point (e.g.,

1.6 mm at P3) is made non-dimensional with the maximum water depth expected at the same location (e.g., 104 mm at P3), we

obtain a relative error lower than 2%. For the Low and High hydrographs, the surrogate model tends to slightly underestimate485

the water depths in some control points. Nevertheless, the above-defined relative error remains lower than 5% confirming the

good performances of the FS model.

As expected, the FS model trained with the Toce1 configuration generates accurate results in forecasting the flood propaga-

tion of the three experimental hydrographs, as their trend is similar to those of the Rapid hydrographs in the training dataset.

In contrast, the surrogate model exhibits lower accuracy in predicting the flood generated by the Gradual hydrograph of the490

testing dataset. This discrepancy arises due to significant differences between the characteristics of this inundation scenario and

the Rapid flood events in the Toce1 training dataset. Specifically, the Gradual hydrograph features a discharge peak occurring

approximately 26 s after the flood begins, contrasting with Rapid hydrographs, with discharge peaks within the initial 6 s.

For this case, the FS model predicts the water depth peak with lower accuracy and shows an incorrect trend in forecasting

water depths during the rising limb of the flood. For instance, focusing on point P3 in Figure 6, the predicted water depth495

begins to decrease around t = 10.5 s, contrary to the expected trend of monotonic increase. Similar discrepancies, although

less pronounced, are observed at points P7 and P10.

Next, we analyze how the accuracy changes when the surrogate model is re-trained using the Toce2 dataset (see Table

2), including both Rapid and Gradual types of floods (see Figure 4). In Figure 7, the predicted water depth maps for some

representative instants of the Medium flood event are compared with the ground-truth maps derived from the hydrodynamic500

model. Overall, the surrogate model shows high accuracy in predicting the entire flood event. Errors are generally below 10% of

the average water depth of this scenario (see Table A2) across most of the study domain. The main discrepancies are associated

with the uncertainty in predicting the position of the wet/dry front of the flood, where differences are in the range 10−20 mm.

Despite these disparities, the surrogate model effectively captures the dynamics of the flood event.
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Figure 7. Toce River case study: real-time forecasting of the Medium hydrograph using the FloodSformer model trained with the Toce2

configuration. The columns represent, respectively, the ground-truth maps obtained from the hydrodynamic model, the maps predicted by

the surrogate model, and the difference maps between predicted and ground-truth maps. Only selected representative instants are shown.

The comparison between the water depths extracted at control points for the two training configurations is shown in Figure505

6 and Figures S1-S4 in the Supplement, with the Toce2 results depicted as blue lines. Focusing on the Gradual hydrograph, the
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surrogate model trained using the Toce2 configuration exhibits higher accuracy in predicting water depths at the control points,

with average RMSEs approximately halved. Moreover, the predicted water depths exhibit a monotonic increase during the

rising limb of the flood, closely following the ground-truth data trend. This improvement indicates that expanding the dataset

to include Gradual hydrographs helps overcoming the issue of incorrect trends in the rising limb observed in the Toce1 training510

configuration. The increased accuracy is further confirmed by comparing the forecasted water depth maps obtained with the

two trained models, as shown in Figure S8 in the Supplement.

The addition of gradual hydrographs in the Toce2 training dataset does not impair the accuracy in predicting Rapid floods.

Indeed, comparable accuracy for the Low and High events, and only slight increased RMSEs at some control points for the

Medium event, are achieved. In general, the ratio between average RMSE and maximum water depth expected at a specific515

control point is lower than 2.5−3.5%. The comparison of water depth maps predicted using the two training configurations

for the three experimental hydrographs is shown in Figures S5-S7 in the Supplement. Additionally, to analyse the accuracy in

forecasting water depths across the entire study domain, Figure 8 illustrates the temporal variation of the RMSE computed for

all wet cells in the domain for the testing dataset for both the Toce1 and Toce2 configurations. Generally, for the Low, Medium,

and High hydrographs, the RMSE is relatively high for the first predicted frames due to the underestimation of the wet/dry520

front of the flood (see Figure 7). This is mainly correlated to the high propagation velocity of the inundation front for the initial

part of the event. However, after the flood impacts against the blocks representing the urban district, the errors progressively

decrease. Differently, the accuracy of forecasting the Gradual hydrograph is strongly correlated with the dataset used for the

training procedure. Specifically, the model trained using the Toce1 dataset exhibits relatively high RMSE_ND values for the

first 30−36 s of the flood event. In contrast, the model trained with the Toce2 dataset generates significantly lower errors in the525

first 18−24 s of the flood. This reduction in errors is attributed to the use of a dataset containing events more similar to the one

considered for testing (i.e., Gradual hydrograph). Furthermore, for all events, the higher discrepancies are associated with the

hydraulic jump forming in the region upstream of the urban district, in addition to errors near the wet/dry front of the flood for

the first predicted frames (see Figures S5-S8 in the Supplement).

