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Abstract. Digital elevation models (DEMs) are essential datasets, particularly for flood inundation mapping in one-

dimensional (1D) to two-dimensional (2D) flood models. Given the current uncertainties stemming from changes in weather 10 

patterns affecting flooding, reducing inaccuracies in flood models is imperative. This study aims to enhance the performance 

of 1D-2D flood models using satellite Earth observation (EO) data in the lower Chao Phraya (CPY) basin. It introduces two 

workflows applied to upgrade the 1D-2D flood model: DEM analysis and flood map analysis. 

The DEM analysis workflow evaluates 10 DEM products (LDD, JICA, merged LDD-JICA, ASTER GDEM V3, STRMv3, 

MERIT, GLO30, FABDEMv1-2, TanDEM-X, and TanDEM-EDEM) using satellite laser altimetry data from the Ice, Cloud, 15 

and land Elevation Satellite-2 (ICESat-2) according to standard criteria for DEM selection as input to the flood model. 

Findings indicate that the merged LDD-JICA and FABDEMv1-2 DEMs exhibit the highest level of accuracy, with root 

mean square error (RMSE) values of 1.93 and 1.95 m, respectively. The flood map analysis workflow involves comparing 

flood extent maps derived from multi-mission satellite datasets, and simulated flood maps. This study utilizes surface water 

extent (SWE) maps from the WorldWater project, obtained from the Sentinel-1 and Sentinel-2 imaging satellites, and flood 20 

maps from the Geo-Informatics and Space Technology Development Agency (GISTDA) in Thailand to verify flood maps 

produced by the 1D-2D flood model. The results reveal that the flood maps from the 1D-2D flood model tend to 

overestimate flood extent, with a critical success index (CSI) range of 0.072 – 0.230. Our study demonstrates the potential to 

enhance the skill of 1D-2D flood models using satellite EO data, thereby improving the reliability of flood inundation 

predictions. 25 

1 Introduction 

Nowadays, flooding is one of the most common disaster issues globally, impacting health, economies, and livelihoods 

worldwide. Flood models play a crucial role in forecasting floods and assessing flood risks, thereby assisting decision-

makers in effective water management, particularly through one-dimensional (1D) - two-dimensional (2D) flood models. 

These models simulate various aspects of flooding, including flow, water levels, flood inundation extents, flood depths, 30 
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flood maps, and flood duration (DHI Water and Environment, 2019). The Digital Elevation Model (DEM) serves as a 

primary input parameter for 1D-2D flood models, enabling the accurate simulation of flood overflow from rivers, 

floodplains, and inundated areas, particularly in flat and low-lying regions. The DEM significantly influences the simulation 

of flood inundation in both 1D-2D and 2D flood models (Saksena and Merwade, 2015; Shen and Tan, 2020; Wu et al., 2007; 

Morrison et al., 2022), urban areas (McClean et al., 2020), coastal areas (Darnell et al., 2008), and flood warning systems 35 

(Lamichhane and Sharma, 2018). Ultimately, the reliability of flood inundation predictions relies on the accuracy and detail 

provided by the DEM, directly impacting the representation of flow geometry characteristics within flood models. 

Validating the DEM before integrating it into the 1D-2D flood model is essential. The Ice, Cloud, and Land Elevation 

Satellite-2 (ICESat-2) is a satellite equipped with a laser altimeter, capable of measuring ice sheet and glacier elevation 

change, sea ice freeboard, land elevation, and water elevation (Neumann et al., 2019), providing opportunities for validating 40 

DEMs even in remote and hard-to-reach areas worldwide, such as Finland (Wang and Liang, 2023), Spain (Zhu et al., 2022), 

East Antarctica (Hao et al., 2022), Alaska in the USA (Wang et al., 2019), and the Qinghai-Tibet Plateau in China (Weifeng 

et al., 2024). Moreover, while an efficient DEM enhances the efficiency of 1D-2D flood simulation, it is important to 

systematically validate flood maps. Currently, satellite earth observation (EO) data can be utilized for monitoring and 

providing surface water extent (SWE) with synthetic-aperture radar (SAR) sensors, such as RADARSAT (Raney et al., 45 

1991), ENVISAT ASAR (Lv et al., 2005), COSMO-SkyMed  (Pulvirenti et al., 2014), and TerraSAR-X (Martinis et al., 

2013), which is the only way to validate flood inundation maps from flood models over regional scales. The WorldWater 

project developed a robust and scalable EO solution for inland SWE monitoring, which can be utilized by a large community 

of stakeholders involved in local water management (Tottrup et al., 2022). The project used free and open optical and SAR 

satellite imagery from the Sentinel-1 and Sentinel-2 missions to generate monthly SWE maps over four years, which are 50 

accessible from https://worldwater.earth/. The product offers new opportunities for validating modelled flood maps with 

higher SWE resolution.  

While satellite EO provides SWE maps that delineate water bodies and inundated areas, they cannot be directly compared to 

flood maps from 1D-2D flood models. The output of 1D-2D flood models are riverine flood maps. Additional flood 

classification processing is necessary to ensure comparability between SWE maps and the output of a flood model. However, 55 

flood type classification using SWE maps poses challenges and difficulties. Many studies focus on classifying flood types 

based on meteorological condition rather than using SWE maps, such as Nied et al., 2014, Turkington et al., 2016, decision 

tree using meteorological data (Stein et al., 2019), and Yan et al., 2023.  Riverine flood classification specifically involves 

identifying floods caused by river overflow from SWE maps. Here, we used expanding segmentation labels (ESL) (Van Der 

Walt et al., 2014), connected component labeling (CCL) (Rosenfeld and Pfaltz, 1966 and AbuBaker et al., 2007), masking 60 

off riverine and permanent water, and morphological image processing (MIP) (Soille, 2003) techniques applied to the SWE 

maps to separate riverine flood areas from other inundated areas. 

This study demonstrates these workflows for the lower Chao Phraya (CPY) River basin in Thailand, i.e. DEM evaluation 

with ICESat-2 benchmarks, riverine flood classification, and flood evaluation. The evaluation involved 10 DEM products, 
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including three local DEM products and seven global DEM products. The DEM performance in the lower CPY basin was 65 

assessed using statistical methods, including bias (mean error, ME), mean absolute error (MAE), mean square error (MSE), 

and root mean square error (RMSE), in terms of point, grid, and track-wise comparison. The best result from DEM 

evaluation was implemented in a 1D-2D flood model for simulating flood inundation. The simulated flood inundation map 

was evaluated using a satellite EO based flood map, derived from SWE through the riverine flood classification process. The 

performance of the flood model was assessed using three statistical metrics: probability of detection (POD), false alarm ratio 70 

(FAR), and critical success index (CSI). The methods demonstrated in this paper will enhance the performance of the Chao 

Phraya operational hydrologic-hydraulic forecasting system maintained at the Hydro-Informatics Institute (HII) in Thailand. 

2 Study Area 

The study area is located in the central part of Thailand, as shown in Figure 1(a). The delta area of the lower CPY River 

basin in Thailand forms the study area depicted in Figure 1(c).  The size of the study area is approximately 16,643 km2, 75 

including about 70% irrigation area and 20% urban area. The topography of the study area is characterized by a flat terrain, 

predominantly consisting of a low-lying alluvial floodplain. The northern part of the study area is a mountainous region with 

four main rivers: the Ping, Wang, Yom, and Nan rivers. These rivers converge to form the CPY river, which then flows into 

the study area. The eastern and western parts of the study area are connected to the Bang Pakong River and the Mae Klong 

basin, respectively. The southern part of the study area borders the Gulf of Thailand. 80 

The study area is located in a tropical climate and is influenced by northeast and southwest monsoons. The northeast 

monsoon brings cool and dry air from November to February, while the southwest monsoon brings humid air from May to 

October. The precipitation is approximately 1,100 mm during the rainy season and 170 mm during the dry season. The 

flooding in the study area is caused by the main rivers and their tributaries. The tributaries of the CPY river include Tha-

Chin, Noi, and Lopburi. Flooding problems are more severe along the main course of the CPY river compared to others. 85 

Nevertheless, flooding mechanisms are complicated, arising from the combined effects of extreme precipitation, river 

overflows, insufficient river conveyance, land-use change, and sea-level rise. This results in frequent flooding, as shown in 

Figure 3(c). 
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Figure 1: (a) the location of the study area, (b) the ICESat-2 orbit, (c) the study area/1D-2D flood model, (d) the flexible mesh in 90 
the flood model, and (e) ICESat-2 beam pairs. © OpenStreetMap contributors 2015. Distributed under the Open Data Commons 

Open Database License (ODbL) v1.0. 

3 Materials 

3.1 1D-2D Flood modelling 

In this study, we used the flood model from the decision support system for flood forecasting and water management in the 95 

CPY River basin, developed in collaboration with HII and DHI A/S since 2012 (Sisomphon et al., 2013) and updated with 

new information in 2016 (Charoensuk et al., 2018). The decision support system for flood forecasting and water 

management in the CPY basin continues to operate, supporting the Thai Government in managing flood risk and providing 

real-time flood forecasts. 

The flood model used the MIKE FLOOD software developed by DHI A/S. A MIKE FLOOD model (DHI Water and 100 

Environment, 2019 consists of coupled one-dimensional (1D) and two-dimensional (2D) models, namely MIKE11 and 
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MIKE21, respectively. The 1D hydraulic model (MIKE11) simulates unsteady flow in river networks solving the Saint-

Venant equations with an implicit finite difference solver (DHI Water and Environment, 2021). The main branches of 

MIKE11 include the Chao Phraya, Tha-Chin, Lopburi, Noi and Pasak rivers. Cross-sections, rainfall-runoff, boundary 

conditions, hydrodynamic parameters, and control structures were implemented in MIKE11. The MIKE21 model is an 105 

overland flow model utilizing 2D shallow water equations (Danish Hydraulic Insitute, 2016).  MIKE21 employs a 2D 

flexible mesh based on the digital elevation model (DEM) to assess flood depth and its propagation. The river network in 

MIKE11 is dynamically linked to floodplain bathymetry through lateral links. The lateral links connect the river to the 

floodplain along its length using the cell-to-cell method, allowing water to overflow to the floodplain in the MIKE21 

overland flood model. The lateral link connection uses the weir equation to calculate overflow in MIKE FLOOD (DHI 110 

Water and Environment, 2019). 

The 1D-2D flood model, documented in Hydro-Informatics Institute, 2017, establishes the following boundary conditions: 

upstream boundary forcing with discharge from C.2 station and releases from the Pasak Reservoir from the Royal Irrigation 

Department (RID) in the CPY and Pasak rivers, respectively. Meanwhile, the downstream boundary connects to the Gulf of 

Thailand using sea level measurements from the Hydrographics Department, Royal Thai Navy (NAVY), as illustrated in 115 

Figure 1(c). The MIKE11 model was calibrated using water level observations presented in Charoensuk et al., 2024. 

MIKE21 utilized a flexible mesh to simulate overland flow, as illustrated in Figure 1(d), and MIKE FLOOD was calibrated 

against flood maps and satellite data from 2011, as detailed by Charoensuk et al., 2018. 

3.2 Geoid Models 

To measure elevations around the Earth, a vertical reference is needed, with mean sea level chosen as the reference. The 120 

geoid is the level (equipotential) surface of the Earth's gravity field that best coincides with mean sea level. This surface 

connects the oceans and extends through the continents. The geoid serves as the reference surface for levelled heights, 

commonly expressed as 'heights above sea level'. In order to compare heights from different data sources, all data has to be 

re-referenced to the same geoid model. A geoid model is a spatial representation of geoid height, encompassing both global 

and local scales. This study has collected three geoid models, summarized in Table 1 and shown in Figure A 2. Thailand has 125 

its own local geoid model. The latest one, TGM2017, was released in 2018. This geoid is based on new gravity 

measurements taken around Thailand and has been shown to better match the expected geoid heights than the EGM2008 

model (Dumrongchai et al., 2021). TGM2017 provides the best fit for Thailand, it was chosen as the primary geoid model, 

and all heights were re-referenced to TGM2017. 

