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Abstract. Digital elevation models (DEMs) are essential datasets, particularly for flood inundation mapping in one-10 

dimensional (1D) to two-dimensional (2D) flood models. Given the significant uncertainties associated with DEMs that can 

affect flood modelling accuracy, minimizing these inaccuracies is essential. This study aims to improve the performance of 

1D-2D flood models using satellite Earth Observation (EO) data, focusing on the lower Chao Phraya (CPY) basin.  

Two workflows are proposed: DEM analysis and flood map analysis. The DEM analysis evaluates 10 DEM products, including 

three local DEMs provided by Thai agencies (LDD, JICA, and a merged LDD-JICA DEM) and seven global DEMs derived 15 

from EO data (ASTER GDEM V3, SRTM V3, MERIT, GLO30, FABDEM V1-2, TanDEM-X, and TanDEM-EDEM). The 

evaluation process uses ICESat-2 ATL08 data processing, vertical datum reference processing, and evaluation of DEMs using 

ICESat-2 ATL08 benchmark processing. The DEMs are assessed using satellite laser altimetry data from the Ice, Cloud, and 

Land Elevation Satellite-2 (ICESat-2) as the benchmark. The evaluation employs standardized metrics, including point-wise, 

grid-wise, and track-wise comparisons, to identify the most suitable DEM for integration into the flood model. Results indicate 20 

that the merged LDD-JICA DEM and FABDEM V1-2 DEM exhibit the highest accuracy among local and global products, 

respectively, with root mean square errors (RMSE) of 1.93 m and 1.95 m, and percent biases (PBIAS) of -15.38% and 4.59%. 

The flood map analysis workflow involves comparing flood extent maps derived from multi-mission satellite datasets, and 

simulated flood maps generated from 1D-2D flood models using the best available DEMs. This workflow utilizes surface 

water extent (SWE) maps from the WorldWater project, obtained from the Sentinel-1 and Sentinel-2 imaging satellites, and 25 

flood maps from the Geo-Informatics and Space Technology Development Agency (GISTDA) in Thailand to validate flood 

maps produced by the 1D-2D flood model based on the merged LDD-JICA DEM and FABDEM V1-2 DEM. The results 

reveal that flood maps based on the FABDEM V1-2 DEM slightly outperform those based on the merged LDD-JICA DEM, 

with an improvement of approximately 13.55–25.56% in the critical success index (CSI). This study highlights the potential 

of leveraging satellite EO data to enhance the accuracy and reliability of 1D-2D flood models, thereby improving flood 30 

inundation predictions for effective flood management. 
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1 Introduction 

Nowadays, flooding is one of the most common hazards globally, impacting health, economies, and livelihoods worldwide. 

Flood models play a crucial role in forecasting floods and assessing flood risks, thereby assisting decision-makers in effective 

water management, particularly through one-dimensional (1D) - two-dimensional (2D) flood models. These models simulate 35 

various aspects of flooding, including flow, water levels, flood inundation extents, flood depths, flood maps, and flood duration 

(DHI Water and Environment, 2019). The Digital Elevation Model (DEM) serves as a primary input parameter for 1D-2D 

flood models, enabling accurate simulation of flood overflow from rivers, floodplains, and inundated areas, particularly in flat 

and low-lying regions. The DEM significantly influences the simulation of flood inundation in both 1D-2D and 2D flood 

models ((Saksena and Merwade, 2015); (Shen and Tan, 2020); (Wu et al., 2007); (Morrison et al., 2022)), urban areas 40 

(McClean et al., 2020), coastal areas (Darnell et al., 2008), and flood warning systems (Lamichhane and Sharma, 2018). 

Ultimately, the reliability of flood inundation predictions relies on the accuracy and resolution provided by the DEM, directly 

impacting the representation of flow geometry characteristics within flood models. 

Currently, the advancements in survey technologies, such as Unmanned Aerial Vehicles (UAVs) (Perera and Nalani, 2022), 

Light Detection and Ranging (LiDAR) (Raj et al., 2020), and Mobile Mapping Systems (MMS) (Schwarz and El-Sheimy, 45 

2007), have significantly enhanced the accuracy, quality, and resolution of  DEMs. These technologies enable the production 

of high-resolution terrain data; however, they remain costly, time-consuming, and less feasible for monitoring dynamic land-

use changes or covering large river basins. For example, following the severe flooding in 2011, Thailand’s Royal Irrigation 

Department collaborated with the Japan International Cooperation Agency (JICA) to survey a 27,000-square-kilometer area. 

This effort produced a high-resolution 2x2 meter DEM and required approximately seven months to complete (Japan 50 

International Cooperation Agency (JICA), 2012), underscoring the significant resources needed for such large-scale surveys. 

EO technologies offer a promising alternative by providing global DEMs with comparable resolution and quality. EO-based 

DEMs, such as ASTER GDEM3 (Abrams et al., 2020), SRTMv3 (Farr et al., 2007), MERIT (Yamazaki et al., 2017), GLO30 

(AIRBUS, 2020), FABDEMv1-2 (Hawker et al., 2023), TanDEM-X (Krieger et al., 2007), and TanDEM-EDEM, are freely 

available for download and utilize advanced techniques of EO and machine learning, to generate elevation estimates. These 55 

satellite-derived DEMs cover remote or inaccessible areas, offering a cost-effective and efficient solution for generating high-

resolution terrain data. Moreover, global DEMs derived from EO are increasingly being utilized as inputs for 1D-2D flood 

models, providing a practical and scalable option for flood risk assessment and forecasting in regions with limited resources. 

However, validating the DEM before integrating it into the 1D-2D flood model is essential. The Ice, Cloud, and Land Elevation 

Satellite-2 (ICESat-2) is a satellite equipped with a laser altimeter, capable of measuring ice sheet and glacier elevation change, 60 

sea ice freeboard, land elevation, and water elevation (Neumann et al., 2019), providing opportunities for validating DEMs 

even in remote and hard-to-reach areas worldwide, such as Finland (Wang and Liang, 2023), Spain (Zhu et al., 2022), East 

Antarctica (Hao et al., 2022), Alaska in the USA (Wang et al., 2019), and the Qinghai-Tibet Plateau in China (Weifeng et al., 

2024). Additionally, ICESat-2 has been used to assess the suitability of global DEMs for hydrodynamic modeling in data-
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scarce regions (Nandam and Patel, 2024) and to enhance the accuracy of 2D hydraulic models in the upstream Yellow River 65 

(Frias et al., 2024). Moreover, while an efficient DEM enhances the efficiency of 1D-2D flood simulation, it is important to 

systematically validate flood maps. Currently, satellite earth observation (EO) data can be utilized for monitoring and providing 

surface water extent (SWE) with synthetic-aperture radar (SAR) sensors, such as RADARSAT (Raney et al., 1991), ENVISAT 

ASAR (Lv et al., 2005), COSMO-SkyMed  (Pulvirenti et al., 2014), and TerraSAR-X (Martinis et al., 2013), which is the only 

way to validate flood inundation maps from flood models over regional scales. The WorldWater project developed a robust 70 

and scalable EO solution for inland SWE monitoring, which can be utilized by a large community of stakeholders involved in 

local water management (Tottrup et al., 2022). The project used free and open optical and SAR satellite imagery from the 

Sentinel-1 and Sentinel-2 missions to generate monthly SWE maps over four years, which are accessible from 

https://worldwater.earth/. The product offers new opportunities for validating modelled flood maps with higher SWE 

resolution.  75 

While satellite EO provides SWE maps that delineate water bodies and inundated areas, they cannot be directly compared to 

flood maps from 1D-2D flood models. The output of 1D-2D flood models are riverine flood maps. Additional flood 

classification processing is necessary to ensure comparability between SWE maps and the output of a flood model. However, 

flood type classification using SWE maps poses challenges and difficulties. Many studies focus on classifying flood types 

based on meteorological condition rather than using SWE maps, such as (Nied et al., 2014), (Turkington et al., 2016), decision 80 

tree using meteorological data ((Stein et al., 2019), and (Yan et al., 2023)).  Riverine flood classification specifically involves 

identifying floods caused by river overflow from SWE maps. Here, we used expanding segmentation labels (ESL) (Van Der 

Walt et al., 2014), connected component labeling (CCL) ((Rosenfeld and Pfaltz, 1966) and (AbuBaker et al., 2007)), masking 

off riverine and permanent water, and morphological image processing (MIP) (Soille, 2003) techniques applied to the SWE 

maps to separate riverine flood areas from other inundated areas. 85 

This study presents two new workflows supporting flood modelling and forecasting in  the lower Chao Phraya (CPY) River 

basin in Thailand and elsewhere: 1) Comprehensive DEM Evaluation: A detailed assessment of 10 DEM products, including 

three local and seven global DEMs, was conducted using ICESat-2 as a benchmark for the Thailand domain. DEM performance 

in the lower CPY basin was evaluated using statistical methods, including bias (mean error, ME), mean absolute error (MAE), 

mean square error (MSE), and root mean square error (RMSE), with comparisons made at point and grid level, as well as 90 

track-wise comparisons. The highest-performing DEM from this evaluation was subsequently integrated into a 1D-2D flood 

model to simulate flood inundation. 2) Systematic Comparison of Flood Maps: Simulated 2D inundation patterns were 

compared with flood maps derived from satellite EO-based surface water extent (SWE) using a riverine flood classification 

process. The model's performance was assessed using three statistical metrics: probability of detection (POD), false alarm ratio 