3.2 Po River flood530

For the second case study, the PARFLOOD model was calibrated comparing the water depths measured by the Boretto gauge

station (magenta circles in control point G1 of Figure 9) with corresponding simulated values (dashed black line in control

point G1 of Figure 9) for the 2011, 2014 and 2020 flood events (see Figure 5c). Notably, the hydrodynamic code is able to

reproduce the flood dynamics along the designated stretch of the Po River. As a result, these findings confirm the reliability of

the ground-truth maps used for training the data-driven model.535

To assess the impact of various spatial resolution and the type of flood scenarios composing the training dataset, the FS model

was trained considering the three configurations detailed in Table 2 and in Section 2.4.2, for which the predictive accuracy in

forecasting unseen flood events was evaluated based on the testing dataset (Figure 5c).
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Figure 8. Toce River case study: RMSE and RMSE_ND (Eq. 14) computed for the maps forecasted by the surrogate model for the four

hydrographs in the testing dataset. The continuous and dashed lines represent the results for the Toce1 and Toce2 training configurations,

respectively.

3.2.1 Po1 training case

In the first training case, named Po1, a spatial resolution of 20 m and a training dataset composed of 19 real flood events540

(Figure 5a) are adopted. The average metrics for the autoregressive prediction are summarized in Table 4. The average RMSE

is relatively low (i.e., approximately 0.1−0.2 m) for the 2011 and 2020 flood events, while it increases to about 0.5 m consid-

ering the 2014 flood. To understand the reasons of these discrepancies, the water depth time series at control points extracted

from ground-truth (dashed black lines) and predicted (red lines) maps for all the testing scenarios are compared in Figure 9.

Generally, the surrogate model shows high accuracy in predicting water depths in the main channel. For the most severe flood545

scenario in the testing dataset (i.e., the November 2014 event), the average RMSEs at control points G1 and G2 (located in the

main channel) are below 0.1 m. Furthermore, the model accurately reproduces the temporal variation of water depths and the

arrival time of the flood at control points G3 and G6, situated in two defended floodplains, with average RMSEs lower than

0.11 m. Conversely, the surrogate model exhibits shortcomings in forecasting water depths in other defended floodplains. For

instance, the predicted arrival time of the flood at control point G4 (Figure 9a) has a delay of approximately 30 hours, while the550

maximum water depth is underestimated by approximately 0.7 m. More significantly, the surrogate model completely fails in

forecasting the inundation of the defended floodplain where the control point G5 is located. For the November 2014 event, the

FS model predicts that this area remains dry, while the numerical code simulates water depths exceeding 4 m. To confirm these

results, in Figure 10 the ground-truth and predicted maps for selected instants of the November 2014 flood event are compared.

Large differences in some defended floodplains are evident.555

The failure of the data-driven model to correctly simulate the flood dynamics in some defended floodplains can be attributed

to the types of flood events that are composing the Po1 training dataset. Specifically, around 80% of the recorded hydrographs

have a peak discharge lower than 7,000 m3/s, while low-frequency and high-intensity floods are scarce (the largest peak dis-
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Figure 9. Comparison between recorded and simulated water depths at control points for the Po River case study. The magenta circles

represent the recorded water depths at the Boretto gauge station (point G1). (a) November 2014 flood event. For each control point, the

average RMSE of the time series of ground-truth and predicted water depths using the surrogate model trained with the three configurations

(i.e., Po1, Po2, and Po3) is reported. (b) November 2011 and June 2020 flood events. For these events, the floodplains with control points

G3, G4 and G5 remain dry.
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Figure 10. Po River case study: real-time forecasting of the November 2014 flood event using the FloodSformer model with the Po1 training

configuration. The columns represent, respectively, the ground-truth maps obtained from the hydrodynamic model, the maps predicted by

the surrogate model, and the difference maps between the predicted and ground-truth maps. Only selected representative instants are shown.
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Table 4. Po River case study: average RMSE, RMSE_ND (Eq. 14), and F1 score for all recursively forecasted maps across the three flood

events in the testing dataset.