Table 1: Geoid model datasets 130 

Geoid model Scale Download References 

EGM96: The Earth Gravitational Model 1996 Global https://earth-info.nga.mil/ Lemoine et al., 1998 

EGM2008: The Earth Gravitational Model 2008 Global https://earth-info.nga.mil/ Pavlis et al., 2012 

TGM2017: Thailand geoid model 2017 Local On request Dumrongchai et al., 2021 
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3.3 Digital Elevation Models (DEM) 

A digital elevation model (DEM) is a quantitative representation of the Earth’s surface elevation. The term "DEM" 

encompasses both digital terrain models (DTM) and digital surface models (DSM). A DSM maps the heights of all features 

on the surface, such as vegetation and buildings, while a DTM only represents the actual height of the terrain (“bare earth”). 135 

Multiple digital elevation models are available, local DEMs are often preferred due to their higher spatial resolution and 

vertical accuracy (McClean et al., 2020).  In this study, we have collected 10 DEM products, as shown in Figure 2, and they 

are summarized in Table 2. The three local DEM products were obtained from the Thai agency, namely LDD DEM, JICA 

DEM, and merged LDD-JICA DEM. Additionally, seven global DEMs were collected, including ASTEM GDEM V3, 

SRTMv3 DEM, MERIT DEM, FABDEMv1-2 DEM, GLO30 DEM, TanDEM-X, and TanDEM-EDEM. 140 

Table 2: Digital Elevation Model (DEM) 

Dem Product Spatial 

resolution 

Data 

Collection 

(Year) 

Datum 

Reference 

Type Scale Acquisition 

technique 

LDD DEM 5 m 2004 EGM96 geoid DSM Local Aerial stereo photo 

JICA DEM 2 m 2012 EGM2008 geoid DTM Local Airborne LiDAR 

merged LDD-

JICA DEM 

2 m - TGM2017 geoid Between DSM 

and DTM 

Local Fusion of multisource 

data 

ASTEM GDEM 

V3 

1 arcsecond 

(~30 m) 

2000-2010 EGM96 geoid DSM Global Satellite stereo 

images 

SRTM  DEM 

V3 

1 arcsecond 

(~30 m) 

2000 EGM96 geoid DSM Global SAR Interferometry 

MERIT DEM 3 arcseconds 

(~90 m) 

2000 EGM96 geoid DSM Global Fusion of multisource 

data 

GLO30 DEM 1 arcsecond 

(~30 m) 

2011-2015 EGM2008 geoid DSM Global Fusion of multisource 

data 

FABDEM v1-2 1 arcsecond 

(~30 m) 

2011-2015 EGM2008 geoid Base on DSM 

remove building 

and forest 

Global Fusion of multisource 

data 

TanDEM-X 

DEM 

0.4 

arcsecond 

(~12 m) 

2011-2015 WGS84 

ellipsoidal height 

DSM Global SAR Interferometry 

TanDEM-X 

EDEM 

1 arcsecibd 

(~30 m) 

2011-2015 WGS84 

ellipsoidal height 

DSM Global Fusion of multisource 

data 
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3.3.1 LDD DEM 

The LDD DEM data is supplied by the Land Development Department of Thailand (LDD) in a grid format, with a resolution 145 

of 5x5 meters. This DEM was generated using photogrammetry using aerial stereo photo pairs with known scales 

(Paengwangthong and Sarapirome, 2012). This approach involves deducing distances between points from photos and 

determining object heights by identifying stereoscopic parallax from multiple pictures and rectifying with ground control 

points (GCPs) (Sholarin and Awange, 2015). Subsequently, orthorectification and interpolation are used to generate a DEM 

and mask off buildings and vegetation. Because buildings and vegetation are removed, the LDD DEM approximates a DTM 150 

(Sholarin and Awange, 2015). 

3.3.2 JICA DEM 

The JICA DEM was produced through a collaborative effort between the Royal Irrigation Department (RID) and the Japan 

International Cooperation Agency (JICA) at a resolution of 2x2 meters (Japan International Cooperation Agency (JICA), 

2012).The JICA DEM was generated using Airborne Laser Scanning techniques with the LiDAR (Light Detection And 155 

Ranging) aerial technology. The LiDAR aerial survey employs a pulse laser to measure distances between the target and 

sensor, and it is applied on a large scale. The distance from the vehicle to the surface can be determined based on the travel 

time of the laser pulse (Argall and Sica, 2003). The JICA DEM was processed into a DTM filtering out features such as 

transportation facilities, buildings, and vegetation from the original data, as described in Japan International Cooperation 

Agency (JICA), 2012. 160 

3.3.3 Merged LDD-JICA DEM 

The merged LDD-JICA DEM was generated by integrating the LDD DEM and JICA DEM as described by Charoensuk et 

al., 2018. The JICA DEM served as the primary dataset, while the LDD DEM was utilized in areas with gaps within the 1D-

2D Flood modeling boundary. To incorporate the LDD DEM into the merged LDD-JICA DEM within data gaps, we applied 

bias correction. The native LDD DEM and JICA DEM datasets were not referenced to the same vertical datum. The 165 

processing of the merged LDD-JICA DEM consists of two primary steps (Figure A 3): 1) re-referencing both LDD DEM 

and JICA DEM to the TGM2017 reference, and 2) calculation of the correlation coefficient between the JICA and LDD 

DEM for 1000 random points, using linear regression to correct the bias in the LDD DEM, as shown in Figure A 4. 

Following this, the JICA DEM and LDD DEM are combined to create the merged LDD-JICA DEM using linear regression. 

The resulting combined merged LDD-JICA DEM has a resolution of 2x2 meters.  170 

3.3.4 ASTER GDEM3 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM3), serving as a global DEM, was 

developed by the Ministry of Economy, Trade, and Industry (METI) of Japan in collaboration with The United States 
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National Aeronautics and Space Administration (NASA) and was published on 2019. The footprint of ASTER GDEM spans 

latitudes from 83°N to 83°S. The study area utilized ASTER GDEM3 (Abrams et al., 2020), which can be downloaded from 175 

the associated website: https://gdemdl.aster.jspacesystems.or.jp/. More information  is shown as Table 2. 

3.3.5 SRTMv3 DEM 

The Shuttle Radar Topography Mission (SRTM) DEM, developed by NASA, was a collaborative effort involving the 

National Geospatial-Intelligence Agency (NGA) and the German and Italian Space Agencies. It was part of an international 

project aimed at acquiring radar data, which were used to create the first near-global set of land elevations (Werner, 2001). 180 

The DEM was launched in 2000 (Farr et al., 2007), and many improvements have been made since then. The SRTMv3 

DEM, the latest version, was used for the study area and can be downloaded from the associated website: 

https://search.earthdata.nasa.gov/search. 

3.3.6 MERIT DEM 

The Multi-Error-Removed Improved-Terrain (MERIT) DEM, developed by Yamazaki et al., 2017. MERIT DEM improves 185 

upon previous DEMs by systematically removing various error components such as absolute bias, stripe noise, speckle noise, 

and tree height biasn from SRTM3 DEM (Farr et al., 2007) , AW3D-30 m DEM (Tadono et al., 2015) and gap-filling with 

the Viewfinder Panoramas (VFP) DEM (http://viewfinderpanoramas.org/dem3.html). The MERIT DEM is a DSM with 

resolution of 3 arc seconds. It was utilized for the study area and is available for download from the dedicated website: 

http://hydro.iis.utokyo.ac.jp/~yamadai/MERIT_DEM/index.html/. 190 

3.3.7 GLO30 DEM 

The Copernicus DEM, published in 2019 by the European Space Agency (ESA) (AIRBUS, 2020), represents an upgraded 

iteration of the WorldDEM. The backbone of the Copernicus WorldDEM is the TanDEM-X mission data, yet void filling 

techniques and integration of other data sources are used to enhance data completeness and accuracy. The Copernicus DEM 

is provided in three different DSM instances: EEA-10, GLO-30, and GLO-90. For this study, GLO-30 was utilized, offering 195 

1 arc-second resolution. It can be downloaded from the dedicated website: https://spacedata.copernicus.eu/de/collection 

s/copernicus-digital-elevation-model.  

3.3.8 FABDEMv1-2 

Forest And Building removed Copernicus Digital Elevation Model (FABDEM) was developed in collaboration between 

Bristol-based flood modelling company Fathom and the University of Bristol FloodLab. The FABDEM V1-0, launched in 200 

2021 (Laurence Hawker, 2021), is derived from the Copernicus GLO-30 (AIRBUS, 2020) DSM. FABDEM V1-2, released 

in 2023 (Hawker et al., 2023), has a 1 arc-second resolution and is based on a DSM which removes buildings and vegetation. 
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This dataset was employed for the study area and is available for download from https://data.bris.ac.uk/data/ 

dataset/s5hqmjcdj8yo2ibzi9b4-ew3sn. 

3.3.9 TanDEM-X DEM 205 

TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) is an innovative space borne-radar interferometer 

based on two TerraSAR-X radar satellites flying in close formation (Krieger et al., 2007). The TanDEM-X mission 

represents a collaborative effort between the German Aerospace Center (DLR) and AIRBUS (Wessel, 2016), with the aim of 

generating a globally consistent DEM. TanDEM-X, launched in 2016, is a DSM with resolutions of 0.4, 1, and 3 arcseconds. 

The 3-arcsecond TanDEM-X product is readily accessible and can be downloaded directly from https://geoservice.dlr.de 210 

/data-assets/ju28hc7pui09.html. However, the 0.4 and 1 arcsecond products are available from DLR upon request.  It is 

important to note that the TanDEM-X product has not undergone full processing to eliminate artifacts, outliers, noisy 

regions, and data gaps. As a result, its adoption in flood modeling has been limited (McClean et al., 2020). In this study, we 

employed TanDEM-X with a 0.4 arcsecond resolution for our flood modeling purposes. 

3.3.10 TanDEM-EDEM 215 

The TanDEM-X Edited Digital Elevation model (TanDEM-EDM) is an edited version of the TanDEM-X Global with a 1-

arcsec (~30 m) pixel resolutionreleased in 2023 (Wessel, 2016). The main update in TanDEM-EDEM version 1 includes 

filling gaps with suitable alternative DEM data and improving representation of water bodies. The TanDEM-EDEM dataset, 

which is a DSM, was utilized for the study area and is readily available for download from: 

https://download.geoservice.dlr.de/TDM30_EDEM/. It has a resolution of 30 m. 220 

3.4 ICESat-2 satellite laser altimetry 

Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) is a laser altimetry satellite launched by the National Aeronautics and 

Space Administration (NASA) in 2018. As the follow-on satellite of ICESat, ICESat-2 continues elevation measurements of 

ice sheets, glaciers, sea ice, and various other land features with a 91-day exact repeat orbit. ICESat-2 carries the Advanced 

Topographic Laser Altimeter System (ATLAS), which works by transmitting 10,000 laser pulses per second using laser light 225 

of 532 nm (Neumann et al., 2019). The pulse rate enables the satellite to capture a measurement every 70 cm along the 

ground track. The pulse divides into six beams, organized into three pairs. Each pair comprises one right-side beam and one 

left-side beam, striking the Earth at a 90 m distance from each other. The distance between each pair is 3.3 km, as depicted 

in Figure 1(E).  

The National Snow and Ice Data Center (NSIDC) portal has developed various products that incorporate photon travel times 230 

and locations determined using the built-in GPS from the ICESat-2 satellite. This mission generates 21 products, as detailed 

on their website: https://nsidc.org/data/icesat-2/products. The two data products used in this study are ATL03 and ATL08, as 
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summarized in Table 3, and the groundtrack pattern of ICESat-2 in this study area is shown in Figure 1(b). The ICESat-2 

data were obtained from the NSIDC website via their data access tool (https://nsidc.org/data/data-access-tool).  