(FAR), and critical success index (CSI). These methods will improve the performance of the operational hydrologic-hydraulic 95 

forecasting system for the Chao Phraya River, managed by the Hydro-Informatics Institute (HII) in Thailand. 

https://worldwater.earth/
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2 Study Area 

The study area is located in the central part of Thailand, as shown in Figure 1(a). The delta area of the lower CPY River basin 

in Thailand forms the study area depicted in Figure 1(c).  The size of the study area is approximately 16,643 km2, including 

about 70% irrigation area and 20% urban area. The topography of the study area is characterized by a flat terrain, predominantly 100 

consisting of a low-lying alluvial floodplain. The northern part of the study area is a mountainous region with four main rivers: 

the Ping, Wang, Yom, and Nan rivers. These rivers converge to form the CPY river, which then flows into the study area. The 

eastern and western parts of the study area are connected to the Bang Pakong River and the Mae Klong basin, respectively. 

The southern part of the study area borders the Gulf of Thailand. 

The study area is located in a tropical climate and is influenced by northeast and southwest monsoons. The northeast monsoon 105 

brings cool and dry air from November to February, while the southwest monsoon brings humid air from May to October. The 

precipitation is approximately 1,100 mm during the rainy season and 170 mm during the dry season. The flooding in the study 

area is caused by the main rivers and their tributaries. The tributaries of the CPY river include Tha-Chin, Noi, and Lopburi. 

Flooding problems are more severe along the main course of the CPY river compared to others. Nevertheless, flooding 

mechanisms are complicated, arising from the combined effects of extreme precipitation, river overflows, insufficient river 110 

conveyance, land-use change, and sea-level rise. This results in frequent flooding, as shown in Figure 3(c). 
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Figure 1: (a) the location of the study area, (b) the ICESat-2 orbit, (c) the study area/1D-2D flood model, (d) the flexible mesh in the 

flood model, and (e) ICESat-2 beam pairs. © OpenStreetMap contributors 2015. Distributed under the Open Data Commons Open 

Database License (ODbL) v1.0. 115 

3 Materials 

3.1 1D-2D Flood modelling 

In this study, we used the flood model from the decision support system for flood forecasting and water management in the 

CPY River basin, developed in collaboration with HII and DHI A/S since 2012 (Sisomphon et al., 2013) and updated with 

new information in 2016 (Charoensuk et al., 2018). The decision support system for flood forecasting and water management 120 

in the CPY basin continues to operate, supporting the Thai Government in managing flood risk and providing real-time flood 

forecasts. 

The flood model uses the MIKE FLOOD software developed by DHI A/S. A MIKE FLOOD model (DHI Water and 

Environment, 2019) consists of coupled one-dimensional (1D) and two-dimensional (2D) models, namely MIKE11 and 
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MIKE21, respectively. The 1D hydraulic model (MIKE11) simulates unsteady flow in river networks solving the Saint-Venant 125 

equations with an implicit finite difference solver (DHI Water and Environment, 2021). The main branches of MIKE11 include 

the Chao Phraya, Tha-Chin, Lopburi, Noi and Pasak rivers. Cross-sections, rainfall-runoff, boundary conditions, 

hydrodynamic parameters, and control structures were implemented in MIKE11. The MIKE21 model is an overland flow 

model utilizing 2D shallow water equations (Danish Hydraulic Insitute, 2016).  MIKE21 employs a 2D flexible mesh based 

on the digital elevation model (DEM) to assess flood depth and its propagation. The river network in MIKE11 is dynamically 130 

linked to floodplain bathymetry through lateral links. The lateral links connect the river to the floodplain along its length using 

the cell-to-cell method, allowing water to overflow to the floodplain in the MIKE21 overland flood model. The lateral link 

connection uses the weir equation to calculate overflow in MIKE FLOOD (DHI Water and Environment, 2019). 

The 1D-2D flood model, documented in (Hydro-Informatics Institute, 2017), establishes the following boundary conditions: 

upstream boundary forcing with discharge from C.2 station and releases from the Pasak Reservoir from the Royal Irrigation 135 

Department (RID) in the CPY and Pasak rivers, respectively. Meanwhile, the downstream boundary connects to the Gulf of 

Thailand using sea level measurements from the Hydrographics Department, Royal Thai Navy (NAVY), as illustrated in Figure 

1(c). The MIKE11 model was calibrated using water level observations presented in (Charoensuk et al., 2024). MIKE21 

utilized a flexible mesh to simulate overland flow, as illustrated in Figure 1(d), and MIKE FLOOD was calibrated against 

flood maps and satellite data from 2011, as detailed by (Charoensuk et al., 2018). 140 

3.2 Geoid Models 

To measure elevations around the Earth, a vertical reference is needed, with mean sea level chosen as the reference. The geoid 

is the level (equipotential) surface of the Earth's gravity field that best coincides with mean sea level. This surface connects 

the oceans and extends through the continents. The geoid serves as the reference surface for levelled heights, commonly 

expressed as 'heights above sea level'. In order to compare heights from different data sources, all data has to be re-referenced 145 

to the same geoid model. A geoid model is a spatial representation of geoid height, encompassing both global and local scales. 

This study has collected three geoid models, summarized in Table 1. Thailand has its own local geoid model. The latest one, 

TGM2017, was released in 2018. This geoid is based on new gravity measurements taken around Thailand and has been shown 

to better match the expected geoid heights than the EGM2008 model (Dumrongchai et al., 2021). TGM2017 provides the best 

fit for Thailand, it was chosen as the primary geoid model, and all heights were re-referenced to TGM2017. 150 

Table 1: Geoid model datasets 

Geoid model Scale Download References 

EGM96: The Earth Gravitational Model 1996 Global https://earth-info.nga.mil/ (Lemoine et al., 1998) 

EGM2008: The Earth Gravitational Model 2008 Global https://earth-info.nga.mil/ (Pavlis et al., 2012) 

TGM2017: Thailand geoid model 2017 Local On request (Dumrongchai et al., 2021) 

 

https://earth-info.nga.mil/
https://earth-info.nga.mil/
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3.3 Digital Elevation Models (DEM) 

A digital elevation model (DEM) is a quantitative representation of the Earth’s surface elevation. The term "DEM" 

encompasses both digital terrain models (DTM) and digital surface models (DSM). A DSM maps the heights of all features 155 

on the surface, such as vegetation and buildings, while a DTM only represents the actual height of the terrain (“bare earth”). 

Multiple digital elevation models are available, local DEMs are often preferred due to their higher spatial resolution and vertical 

accuracy (McClean et al., 2020).  In this study, we have collected 10 DEM products, as shown in Figure 2. A summary of 

these products is presented in Table 2 and detailed statistical analyses are provided in Table A 1. The three local DEM products 

were obtained from the Thai agency, namely LDD DEM, JICA DEM, and merged LDD-JICA DEM. Additionally, seven 160 

global DEMs were collected, including ASTEM GDEM V3, SRTMv3 DEM, MERIT DEM, FABDEMv1-2 DEM, GLO30 

DEM, TanDEM-X, and TanDEM-EDEM. 

 

Table 2: Digital Elevation Model (DEM) 

Dem Product Spatial 

resolution 

Data 

Collection 

(Year) 

Datum 

Reference 

Type Scale Acquisition 

technique 

LDD DEM 5 m 2004 EGM96 geoid DTM Local Aerial stereo photo 

JICA DEM 2 m 2012 EGM2008 geoid DTM Local Airborne LiDAR 

merged LDD-

JICA DEM 

2 m - TGM2017 geoid DTM Local Fusion of 

multisource data 

ASTEM GDEM 

V3 

1 arcsecond 

(~30 m) 

2000-2010 EGM96 geoid DSM Global Satellite stereo 

images 

SRTM  DEM 

V3 

1 arcsecond 

(~30 m) 

2000 EGM96 geoid DSM Global SAR Interferometry 

MERIT DEM 3 arcseconds 

(~90 m) 

2000 EGM96 geoid DSM Global Fusion of 

multisource data 

GLO30 DEM 1 arcsecond 

(~30 m) 

2011-2015 EGM2008 geoid DSM Global Fusion of 

multisource data 

FABDEM v1-2 1 arcsecond 

(~30 m) 

2011-2015 EGM2008 geoid Base on DSM 

remove building 

and forest 

Global Fusion of 

multisource data 

TanDEM-X 

DEM 

0.4 

arcsecond 

(~12 m) 

2011-2015 WGS84 

ellipsoidal height 

DSM Global SAR Interferometry 

TanDEM-X 

EDEM 

1 arcsecond 

(~30 m) 

2011-2015 WGS84 

ellipsoidal height 

DSM Global Fusion of 

multisource data 

165 
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3.3.1 LDD DEM 

The LDD DEM data is supplied by the Land Development Department of Thailand (LDD) in a grid format, with a resolution 

of 5x5 meters. This DEM was generated using photogrammetry using aerial stereo photo pairs with known scales 

(Paengwangthong and Sarapirome, 2012). This approach involves deducing distances between points from photos and 170 

determining object heights by identifying stereoscopic parallax from multiple pictures and rectifying with ground control 

points (GCPs) (Sholarin and Awange, 2015). Subsequently, orthorectification and interpolation are used to generate a DEM 

and mask off buildings and vegetation. Because buildings and vegetation are removed, the LDD DEM approximates a DTM 

(Sholarin and Awange, 2015). 