Training

case

RMSE (m) RMSE_ND (-) F1 (-)

2011

event

2014

event

2020

event

2011

event

2014

event

2020

event

2011

event

2014

event

2020

event

Po1 0.21 0.48 0.12 0.064 0.127 0.031 0.972 0.974 0.985

Po2 0.19 0.15 0.16 0.060 0.036 0.041 0.973 0.988 0.982

Po3 0.38 0.31 0.38 0.112 0.073 0.099 0.963 0.979 0.955

charge is up to 13,000 m3/s, as shown in Figure 5a). In addition, numerous defended floodplains are inundated only during

flood events with inflow peak discharge exceeding 6,000−10,000 m3/s. Consequently, as only few of the training flood sce-560

narios exhibit a peak discharge and water volume sufficient to inundate the defended floodplains, the model struggles to learn

the dynamics of floods in these regions due to the insufficient number of examples in the training dataset. Specifically, focusing

on the 2014 flood event (Figure 9a), the surrogate model accurately predicts water depths at control points G3 and G6 as they

are located in defended floodplains that are inundated for relatively low-intensity flood events (e.g., control point G6 is also

flooded during the November 2011 event, as depicted in Figure 9b). In contrast, control points G4 and G5, in which the water565

depths present the larger error, are located in regions defended by higher levees and thus less frequently flooded.

3.2.2 Po2 training case

To overcome the limitation stemming from the underrepresented sampling of high-intensity flood scenarios in the training

dataset, the second FS training configuration (Po2 training case in Table 2) expands the dataset by adding synthetically gener-

ated flood events. As detailed in Section 2.4.2, the synthetic events feature a peak discharge exceeding 8,000 m3/s, resulting in570

the inundation of most defended floodplains. The water depths obtained from the newly trained model are depicted in Figure

9 (blue lines). Focusing on the 2014 flood event (Figure 9a), the use of a more balanced training dataset enhances the accuracy

in forecasting the flooding dynamics in defended floodplains. Notably, training the surrogate model using the Po2 configura-

tion significantly improves the accuracy in forecasting the temporal variation of water depths in control points G4 and G5.

The delay in the arrival time of the flood and the inability to predict flooding of the G5-floodplain are successfully addressed.575

However, at this control point, the water depths are still underestimated during the initial hours following the flood’s arrival. In

other control points, the accuracy of the surrogate model remains practically unchanged.

Analysing the two less severe scenarios in the testing dataset (i.e., the 2011 and 2020 events in Figure 9b), the surrogate

model trained with the Po2 configuration shows high accuracy in predicting water depths in both the main channel and in

the floodplains. However, it tends to slightly overestimate the water depths in the main channel during the recession limb of580

the flood. This discrepancy may be attributed to the adoption of a more balanced dataset, which allows the model to better
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specialize in predicting flood events with high severity at the expense of low-intensity floods. Nevertheless, such errors in

predicting the recession limb of low-severity flood events are deemed negligible for practical applications.

The increased accuracy of the model trained with the Po2 configuration compared to Po1 is further confirmed by the av-

erage RMSE computed for the recursively forecasted maps throughout the entire duration of the flood event. The results for585

each testing scenario are presented in Table 4. For the 2014 flood events, the RMSE for the Po2 configuration is reduced by

approximately 70% compared to the Po1 case (i.e., from 0.48 m to 0.15 m). Conversely, the 2020 event is characterised by a

30% higher RMSE (i.e., from 0.12 m to 0.16 m) due to the overestimation of the water depths during the recession limb of the

flood, as discussed previously. Still, errors of this magnitude can be considered acceptable in the practice.

In Figure 11, the predicted water depth maps for selected instants of the November 2014 flood event, generated by the590

FS model trained with the Po2 configuration, are compared with ground-truth maps derived from the hydrodynamic model.

The figure confirms the surrogate model’s high accuracy in forecasting flood dynamics in both the main channel and open

floodplains, where differences between predicted and target maps remain lower than 0.2 m for all predicted frames, representing

an error of less than 5% of the average water depth for the entire flood scenario (see Table A2). Overall, more than 70% of

the total number of flooded cells in all predicted maps (approximately 33M cells with a water depth higher than 0.05 m, the595

threshold used to filter out insignificant water depths in the numerical model’s output maps, see Section 2.4) exhibit errors

lower than 0.1 m. This percentage increases to 94% when considering errors between 0 and 0.2 m. Furthermore, only 0.5% of

cells have errors higher than 1 m, mostly located in the defended floodplains (see Figure 11). These inaccuracies are primarily

associated with a slight temporal shift in the inundation arrival time, as previously discussed in Figure 9a. Then, high errors

diminish to under 0.2 m in subsequent frames. This consideration is also confirmed by the RMSE computed for each of the600