Table 3: ICESat-2 product 235 

ICESat-2 product Data Collection (Year) Datum Reference 

ATL03 Global Geolocated Photon Data (DSM) 2018 - 2022 WGS84 ellipsoid 

ATL08 Land/Water/Vegetation Elevation (DSM) 2018 - 2022 WGS84 ellipsoid 

3.4.1 ATL03 

The ATL03 data product from ICESat-2 plays a crucial role as an intermediary between lower and higher-level products. It 

provides time, latitude, longitude, and height information for each track photon. This comprehensive source of photon data 

facilitates subsequent analyses and enables the generation of surface-specific products, such as land ice height and sea ice 

freeboard. ATL03 includes surface masks and photon event classifications and applies geophysical corrections to enhance 240 

accuracy. Additionally, it supplies spacecraft and instrument information required by higher-level data products. Its role is 

crucial in facilitating streamlined data processing and serving as a unified source for further scientific investigations (Tom 

Neumann et al., 2021). 

3.4.2 ATL08 

The ATL08 product is derived from the ATL03 product. The ATL08 product offers estimates of terrain heights, canopy 245 

heights, canopy cover, and other descriptive parameters at fine spatial scales in the along-track direction. A fixed segment 

size of 100 m was chosen to provide continuity of data parameters on the ATL08 data product. Height estimates from 

ATL08 can be compared with other geodetic data and serve as input for higher-level products like ATL13 (inland water-

related heights) and ATL18 (terrain and canopy feature maps) (Neuenschwander et al., 2022). In this study, we used ATL08 

product from ICESat-2 as the benchmark. 250 

3.5 Flood Map/Surface Water Extent (SWE) dataset 

In this study, SWE and flood maps were collected from two sources: surface water extent (SWE) data from the WorldWater 

project (https://worldwater.earth/), funded by the European Space Agency (ESA) and the Geo-Informatics and Space 

Technology Development Agency (Public organization) (GISTDA) in Thailand. The flood map datasets are summarized in 

Table 4 and presented in Figure 3. 255 

3.5.1 WorldWater Surface Water Extent (SWE) 

We used SWE products from the WorldWater project, and using data from the Sentinel-1 and Sentinel-2 imaging satellites, 

both integral parts of the ESA Copernicus program. The Sentinel-1 satellite, launched in 2014, is equipped with a SAR 

constellation consisting of two polar-orbiting satellites, with objectives on land and ocean monitoring. Sentinel-1 comprises 
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a C-band SAR sensor with a 10-meter spatial resolution, operating at an orbiting altitude (Torres et al., 2012). The Sentinel-2 260 

satellites consist of two satellites, namely Sentinel-2A and Sentinel-2B, launched in 2015 and 2017, respectively. The dual-

satellite system operates in coordination with a 180o phase difference in the sun-synchronous orbit, supporting both land and 

ocean monitoring (European Space Agency (ESA), 2015). The WorldWater SWE mapping algorithm utilized Sentinel-1 and 

Sentinel-2 data from 2017 to 2021 to develop a SWE dataset. The details of Sentinel-1 and Sentinel-2 coverage across the 

study area are depicted in Table A 2. This algorithm utilizes a fusion approach (Tottrup et al., 2022), combining optical and 265 

radar observations, to provide a more robust delineation of water surfaces. The SWE products provide information on water 

occurrence, monthly water presence, water seasonality, maximum and minimum water extent, all accessible on the website: 

https://swdap.worldwater.earth/. The monthly water presence of the Worldwater SWE in November 2017 is illustrated in 

Figure 3(c). It is important to note that the WorldWater SWE dataset uses a median composite of all Sentinel-1 and Sentinel-

2 acquisitions within a given month to predict monthly surface water presence. Consequently, it does not necessarily reflect 270 

the maximum extent of flooding within that month. 

3.5.2 GISTDA Flood map 

GISTDA is a Thai space agency and space research organization that utilizes satellites such as Cosmo-SkyMed, KOMPSAT, 

LANDSAT-5, RADARSAT-2, and THAICHOTE (Channumsin et al., 2020) to conduct research and development. GISTDA 

receives observations of the Earth through the use of Synthetic Aperture Radar (SAR) and optical sensor satellites 275 

(Nithirochananont et al., 2010). SAR satellite information is derived from two constellations: RADARSAT and the 

Advanced Land Observing Satellite (ALOS). RADARSAT comprises two SAR satellites, while ALOS integrates a SAR 

satellite with an optical satellite. Both RADARSAT and ALOS possess SAR data processing systems. In flooded areas, the 

Earth’s surface appears smooth in the wavelength of the SAR. This smooth surface causes microwaves to reflect in a 

specular way, resulting in low backscatter values. This characteristic allows for real-time flood imaging and identification. 280 

The SAR data undergoes processing, and image quality enhancement while eliminating any noise present in the data 

products (Auynirundronkool et al., 2012).  

To generate flood maps from satellite data, GISTDA employed several analysis methods, including supervised classification, 

visual analysis, and thresholding, which were combined with field images. Subsequently, GISTDA used the boundaries of 

natural and permanent water sources from the existing database and removed these areas from the flood map. Since 2005, 285 

GISTDA has annually published nowcasting flood maps and flood occurrence maps on https://flood.gistda.or.th/, which 

were utilized in this study. The GISTDA flood occurrence map is shown in Figure 3(b). 

From 2014 to 2023, HII analysed flood frequency maps from GISTDA. The assessment focused on the frequency of flood 

occurrences, which were categorized into three levels: low, medium, and high-risk flood frequency. Low-risk flood 

frequency is defined as 1-3 occurrences within the 10-year span, medium risk as 4-7 occurrences, and high risk as 8-10 290 

occurrences, as depicted Figure 3(a). 
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Table 4: Flood map datasets 

Product Resolution 

(m.) 

Period Frequency Type file Download 

GISTDA’s flood 

map 

- 2005-2021 On request, satellite 

track, and annual 

Shape file https://flood.gistda.or.th/  

WorldWater’s 

surface water extent 

10 2017-2021 Monthly and annual  Raster file https://swdap.worldwater.earth/  

4 Methodology 

The workflow used in this study, illustrated in Figure 4, comprises two primary components. The first component, namely 

DEM analysis, focuses on evaluating the DEMs (Sect. 3.3) with the ICESat-2 benchmark (Sect. 3.4). The best DEM 300 

identified in the DEM analysis is then used as input to the flood map analysis. The flood map analysis, focuses on evaluating 

flood maps generated by the 1D-2D flood model (Sect. 3.1) against WorldWater SWE and GISTDA flood map (Sect. 3.5). 

4.1 DEM Analysis 

The primary objective is to assess the accuracy and reliability of the DEMs by comparing them with elevation data obtained 

from ICESat-2 using statistical methods. In the study area, ICESat-2 ATL08 data were primarily used for evaluation, while 305 

ICESat-2 ATL03 data were employed in complex terrain. Figure 4(a) illustrates the workflow involving processing and re-

referencing steps. Subsequently, the evaluation of DEMs and ICESat-2 is conducted using statistical methods. 

4.1.1 ICESat-2 ATL08 Data Processing 

ATL08 provides estimates of terrain height, canopy height, and canopy cover at fine spatial scales in the along-track 

direction. For each parameter, terrain surface elevation and canopy heights were provided at a fixed along-track segment size 310 

of 100 meters (Neuenschwander et al., 2022). The AT08 dataset comprises a total of 18 land parameters, such as Mean 

terrain height for segment (h_te_mean), Mode of terrain height for segment (h_te_mode), Number of ground photons in 

segment (n_te_photins), slope of terrain within segment (terrain_slope), Best fit terrain elevation at the 100 m segment mid-

point location (h_te_best_fit), and others. We processed the ATL08 dataset, extracting the latitude and longitude of the 

photon signals along with the photon heights above the WGS84 ellipsoid. The terrain elevation parameter used for 315 

evaluation was h_te_best_fit. 
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4.1.2 Vertical Datum Reference Processing 320 

To evaluate the DEMs with the ICESat-2 benchmark, it is necessary to use the same vertical datum reference. Vertical datum 

reference processing was employed to standardize the datum reference. In this study, the vertical datum reference was 

TGM2017, using Eq. (1) to establish accurate measurements of vertical elevation 

 

𝐻 = ℎ − 𝑁            (1) 325 

Where H is ortometric height, h is ellipsoid height, and N is geoid height. 

𝐻𝐷𝐸𝑀 𝑟𝑒𝑓 𝑇𝐺𝑀2017 =  ℎ𝐷𝐸𝑀 +  𝑁𝐷𝐸𝑀 −  𝑁𝑇𝐺𝑀2017        (2) 

Where HDEM ref  TGM2017 is the DEM referenced to TGM2017, hDEM  represents the original DEM, NDEM is the geoid reference 

of the original DEM, NTGM2017 is TGM2017 geoid model.  

To obtain DEMs referenced to TGM2017, EGM96 and EGM2008 height corrections were added to the DEM heights, 330 

followed by subtracting the TGM2017 geoid corrections, as shown in Eq. (2). The geoid model datasets are shown in  

Sect. 3.2 for reference. For ICESat-2 elevations referenced to TGM2017, the TGM2017 correction was subtracted from the 

ICESat-2 elevation data. 

4.1.3 Evaluation of DEMs using ICESat-2 ATL08 Benchmark 

The DEM products were estimated and evaluated using statistical methods, including bias (mean error, ME), mean absolute 335 

error (MAE), mean square error (MSE), and root mean square error (RMSE). The overall purpose of implementing these 

statistical methods is to evaluate the paired ICESat-2 ATL08 data with the 10 DEM products covering the study area. 

𝑀𝐸 =  
1

𝑛
∑ (𝑌𝑖 − Ŷ𝑖)𝑛

𝑖=1            (3) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |Y𝑖 − Ŷ𝑖|𝑛

𝑖=1            (4) 

𝑀𝑆𝐸 =  
1

𝑛
∑ (Y𝑖 − Ŷ𝑖)

2𝑛
𝑖=1            (5) 340 

𝑅𝑀𝑆𝐸 =  √∑
(Y𝑖− Ŷ𝑖)

2

𝑛

𝑛
𝑖=1            (6) 

Where Ŷi represents ICESat-2 ATL08 elevation, Yi  denotes the elevation for each DEM (i.e., LDD DEM, JICA, merged 

LDD-JICA DEM, ASTEM GDEM V3, SRTM DEM, MERIT DEM, FABDEM v1-2 DEM, GLO30 DEM, TanDEM-X, and 

TanDEM-EDEM), and n is the number of observations. 

We conducted three types of comparisons as follows: 345 

Point comparison 

Point comparison was performed for every segment of the ICESat-2 ATL08 pass over the study area. This approach aimed to 

provide a quantitative overview of the quality and identify potential discrepancies among the ten DEMs in comparison to 
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ICESat-2 ATL08 data (Weifeng et al., 2024), using statistical methods. A total of 954,800 elevation points were extracted 

from the study area for point-to-point comparison. 350 

Grid comparison 

The grid comparison was conducted using a regular square grid over the study area. This comparison provides an overview 

of the spatial variation of the quality of the DEMs in comparison to ICESat-2 ATL08 benchmark. In this study, we employed 

a 5-km resolution for grid comparison, which involved calculating statistical measures for every segment within each grid 

cell and displaying the evaluation spatially on a map. 355 

Track-wise comparison 

The track-wise comparison was conducted using tracks of ICESat-2 over the study area. The distance between the ICESat-2 

points was calculated using UTM x and y coordinates, as shown in Eq.(7). The track-wise comparison represents an overall 

elevation profile comparison between DEMs and ICESat-2 ATL08 data over the study area. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑥0 − 𝑥𝑖)2 + (𝑦0 − 𝑦𝑖)2         (7) 360 

Where x represents the x coordinates, and y denotes the y coordinates. 