3.3.2 JICA DEM 175 

The JICA DEM was produced through a collaborative effort between the Royal Irrigation Department (RID) and the Japan 

International Cooperation Agency (JICA) at a resolution of 2x2 meters (Japan International Cooperation Agency (JICA), 

2012).The JICA DEM was generated using Airborne Laser Scanning techniques with the LiDAR (Light Detection And 

Ranging) aerial technology. The LiDAR aerial survey employs a pulse laser to measure distances between the target and 

sensor, and it is applied on a large scale. The distance from the vehicle to the surface can be determined based on the travel 180 

time of the laser pulse (Argall and Sica, 2003). The JICA DEM was processed into a DTM filtering out features such as 

transportation facilities, buildings, and vegetation from the original data, as described in (Japan International Cooperation 

Agency (JICA), 2012). 

3.3.3 Merged LDD-JICA DEM 

The merged LDD-JICA DEM was generated by integrating the LDD DEM and JICA DEM as described by (Charoensuk et 185 

al., 2018). The JICA DEM served as the primary dataset, while the LDD DEM was utilized in areas with gaps within the 1D-

2D Flood modeling boundary. To incorporate the LDD DEM into the merged LDD-JICA DEM within data gaps, we applied 

bias correction. The native LDD DEM and JICA DEM datasets were not referenced to the same vertical datum. The processing 

of the merged LDD-JICA DEM consists of two primary steps (Figure A 2): 1) re-referencing both LDD DEM and JICA DEM 

to the TGM2017 reference, and 2) calculation of the correlation coefficient between the JICA and LDD DEM for 1000 random 190 

points, using linear regression to correct the bias in the LDD DEM, as shown in Figure A 3. Following this, the JICA DEM 

and LDD DEM are combined to create the merged LDD-JICA DEM using linear regression. The resulting combined merged 

LDD-JICA DEM has a resolution of 2x2 meters.  

3.3.4 ASTER GDEM3 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM3), serving as a global DEM, was 195 

developed by the Ministry of Economy, Trade, and Industry (METI) of Japan in collaboration with The United States National 
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Aeronautics and Space Administration (NASA) and was published on 2019. The footprint of ASTER GDEM spans latitudes 

from 83°N to 83°S. The study area utilized ASTER GDEM3 (Abrams et al., 2020), which can be downloaded from the 

associated website: https://gdemdl.aster.jspacesystems.or.jp/. More information is shown as Table 2. 

3.3.5 SRTMv3 DEM 200 

The Shuttle Radar Topography Mission (SRTM) DEM, developed by NASA, was a collaborative effort involving the National 

Geospatial-Intelligence Agency (NGA) and the German and Italian Space Agencies. It was part of an international project 

aimed at acquiring radar data, which were used to create the first near-global set of land elevations (Werner, 2001). The DEM 

was launched in 2000 (Farr et al., 2007), and many improvements have been made since then. The SRTMv3 DEM, the latest 

version, was used for the study area and can be downloaded from the associated website: 205 

https://search.earthdata.nasa.gov/search. 

3.3.6 MERIT DEM 

The Multi-Error-Removed Improved-Terrain (MERIT) DEM, developed by (Yamazaki et al., 2017). MERIT DEM improves 

upon previous DEMs by systematically removing various error components such as absolute bias, stripe noise, speckle noise, 

and tree height biasn from SRTM3 DEM (Farr et al., 2007) , AW3D-30 m DEM (Tadono et al., 2015) and gap-filling with the 210 

Viewfinder Panoramas (VFP) DEM (http://viewfinderpanoramas.org/dem3.html). The MERIT DEM is a DSM with resolution 

of 3 arc seconds. It was utilized for the study area and is available for download from the dedicated website: 

http://hydro.iis.utokyo.ac.jp/~yamadai/MERIT_DEM/index.html/. 

3.3.7 GLO30 DEM 

The Copernicus DEM, published in 2019 by the European Space Agency (ESA) (AIRBUS, 2020), represents an upgraded 215 

iteration of the WorldDEM. The backbone of the Copernicus WorldDEM is the TanDEM-X mission data, yet void filling 

techniques and integration of other data sources are used to enhance data completeness and accuracy. The Copernicus DEM 

is provided in three different DSM instances: EEA-10, GLO-30, and GLO-90. For this study, GLO-30 was utilized, offering 

1 arc-second resolution. It can be downloaded from the dedicated website: https://spacedata.copernicus.eu/de/collection 

s/copernicus-digital-elevation-model.  220 

3.3.8 FABDEMv1-2 

Forest And Building removed Copernicus Digital Elevation Model (FABDEM) was developed in collaboration between 

Bristol-based flood modelling company Fathom and the University of Bristol FloodLab. The FABDEM V1-0, launched in 

2021 (FABDEM V1-0), is derived from the Copernicus GLO-30 (AIRBUS, 2020) DSM. FABDEM V1-2, released in 2023 

(Hawker et al., 2023), has a 1 arc-second resolution and is based on a DSM which removes buildings and vegetation. This 225 

https://gdemdl.aster.jspacesystems.or.jp/
https://search.earthdata.nasa.gov/search
http://viewfinderpanoramas.org/dem3.html
http://hydro.iis.utokyo.ac.jp/~yamadai/MERIT_DEM/index.html/
https://spacedata.copernicus.eu/de/collections/copernicus-digital-elevation-model
https://spacedata.copernicus.eu/de/collections/copernicus-digital-elevation-model
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dataset was employed for the study area and is available for download from https://data.bris.ac.uk/data/ 

dataset/s5hqmjcdj8yo2ibzi9b4-ew3sn. 

3.3.9 TanDEM-X DEM 

TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) is an innovative space borne-radar interferometer based 

on two TerraSAR-X radar satellites flying in close formation (Krieger et al., 2007). The TanDEM-X mission represents a 230 

collaborative effort between the German Aerospace Center (DLR) and AIRBUS (Wessel, 2016), with the aim of generating a 

globally consistent DEM. TanDEM-X, launched in 2016, is a DSM with resolutions of 0.4, 1, and 3 arcseconds. The 3-

arcsecond TanDEM-X product is readily accessible and can be downloaded directly from https://geoservice.dlr.de 

/data-assets/ju28hc7pui09.html. However, the 0.4 and 1 arcsecond products are available from DLR upon request.  It is 

important to note that the TanDEM-X product has not undergone full processing to eliminate artifacts, outliers, noisy regions, 235 

and data gaps. As a result, its adoption in flood modeling has been limited (McClean et al., 2020). In this study, we employed 

TanDEM-X with a 0.4 arcsecond resolution for our flood modeling purposes. 

3.3.10 TanDEM-EDEM 

The TanDEM-X Edited Digital Elevation model (TanDEM-EDM) is an edited version of the TanDEM-X Global with a 1-

arcsec (~30 m) pixel resolutionreleased in 2023 (Wessel, 2016). The main update in TanDEM-EDEM version 1 includes filling 240 

gaps with suitable alternative DEM data and improving representation of water bodies. The TanDEM-EDEM dataset, which 

is a DSM, was utilized for the study area and is readily available for download from: https://download.geoservice.dlr.de 

/TDM30_EDEM/. It has a resolution of 30 m. 

3.4 ICESat-2 satellite laser altimetry 

Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) is a laser altimetry satellite launched by the National Aeronautics and 245 

Space Administration (NASA) in 2018. As the follow-on satellite of ICESat, ICESat-2 continues elevation measurements of 

ice sheets, glaciers, sea ice, and various other land features with a 91-day exact repeat orbit. ICESat-2 carries the Advanced 

Topographic Laser Altimeter System (ATLAS), which works by transmitting 10,000 laser pulses per second using laser light 

of 532 nm (Neumann et al., 2019). The pulse rate enables the satellite to capture a measurement every 70 cm along the ground 

track. The pulse divides into six beams, organized into three pairs. Each pair comprises one right-side beam and one left-side 250 

beam, striking the Earth at a 90 m distance from each other. The distance between each pair is 3.3 km, as depicted in Figure 

1(E).  