174 predicted maps of the November 2014 flood event, represented in Figure 12. The value of the RMSE computed for the

whole flooded domain is lower than 0.2 m during the initial and final stages of the event, while errors increase when defended

floodplains begin to be flooded. This can be easily assessed by computing the RMSE for the main river region (i.e., main channel

and open floodplains) and defended floodplains separately. As anticipated, the RMSE for the main channel remains below 0.2

m for the whole event. Differently, the metric for defended floodplains is higher, exhibiting various peaks corresponding to605

instants of flooding onset across different areas.

The average F1 score, computed across all forecasted frames for the three testing events is reported in Table 4. The extremely

high F1 values confirm the accuracy of the surrogate model in predicting the temporal evolution of the flood extent.

3.2.3 Po3 training case

For the last training configuration, named Po3, we used maps with a spatial resolution equal to 10 m. Additionally, the training610

dataset was created using the same flood events as the Po2 configuration, which includes both real and synthetic flood scenarios

(see Table 2). The aim of adopting a different resolution, and thus maps with a significantly larger number of cells, is to assess

how the FS model scales for larger model dimension, both in term of accuracy of the results and computational times for

training and forecasting. Comparing the results of the Po3 and Po2 configurations, which have the same training dataset but

different spatial resolution of the maps, Table 4 indicates an increase in the average RMSE by 0.15−0.2 m, accompanied by a615
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Figure 11. Po River case study: real-time forecasting of the November 2014 flood event using the FloodSformer model with the Po2 training

configuration. The columns represent, respectively, the ground-truth maps obtained from the hydrodynamic model, the maps predicted by

the surrogate model, and the difference maps between the predicted and ground-truth maps. Only selected representative instants are shown.
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Figure 12. November 2014 flood event: RMSE and RMSE_ND (Eq. 14) computed for the maps forecasted by the surrogate model trained

with the Po2 configuration. RMSE values are also separately calculated for the main river region (including the main channel and open

floodplains) and defended floodplains.

decrease in the F1 score due to the higher number of cells. Figure 9 reports the water depths extracted at control points for this

configuration with green lines. Generally, the increase in the spatial resolution results in slightly higher discrepancies in some

control points. For example, considering the 2014 flood event, the control point G2 exhibits an overestimation of water depths

by approximately 0.3 m near the flood peak. Moreover, certain control points in defended floodplains (e.g., G4 and G5) show

reduced prediction accuracy compared to the coarser resolution (i.e., Po2 configuration). Similar considerations hold for the620

other flood scenarios of the testing dataset (Figure 9b).

This reduced accuracy of the autoregressive procedure may be attributed to the increased model dimension, which implies

that, during the training process, the optimization task involves a significantly larger number of parameters compared to the

Po2 configuration. At the same time, the number of samples in the training dataset remains unchanged from the Po2 training.

This possibly leads to a reduced optimization of the Po3 model, which could have been relieved by adopting a larger training625

dataset. Nevertheless, in this study, we aimed to compare results across various spatial resolutions using the same dataset, and

further analyses are left to future works.

Target and predicted maps for the November 2014 flood event are illustrated in Figure S9 in the Supplement. Analogous

to the results obtained with the Po2 configurations (Figure 11), a good accuracy is achieved in the main channel and in the

open floodplains while significant discrepancies primarily affect defended floodplains. Specifically, the surrogate model tends630

to anticipate flood arrival in certain floodplains, leading to the creation of significant differences at given times, due to sudden

increases in water depths.

Despite the reduction in accuracy, predictions generated by the surrogate model trained with the Po3 configuration maintain

acceptable fidelity for real-time flood forecasting purposes. Furthermore, errors in the main river region are comparable to

those expected from a physically based model.635
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3.3 Computational times

In this work, all simulations were performed using NVIDIA A100 GPUs.

For the Toce River case study, the computational time required for the FS model training process is approximately 2 hours

when using one GPU. Predicting a flood event in the testing dataset with the autoregressive procedure takes about 10 s. This

computational time is comparable to the runtime of the PARFLOOD code, which is very efficient for such a small case study.640

For the Po River case study, the computational time of the FS model varies depending on the spatial resolution of the maps.