4.2 Flood Map Analysis 

The purpose of flood map analysis is to evaluate the performance of simulated flood maps from the 1D-2D flood model 

using various DEM products selected from the first component in comparison to the WorldWater SWE and GISTDA flood 

map. This comparative analysis aims to assess the accuracy and effectiveness of the improved flood simulation model. 365 

4.2.1 1D-2D Flood Modelling Setup 

The setup of the 1D-2D flood model mirrored the original model, retaining the same parameters with only the DEM being 

modified to generate the flood map. The DEM products were selected based on the evaluation of DEMs against the ICESat-2 

ATL08 benchmark. Flood maps in the lower CPY basin were simulated using the 1D-2D flood model for the years 2017, 

and 2021. The flood map simulation results from the 1D-2D flood model present flood extents that occurred during the 370 

simulation period and at each daily time step (DHI, 2018). In this study, we employ simulated flood maps generated from a 

1D-2D flood model using the merged LDD-JICA DEM and FABDEMv1-2 DEM products and compare them with 

WorldWater SWE and GISTDA flood maps. 

4.2.2 Flood Classification Processing 

The flood map and SWE dataset used for evaluation in this study (Sect. 3.5) had different resolutions, formats, and flood 375 

map definitions. To effectively assess the simulated flood map from 1D-2D flood model, we compared it to the WorldWater 

SWE and GISTDA flood map. However, it is crucial to employ the same resolution, format, and flood definition. Common 

types of flooding include flood irrigation, pluvial flash floods, coastal floods, and riverine floods. The 1D-2D flood model 
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only simulates riverine floods, caused by high water levels in the rivers, eventually overflowing onto the neighboring land 

due to high river discharge over an extended period. In order to compare the simulated flood map to the satellite EO 380 

products, we first have to extract riverine flooding patterns from the surface water extent maps provided by satellite EO. This 

is done in the following steps: 

Permanent water processing 

Permanent water bodies should be removed from the satellite EO SWE maps prior to comparison. The GISTDA datasets 

does not include permanent water bodies. The WorldWater product includes permanent water bodies, which must be 385 

removed prior to comparison with simulated flood maps. We use relative water frequency (Yamazaki et al., 2015), which 

measures the occurrence of surface water within a defined time period. The relative water frequency fr of pixel was defined 

by Eq.(8) and shown as Figure A 5(a). 

𝑓𝑟(𝑡) =
𝑓𝑎(𝑡)

𝑓𝑣(𝑡)
            (8) 

Where fa depicts the frequency of surface water detections during a certain time period for each pixel, and fv represents the 390 

frequency of valid observations during the same period for each pixel.  

The relative water frequency ranges between 0.0 to 1.0. The permanent water designation indicates that there was observed 

water coverage in every single observation of the considered time period, which corresponds to a relative water frequency of 

1.0 (Martinis et al., 2022). In many cases, lower thresholds of 0.9, 0.7, and 0.5 were applied (Rao et al., 2018; Yamazaki et 

al., 2015). The permanent water map for each threshold is illustrated in Figure A 5. In this study, the threshold for relative 395 

water frequency is set to 0.7, indicating that a pixel is considered permanent water if it is present in 70% or more of the valid 

observations over the specified time period. The output of the permanent water processing is utilized in riverine flood 

classification processing to remove permanent water from the WorldWater SWE. 

Riverine flood classification processing 

The WorldWater and GISTDA datasets contain both riverine floods and other inundated areas caused, for instance, by 400 

irrigation or pluvial floods. In order to separate riverine floods in the satellite EO flood maps, we used the following method 

Figure A 6: 

 Expand the wet area from WorldWater and GISTDA by 200 meters using expand segmentation labels (ESL) without 

overlap (Van Der Walt et al., 2014). The ESL method merges labels in a label image based on the distances between 

each pixel. Labels that are close by will be merged. 405 

 Subsequently, label each pixel using connected component labeling (CCL) (Rosenfeld and Pfaltz, 1966 and AbuBaker et 

al., 2007). The CCL method is employed to detect connected regions in binary digital image. The assumption of riverine 

flood identification is based on the presence of wet connected pixels originating from the river. These are then masked 

off using ESL, and the riverine flood label is selected. 

 Subsequently, the SWE undergoes morphological image processing (MIP) using a closing algorithm  (Van Der Walt et 410 

al., 2014). The structuring element, footprint, passed to the closing algorithm is a boolean array describing the 
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neighborhood. We used a disk to create a circular structuring element with a radius of 2, implemented as the footprint. 

The output provides riverine flood maps, namely WorldWater and GISTDA flood map, for evaluation with other flood 

map products. 

4.2.3 Flood map evaluation methods 415 

This study evaluates the flood map of the lower CPY River basin using the contingency table (“Glossary of Terms,” 1998), 

comparing flood maps from two different dimensions, as shown in Table 5. We evaluated the flood maps produced by the 

1D-2D flood model by comparing them with the monthly surface water presence maps from WorldWater and GISTDA for 

the years 2017 and 2021. We mainly use probability of detection (POD), false alarm ratio (FAR), and critical success index 

(CSI) (Forecast, 1995) to perform the evaluation. These statistics are based on the number of grid cells or pixels in the study 420 

area is defined as: 

𝑃𝑂𝐷 =
𝐻𝑖𝑡

𝐻𝑖𝑡+𝑀𝑖𝑠𝑠
            (9) 

𝐹𝐴𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚

𝐻𝑖𝑡+𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 
           (10) 

𝐶𝑆𝐼 =
𝐻𝑖𝑡

𝐻𝑖𝑡+𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠+𝑀𝑖𝑠𝑠 
          (11) 

Where, Hit represents the number of correctly detected flooded pixels from two different dimensions. True negative donates 425 

the number of correctly detected non-flooded or dry areas from two different dimensions. Miss indicates the number of 

floods from dimension 1 that are not detected by dimension 2, while False Alarm represents the number of floods from 

dimension 2 which did not occur floods in dimension 1. A perfect score for both POD and CSI is 1, while a value of 0 

represents the best score for FAR. 

Table 5: Contingency table 430 

 
Observation flood map 

Flood Unflood 

Model flood map 
Flood Hits False alarms 

Unflood Misses True negative 

5 Result 

5.1 1D-2D Flood model calibration results 

The 1D river model was calibrated using in-situ water surface elevation data for the period 2012 to 2013. The calibration 

results of the main river in the study area are presented in Charoensuk et al., 2024. The overall performance during the 

calibration period is generally satisfactory for all main rivers, with an average R2 of 0.96, RMSE of 0.30 m, and NSE of 0.90.  435 

The 1D-2D flood model has been calibrated for extreme floods in 2011, as presented in Charoensuk et al., 2018. Normally, 

flooding in Thailand is influenced by meteorological conditions, river conveyance, and sea level rise. However, the primary 

cause of the 2011 flood was dike breaching along the Chao Phraya River, resulting in uncontrollable flood inundation. The 
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simulated flood, when compared with GISTDA’s flood map, satisfactorily corresponds to flood depth, flood propagation 

direction, and duration. 440 

5.2 Results of DEMs evaluation against the ICESat-2 ATL08 benchmark 

5.2.1 Point comparison evaluation results 

Figure 5 illustrates point comparison between the statistical metrics of 10 DEM products against ICESat-2 ATL08 

benchmark. As depicted in the Figure 5(a), the average ME of the local DEM products was -0.88 m, whereas the average 

ME of global DEM products was +1.62 m. The results indicate that local DEM products tend to underestimate, while global 445 

DEM products tend to overestimate when compared against ICESat-2 ATL08 benchmark. This tendency be attributed to the 

algorithms described in Sect. 3.3, which remove buildings and vegetation from the local DEM products. Moreover, the local 

DEM products have a finer grid resolution compared to the global DEM products.  The average performance statistics of the 

local DEM and global DEM were 1.25 and 2.17 m for MAE, 4.23 m and 13.52 m for MSE, and 2.04 and 3.38 m. for RMSE, 

as shown in Figure 5(b), Figure 5(c) and Figure 5(d) respectively.  450 

Table 6 presents the statistical results of point comparisons between 10 DEM products compared with ICESat-2 ATL08, 

indicating that the accuracy of JICA DEM and FABDEMv1-2 DEM was higher than other local and global DEM, 

respectively. The statistical results of JICA DEM were -0.65 m, 1.04 m, 3.51, and 1.87 m for ME, MAE, MSE, and RMSE, 

respectively. Specifically, the FABDEMv1-2 DEM showed the highest accuracy, with ME, MAE, MSE, and RMSE values 

of 0.25 m, 0.80 m, 3.79, and 1.95 m, respectively. 455 

Figure 6 presents the histogram distribution of ME for 10 DEM products relative to ICESat-2 ATL08 benchmark. The 

histogram distribution illustrates that the entire curve of both local and global DEMs shifts towards negative and positive 

biases, respectively. These shifts indicate that local DEMs, including LDD DEM, JICA DEM, and merged LDD-JICA DEM, 

underestimate the elevation of the ICESat-2 ATL08 benchmark, with ME averages of -1.30 m, -0.65 m, and -0.68 m, 

respectively. 460 

Conversely, the shifts observed in the histogram distribution of global DEMs, including ASTERv3 DEM, SRTMv3 DEM, 

Merit DEM, GLO30 DEM, FABDEMv1-2 DEM, TanDEM-X DEM, and TanDEM-EDEM DEM, indicate an overestimation 

of the elevation of ICESat-2 ATL08 benchmark. The ME averages for these DEMs were +4.78 m, +2.03 m, +1.56 m, +0.84 

m, +0.25 m, +0.94 m, and +0.91 m, respectively. 
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Table 6: Table of statistical metrics, comparing 10 DEM products against the ICESat-2 benchmark. The resulting averages are 

computed across the datasets in study area. 

DEM product 
Statistical method 

ME (m.) MAE (m.) MSE (m.) RMSE (m.) 

LDD -1.3 1.64 5.45 2.33 

JICA -0.65 1.04 3.51 1.87 

merged LDD-JICA -0.68 1.08 3.74 1.93 

ASTER 4.77 5.57 44.28 6.65 

SRTM 2.04 2.58 12.92 3.59 

MERIT 1.56 1.79 6.76 2.6 

GlO30 0.84 1.3 5.89 2.43 

FABDEMv1-2 0.25 0.8 3.79 1.95 

TanDEM-X 0.94 1.73 13.29 3.65 

TanDEM-EDEM 0.91 1.43 7.74 2.78 

5.2.2 Grid comparison evaluation results 

Figure 7 displays the ME spatial grid comparison of 10 DEM products against the ICESat-2 ATL08 benchmark, with a 475 

resolution of 5x5 km. As shown in the figure, the local DEMs indicated overall lower values than the benchmark, with LDD 

DEM showing the lowest ME. In contrast, the overall ME spatial grid comparison of global DEMs was higher than the 

benchmark and clearly reveals that the most of global DEMs exhibit poor performance in urban areas. Notably, in the lower 

middle of the study area lies Bangkok, the capital city of Thailand. However, the FABDEMv1-2 DEM performed better in 

urban areas compared to other global DEMs, which can be attribute to the improved algorithms described in Sect. 3.3.8 and 480 

Dandabathula et al., 2023. 

5.2.3 Track-wise comparison evaluation results 

The track-wise comparison involves comparing the land elevation profile over the study area between the 10 DEM products 

and ICESat-2 ATL08 benchmark (cf.Figure 8). As shown in Figure 8, it is evident that the local DEMs exhibit lower land 

elevation compared to the ICESat-2 ATL08 benchmark. For most of the track, the LDD DEM measures a lower elevation 485 

than benchmark, while the JICA and merged LDD-JICA DEM follow the ICESat-2 ATL08 measurements more closely. 