The National Snow and Ice Data Center (NSIDC) portal has developed various products that incorporate photon travel times 

and locations determined using the built-in GPS from the ICESat-2 satellite. This mission generates 21 products, as detailed 

on their website: https://nsidc.org/data/icesat-2/products. The two data products used in this study are ATL03 and ATL08, as 255 

https://data.bris.ac.uk/data/dataset/s5hqmjcdj8yo2ibzi9b4-ew3sn
https://data.bris.ac.uk/data/dataset/s5hqmjcdj8yo2ibzi9b4-ew3sn
https://geoservice.dlr.de/data-assets/ju28hc7pui09.html
https://geoservice.dlr.de/data-assets/ju28hc7pui09.html
https://download.geoservice.dlr.de/TDM30_EDEM/
https://download.geoservice.dlr.de/TDM30_EDEM/
https://nsidc.org/data/icesat-2/products
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summarized in Table 3, and the ground track pattern of ICESat-2 in the study area is shown in Figure 1(b). The ICESat-2 data 

were obtained from the NSIDC website via their data access tool (https://nsidc.org/data/data-access-tool).  

Table 3: ICESat-2 product 

ICESat-2 product Data Collection (Year) Datum Reference 

ATL03 Global Geolocated Photon Data (DSM) 2018 - 2022 WGS84 ellipsoid 

ATL08 Land/Water/Vegetation Elevation (DSM) 2018 - 2022 WGS84 ellipsoid 

3.4.1 ATL08 

The ATL08 product is derived from ICESat-2 ATL03 data, which provides detailed information on time, latitude, longitude, 260 

and height for each photon track. This dense photon dataset enables subsequent analyses and the creation of surface-specific 

products, such as land ice height and sea ice freeboard (Tom Neumann et al., 2021). The ATL08 product offers estimates of 

terrain heights, canopy heights, canopy cover, and other descriptive parameters at fine spatial scales in the along-track 

direction. A fixed segment size of 100 m was chosen to provide continuity of data parameters on the ATL08 data product. 

Height estimates from ATL08 can be compared with other geodetic data and serve as input for higher-level products like 265 

ATL13 (inland water-related heights) and ATL18 (terrain and canopy feature maps) (Neuenschwander et al., 2022). In this 

study, we used ATL08 land heights from ICESat-2 as the benchmark, to which various DEM products were compared. 

3.5 Flood Map/Surface Water Extent (SWE) dataset 

In this study, SWE and flood maps were collected from two sources: surface water extent (SWE) data from the WorldWater 

project (https://worldwater.earth/), funded by the European Space Agency (ESA) and the Geo-Informatics and Space 270 

Technology Development Agency (Public organization) (GISTDA) in Thailand. The flood map datasets are summarized in  

Table 4 and presented in Figure 3. 

3.5.1 WorldWater Surface Water Extent (SWE) 

We used SWE products from the WorldWater project, using data from the Sentinel-1 and Sentinel-2 imaging satellites, both 

integral parts of the ESA Copernicus program. The Sentinel-1 satellite, launched in 2014, is equipped with a SAR constellation 275 

consisting of two polar-orbiting satellites, with objectives on land and ocean monitoring. Sentinel-1 comprises a C-band SAR 

sensor with a 10-meter spatial resolution (Torres et al., 2012). The Sentinel-2 satellites consist of two satellites, namely 

Sentinel-2A and Sentinel-2B, launched in 2015 and 2017, respectively. The dual-satellite system operates in coordination with 

a 180o phase difference in the sun-synchronous orbit, supporting both land and ocean monitoring (European Space Agency 

(ESA), 2015). The WorldWater SWE mapping algorithm utilized Sentinel-1 and Sentinel-2 data from 2017 to 2021 to develop 280 

a SWE dataset. The details of Sentinel-1 and Sentinel-2 dataset are depicted in  Copernicus Open Access Hub. This algorithm 

utilizes a fusion approach (Tottrup et al., 2022), combining optical and radar observations, to provide a more robust delineation 

of water surfaces. The SWE products provide information on water occurrence, monthly water presence, water seasonality, 

https://nsidc.org/data/data-access-tool
https://worldwater.earth/
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maximum and minimum water extent, all accessible on the website: https://swdap.worldwater.earth/. The monthly water 

presence of the Worldwater SWE in November 2017 is illustrated in Figure 3(c). It is important to note that the WorldWater 285 

SWE dataset uses a median composite of all Sentinel-1 and Sentinel-2 acquisitions within a given month to predict monthly 

surface water presence. Consequently, it does not necessarily reflect the maximum extent of flooding within that month. 

3.5.2 GISTDA Flood map 

GISTDA is a Thai space agency and space research organization that utilizes satellites such as Cosmo-SkyMed, KOMPSAT, 

LANDSAT-5, RADARSAT-2, and THAICHOTE (Channumsin et al., 2020) to conduct research and development. GISTDA 290 

receives observations of the Earth through the use of Synthetic Aperture Radar (SAR) and optical sensor satellites 

(Nithirochananont et al., 2010). SAR satellite information is derived from two constellations: RADARSAT and the Advanced 

Land Observing Satellite (ALOS). RADARSAT comprises two SAR satellites, while ALOS integrates a SAR satellite with 

an optical satellite. Both RADARSAT and ALOS possess SAR data processing systems. In flooded areas, the Earth’s surface 

appears smooth in the wavelength of the SAR. This smooth surface causes microwaves to reflect in a specular way, resulting 295 

in low backscatter values. This characteristic allows for real-time flood imaging and identification. The SAR data undergoes 

processing, and image quality enhancement while eliminating any noise present in the data products (Auynirundronkool et al., 

2012).  

To generate flood maps from satellite data, GISTDA employed several analysis methods, including supervised classification, 

visual analysis, and thresholding, which were combined with field images. Subsequently, GISTDA used the boundaries of 300 

natural and permanent water sources from the existing database and removed these areas from the flood map. Since 2005, 

GISTDA has annually published nowcasting flood maps and flood occurrence maps on https://flood.gistda.or.th/, which were 

utilized in this study. The GISTDA flood occurrence map is shown in Figure 3(b). 

From 2014 to 2023, HII analysed flood frequency maps from GISTDA. The assessment focused on the frequency of flood 

occurrences, which were categorized into three levels: low, medium, and high-risk flood frequency. Low-risk flood frequency 305 

is defined as 1-3 occurrences within the 10-year span, medium risk as 4-7 occurrences, and high risk as 8-10 occurrences, as 

depicted Figure 3(a). 

https://swdap.worldwater.earth/
https://flood.gistda.or.th/


14 

 

 

F
ig

u
re

 3
: 

 T
h

e 
fl

o
o
d

 m
a

p
/s

u
rf

a
ce

 w
a
te

r 
ex

te
n

t 
in

 s
tu

d
y

 a
re

a
, 

p
re

se
n

ti
n

g
 (

a
) 

fl
o
o
d

 f
re

q
u

e
n

cy
 f

ro
m

 H
II

, 
(b

) 
G

IS
T

D
A

’s
 f

lo
o

d
 m

a
p

 i
n

 N
o
v
 2

0
1
7

, 

a
n

d
 (

c)
 W

o
rl

d
W

a
te

r’
s 

S
W

E
 i

n
 N

o
v
 2

0
1

7
. 

©
 O

p
en

S
tr

ee
tM

a
p

 c
o
n

tr
ib

u
to

rs
 2

0
1

5
. 

D
is

tr
ib

u
te

d
 u

n
d

er
 t

h
e 

O
p

e
n

 D
a
ta

 C
o

m
m

o
n

s 
O

p
e
n

 D
a
ta

b
a
s
e
 

L
ic

en
se

 (
O

D
b

L
) 

v
1

.0
. 



15 

 

 

Table 4: Flood map datasets 310 

Product Resolution 

(m.) 

Period Frequency Type file Download 

GISTDA’s flood 

map 

- 2005-2021 On request, satellite 

track, and annual 

Shape file https://flood.gistda.or.th/  

WorldWater’s 

surface water extent 

10 2017-2021 Monthly and annual  Raster 

file 

https://swdap.worldwater.earth/  

4 Methodology 

The workflow used in this study, illustrated in Figure 4, comprises two primary components. The first component, namely 

DEM analysis, focuses on evaluating the DEMs (Sect. 3.3) with the ICESat-2 benchmark (Sect. 3.4) as a high-precision 

reference, which effectively serves as the "ground truth." The best DEM identified in the DEM analysis is then used as input 

to the flood map analysis. The flood map analysis, focuses on evaluating flood maps generated by the 1D-2D flood model 315 

(Sect. 3.1) against WorldWater SWE and GISTDA flood maps (Sect. 3.5). 

4.1 DEM Analysis 

The primary objective is to assess the accuracy and reliability of the DEMs by comparing them with elevation data obtained 

from ICESat-2 using statistical methods. In the study area, ICESat-2 ATL08 data were primarily used for evaluation, while 

ICESat-2 ATL03 data were employed in complex terrain. Figure 4(a) illustrates the workflow involving processing and re-320 

referencing steps. Subsequently, the evaluation of DEMs and ICESat-2 is conducted using statistical methods. 