Specifically, when maps with a resolution of 20 m are used, the training time of the surrogate model is approximately 50

hours using 2 GPUs. However, the computational time needed to recursively forecast 522 hours of the November 2014 event is

approximately 3 minutes when employing one GPU. In comparison, the PARFLOOD code requires approximately 30 minutes

to simulate the entire flood event using the same hardware configuration.645

Differently, with a spatial resolution of 10 m, the overall training time of the FS model increases to approximately 71 hours

using 4 GPUs. However, once trained, the model forecasts the entire November 2014 event in about 6.5 minutes using one

GPU, whereas the PARFLOOD code takes approximately 140 minutes to simulate the entire flood event.

In conclusion, for the Po River case study, the ratio of physical time to the FS model’s computational time ranges from 5,000

to 10,000. Furthermore, the surrogate model proves to be approximately 10−20 times faster than the hydrodynamic model,650

depending on the spatial resolution adopted.

3.4 Benchmark comparison

In this Section, the performance of the FS model is compared with that of the 1D CNN model (Section 2.3) for both case

studies, in order to assess the reliability of the proposed architecture. Specifically, we compared the accuracy of the surrogate

models trained using the Toce2 and the Po2 training configurations (see Table 2) for the Toce River and Po River case studies,655

respectively.

For the 1D CNN model, a temporal window size corresponding to 8 timesteps (i.e., r = 8 in Section 2.3) was used, following

the original implementation of the model (Kabir et al., 2020). Consequently, the input data for the model is a sequence of 9

inflow discharges from t− 8 to t and the output is the inundation map at time t. This choice is also in line with the past time

window used for the FS model (I = 8). The training of the convolutional model was conducted with a batch size of 10, the660

MSE loss function, the Adam optimizer, and a learning rate of 5e-4 and 1e-3 for the Toce River and Po River case studies,

respectively. The values of the learning rate and batch size were determined through a trial-and-error process.

Table 5 presents a comparison of the average metrics of the two surrogate models. The FS model outperforms the 1D CNN

architecture in terms of RMSEs and F1 scores for all the testing events considered. Focusing on the Toce River case, Figure

13 shows the inundation maps predicted by the convolutional model. The comparison between Figure 13 and Figure 7, which665

presents the results for the same flood event obtained with the FS model, highlights the higher accuracy of the latter model in

predicting the inundation caused by the Medium flood event in the Toce River valley.
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Table 5. Comparison between the average metrics for the FS model and the 1D CNN model (Section 2.3). Results refer to the Toce2 and Po2

training configurations.

Testing

event

RMSE (m) RMSE_ND (-) F1 (-)

FS (our) 1D CNN FS (our) 1D CNN FS (our) 1D CNN

Toce River

Low 0.0018 0.0032 0.056 0.098 0.995 0.916

Medium 0.0026 0.0038 0.060 0.087 0.995 0.906

High 0.0032 0.0057 0.061 0.108 0.991 0.874

Gradual 0.0036 0.0064 0.083 0.157 0.991 0.868

Po River

Nov 2011 0.19 0.36 0.060 0.120 0.973 0.966

Nov 2014 0.15 0.66 0.036 0.174 0.988 0.964

Jun 2020 0.16 0.66 0.041 0.181 0.982 0.908

Similarly, the FS model demonstrated superior performance in predicting flood events in the Po River region. Considering

the most severe event in the testing dataset (i.e., the November 2014 flood), Figure 14 shows some water depth maps predicted

by the 1D CNN model. Comparing these results with those obtained using the FS model (Figure 11), it is evident that the670

1D CNN has lower accuracy in forecasting the spatiotemporal variation of water depths, especially in defended floodplains.

This is mainly due to the inability of the 1D CNN model to account for spatiotemporal correlations between consecutive

inundation maps, which is crucial for accurately reproducing complex flood dynamics. These findings are further confirmed by

comparing the water depths extracted at selected control points along the Po River region, illustrated in Figure 15. Specifically,

the convolutional model fails to accurately predict flood dynamics in most of the defended floodplains (e.g., at points G4 and675

G5, where results differ significantly from target data), while its accuracy is acceptable for points located in the main channel

(i.e., G1 and G2), although still worse than that of FS model.

This benchmark analysis confirms the remarkable performance of the FS model compared to a state-of-the-art DL architec-

ture. The adoption of a large transformer-based model, which considers both temporal and spatial information as input data to

predict future frames, introduces a significant advantage compared to simpler models that analyze only upstream hydrograph680

inflows to predict the spatiotemporal propagation of inundation, as done by the 1D CNN model.