This trend is consistent along the majority of the tracks, indicating that the LDD DEM generally underestimates the elevation 

compared to ICESat-2. Additionally, both the JICA and merged LDD-JICA DEMs closely track the ICESat-2 measurements 

for most of the tracks. Moreover, both of the local DEMs and ICESat-2 ATL08 can effectively remove buildings in urban 

areas. However, there may be some points where the values cannot be entirely removed. 490 

The overall result of the track-wise comparison of global DEMs shows a higher elevation than the benchmark, especially in 

urban areas, clearly indicating the shape of a hill in these urban areas, as illustrated in Figure 8. In the overall tracks, 

ASTERv3 and SRTMv3 DEMs tend to overestimate and exhibit fluctuations compared to the benchmark. Meanwhile, Merit, 

GLO30, TanDEM-X, and TanDEM-EDEM DEMs tend to follow a fluctuating pattern and measure slightly higher than the  
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benchmark's track. FABDEMv1-2 closely aligns with the benchmark, indicating its strong performance. The track-wise 

comparison provides more detailed information in Appendix A. 

The summary results of the evaluation of the 10 DEM products are presented in the parallel plot shown Figure 9, which 

displays the 10 DEM products along with the results of statistical methods including MAE, RMSE, and DEM resolution. In 

the local DEM products, it is notable that the LDD DEM exhibits higher error and resolution compared to the JICA and 505 

merged LDD-JICA DEMs. Both the JICA and merged LDD-JICA DEMs demonstrate similar accuracy, but the JICA DEM 

does not cover the entire study area (Figure 2). Therefore, we utilized the merged LDD-JICA DEM from the local DEM 

product to implement the 1D-2D flood model. For the global DEM product, the FABDEMv1-2 demonstrates the best 

performance compared to other global DEM products. Therefore, we selected the FABDEMv1-2 DEM to implement in the 

1D-2D flood modelling, even though its spatial resolution is lower than TanDEM-X DEM. 510 

 

Figure 9: The parallel plot of 10 DEMs evaluation with the ICESat-2 ATL08 benchmark. 

5.3 Results of the evaluation of flood inundation maps 

We implemented the merged LDD-JICA DEM and the FABDEMv1-2 DEM from Sect. 5.2, into the 1D-2D flood model. 

The simulated flood map generated by the 1D-2D flood model, referred to as the Model flood map, was evaluated using 515 

flood maps from WorldWater and GISTDA for September, October, and November (flood season) in the years 2017 and 

2021. The 1D-2D flood model generated daily simulated flood maps. To ensure accurate comparisons, we selected the dates 

of satellite passes over the study area according to Table A 1 and Table A 2. These dates were then combined to represent 

the flood areas that occurred in each month. The results of the flood map evaluation were categorized based on the DEM 

used and compared to the flood maps from WorldWater and GISTDA. 520 

Table 7 provides a comparison of the POD, FAR, and CSI scores for the flood simulation using the merged LDD-JICA 

DEM, month, and year. Overall, the flood model using the merged LDD-JICA DEM tends to overestimate flooding, 
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particularly in the eastern part of the study area. This overestimation in the eastern part of the study area was attributed to the 

boundary between the JICA and LDD DEMs in the merged LDD-JICA DEM. The average FAR values of 0.926 and 0.790, 

along with POD values of 0.713 and 0.585 compared to WorldWater and GISTDA flood maps, respectively, indicate that the 525 

Model flood map portrays a larger flood extent while still effectively detecting floods. The average CSI values of 0.072 and 

0.183 indicate low model performance and a reflection of the larger flood extent simulation when compared to the flood 

maps by WorldWater and GISDTA 

Figure 10 shows flood maps and contingency tables for September, October, and November in 2017 and 2021. Figure 10(a-

1) presents contingency tables comparing WorldWater monthly SWE and Model flood maps respectively. The results of the 530 

evaluation show low CSI values of 0.046, 0.071, and 0.076 for September, October, and November, respectively, indicating 

that the Model flood map has low performance. Additionally, the number of False alarms was high, resulting in high FAR 

values of 0.952, 0.926, and 0.923 for September, October, and November, respectively. Figure 10(b-1) illustrates 

contingency tables comparing GISTDA and Model flood maps in 2017. The POD values of 0.259, 0.567, and 0.642 are due 

to the high number of Misses, particularly in September in the upper part of the study area. Moreover, the results show more 535 

false alarms in the eastern part of the study area, attributed to the combination of LDD and JICA DEMs. The FAR values of 

0.913, 0.727, and 0.699 for September, October, and November, respectively. The CSI values were low in September at 

0.070 but increased to 0.226 and 0.258 for October and November, respectively. The detailed statistics are summarized in 

Table 7. 

Figure 10(a-2) and Figure 10(b-2) present contingency tables comparing WorldWater and Model, and GISTDA and Model 540 

for each month in 2021, respectively. The results of flood map evaluation in 2021 followed a similar trend to that of the 2017 

flood. In Figure 10(a-2), low CSI values of 0.091, 0.071, and 0.075 are depicted for September, October, and December, 

respectively. Additionally, FAR values of 0.903, 0.928, and 0.923, and POD values of 0.593, 0.845, and 0.835, were high 

observed for September, October, and November, respectively. These values suggest that the WorldWater flood map 

indicates a smaller flood extent compared to the Model flood map. Figure 10(b-2) illustrates an increase in CSI values to 545 

0.133, 0.214, and 0.200 for September, October, and November, respectively, confirming that the Model flood map fit the 

GISTDA flood map as well. However, the FAR values were high at 0.852, 0.760, and 0.790 for September, October, and 

November, respectively, indicating that the Model flood map shows overestimated flood extents. Despite this, the POD 

values of 0.564, 0.667, and 0.810 suggest that the Model flood map can effectively detect GISTDA flood map extents, 

particularly in October and November. 550 

Table 7 presents a comparison of the POD, FAR, and CSI scores for the flood simulation using FABDEMv1-2 DEM, month, 

and year. The overall flood map evaluation based on the FABDEMv1-2 DEM indicates that the Model flood map tends to 

overestimate, with average FAR values of 0.916 and 0.730 compared to WorldWater and GISTDA flood maps, respectively. 

Meanwhile, the average CSI values of 0.081 and 0.230 indicate low performance. 

Figure 11 shows flood maps and contingency tables in 2017 and 2021. Figure 11(a-1) illustrates contingency tables 555 

comparing WorldWater and Model flood maps for each month in 2017. The evaluation results clearly indicate that the 
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Model flood tends to overestimate the extent of flooding, as evidenced by FAR values of 0.946, 0.913, and 0.914 and low 

CSI values of 0.052, 0.084, and 0.085 in September, October, and November, respectively. However, the POD values were 

high, with values of 0.625, 0.710, and 0.907 in September, October, and November, respectively, indicating that the Model 

flood map can effectively detect the WorldWater flood map as well, as shown in Table 7. Figure 11(b-1) presents 560 

contingency tables comparing GISTDA and Model floods for each month in 2017. The Figure 11(b-1) confirms the 

observations made in Figure 11(a-1), indicating that the Model flood map tends to overestimate the extent of flooding 

compared to the GISTDA flood map. However, the FAR values decrease slightly to 0.834, 0.612, and 0.591, and the POD 

values decrease to 0.331, 0.664, and 0.672 in September, October, and November, respectively. The decrease in POD is 

attributed to a higher number of Misses in the upper part of the study area, suggesting that the GISTDA flood map depicts 565 

more flooding than the Model flood map. On the other hand, the CSI improved to 0.124, 0.325, and 0.341 in September, 

October, and November, respectively, indicating that the model results are more accurate when compared with GISTDA 

flood map. Additionally, the figure illustrates that the GISTDA flood map shows a greater extent of flooding compared to 

the WorldWater flood map. 

Figure 11(a-2) and Figure 11(b-2) depict contingency tables comparing WorldWater and Model, and GISTDA and Model 570 

for each month in 2021, respectively. The Model flood map exhibits an overestimation of flooding, particularly noticeable in 

the eastern part of the study area. Figure 11(a-2) illustrates high FAR values of 0.887, 0.920, and 0.916 that indicating that 

there are more False alarms in September, October, and November, respectively. The POD was high values of 0.584, 0.885, 

and 0.850 and low CSI values of 0.105, 0.079, and 0.083 in September, October, and November, respectively. This figure 

illustrates that the Model and the WorldWater flood map indicates more and less flooding, respectively. Figure 11(b-2) 575 

reveals more Misses in the upper part of the study area, resulting in a decrease in the POD values to 0.502, 0.680, and 0.837 

compared to Figure 11(a-2). Despite this, the FAR values remain high at 0.832, 0.738, and 0.776, particularly notable in the 

eastern part of the study area. However, the Model flood map effectively detects the GISTDA flood map as well. The CSI 

values of 0.144, 0.234, and 0.215 for September, October, and November, respectively, indicate that the Model flood map 

exhibits improved accuracy in comparison to the GISTDA flood map.  580 

The overall assessment of the Model flood map, based on both the merged LDD-JICA and FABDEMv1-2 DEMs, indicates 

an overestimation of flood extent compared to both WorldWater and GISTDA flood maps. When comparing the model flood 

map based on the merged LDD-JICA DEM and FABDEMv1-2 DEM with each of the WorldWater and GISTDA flood 

maps, the results consistently indicate a slight improvement in performance for the Model flood map based on FABDEMv1-

2. The CSI of the Model flood map based on FABDEMv1-2 increases by 0.010 and 0.047 compared to the Model flood map 585 

based on the merged LDD-JICA DEM for WorldWater and GISTDA flood maps, respectively. Additionally, the FAR is 

reduced by approximately 0.010 and 0.060 for WorldWater and GISTDA flood maps, respectively. Although the study used 

flood classification processing to extract riverine flood maps from the SWE map for comparison, there are still limitations. 

Continuous improvement in flood classification process are necessary. The study results show that the overall assessment of 

flood simulation based on FABDEMv1-2 DEM reveals a slight improvement of 13.55-25.56% in terms of the CSI compared 590 
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to flood simulation based on the merged LDD-JICA DEM. However, the DEM is one factor contributing to improved 

performance, many other factors still require further improvement. 

Table 7: The statistical metrics of the contingency table, comparing flood map dimensions 1 and 2. 

Time Dimension 1: WorldWater 

Dimension 2: Model 

Dimension 1: GISTDA 

Dimension 2: Model 

DEM product 

POD FAR CSI POD FAR CSI 

2017-09 0.549 0.952 0.046 0.259 0.913 0.070 merged LDD-JICA 

2017-10 0.612 0.926 0.071 0.567 0.727 0.226 merged LDD-JICA 

2017-11 0.842 0.923 0.076 0.642 0.699 0.258 merged LDD-JICA 

2021-09 0.593 0.903 0.091 0.564 0.852 0.133 merged LDD-JICA 

2021-10 0.845 0.928 0.071 0.667 0.760 0.214 merged LDD-JICA 

2021-11 0.835 0.923 0.075 0.810 0.790 0.200 merged LDD-JICA 

Total average 0.713 0.926 0.072 0.585 0.790 0.183 merged LDD-JICA 

2017-09 0.625 0.946 0.052 0.331 0.834 0.124 FABDEMv1-2 

2017-10 0.710 0.913 0.084 0.664 0.612 0.325 FABDEMv1-2 

2017-11 0.907 0.914 0.085 0.672 0.591 0.341 FABDEMv1-2 

2021-09 0.584 0.887 0.105 0.502 0.832 0.144 FABDEMv1-2 

2021-10 0.885 0.920 0.079 0.680 0.738 0.234 FABDEMv1-2 

2021-11 0.850 0.916 0.083 0.837 0.776 0.215 FABDEMv1-2 

Total average 0.760 0.916 0.081 0.614 0.730 0.230 FABDEMv1-2 

6 Discussion 

6.1 Overall result of DEM analysis workflow 595 

The result of DEM analysis shows that ICESat-2 ATL08 data offer a unique advantage in verifying DEM accuracy 

(Carabajal and Boy, 2020). The overall precision of DEM products was evaluated using the ICESat-2 ATL08 benchmark, 

showing that JICA and FAMDEMv1-2 DEM were significantly better than the local and global DEM products in terms 

average of RMSE, with values of 1.87 m and 1.95 m, respectively (Figure 5 and Table 6) in point comparison. The merged 

LDD-JICA DEM showed a slight difference of 0.06 m in average RMSE compared to the JICA DEM. This variance is 600 

primarily attributed to the combination of LDD and JICA DEMs, with JICA DEM being chosen as the primary DEM. 