4.1.1 ICESat-2 ATL08 Data Processing 

ATL08 provides estimates of terrain height, canopy height, and canopy cover at fine spatial scales in the along-track direction. 

For each parameter, terrain surface elevation and canopy heights were provided at a fixed along-track segment size of 100 

meters (Neuenschwander et al., 2022). The ATL08 dataset comprises a total of 18 land parameters, such as Mean terrain height 325 

for segment (h_te_mean), Mode of terrain height for segment (h_te_mode), Number of ground photons in segment 

(n_te_photins), slope of terrain within segment (terrain_slope), Best fit terrain elevation at the 100 m segment mid-point 

location (h_te_best_fit), and others. We processed the ATL08 dataset, extracting the latitude and longitude of the photon 

signals along with the photon heights above the WGS84 ellipsoid. The terrain elevation parameter used for evaluation was 

h_te_best_fit. 330 

 

https://flood.gistda.or.th/
https://swdap.worldwater.earth/
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4.1.2 Vertical Datum Reference Processing 

To evaluate the DEMs with the ICESat-2 benchmark, it is necessary to use the same vertical datum reference. Vertical datum 

reference processing was employed to standardize the datum reference. In this study, the vertical datum reference was 335 

TGM2017, using Eq. (1) to establish accurate measurements of vertical elevation 

𝐻 = ℎ − 𝑁            (1) 

Where H is ortometric height, h is ellipsoid height, and N is geoid height. 

𝐻𝐷𝐸𝑀 𝑟𝑒𝑓 𝑇𝐺𝑀2017 =  ℎ𝐷𝐸𝑀 +  𝑁𝐷𝐸𝑀 −  𝑁𝑇𝐺𝑀2017        (2) 

Where HDEM ref  TGM2017 is the DEM referenced to TGM2017, hDEM  represents the original DEM, NDEM is the geoid reference of 340 

the original DEM, NTGM2017 is TGM2017 geoid model.  

To obtain DEMs referenced to TGM2017, EGM96 and EGM2008 height corrections were added to the DEM heights, followed 

by subtracting the TGM2017 geoid corrections, as shown in Eq. (2). The geoid model datasets are shown in  

Sect. 3.2 for reference. For ICESat-2 elevations referenced to TGM2017, the TGM2017 correction was subtracted from the 

ICESat-2 elevation data. 345 

4.1.3 Evaluation of DEMs using ICESat-2 ATL08 Benchmark 

The DEM products were estimated and evaluated using statistical methods, including bias (mean error, ME), mean absolute 

error (MAE) (Willmott, 2005), mean square error (MSE), root mean square error (RMSE) (Chai and Draxler, 2014) and percent 

bias (PBIAS) (D. N. Moriasi et al., 2007). The overall purpose of implementing these statistical methods is to evaluate the 

ICESat-2 ATL08 data paired with the 10 DEM products covering the study area. Subsequently, the performance of the DEMs 350 

was systematically compared using statistical indices defined in Eqs. (3)–(6) (Samantaray and Sahoo, 2024). 

𝑀𝐸 =  
1

𝑛
∑ (𝑌𝑖 − Ŷ𝑖)𝑛

𝑖=1            (3) 

𝑀𝐴𝐸 =  
1

𝑛
∑ |Y𝑖 − Ŷ𝑖|𝑛

𝑖=1            (4) 

𝑀𝑆𝐸 =  
1

𝑛
∑ (Y𝑖 − Ŷ𝑖)

2𝑛
𝑖=1            (5) 

𝑅𝑀𝑆𝐸 =  √∑
(Y𝑖− Ŷ𝑖)

2

𝑛

𝑛
𝑖=1            (6) 355 

𝑃𝐵𝐼𝐴𝑆 =  100 𝑥 [
∑ (𝑌𝑖−Ŷ𝑖)𝑛

𝑖=1

∑ Ŷ𝑖
𝑛
𝑖−1

]          (7) 

Where Ŷi represents ICESat-2 ATL08 elevation, Yi  denotes the elevation for each DEM (i.e., LDD DEM, JICA, merged LDD-

JICA DEM, ASTEM GDEM V3, SRTM DEM, MERIT DEM, FABDEM v1-2 DEM, GLO30 DEM, TanDEM-X, and 

TanDEM-EDEM), and n is the number of observations. The ideal PBIAS value is 0: positive values indicate that the DEM 

products tend to overestimate compared to the ICESat-2 ATL08 benchmark, while negative values indicate a tendency toward 360 

underestimation. 
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We conducted three types of comparisons as follows: 

Point comparison 

Point comparison was performed for every segment of the ICESat-2 ATL08 pass over the study area. This approach aimed to 

provide a quantitative overview of the quality and identify potential discrepancies among the ten DEMs in comparison to 365 

ICESat-2 ATL08 data (Weifeng et al., 2024), using statistical methods. A total of 954,800 elevation points were extracted 

from the study area for point-to-point comparison. 

Grid comparison 

The grid comparison was conducted using a regular square grid over the study area. This comparison provides an overview of 

the spatial variation of the quality of the DEMs in comparison to ICESat-2 ATL08 benchmark. In this study, we employed a 370 

5-km resolution for grid comparison, which involved calculating statistical measures for every segment within each grid cell 

and displaying the evaluation spatially on a map. 

Track-wise comparison 

The track-wise comparison was conducted using tracks of ICESat-2 over the study area. The distance between the ICESat-2 

points was calculated using UTM x and y coordinates, as shown in Eq.(7). The track-wise comparison represents an overall 375 

elevation profile comparison between DEMs and ICESat-2 ATL08 data over the study area. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑥0 − 𝑥𝑖)2 + (𝑦0 − 𝑦𝑖)2         (7) 

Where x represents the x coordinates, and y denotes the y coordinates. 

4.2 Flood Map Analysis 

The purpose of the flood map analysis is to evaluate the performance of simulated flood maps from the 1D-2D flood model 380 

using various DEM products selected from the first component in comparison to the WorldWater SWE and GISTDA flood 

maps. This comparative analysis aims to assess the accuracy and effectiveness of the improved flood simulation model. 

4.2.1 1D-2D Flood Modelling Setup 

The setup of the 1D-2D flood model mirrored the original model, retaining the same parameters with only the DEM being 

modified to generate the flood map. The DEM products were selected based on the evaluation of DEMs against the ICESat-2 385 

ATL08 benchmark. Flood maps in the lower CPY basin were simulated using the 1D-2D flood model for the years 2017, and 

2021. The flood map simulation results from the 1D-2D flood model present flood extents that occurred during the simulation 

period and at each daily time step (DHI, 2018). In this study, we employ simulated flood maps generated from a 1D-2D flood 

model using the merged LDD-JICA DEM and FABDEMv1-2 DEM products and compare them with WorldWater SWE and 

GISTDA flood maps. 390 
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4.2.2 Flood Classification Processing 

The flood map and SWE dataset used for evaluation in this study (Sect. 3.5) had different resolutions, formats, and flood map 

definitions. To effectively assess the simulated flood map from the 1D-2D flood model, we compared it to the WorldWater 

SWE and GISTDA flood map. However, it is crucial to employ the same resolution, format, and flood definition. Common 

types of flooding include flood irrigation, pluvial flash floods, coastal floods, and riverine floods. The 1D-2D flood model 395 

only simulates riverine floods, caused by high water levels in the rivers, eventually overflowing onto the neighboring land due 

to high river discharge over an extended period. In order to compare the simulated flood map to the satellite EO products, we 

first have to extract riverine flooding patterns from the surface water extent maps provided by satellite EO. This is done in the 

following steps: 

Permanent water processing 400 

Permanent water bodies should be removed from the satellite EO SWE maps prior to comparison. The GISTDA datasets does 

not include permanent water bodies. The WorldWater product includes permanent water bodies, which must be removed prior 

to comparison with simulated flood maps. We use relative water frequency (Yamazaki et al., 2015), which measures the 

occurrence of surface water within a defined time period. The relative water frequency fr of pixel was defined by Eq.(8) and 

shown as Figure A 4(a). 405 

𝑓𝑟(𝑡) =
𝑓𝑎(𝑡)

𝑓𝑣(𝑡)
            (8) 

Where fa depicts the frequency of surface water detections during a certain time period for each pixel, and fv represents the 

frequency of valid observations during the same period for each pixel.  