4 Discussion

Differently from the original implementation of the FloodSformer model by Pianforini et al. (2024a), the enhanced version

introduced in this study replaces the SA mechanism in the VPTR block with the CA mechanism. This modification allows the
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Figure 13. Toce River case study: real-time forecasting of the Medium hydrograph using the 1D CNN model (Section 2.3) trained with the

Toce2 configuration. The columns represent, respectively, the ground-truth maps obtained from the hydrodynamic model, the maps predicted

by the CNN model, and the difference maps between predicted and ground-truth maps. Only selected representative instants are shown. This

Figure can be compared with Figure 7, which shows the results for the same flood event obtained with the FS model.
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Figure 14. Po River case study: real-time forecasting of the November 2014 flood event using the 1D CNN model (Section 2.3) trained

with the Po2 configuration. The columns represent, respectively, the ground-truth maps obtained from the hydrodynamic model, the maps

predicted by the CNN model, and the difference maps between the predicted and ground-truth maps. Only selected representative instants

are shown. This Figure can be compared with Figure 11, which shows the results for the same flood event obtained with the FS model.
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Figure 15. Po River case study: benchmark comparison between the simulated water depths at control points for the November 2014 flood

event using the FloodSformer model and the 1D CNN model (Section 2.3), both trained considering the Po2 configuration.

model to include an upstream boundary condition as additional input information, enabling the surrogate model to be used for685

real-time river flood forecasts.

Unlike other DL models that rely solely on information from upstream boundary conditions to predict inundation maps (e.g.,

Kabir et al., 2020), our model also integrates spatiotemporal information from maps of precedent instant. This comprehensive

approach leverages both temporal and spatial data, allowing the model to capture the complex interactions between flow

dynamics and topographical features, resulting in a higher prediction accuracy compared to other simpler surrogate models690

(see Section 3.4). This enhancement underscores the importance of considering spatiotemporal correlations in flood modeling

to improve predictive performance and reliability.

In view of practical applications, the prediction of a flood event using the autoregressive procedure requires two types of input

data. The first is the time series of upstream discharge throughout the flood’s duration, typically obtained from meteorological

and hydrological model chains. It is important to note that the lead time for predicting upstream inflow discharge may be shorter695

than the total duration of the flood event, especially for rivers with long flood propagation times, such as the Po River. Despite
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this, multiple subsequent run of the FS model’s autoregressive procedure can be used for continuous updating of forecasts

using newly predicted discharge data from the hydrological model.

The second required input data for the autoregressive procedure is the water depth map representing the initial condition of

the flood scenario. A comprehensive analysis of the impact of initial conditions on the FS model predictions is provided in700

Section 4.1.

As already mentioned, the FS model employs an autoregressive procedure to forecast long sequences of future maps. Typi-

cally, such architectures are susceptible to error accumulation, which may limit the total number of maps that can be accurately

predicted. However, as shown in Section 3, the FS model consistently produces accurate results even after forecasting tens

of future frames. For instance, in the Po River case study, the predicted water depths remain unaffected by error accumula-705

tion, as can be seen from the results presented in Sections 3.2.2. We can thus assert that the forecasting lead time of the FS

model is solely constrained by the availability of a sufficiently extended period of the inflow hydrograph, which serves as input

information for the autoregressive prediction.

The generation of a dataset that accurately describes all the potential flood scenarios within the designated study area con-

stitutes a critical phase in deploying DL architectures. Generally, data-driven models necessitate large datasets to effectively710

generalize and achieve optimal performance. The use of observed data describing inundation dynamics at suitable spatial and

temporal resolutions is prevented by the unavailability of such information for actual flood events. For example, the adoption

of satellite images is influenced by their low frequency of acquisition and their susceptibility to meteorological conditions

(Bentivoglio et al., 2022). Conversely, numerical simulations can generate potentially limitless data, encompassing both real

and synthetic events. However, the quality of the training and testing data is contingent upon the accuracy of the physically715

based model in correctly reproducing the flood dynamics. For this reason, a calibration process of the hydrodynamic model

is essential to correctly set up a data-driven model. Accordingly, in this study, we employed the 2D SWE solver PARFLOOD

code that was extensively validated for challenging case studies (e.g., Dazzi et al., 2021a). For each case study analyzed in the

present work, the numerical model was calibrated using observed data. This procedure serves to validate the reliability of the

simulated maps used to train the surrogate model.720

Another aspect of the dataset generation that might influence the final accuracy of the data-driven model is the inclusion of