However, it is noteworthy that the local DEM product exhibited a negative average bias (ME) ranging from -1.30 to -0.65 m, 

indicating that elevation of local DEM products is lower than the benchmark. Another study conducted in Spain, which 

verified Airborne LiDAR data with ICESat-2 ATL08, also reported a negative bias, with average ME values of -0.48 m (Zhu 

et al., 2022). On the other hand, the average ME of the global DEM products yielded positive values ranging from 0.25 to 605 

4.77 m, indicating that the global DEM products overestimate the benchmark. This result has been previously confirmed in 

studies such as ASTERv3 (Weifeng et al., 2024), STRMv3 and TanDEM-X (Liu et al., 2020). The ASTERv3 DEM showed 

the lowest overall accuracy, with an average RMSE of 6.65 m. This is in line with other areas, such as the Qinghai-Tibet 

Plateau, where the RMSE reached 11.47 m (Weifeng et al., 2024).  The TanDEM-EDEM is an updated version of TanDEM-

X, which can reduce the error value from 3.65 to 2.78 m in terms of average RMSE. 610 
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In Figure 7, Figure A 11, and Figure A 12 illustrate the spatial grid comparison of 10 DEM products against the ICESat-2 

ATL08 benchmark, with a resolution of 5x5 km for ME, MAE, and RMSE, respectively. The results clearly reveal that the 

global DEM tends to overestimate, particularly when compared to the ASTERv3 DEM. As shown in the figures, the error of 

the global DEM clearly clusters in urban areas, except for the FABDEMv1-2, which employs an algorithm to remove 625 

building discrepancies, as discussed in Sect. 3.3.8. Although, ICESat-2 ATL08 is capable of measuring land elevation very 

accurately, some urban areas still exhibit overestimation, particularly in high-rise dense areas (Liu et al., 2020), as shown in 

Figure A 13. This suggests that the DEM analysis workflow can effectively utilize ICESat-2 ATL08 data for evaluation. In 

certain areas, the incorporation of ATL03 data may be necessary to enhance the evaluation process. 

6.2 Overall result of flood map analysis workflow 630 

The flood classification processing aims to classify flood types from SWE map. This method is based on various 

assumptions and simplifications. The validity of the approach is hard to evaluate, given the lack of ground-truth flood extent 

observations. However, it is evident that in this study area, surface water extent is not only due to riverine flooding but also 

various other flooding mechanisms such as irrigation and pluvial flooding.  

The Model flood map, based on both Model and FABDEMv1-2 DEMs, tends to overestimate flood extent relative to the 635 

satellite EO datasets (Sect. 5.3). Additionally, the flood map based solely on FABDEMv1-2 performs slightly better than the 

one based on the merged LDD-JICA DEM, with an improvement of approximately 13.55 – 25.56 percent according to the 

CSI. The overestimation of flood inundation from the flood model occurs predominantly in the eastern part of the CPY 

River, indicating a clear need for improvement the 1D-2D flood model. Although this study has incorporated high-quality 

DEM data implemented into the 1D-2D flood model, there are still many factors affecting flood map generation. For 640 

instance, the 1D-2D flood model, developed long ago (Sect. 3.1), needs to be updated and recalibrated due to continuous 

developments in water management plans, such as the Ayutthaya Bypass channel (JICA, 2018) and ongoing land use 

changes in the lower CPY basin (Visessri and Ekkawatpanit, 2020), which impact flood map simulations.  

The results of the flood map comparisons demonstrate that the CSI value is relatively better when compared with GISTDA, 

but lower when compared with WorldWater.  It is observed that the overall WorldWater flood map shows relatively low 645 

flooding compared to the GISTDA flood map. This is due to fundamental differences in the mapping approaches with 

WorldWater aiming to provide long-time series of the typical distribution and persistence of monthly surface water presence 

whereas GISTDA is targeting real time maps showing the extent of flooding at a specific moment in time. Additionally, 

WorldWater uses only Sentinel-1 and Sentinel-2 data, whereas GISTDA combines data from multiple other satellites, as 

described in Sect. 3.5.1. This can be further verified for accuracy with additional information from news sources and by 650 

cross-referencing with ICESat-2 ATL13 data, extracted from ICESat-2 ATL03 (inland water surface heights), in main rivers 

(Coppo Frias et al., 2023 and Dandabathula and Srinivasa Rao, 2020). This suggests that the flood analysis workflow can 
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effectively verify the performance of flood simulation using satellite data. Although this study's flood simulation results meet 

acceptable standards and are sufficiently reliable for practical applications. 

7 Conclusion 655 

The present study upgraded a 1D-2D flood model using satellite laser altimetry and multi-mission satellite SWE maps. We 

demonstrated two workflows in the lower CPY basin.  

 DEM analysis workflow:  This involved evaluating DEM accuracy using satellite laser altimetry data from ICESat-2 

ATL08 before integrating the DEM products into the flood model. The assessment aimed to assess the overall 

performance of DEM products through vertical, spatial, track-wise analysis, and statistics measures to select the most 660 

suitable DEM for the study area. Furthermore, this workflow is transferable to other study areas, providing a method to 

reduce uncertainty before developing flood models. The results show that the merged LDD-JICA and FABDEMv1-2 

DEMs are highly suitable in the study area, with RMSE values of 1.93 and 1.95 m., respectively. 

 Flood map analysis workflow: This workflow encompassed riverine flood classification and the evaluation of 

simulated flood maps generated by the 1D-2D flood model using multi-mission satellite SWE maps. While the flood 665 

classification algorithm still presents challenges, it is important to recognize that SWE maps derived from satellite EO 

cannot be directly compared with the output of flood models without further processing. The flood map evaluation 

method facilitated the assessment of flood simulation accuracy against satellite SWE maps, employing statistical and 

spatial analyses. These evaluations contribute significantly to the calibration and validation of flood maps derived from 

the 1D-2D flood model. The results indicate that simulated flood maps based on FABDEMv1-2 DEM can improve the 670 

performance of the 1D-2D flood model by 13.55% to 25.56%, as determined by the CSI, when compared to simulated 

flood maps based on the merged LDD-JICA DEM. 

Integrating these workflows will enhance the efficiency of the 1D-2D flood model and showcase the potential of utilizing 

EO satellite data to enhance flood modelling capabilities for operational flood forecasting in Thailand and elsewhere. 

  675 
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Appendix A 

Table A 1: Detail of GISTDA's flood map in study area 

Year Month Day Satellite 

2013 November 2  

3 RADARSAT-2 

7  

12  

16  

2014 August 31 RADARSAT-2 

September 1 RADARSAT-2 

7 COSMO-SkyMed1 

8 COSMO-SkyMed2, RADARSAT-2 

10 COSMO-SkyMed1, RADARSAT-2 

11 RADARSAT-2 

12 COSMO-SkyMed1 

19 COSMO-SkyMed1 

2016 October 3 COSMO-SkyMed4 

5 COSMO-SkyMed2 

8 RADARSAT-2 

10 COSMO-SkyMed4 

13 COSMO-SkyMed1 

14 RADARSAT-2 

15 RADARSAT-2 

17 RADARSAT-2 

18 RADARSAT-2 

20 COSMO-SkyMed1 

21 COSMO-SkyMed4 

24 RADARSAT-2 

31 COSMO-SkyMed2 

November 1 RADARSAT-2 

5 COSMO-SkyMed4 

11 RADARSAT-2 

21 COSMO-SkyMed4 

22 Sentinel 8 

December 5 RADARSAT-2 

2017 June 11  

July 23  

26 COSMO-SkyMed2 

28 COSMO-SkyMed1 

29 RADARSAT-2 

31 COSMO-SkyMed4 

August 2  

5  

6  

8  

20  

22 RADARSAT-2 
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Year Month Day Satellite 

25 RADARSAT-2 

26 COSMO-SkyMed2 

September 2  

7  

8  

9  

15  

17 RADARSAT-1 

25  

30 RADARSAT-2 

October 3 Sentinel 8 

8  

12  

13 COSMO-SkyMed4 

17  

19 COSMO<-SkyMed4 

23  

26  

27  

November 6  

20  

25  

30  

2021 November 2  

3  

8  

9  

14  

15  

October 3  

4  

6  

8  

12  

14  

16  

17  

18  

21  

22  

27  

28  

September 12  

21  

22  

27  

28  

https://doi.org/10.5194/hess-2024-175
Preprint. Discussion started: 25 July 2024
c© Author(s) 2024. CC BY 4.0 License.



35 

 

Year Month Day Satellite 

29  

 

Table A 2: The detailed analysis of Sentinel-1 and Sentinel-2 data within the study area. 

Year Month Day Satellite Year Month Day Satellite 

2017 1 2 S1 2017 5 7 S2A 

2017 1 14 S1 2017 5 10 S1 

2017 1 16 S1 2017 5 10 S2A 

2017 1 20 S2A 2017 5 14 S1 

2017 1 27 S2A 2017 5 17 S2A 

2017 2 7 S1 2017 5 22 S1 

2017 2 9 S2A 2017 5 26 S1 

2017 2 16 S2A 2017 5 27 S2A 

2017 2 19 S2A 2017 5 30 S2A 

2017 2 26 S2A 2017 6 3 S1 

2017 2 27 S1 2017 6 6 S2A 

2017 3 8 S2A 2017 6 7 S1 

2017 3 11 S1 2017 6 15 S1 

2017 3 11 S2A 2017 6 16 S2A 

2017 3 15 S1 2017 6 19 S1 

2017 3 18 S2A 2017 6 19 S2A 

2017 3 23 S1 2017 6 26 S2A 

2017 3 27 S1 2017 6 27 S1 

2017 3 28 S2A 2017 7 1 S1 

2017 3 31 S2A 2017 7 6 S2A 

2017 4 4 S1 2017 7 9 S1 

2017 4 7 S2A 2017 7 9 S2A 

2017 4 8 S1 2017 7 11 S2B 

2017 4 16 S1 2017 7 13 S1 

2017 4 17 S2A 2017 7 16 S2A 

2017 4 20 S1 2017 7 21 S1 

2017 4 20 S2A 2017 7 21 S2B 

2017 4 27 S2A 2017 7 24 S2B 

2017 4 28 S1 2017 7 25 S1 

2017 5 2 S1 2017 7 26 S2A 

2017 7 29 S2A 2017 10 25 S1 

2017 7 31 S2B 2017 11 1 S2B 

2017 8 2 S1 2017 11 3 S2A 

2017 8 5 S2A 2017 11 6 S1 

2017 8 6 S1 2017 11 6 S2A 

2017 8 10 S2B 2017 11 8 S2B 

2017 8 13 S2B 2017 11 10 S1 
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Year Month Day Satellite Year Month Day Satellite 