The relative water frequency ranges between 0.0 to 1.0. The permanent water designation indicates that there was observed 

water coverage in every single observation of the considered time period, which corresponds to a relative water frequency of 410 

1.0 (Martinis et al., 2022). In many cases, lower thresholds of 0.9, 0.7, and 0.5 were applied ((Rao et al., 2018); (Yamazaki et 

al., 2015)). The permanent water map for each threshold is illustrated in Figure A 4Error! Reference source not found.. In 

this study, the threshold for relative water frequency is set to 0.7, indicating that a pixel is considered permanent water if it is 

present in 70% or more of the valid observations over the specified time period. The output of the permanent water processing 

is utilized in riverine flood classification processing to remove permanent water from the WorldWater SWE. 415 

Riverine flood classification processing 

The WorldWater and GISTDA datasets contain both riverine floods and other inundated areas caused, for instance, by 

irrigation or pluvial floods. In order to separate riverine floods in the satellite EO flood maps, we used the following method 

Figure A 5Error! Reference source not found.: 

 Expand the wet area from WorldWater and GISTDA by 200 meters using expand segmentation labels (ESL) without 420 

overlap (Van Der Walt et al., 2014). The ESL method merges labels in a label image based on the distances between each 

pixel. Labels that are close by will be merged. 
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 Subsequently, label each pixel using connected component labeling (CCL) ((Rosenfeld and Pfaltz, 1966) and (AbuBaker 

et al., 2007)). The CCL method is employed to detect connected regions in binary digital image. The assumption of riverine 

flood identification is based on the presence of wet connected pixels originating from the river. These are then masked off 425 

using ESL, and the riverine flood label is selected. 

 Subsequently, the SWE undergoes morphological image processing (MIP) using a closing algorithm  (Van Der Walt et 

al., 2014). The structuring element, footprint, passed to the closing algorithm is a boolean array describing the 

neighborhood. We used a disk to create a circular structuring element with a radius of 2, implemented as the footprint. 

The output provides riverine flood maps, namely WorldWater and GISTDA flood map, for evaluation with other flood 430 

map products. 

4.2.3 Flood map evaluation methods 

This study evaluates the flood map of the lower CPY River basin using the contingency table (Anon, 1998), comparing flood 

maps from two different dimensions, as shown in Table 5. We evaluated the flood maps produced by the 1D-2D flood model 

by comparing them with the monthly surface water presence maps from WorldWater and GISTDA for the years 2017 and 435 

2021. We mainly use probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) (Forecast, 1995) 

to perform the evaluation. These statistics are based on the number of grid cells or pixels in the study area is defined as: 

𝑃𝑂𝐷 =
𝐻𝑖𝑡

𝐻𝑖𝑡+𝑀𝑖𝑠𝑠
            (9) 

𝐹𝐴𝑅 =
𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚

𝐻𝑖𝑡+𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 
           (10) 

𝐶𝑆𝐼 =
𝐻𝑖𝑡

𝐻𝑖𝑡+𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠+𝑀𝑖𝑠𝑠 
          (11) 440 

Where, Hit represents the number of correctly detected flooded pixels from two different dimensions. True negative donates 

the number of correctly detected non-flooded or dry areas from two different dimensions. Miss indicates the number of floods 

from dimension 1 that are not detected by dimension 2, while False Alarm represents the number of floods from dimension 2 

which did not occur floods in dimension 1. A perfect score for both POD and CSI is 1, while a value of 0 represents the best 

score for FAR. 445 

Table 5: Contingency table 

 
Observed flood map 

Flood Unflood 

Modelled flood map 
Flood Hits False alarms 

Unflood Misses True negative 
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5 Result 

5.1 1D-2D Flood model calibration results 

The 1D river model was calibrated using in-situ water surface elevation data for the period 2012 to 2013. The calibration 

results of the main river in the study area are presented in (Charoensuk et al., 2024). The overall performance during the 450 

calibration period is generally satisfactory for all main rivers, with an average R2 of 0.96, RMSE of 0.30 m, and NSE of 0.90.  

The 1D-2D flood model has been calibrated for extreme floods in 2011, as presented in (Charoensuk et al., 2018). Normally, 

flooding in Thailand is influenced by meteorological conditions, river conveyance, and sea level rise. However, the primary 

cause of the 2011 flood was dike breaching along the Chao Phraya River, resulting in uncontrollable flood inundation. The 

simulated flood, when compared with the GISTDA’s flood map, satisfactorily corresponds to flood depth, flood propagation 455 

direction, and duration. 

5.2 Results of DEM evaluation against the ICESat-2 ATL08 benchmark 

5.2.1 Point comparison evaluation results 

Figure 5 illustrates point comparisons between the statistical metrics of 10 DEM products against ICESat-2 ATL08 benchmark. 

As depicted in the Figure 5(a), the average ME of the local DEM products was -0.88 m, whereas the average ME of global 460 

DEM products was +1.62 m. The results indicate that local DEM products tend to have negative bias, while global DEM 

products tend to show positive bias when compared against ICESat-2 ATL08 benchmark. This tendency is attributed to the 

algorithms described in Sect. 3.3, which remove buildings and vegetation from the local DEM products. Moreover, the local 

DEM products have a finer grid resolution compared to the global DEM products. The average performance statistics of the 

local DEM and global DEM were 1.25 and 2.17 m for MAE, 4.23 m and 13.52 m for MSE, and 2.04 and 3.38 m. for RMSE, 465 

as shown in Figure 5(b), Figure 5(c) and Figure 5(d) respectively.  

Table 6 presents the statistical results of point comparisons between 10 DEM products compared with ICESat-2 ATL08, 

indicating that the accuracy of JICA DEM and FABDEMv1-2 DEM was higher than other local and global DEM, respectively. 

The statistical results of JICA DEM were -0.65 m, 1.04 m, 3.51, 1.87 m, and -17.00% for ME, MAE, MSE, RMSE, and PBias, 

respectively. Specifically, the FABDEMv1-2 DEM showed the highest accuracy, with ME, MAE, MSE, RMSE, and PBias 470 

values of 0.25 m, 0.80 m, 3.79, 1.95 m, and 4.59% respectively. 

Figure 6 presents the histogram distributions of ME for 10 DEM products relative to ICESat-2 ATL08 benchmark. The 

histogram distributions illustrate that the entire curve of both local and global DEMs shifts towards negative and positive 

biases, respectively. These shifts indicate that local DEMs, including LDD DEM, JICA DEM, and merged LDD-JICA DEM, 

exhibit a negative bias in elevation relative to the ICESat-2 ATL08 benchmark, with ME averages of -1.30 m, -0.65 m, and -475 

0.68 m, respectively.  

Conversely, the shifts observed in the histogram distribution of global DEMs, including ASTERv3 DEM, SRTMv3 DEM, 

Merit DEM, GLO30 DEM, FABDEMv1-2 DEM, TanDEM-X DEM, and TanDEM-EDEM DEM, indicate a positive bias of 
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the elevation of ICESat-2 ATL08 benchmark. The ME averages for these DEMs were +4.78 m, +2.03 m, +1.56 m, +0.84 m, 

+0.25 m, +0.94 m, and +0.91 m, respectively. Further details are provided in Figure A 7 and Figure A 8, illustrating the mean 480 

absolute error (MAE) and mean squared error (MSE), respectively. 

Table 6: Table of statistical metrics, comparing 10 DEM products against the ICESat-2 benchmark. The resulting averages are 

computed across the datasets in study area. 

DEM product Scale Statistical method 

ME (m.) MAE (m.) MSE (m.) RMSE (m.) PBIAS (%) 

LDD Local -1.30 1.64 5.45 2.33 -34.76 

JICA Local -0.65 1.04 3.51 1.87 -17.00 

merged LDD-JICA Local -0.68 1.08 3.74 1.93 -15.38 

Average local DEMs -0.88 1.25 4.23 2.04 -22.38 

ASTER Global +4.77 5.57 44.28 6.65 47.71 

SRTM Global +2.04 2.58 12.92 3.59 27.99 

MERIT Global +1.56 1.79 6.76 2.6 22.99 

GlO30 Global +0.84 1.3 5.89 2.43 13.87 

FABDEMv1-2 Global +0.25 0.8 3.79 1.95 4.59 

TanDEM-X Global +0.94 1.73 13.29 3.65 15.24 

TanDEM-EDEM Global +0.91 1.43 7.74 2.78 14.84 

Average global DEMs +1.62 2.17 13.52 3.38 21.03 

5.2.2 Grid comparison evaluation results 

Figure 7 displays the ME spatial grid comparison of 10 DEM products against the ICESat-2 ATL08 benchmark, with a 485 

resolution of 5x5 km. As shown in the figure, the local DEMs indicated overall lower values than the benchmark, with LDD 

DEM showing the lowest ME. In contrast, the overall ME spatial grid comparison of global DEMs was higher than the 

benchmark and clearly reveals that most global DEMs exhibit poor performance in urban areas. Notably, in the lower middle 

of the study area lies Bangkok, the capital city of Thailand. However, the FABDEMv1-2 DEM performed better in urban areas 

compared to other global DEMs, which can be attributed to the fact that vegetation and buildings are eliminated in this DEM 490 

described in Sect. 3.3.8 and (Dandabathula et al., 2023). 