flood events of different type (e.g. hydrographs with different steepness of the rising limb and/or spanning from low to high

peak discharges) in the training dataset. As shown in Section 3.2, the use of an imbalanced training dataset could result in

a drastic reduction of the fidelity of the surrogate model prediction. Furthermore, it is well known that data-driven models

typically perform well at interpolating information within the range of training data. Conversely, accuracy diminishes when the725

model must extrapolate data beyond the training range (Fraehr et al., 2024). It is fundamental to ensure ample representation

of flood events in the training dataset to guarantee optimal performance in real-word applications. This entails, for example,

that high-intensity flood scenarios must be included in the training dataset to allow the surrogate model to appropriately learn

the dynamics associated with extreme events.

A drawback associated with the proposed surrogate model is its sensitivity to the adopted spatial resolution, as evidenced730

by the increase in RMSE of the predicted maps with higher resolutions (see Section 3.2.3). While higher spatial resolutions
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provide more detailed information, they necessitate the use of a more complex surrogate model with an increased number of

parameters. Such models are more challenging to train and require larger datasets. Therefore, achieving an optimal balance

between spatial resolution and model complexity is crucial to ensure the reliability and robustness of the surrogate model for

real-time river flood forecasting applications. Nonetheless, the results obtained for the Po River case study, trained at the finest735

resolution, remain acceptable for the purpose of real-time river flood forecasting.

The most significant advantage of the proposed data-driven architecture lies in its ability to drastically reduce the compu-

tational time compared to the physically based models. For instance, in the Po case study, the autoregressive procedure of the

FS model enables the forecasting of a flood event lasting about 3 weeks in just a few minutes, achieving ratios of physical

to computational time up to 10,000. Furthermore, the surrogate model exhibits a speedup of about 10−20 times compared to740

the hydrodynamic model. This speedup depends on the spatial resolution adopted and escalates with the increase in the num-

ber of cells adopted to discretize the domain. It is worth noting that the numerical model employed in this study, namely the

PARFLOOD code, was efficiently implemented to leverage the capabilities of GPU architectures. Consequently, its computa-

tional time is already significantly reduced compared to other serial codes (Vacondio et al., 2014). If the surrogate model was to

replace a less efficient code, its advantage in terms of computational time would be even more evident. The good computational745

performance of the FS model promotes its employment for real-time forecasting of floods.

4.1 Initial condition sensitivity analysis

In Section 3, we showed that the FS model is able to forecast flood scenarios using only one past frame (representing the

initial condition) to start the autoregressive procedure. This map is derived from a steady state simulation performed with the

hydrodynamic model. However, in real-time flood forecasting, the necessity of conducting a numerical simulation of a steady750

flow at the start of the flood event can pose a computational bottleneck. Therefore, in this Section, we analyze the influence of

initial conditions on the results of flood predictions obtained with the FS model.

For this sensitivity analysis, we considered the November 2014 flood event (see Figure 5c) and the FS model trained with

the Po2 configuration (see Table 2). The “real” initial condition was obtained considering a steady flow with a discharge of

500 m3/s. This value is similar to the initial value of the November 2014 hydrograph. Additionally, two distinct steady flow755

conditions with discharge values of 1,500 m3/s and 2,500 m3/s were simulated. The maps representing water depths for the

three steady flows considered were used as past frames for the FS model predictions.

Figure 16a shows the comparison between water depths extracted at the Boretto gauge station (G1) for the different config-

urations examined. Remarkably, the surrogate model tends to disregard information about the initial condition after a few time

steps. For instance, the forecasted water depths tend to align about 24 hours after the event’s onset regardless of the adopted760

initial condition. Similar results are observed for other cells in the study area (not shown). This consideration is supported by

the analysis of RMSEs computed on each predicted map, reported in Figure 16b. Specifically, RMSEs differ for the very first

frames depending on the initial conditions, then gradually converge to identical values for the rest of the event. The convergence

is more rapid as the assumed initial frame gets closer to the “actual” initial condition.
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Figure 16. Comparison of results for different initial conditions. The surrogate model forecasts consider different past frame maps. (a)

Comparison of water depths extracted at the Boretto gauge station. (b) RMSE computed on the forecasted maps with the three initial

conditions analyzed.

These findings confirm that the prediction of the FS model is independent of the initial condition considered except for a765

relatively short warmup. Consequently, for practical applications, it is advisable to create a small database containing water

depth maps for some steady flow conditions that can serve as initial conditions (past frame) for the autoregressive prediction

of the FS model. The map corresponding to the initial discharge value closest to the real-event conditions can then be selected.