2017 8 14 S1 2017 11 11 S2B 

2017 8 15 S2A 2017 11 13 S2A 

2017 8 18 S1 2017 11 18 S1 

2017 8 18 S2A 2017 11 18 S2B 

2017 8 20 S2B 2017 11 21 S2B 

2017 8 25 S2A 2017 11 22 S1 

2017 8 26 S1 2017 11 23 S2A 

2017 8 30 S1 2017 11 26 S2A 

2017 8 30 S2B 2017 11 28 S2B 

2017 9 2 S2B 2017 11 30 S1 

2017 9 4 S2A 2017 12 1 S2B 

2017 9 7 S1 2017 12 3 S2A 

2017 9 7 S2A 2017 12 4 S1 

2017 9 9 S2B 2017 12 8 S2B 

2017 9 11 S1 2017 12 11 S2B 

2017 9 14 S2A 2017 12 12 S1 

2017 9 19 S1 2017 12 13 S2A 

2017 9 19 S2B 2017 12 16 S1 

2017 9 22 S2B 2017 12 16 S2A 

2017 9 23 S1 2017 12 18 S2B 

2017 9 24 S2A 2017 12 21 S2B 

2017 9 27 S2A 2017 12 23 S2A 

2017 9 29 S2B 2017 12 24 S1 

2017 10 4 S2A 2017 12 28 S1 

2017 10 5 S1 2017 12 28 S2B 

2017 10 9 S2B 2017 12 31 S2B 

2017 10 12 S2B 2018 1 2 S1 

2017 10 13 S1 2018 1 2 S2A 

2017 10 14 S2A 2018 1 5 S2A 

2017 10 17 S1 2018 1 7 S2B 

2017 10 17 S2A 2018 1 9 S1 

2017 10 19 S2B 2018 1 10 S2B 

2017 10 24 S2A 2018 1 12 S2A 

2018 1 17 S1 2018 3 30 S1 

2018 1 17 S2B 2018 3 31 S2B 

2018 1 20 S2B 2018 4 2 S2A 

2018 1 21 S1 2018 4 3 S1 

2018 1 22 S2A 2018 4 5 S2A 

2018 1 25 S2A 2018 4 7 S2B 

2018 1 27 S2B 2018 4 10 S2B 

2018 1 29 S1 2018 4 11 S1 
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Year Month Day Satellite Year Month Day Satellite 

2018 1 30 S2B 2018 4 12 S2A 

2018 2 1 S2A 2018 4 15 S1 

2018 2 2 S1 2018 4 15 S2A 

2018 2 6 S2B 2018 4 17 S2B 

2018 2 9 S2B 2018 4 20 S2B 

2018 2 10 S1 2018 4 22 S2A 

2018 2 11 S2A 2018 4 23 S1 

2018 2 14 S1 2018 4 25 S2A 

2018 2 14 S2A 2018 4 27 S1 

2018 2 16 S2B 2018 4 27 S2B 

2018 2 19 S2B 2018 4 30 S2B 

2018 2 21 S2A 2018 5 2 S2A 

2018 2 22 S1 2018 5 5 S1 

2018 2 24 S2A 2018 5 5 S2A 

2018 2 26 S1 2018 5 7 S2B 

2018 2 26 S2B 2018 5 9 S1 

2018 3 1 S2B 2018 5 10 S2B 

2018 3 3 S2A 2018 5 12 S2A 

2018 3 6 S1 2018 5 15 S2A 

2018 3 6 S2A 2018 5 17 S1 

2018 3 8 S2B 2018 5 17 S2B 

2018 3 10 S1 2018 5 20 S2B 

2018 3 11 S2B 2018 5 21 S1 

2018 3 13 S2A 2018 5 22 S2A 

2018 3 16 S2A 2018 5 25 S2A 

2018 3 18 S1 2018 5 29 S1 

2018 3 18 S2B 2018 5 30 S2B 

2018 3 21 S2B 2018 6 1 S2A 

2018 3 22 S1 2018 6 2 S1 

2018 3 23 S2A 2018 6 4 S2A 

2018 3 26 S2A 2018 6 6 S2B 

2018 3 28 S2B 2018 6 9 S2B 

2018 6 10 S1 2018 8 20 S2A 

2018 6 11 S2A 2018 8 21 S1 

2018 6 14 S1 2018 8 23 S2A 

2018 6 14 S2A 2018 8 25 S2B 

2018 6 16 S2B 2018 8 28 S2B 

2018 6 19 S2B 2018 8 30 S2A 

2018 6 21 S2A 2018 9 2 S1 

2018 6 22 S1 2018 9 2 S2A 

2018 6 24 S2A 2018 9 4 S2B 
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Year Month Day Satellite Year Month Day Satellite 

2018 6 26 S1 2018 9 6 S1 

2018 6 26 S2B 2018 9 7 S2B 

2018 6 29 S2B 2018 9 9 S2A 

2018 7 1 S2A 2018 9 12 S2A 

2018 7 4 S1 2018 9 14 S1 

2018 7 4 S2A 2018 9 14 S2B 

2018 7 6 S2B 2018 9 17 S2B 

2018 7 8 S1 2018 9 18 S1 

2018 7 9 S2B 2018 9 19 S2A 

2018 7 11 S2A 2018 9 24 S2B 

2018 7 14 S2A 2018 9 26 S1 

2018 7 16 S1 2018 9 27 S2B 

2018 7 16 S2B 2018 9 29 S2A 

2018 7 19 S2B 2018 9 30 S1 

2018 7 20 S1 2018 10 2 S2A 

2018 7 21 S2A 2018 10 4 S2B 

2018 7 24 S2A 2018 10 7 S2B 

2018 7 26 S2B 2018 10 8 S1 

2018 7 28 S1 2018 10 9 S2A 

2018 7 29 S2B 2018 10 12 S1 

2018 7 31 S2A 2018 10 12 S2A 

2018 8 1 S1 2018 10 14 S2B 

2018 8 3 S2A 2018 10 17 S2B 

2018 8 5 S2B 2018 10 19 S2A 

2018 8 8 S2B 2018 10 20 S1 

2018 8 9 S1 2018 10 22 S2A 

2018 8 10 S2A 2018 10 24 S1 

2018 8 13 S1 2018 10 24 S2B 

2018 8 13 S2A 2018 10 27 S2B 

2018 8 15 S2B 2018 10 29 S2A 

2018 8 18 S2B 2018 11 1 S1 

2018 11 1 S2A 2019 1 15 S2B 

2018 11 3 S2B 2019 1 17 S2A 

2018 11 5 S1 2019 1 20 S2A 

2018 11 6 S2B 2019 1 22 S2B 

2018 11 8 S2A 2019 1 24 S1 

2018 11 11 S2A 2019 1 25 S2B 

2018 11 13 S1 2019 1 27 S2A 

2018 11 16 S2B 2019 1 28 S1 

2018 11 17 S1 2019 1 30 S2A 

2018 11 18 S2A 2019 2 1 S2B 
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Year Month Day Satellite Year Month Day Satellite 

2018 11 21 S2A 2019 2 4 S2B 

2018 11 23 S2B 2019 2 5 S1 

2018 11 25 S1 2019 2 6 S2A 

2018 11 26 S2B 2019 2 9 S1 

2018 11 28 S2A 2019 2 9 S2A 

2018 11 29 S1 2019 2 11 S2B 

2018 12 1 S2A 2019 2 14 S2B 

2018 12 3 S2B 2019 2 16 S2A 

2018 12 6 S2B 2019 2 17 S1 

2018 12 7 S1 2019 2 19 S2A 

2018 12 8 S2A 2019 2 21 S1 

2018 12 11 S1 2019 2 21 S2B 

2018 12 11 S2A 2019 2 24 S2B 

2018 12 13 S2B 2019 2 26 S2A 

2018 12 16 S2B 2019 3 1 S1 

2018 12 18 S2A 2019 3 1 S2A 

2018 12 19 S1 2019 3 3 S2B 

2018 12 21 S2A 2019 3 5 S1 

2018 12 23 S1 2019 3 6 S2B 

2018 12 23 S2B 2019 3 8 S2A 

2018 12 26 S2B 2019 3 11 S2A 

2018 12 28 S2A 2019 3 13 S1 

2018 12 31 S1 2019 3 13 S2B 

2018 12 31 S2A 2019 3 16 S2B 

2019 1 2 S2B 2019 3 18 S2A 

2019 1 4 S1 2019 3 21 S2A 

2019 1 5 S2B 2019 3 23 S2B 

2019 1 7 S2A 2019 3 25 S1 

2019 1 10 S2A 2019 3 26 S2B 

2019 1 12 S1 2019 3 28 S2A 

2019 3 29 S1 2019 6 11 S2B 

2019 3 31 S2A 2019 6 14 S2B 

2019 4 2 S2B 2019 6 16 S2A 

2019 4 5 S2B 2019 6 17 S1 

2019 4 6 S1 2019 6 19 S2A 

2019 4 7 S2A 2019 6 21 S2B 

2019 4 10 S1 2019 6 24 S2B 

2019 4 10 S2A 2019 6 26 S2A 

2019 4 12 S2B 2019 6 29 S1 

2019 4 15 S2B 2019 6 29 S2A 

2019 4 17 S2A 2019 7 1 S2B 
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Year Month Day Satellite Year Month Day Satellite 

2019 4 20 S2A 2019 7 4 S2B 

2019 4 22 S1 2019 7 6 S2A 

2019 4 22 S2B 2019 7 9 S2A 

2019 4 25 S2B 2019 7 11 S1 

2019 4 27 S2A 2019 7 11 S2B 

2019 4 30 S1 2019 7 14 S2B 

2019 4 30 S2A 2019 7 16 S2A 

2019 5 2 S2B 2019 7 19 S2A 

2019 5 4 S1 2019 7 21 S2B 

2019 5 5 S2B 2019 7 23 S1 

2019 5 7 S2A 2019 7 24 S2B 

2019 5 10 S2A 2019 7 26 S2A 

2019 5 12 S1 2019 7 29 S2A 

2019 5 12 S2B 2019 7 31 S2B 

2019 5 15 S2B 2019 8 3 S2B 

2019 5 16 S1 2019 8 4 S1 

2019 5 17 S2A 2019 8 5 S2A 

2019 5 20 S2A 2019 8 8 S2A 

2019 5 22 S2B 2019 8 10 S2B 

2019 5 24 S1 2019 8 13 S2B 

2019 5 25 S2B 2019 8 15 S2A 

2019 5 27 S2A 2019 8 16 S1 

2019 5 28 S1 2019 8 18 S2A 

2019 5 30 S2A 2019 8 20 S1 

2019 6 1 S2B 2019 8 20 S2B 

2019 6 4 S2B 2019 8 23 S2B 

2019 6 5 S1 2019 8 25 S2A 

2019 6 6 S2A 2019 8 28 S1 

2019 6 9 S2A 2019 8 28 S2A 

2019 8 30 S2B 2019 11 11 S2B 

2019 9 1 S1 2019 11 12 S1 

2019 9 2 S2B 2019 11 13 S2A 

2019 9 4 S2A 2019 11 16 S2A 

2019 9 7 S2A 2019 11 18 S2B 

2019 9 9 S1 2019 11 20 S1 

2019 9 9 S2B 2019 11 21 S2B 

2019 9 12 S2B 2019 11 23 S2A 

2019 9 13 S1 2019 11 24 S1 

2019 9 14 S2A 2019 11 26 S2A 

2019 9 17 S2A 2019 11 28 S2B 

2019 9 19 S2B 2019 12 1 S2B 
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Year Month Day Satellite Year Month Day Satellite 