5.2.3 Track-wise comparison evaluation results 

The track-wise comparison involves comparing the land elevation profile over the study area between the 10 DEM products 

and ICESat-2 ATL08 benchmark (cf.Figure 8). As shown in Figure 8, it is evident that the local DEMs exhibit lower land 

elevation compared to the ICESat-2 ATL08 benchmark. For most of the tracks, the LDD DEM measures a lower elevation 495 

than benchmark, while the JICA and merged LDD-JICA DEM follow the ICESat-2 ATL08 measurements more closely. This 

trend is consistent along the majority of the tracks, indicating that the LDD DEM a negative bias in elevation when compared 

to ICESat-2. Additionally, both the JICA and merged LDD-JICA DEMs closely track the ICESat-2 measurements for most of 

the tracks. Moreover, local DEMs show lower elevations in urban areas, in agreement with ICESat-2 ATL08. However, we 
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expect that both local DEMs and ICESat-2 ATL08 still have residual positive bias compared to the true bare earth elevation 500 

in urban areas.  

The overall result of the track-wise comparison of global DEMs shows a higher elevation than the benchmark, especially in 

urban areas, clearly indicating higher elevations in these urban areas, as illustrated in Figure 8. In most tracks, ASTERv3 and 

SRTMv3 DEMs exhibit a notable positive bias and fluctuations compared to the benchmark. Meanwhile, Merit, GLO30, 

TanDEM-X, and TanDEM-EDEM DEMs tend to follow a fluctuating pattern and measure slightly higher than the benchmark's 505 

track. FABDEMv1-2 closely aligns with the benchmark, indicating its strong performance. The track-wise comparison 

provides more detailed information in Appendix A. 

The summary results of the evaluation of the 10 DEM products are presented in the parallel plot shown in Figure 9, which 

displays the 10 DEM products along with the results of statistical methods including MAE, RMSE, and DEM resolution. In 

the local DEM products, it is notable that the LDD DEM exhibits higher error and resolution compared to the JICA and merged 510 

LDD-JICA DEMs. Both the JICA and merged LDD-JICA DEMs demonstrate similar accuracy, but the JICA DEM does not 

cover the entire study area (Figure 2). Therefore, we utilized the merged LDD-JICA DEM from the local DEM product to 

implement the 1D-2D flood model. For the global DEM product, the FABDEMv1-2 demonstrates the best performance 

compared to other global DEM products. Therefore, we selected the FABDEMv1-2 DEM to implement in the 1D-2D flood 

modelling, even though its spatial resolution is lower than TanDEM-X DEM. 515 
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Figure 9: The parallel plot of 10 DEMs evaluation with the ICESat-2 ATL08 benchmark. 

5.3 Results of the evaluation of flood inundation maps 

We evaluated simulated flood maps produced using two DEMs: 1) the merged LDD-JICA DEM and 2) the FABDEMv1-2 

DEM, as described in Section 5.2 from the 1D-2D flood model. The simulated flood map generated by the 1D-2D flood model, 525 

referred to as the Model flood map, were evaluated using flood maps from WorldWater and GISTDA for September, October, 

and November (flood season) in the years 2017 and 2021. The 1D-2D flood model generated daily simulated flood maps. To 

ensure accurate comparisons, we selected the dates of satellite passes over the study area according to WorldWater and 

GISTDA datasets. These dates were then combined to represent the flood areas that occurred in each month. The results of the 

flood map evaluation were categorized based on the DEM and compared to the flood maps from WorldWater and GISTDA. 530 

Table 7 provides a comparison of the POD, FAR, and CSI scores for the flood simulation using the merged LDD-JICA DEM, 

month, and year. Overall, the flood model using the merged LDD-JICA DEM tends to overestimate flooding, particularly in 

the eastern part of the study area. This overestimation in the eastern part of the study area was attributed to the boundary 

between the JICA and LDD DEMs in the merged LDD-JICA DEM. The average FAR values of 0.926 and 0.790, along with 

POD values of 0.713 and 0.585 compared to WorldWater and GISTDA flood maps, respectively, indicate that the Model flood 535 

map portrays a larger flood extent while still effectively detecting floods. The average CSI values of 0.072 and 0.183 indicate 

low model performance and a reflection of the larger flood extent simulation when compared to the flood maps by WorldWater 

and GISDTA. The overall flood map evaluation based on the FABDEMv1-2 DEM indicates that the Model flood map tends 

to overestimate, with average FAR values of 0.916 and 0.730 compared to WorldWater and GISTDA flood maps, respectively. 

Meanwhile, the average CSI values of 0.081 and 0.230 indicate low performance. 540 

Figure 10 shows flood maps and contingency tables for September, October, and November in 2017 and 2021. Figure 10(a-1) 

presents contingency tables comparing WorldWater monthly SWE and Model flood maps based on the merged LDD-JICA 
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DEM in 2017. The results of the evaluation show low CSI values of 0.046, 0.071, and 0.076 for September, October, and 

November in 2017, respectively, indicating that the Model flood map based on the merged LDD-JICA DEM has low 

performance. Additionally, the number of False alarms was high, resulting in high FAR values of 0.952, 0.926, and 0.923 for 545 

September, October, and November in 2017, respectively. Figure 10(b-1) illustrates contingency tables comparing GISTDA 

and Model flood maps based on the merged LDD-JICA DEM in 2017. The POD values of 0.259, 0.567, and 0.642 are due to 

the high number of Misses, particularly in September in the upper part of the study area. Moreover, the results show more false 

alarms in the eastern part of the study area, attributed to the combination of LDD and JICA DEMs. The FAR values of 0.913, 

0.727, and 0.699 for September, October, and November in 2017, respectively. The CSI values were low in September at 0.070 550 

but increased to 0.226 and 0.258 for October and November, respectively. The detailed statistics are summarized in Table 7. 

Figure 10(a-2) and Figure 10(b-2) present contingency tables comparing WorldWater and Model, and GISTDA and Model for 

each month in 2021, respectively. The results of flood map evaluation in 2021 followed a similar trend to that of the 2017 

flood. In Figure 10(a-2), low CSI values of 0.091, 0.071, and 0.075 are depicted for September, October, and December in 

2021, respectively. Additionally, FAR values of 0.903, 0.928, and 0.923, and POD values of 0.593, 0.845, and 0.835, were 555 

high observed for September, October, and November in 2021, respectively. These values suggest that the WorldWater flood 

map indicates a smaller flood extent compared to the Model flood map based on the merged LDD-JICA DEM. Figure 10(b-2) 

illustrates an increase in CSI values to 0.133, 0.214, and 0.200 for September, October, and November in 2021, respectively, 

confirming that the Model flood map based on the merged LDD-JICA DEM fit the GISTDA flood map as well. However, the 

FAR values were high at 0.852, 0.760, and 0.790 for September, October, and November in 2021, respectively, indicating that 560 

the Model flood map based on the merged LDD-JICA DEM shows overestimated flood extents. Despite this, the POD values 

of 0.564, 0.667, and 0.810 suggest that the Model flood map based on the merged LDD-JICA DEM can effectively detect 

GISTDA flood map extents, particularly in October and November. 

Figure 11 shows flood maps and contingency tables in 2017 and 2021. Figure 11(a-1) illustrates contingency tables comparing 

WorldWater and Model flood maps based on FABDEMv1-2 DEM for each month in 2017. The evaluation results clearly 565 

indicate that the Model flood tends to overestimate the extent of flooding, as evidenced by FAR values of 0.946, 0.913, and 

0.914 and low CSI values of 0.052, 0.084, and 0.085 in September, October, and November in 2017, respectively. However, 

the POD values were high, with values of 0.625, 0.710, and 0.907 in September, October, and November, respectively, 

indicating that the Model flood map based on FABDEMv1-2 DEM can effectively detect the WorldWater flood map as well, 

as shown in Table 7. Figure 11(b-1) presents contingency tables comparing GISTDA and Model floods for each month in 570 

2017. The Figure 11(b-1) confirms the observations made in Figure 11(a-1), indicating that the Model flood map tends to 

overestimate the extent of flooding compared to the GISTDA flood map. However, the FAR values decrease slightly to 0.834, 

0.612, and 0.591, and the POD values decrease to 0.331, 0.664, and 0.672 in September, October, and November in 2017, 

respectively. The decrease in POD is attributed to a higher number of Misses in the upper part of the study area, suggesting 

that the GISTDA flood map depicts more flooding than the Model flood map based on FABDEMv1-2 DEM. On the other 575 

hand, the CSI improved to 0.124, 0.325, and 0.341 in September, October, and November in 2017, respectively, indicating 
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that the model results are more accurate when compared with GISTDA flood map. Additionally, the figure illustrates that the 

GISTDA flood map shows a greater extent of flooding compared to the WorldWater flood map. 