This procedure enables the use of the FS model for flood prediction avoiding any preliminary numerical simulation. The

number and discharge values to be considered depend on the case study. For example, for the Po case study, discharge values770

in the order of 500−3,000 m3/s can be adopted for the creation of the database.

5 Conclusions

In this study, the FloodSformer model, a transformer-based data-driven model originally proposed for real-time forecasting of

dam-break scenarios (Pianforini et al., 2024a), has been modified to predict river flood inundations with a negligible computa-

tional time.775

The results demonstrate the FS model’s capability to accurately forecast the spatial and temporal evolution of water depths

in river floods, relying solely on an initial water depth map and on the hydrograph describing the inflow discharge for the entire

event duration, which can be obtained from meteorological/hydrological models. Prediction errors generally align with the

uncertainty observed in physically based models. For example, in the Po case study, the average RMSE is lower than 20 cm.

Overall, more than 90% of flooded cells exhibit errors lower than 20 cm. Furthermore, the autoregressive procedure ensures780

acceptable prediction accuracy even after forecasting tens of maps, promoting the prediction of long-lasting flood events. The

performance of the proposed model was also compared against a state-of-the-art 1D CNN model, demonstrating superior

accuracy in forecasting flood events across all case studies analyzed.
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The FS forecasts remain independent of the water depth map used as initial condition for the autoregressive procedure. This

finding promotes FS model’s adoption for real-time forecasting, eliminating the need for preliminary numerical simulations to785

generate exact initial conditions.

Finally, the FS model exhibits remarkable computational efficiency in predicting real flood events. For instance, for a Po

River flood scenario lasting approximately 3 weeks, the surrogate model requires only a few minutes to forecast all the water

depth maps with a temporal resolution of 3 hours. This corresponds to a ratio of physical to computational time up to 10,000.

Furthermore, the surrogate model is 10 to 20 times faster than the hydrodynamic model, although the latter was efficiently790

implemented to run in parallel on GPU. Consequently, the short computational time of the FS model’s autoregressive procedure

further emphasizes the advantage of the proposed data-driven approach for real-time flood forecasting. This efficiency not only

streamlines the forecasting process but also enhances the model’s responsiveness to dynamic flood conditions, ultimately

contributing to more effective and timely decision-making in flood management and mitigation efforts.

Appendix A: FloodSformer training results795

This Appendix presents the outcomes of the FloodSformer model training. Upon completing the training procedure, the model’s

accuracy in predicting the map at time step I + 1 is evaluated using input data sequences of I consecutive maps from the

testing dataset. This evaluation procedure, named “FS test”, ensures the surrogate model’s proper training and suitability for

autoregressive forecasting of extended sequences of inundation maps. Table A1 provides a summary of the average RMSEs

and F1 scores of the FS tests for both the Toce and Po River case studies. It is noteworthy that these case studies differ in spatial800

and temporal scales, thereby influencing the resulting metrics.

For the Toce River case, the RMSE and F1 score exhibit minimal variations across different training configurations. The

RMSE, approximately 1 mm, is less than 2−3% of the average water depth across all testing scenarios (see Table A2). More-

over, an F1 score close to 1 confirms the FS model’s high accuracy in predicting the temporal variation of flood extent one time

step ahead.805

In the Po River case study, an increase in spatial resolution leads to a higher RMSE. This increase primarily stems from the

larger number of surrogate model’s parameters, while the dimension of the training dataset remains unchanged (see Section

3.2.3 for more details). Nonetheless, the F1 score remains notably high for this case study.

In summary, the limited errors observed in the FS test validate the application of the surrogate model for predicting long

sequences of inundation maps using the autoregressive procedure, as shown in Section 3.810

Code and data availability. The dataset employed in this study, along with the trained weights of the FS model, can be accessed at Pianforini

et al. (2024b). The Python code repository is accessible at Pianforini et al. (2024c).
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Table A1. Average RMSEs of the FS test for the Toce and Po case studies.

Toce River Po River

Toce1 Toce2 Po1 Po2 Po3

RMSE (m) 0.0011 0.0009 0.070 0.068 0.117

F1 (-) 0.995 0.996 0.988 0.989 0.987

Table A2. Average water depths (h̄) for the testing scenarios of the Toce and Po case studies.

Toce River Po River

Low Medium High Gradual 2011 event 2014 event 2020 event

h̄ (m) 0.034 0.040 0.052 0.041 3.45 4.06 4.16
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