2019 9 21 S1 2019 12 2 S1 

2019 9 22 S2B 2019 12 3 S2A 

2019 9 25 S1 2019 12 6 S1 

2019 9 27 S2A 2019 12 6 S2A 

2019 9 29 S2B 2019 12 8 S2B 

2019 10 2 S2B 2019 12 11 S2B 

2019 10 3 S1 2019 12 13 S2A 

2019 10 4 S2A 2019 12 14 S1 

2019 10 7 S1 2019 12 16 S2A 

2019 10 7 S2A 2019 12 18 S2B 

2019 10 9 S2B 2019 12 21 S2B 

2019 10 12 S2B 2019 12 23 S2A 

2019 10 14 S2A 2019 12 26 S1 

2019 10 15 S1 2019 12 26 S2A 

2019 10 17 S2A 2019 12 28 S2B 

2019 10 19 S1 2019 12 30 S1 

2019 10 19 S2B 2019 12 31 S2B 

2019 10 22 S2B 2020 1 2 S2A 

2019 10 24 S2A 2020 1 5 S2A 

2019 10 27 S1 2020 1 7 S1 

2019 10 27 S2A 2020 1 7 S2B 

2019 10 29 S2B 2020 1 10 S2B 

2019 10 31 S1 2020 1 11 S1 

2019 11 1 S2B 2020 1 12 S2A 

2019 11 3 S2A 2020 1 15 S2A 

2019 11 6 S2A 2020 1 17 S2B 

2019 11 8 S1 2020 1 18 S1 

2019 11 8 S2B 2020 1 19 S1 

2020 1 20 S2B 2020 3 31 S1 

2020 1 22 S2A 2020 4 1 S2A 

2020 1 23 S1 2020 4 4 S1 

2020 1 25 S2A 2020 4 4 S2A 

2020 1 27 S2B 2020 4 6 S2B 

2020 1 30 S2B 2020 4 9 S2B 

2020 1 31 S1 2020 4 11 S2A 

2020 2 1 S2A 2020 4 12 S1 

2020 2 4 S1 2020 4 14 S2A 

2020 2 4 S2A 2020 4 16 S1 

2020 2 6 S2B 2020 4 16 S2B 

2020 2 9 S2B 2020 4 19 S2B 

2020 2 11 S2A 2020 4 21 S2A 
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Year Month Day Satellite Year Month Day Satellite 

2020 2 12 S1 2020 4 24 S1 

2020 2 14 S2A 2020 4 24 S2A 

2020 2 16 S1 2020 4 26 S2B 

2020 2 16 S2B 2020 4 28 S1 

2020 2 19 S2B 2020 4 29 S2B 

2020 2 21 S2A 2020 5 1 S2A 

2020 2 24 S1 2020 5 4 S2A 

2020 2 24 S2A 2020 5 6 S1 

2020 2 26 S2B 2020 5 6 S2B 

2020 2 28 S1 2020 5 9 S2B 

2020 2 29 S2B 2020 5 11 S2A 

2020 3 2 S2A 2020 5 14 S2A 

2020 3 5 S2A 2020 5 16 S2B 

2020 3 7 S1 2020 5 18 S1 

2020 3 7 S2B 2020 5 19 S2B 

2020 3 10 S2B 2020 5 21 S2A 

2020 3 11 S1 2020 5 24 S2A 

2020 3 12 S2A 2020 5 26 S2B 

2020 3 15 S2A 2020 5 29 S2B 

2020 3 17 S2B 2020 5 30 S1 

2020 3 19 S1 2020 5 31 S2A 

2020 3 20 S2B 2020 6 3 S2A 

2020 3 22 S2A 2020 6 5 S2B 

2020 3 23 S1 2020 6 8 S2B 

2020 3 25 S2A 2020 6 10 S2A 

2020 3 27 S2B 2020 6 11 S1 

2020 3 30 S2B 2020 6 13 S2A 

2020 6 15 S2B 2020 9 3 S1 

2020 6 18 S2B 2020 9 3 S2B 

2020 6 20 S2A 2020 9 6 S2B 

2020 6 23 S1 2020 9 7 S1 

2020 6 23 S2A 2020 9 8 S2A 

2020 6 25 S2B 2020 9 11 S2A 

2020 6 28 S2B 2020 9 13 S2B 

2020 6 30 S2A 2020 9 15 S1 

2020 7 3 S2A 2020 9 16 S2B 

2020 7 5 S1 2020 9 18 S2A 

2020 7 5 S2B 2020 9 19 S1 

2020 7 8 S2B 2020 9 21 S2A 

2020 7 10 S2A 2020 9 23 S2B 

2020 7 13 S2A 2020 9 26 S2B 
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Year Month Day Satellite Year Month Day Satellite 

2020 7 15 S2B 2020 9 27 S1 

2020 7 17 S1 2020 9 28 S2A 

2020 7 18 S2B 2020 10 1 S1 

2020 7 20 S2A 2020 10 1 S2A 

2020 7 23 S2A 2020 10 3 S2B 

2020 7 25 S2B 2020 10 6 S2B 

2020 7 28 S2B 2020 10 8 S2A 

2020 7 29 S1 2020 10 9 S1 

2020 7 30 S2A 2020 10 11 S2A 

2020 8 2 S2A 2020 10 13 S1 

2020 8 4 S2B 2020 10 13 S2B 

2020 8 7 S2B 2020 10 16 S2B 

2020 8 9 S2A 2020 10 18 S2A 

2020 8 10 S1 2020 10 21 S1 

2020 8 12 S2A 2020 10 21 S2A 

2020 8 14 S1 2020 10 23 S2B 

2020 8 14 S2B 2020 10 25 S1 

2020 8 17 S2B 2020 10 26 S2B 

2020 8 19 S2A 2020 10 28 S2A 

2020 8 22 S1 2020 10 31 S2A 

2020 8 22 S2A 2020 11 2 S1 

2020 8 24 S2B 2020 11 2 S2B 

2020 8 26 S1 2020 11 5 S2B 

2020 8 27 S2B 2020 11 6 S1 

2020 8 29 S2A 2020 11 7 S2A 

2020 9 1 S2A 2020 11 10 S2A 

2020 11 12 S2B 2021 1 24 S2B 

2020 11 14 S1 2021 1 25 S1 

2020 11 15 S2B 2021 1 26 S2A 

2020 11 17 S2A 2021 1 29 S1 

2020 11 18 S1 2021 1 29 S2A 

2020 11 20 S2A 2021 1 31 S2B 

2020 11 22 S2B 2021 2 3 S2B 

2020 11 25 S2B 2021 2 5 S2A 

2020 11 27 S2A 2021 2 6 S1 

2020 11 30 S1 2021 2 8 S2A 

2020 11 30 S2A 2021 2 10 S1 

2020 12 2 S2B 2021 2 10 S2B 

2020 12 5 S2B 2021 2 13 S2B 

2020 12 7 S2A 2021 2 15 S2A 

2020 12 8 S1 2021 2 18 S1 
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Year Month Day Satellite Year Month Day Satellite 

2020 12 10 S2A 2021 2 18 S2A 

2020 12 12 S1 2021 2 20 S2B 

2020 12 12 S2B 2021 2 22 S1 

2020 12 15 S2B 2021 2 23 S2B 

2020 12 17 S2A 2021 2 25 S2A 

2020 12 20 S1 2021 2 28 S2A 

2020 12 20 S2A 2021 3 2 S2B 

2020 12 22 S2B 2021 3 5 S2B 

2020 12 24 S1 2021 3 6 S1 

2020 12 25 S2B 2021 3 7 S2A 

2020 12 27 S2A 2021 3 10 S2A 

2020 12 30 S2A 2021 3 12 S2B 

2021 1 1 S1 2021 3 14 S1 

2021 1 1 S2B 2021 3 15 S2B 

2021 1 4 S2B 2021 3 17 S2A 

2021 1 5 S1 2021 3 18 S1 

2021 1 6 S2A 2021 3 20 S2A 

2021 1 9 S2A 2021 3 22 S2B 

2021 1 11 S2B 2021 3 25 S2B 

2021 1 13 S1 2021 3 26 S1 

2021 1 14 S2B 2021 3 27 S2A 

2021 1 16 S2A 2021 3 30 S1 

2021 1 17 S1 2021 3 30 S2A 

2021 1 19 S2A 2021 4 1 S2B 

2021 1 21 S2B 2021 4 4 S2B 

2021 4 6 S2A 2021 6 18 S2A 

2021 4 7 S1 2021 6 20 S2B 

2021 4 9 S2A 2021 6 23 S2B 

2021 4 11 S1 2021 6 25 S2A 

2021 4 11 S2B 2021 6 28 S2A 

2021 4 14 S2B 2021 6 30 S1 

2021 4 16 S2A 2021 6 30 S2B 

2021 4 19 S1 2021 7 3 S2B 

2021 4 19 S2A 2021 7 5 S2A 

2021 4 21 S2B 2021 7 8 S2A 

2021 4 23 S1 2021 7 10 S2B 

2021 4 24 S2B 2021 7 12 S1 

2021 4 26 S2A 2021 7 13 S2B 

2021 4 29 S2A 2021 7 15 S2A 

2021 5 1 S1 2021 7 16 S1 

2021 5 1 S2B 2021 7 18 S2A 
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Year Month Day Satellite Year Month Day Satellite 

2021 5 4 S2B 2021 7 20 S2B 

2021 5 5 S1 2021 7 23 S2B 

2021 5 6 S2A 2021 7 24 S1 

2021 5 9 S2A 2021 7 25 S2A 

2021 5 11 S2B 2021 7 28 S2A 

2021 5 13 S1 2021 7 30 S2B 

2021 5 14 S2B 2021 8 2 S2B 

2021 5 16 S2A 2021 8 4 S2A 

2021 5 17 S1 2021 8 5 S1 

2021 5 19 S2A 2021 8 7 S2A 

2021 5 21 S2B 2021 8 9 S1 

2021 5 24 S2B 2021 8 9 S2B 

2021 5 25 S1 2021 8 12 S2B 

2021 5 26 S2A 2021 8 14 S2A 

2021 5 29 S2A 2021 8 17 S1 

2021 5 31 S2B 2021 8 17 S2A 

2021 6 3 S2B 2021 8 19 S2B 

2021 6 5 S2A 2021 8 21 S1 

2021 6 6 S1 2021 8 22 S2B 

2021 6 8 S2A 2021 8 24 S2A 

2021 6 10 S2B 2021 8 27 S2A 

2021 6 13 S2B 2021 8 29 S1 

2021 6 15 S2A 2021 8 29 S2B 

2021 6 18 S1 2021 9 1 S2B 

2021 9 2 S1 2021 11 13 S1 

2021 9 3 S2A 2021 11 15 S2A 

2021 9 6 S2A 2021 11 17 S2B 

2021 9 8 S2B 2021 11 20 S2B 

2021 9 10 S1 2021 11 21 S1 

2021 9 11 S2B 2021 11 22 S2A 

2021 9 13 S2A 2021 11 25 S1 

2021 9 14 S1 2021 11 25 S2A 

2021 9 16 S2A 2021 11 27 S2B 

2021 9 18 S2B 2021 11 30 S2B 

2021 9 21 S2B 2021 12 2 S2A 

2021 9 22 S1 2021 12 3 S1 

2021 9 23 S2A 2021 12 5 S2A 

2021 9 26 S1 2021 12 7 S1 

2021 9 26 S2A 2021 12 7 S2B 

2021 9 28 S2B 2021 12 10 S2B 

2021 10 1 S2B 2021 12 12 S2A 
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Year Month Day Satellite Year Month Day Satellite 

2021 10 3 S2A 2021 12 15 S1 

2021 10 4 S1 2021 12 15 S2A 

2021 10 6 S2A 2021 12 17 S2B 

2021 10 8 S1 2021 12 19 S1 

2021 10 8 S2B 2021 12 20 S2B 

2021 10 11 S2B 2021 12 22 S2A 

2021 10 13 S2A 2021 12 25 S2A 

2021 10 16 S1 2021 12 27 S1 

2021 10 16 S2A 2021 12 27 S2B 

2021 10 18 S2B 2021 12 30 S2B 

2021 10 20 S1 2021 12 31 S1 

2021 10 21 S2B *Remark 

  S1    = Sentinel – 1   

  S2A = Sentinel – 2A 

  S2B = Sentinel – 2B 

 

2021 10 23 S2A 

2021 10 26 S2A 

2021 10 28 S1 

2021 10 28 S2B 

2021 10 31 S2B 

2021 11 1 S1 

2021 11 2 S2A 

2021 11 5 S2A 

2021 11 7 S2B 

2021 11 9 S1 

2021 11 10 S2B 

 680 
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Figure A 1: 1D-2D Flood model 
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