Figure 11(a-2) and Figure 11(b-2) depict contingency tables comparing WorldWater and Model, and GISTDA and Model for 

each month in 2021, respectively. The Model flood map based on FABDEMv1-2 DEM exhibits an overestimation of flooding, 580 

particularly noticeable in the eastern part of the study area. Figure 11(a-2) illustrates high FAR values of 0.887, 0.920, and 

0.916 that indicating that there are more False alarms in September, October, and November, respectively. The POD was high 

values of 0.584, 0.885, and 0.850 and low CSI values of 0.105, 0.079, and 0.083 in September, October, and November in 

2021, respectively. This figure illustrates that the Model and the WorldWater flood map indicates more and less flooding, 

respectively. Figure 11(b-2) reveals more Misses in the upper part of the study area, resulting in a decrease in the POD values 585 

to 0.502, 0.680, and 0.837 compared to Figure 11(a-2). Despite this, the FAR values remain high at 0.832, 0.738, and 0.776, 

particularly notable in the eastern part of the study area. However, the Model flood map effectively detects the GISTDA flood 

map as well. The CSI values of 0.144, 0.234, and 0.215 for September, October, and November in 2021, respectively, indicate 

that the Model flood map exhibits improved accuracy in comparison to the GISTDA flood map.  

The overall assessment of the Model flood map, based on both the merged LDD-JICA and FABDEMv1-2 DEMs, indicates 590 

an overestimation of flood extent compared to both WorldWater and GISTDA flood maps. When comparing the model flood 

map based on the merged LDD-JICA DEM and FABDEMv1-2 DEM with each of the WorldWater and GISTDA flood maps, 

the results consistently indicate a slight improvement in performance for the Model flood map based on FABDEMv1-2. The 

CSI of the Model flood map based on FABDEMv1-2 increases by 0.010 and 0.047 compared to the Model flood map based 

on the merged LDD-JICA DEM for WorldWater and GISTDA flood maps, respectively. Additionally, the FAR is reduced by 595 

approximately 0.010 and 0.060 for WorldWater and GISTDA flood maps, respectively. Although the study used flood 

classification processing to extract riverine flood maps from the SWE map for comparison, there are still limitations. 

Continuous improvement in flood classification process are necessary. The study results show that the overall assessment of 

flood simulation based on FABDEMv1-2 DEM reveals a slight improvement of 13.55-25.56% in terms of the CSI compared 

to flood simulation based on the merged LDD-JICA DEM. However, the DEM is one factor contributing to improved 600 

performance, many other factors still require further improvement. 

Figure 12 illustrates the overall performance of the Model flood map, based on both the merged LDD-JICA and FABDEMv1-

2 DEMs. The results are presented in three box plots, corresponding to the evaluation metrics: POD, FAR, and CSI. 

FABDEMv1-2 exhibits a slightly higher median POD than the merged LDD-JICA, indicating a better ability to correctly detect 

flood events. The interquartile range (IQR) for the merged LDD-JICA is wider, suggesting greater variability in detection 605 

performance compared to FABDEMv1-2, which shows more consistent POD values. Both DEMs show relatively high FAR 

values, with the merged LDD-JICA having a slightly higher median FAR, indicating it generates more false alarms. 

FABDEMv1-2 has a smaller IQR, reflecting more consistent performance in minimizing false alarms compared to the merged 

LDD-JICA. Additionally, FABDEMv1-2 demonstrates a significantly higher median CSI than the merged LDD-JICA, 
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reflecting superior overall performance in balancing correct detections and false alarms. The narrower IQR for FABDEMv1-610 

2 suggests more consistent performance, while the merged LDD-JICA shows greater variability in CSI values. 

 

Table 7: The statistical metrics of the contingency table, comparing flood map dimensions 1 and 2. 

Time Dimension 1: WorldWater 

Dimension 2: Model 

Dimension 1: GISTDA 

Dimension 2: Model 

DEM product 

POD FAR CSI POD FAR CSI 

2017-09 0.549 0.952 0.046 0.259 0.913 0.070 merged LDD-JICA 

2017-10 0.612 0.926 0.071 0.567 0.727 0.226 merged LDD-JICA 

2017-11 0.842 0.923 0.076 0.642 0.699 0.258 merged LDD-JICA 

2021-09 0.593 0.903 0.091 0.564 0.852 0.133 merged LDD-JICA 

2021-10 0.845 0.928 0.071 0.667 0.760 0.214 merged LDD-JICA 

2021-11 0.835 0.923 0.075 0.810 0.790 0.200 merged LDD-JICA 

Total average 0.713 0.926 0.072 0.585 0.790 0.183 merged LDD-JICA 

2017-09 0.625 0.946 0.052 0.331 0.834 0.124 FABDEMv1-2 

2017-10 0.710 0.913 0.084 0.664 0.612 0.325 FABDEMv1-2 

2017-11 0.907 0.914 0.085 0.672 0.591 0.341 FABDEMv1-2 

2021-09 0.584 0.887 0.105 0.502 0.832 0.144 FABDEMv1-2 

2021-10 0.885 0.920 0.079 0.680 0.738 0.234 FABDEMv1-2 

2021-11 0.850 0.916 0.083 0.837 0.776 0.215 FABDEMv1-2 

Total average 0.760 0.916 0.081 0.614 0.730 0.230 FABDEMv1-2 
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Figure 12: box plots illustrating the performance of the flood model based on the merged LDD-JICA and FABDEMv1-2 DEMs 

across three statistical metrics: (a) Probability of Detection (POD), (b) False Alarm Ratio (FAR), and (c) Critical Success Index 620 
(CSI). 

6 Discussion 

6.1 Overall result of DEM analysis workflow 

The result of DEM analysis shows that ICESat-2 ATL08 data offer a unique advantage in verifying DEM accuracy (Carabajal 

and Boy, 2020). The overall precision of DEM products was evaluated using the ICESat-2 ATL08 benchmark, showing that 625 

JICA and FAMDEMv1-2 DEM were significantly better than the local and global DEM products in terms average of RMSE, 

with values of 1.87 m and 1.95 m, respectively (Figure 5 and Table 6) in point comparison. The merged LDD-JICA DEM 

showed a slight difference of 0.06 m in average RMSE compared to the JICA DEM. This variance is primarily attributed to 

the combination of LDD and JICA DEMs, with JICA DEM being chosen as the primary DEM. However, it is noteworthy that 

the local DEM product exhibited a negative average bias (ME) ranging from -1.30 to -0.65 m, indicating that elevation of local 630 

DEM products is lower than the benchmark. Another study conducted in Spain, which verified Airborne LiDAR data with 

ICESat-2 ATL08, also reported a negative bias, with average ME values of -0.48 m (Zhu et al., 2022). On the other hand, the 

average ME of the global DEM products yielded positive values ranging from 0.25 to 4.77 m, indicating that the global DEM 

products overestimate the benchmark. This result has been previously confirmed in studies such as ASTERv3 (Weifeng et al., 

2024), STRMv3 and TanDEM-X (Liu et al., 2020). The ASTERv3 DEM showed the lowest overall accuracy, with an average 635 

RMSE of 6.65 m. This is in line with other areas, such as the Qinghai-Tibet Plateau, where the RMSE reached 11.47 m 

(Weifeng et al., 2024).  The TanDEM-EDEM is an updated version of TanDEM-X, which can reduce the error value from 

3.65 to 2.78 m in terms of average RMSE. 

(a) (b) (c)
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In Figure 7, Figure A 10, and Figure A 11 illustrate the spatial grid comparison of 10 DEM products against the ICESat-2 

ATL08 benchmark, with a resolution of 5x5 km for ME, MAE, and RMSE, respectively. The results clearly reveal that the 640 

global DEM tends to overestimate, particularly when compared to the ASTERv3 DEM. As shown in the figures, the error of 

the global DEM clearly clusters in urban areas, except for the FABDEMv1-2, which employs an algorithm to remove building 

discrepancies, as discussed in Sect. 3.3.8. Although, ICESat-2 ATL08 is capable of measuring land elevation very accurately, 

some urban areas still exhibit positive bias, particularly in high-rise dense areas (Liu et al., 2020), as shown in Figure 8. This 

suggests that the DEM analysis workflow can effectively utilize ICESat-2 ATL08 data for evaluation. In certain areas, the 645 

incorporation of ATL03 data may be necessary to enhance the evaluation process. 

6.2 Overall result of flood map analysis workflow 

The flood classification processing aims to classify flood types from SWE map. This method is based on various assumptions 

and simplifications. The validity of the approach is hard to evaluate, given the lack of ground-truth flood extent observations. 

However, it is evident that in this study area, surface water extent is not only due to riverine flooding but also various other 650 

flooding mechanisms such as irrigation and pluvial flooding.  

The Model flood map, based on both Model and FABDEMv1-2 DEMs, tends to overestimate flood extent compared to the 

classified flood maps derived from SWE data provided by the GISTDA and WorldWater projects. Additionally, the flood map 

based solely on FABDEMv1-2 performs slightly better than the one based on the merged LDD-JICA DEM, with an 

improvement of approximately 13.55 – 25.56 percent according to the CSI. The overestimation of flood inundation from the 655 

flood model occurs predominantly in the eastern part of the CPY River, indicating a clear need for improvement the 1D-2D 

flood model. Although this study has incorporated high-quality DEM data implemented into the 1D-2D flood model, there are 

still many factors affecting flood map generation. For instance, the 1D-2D flood model, developed long ago (Sect. 3.1), needs 

to be updated and recalibrated due to continuous developments in water management plans, such as the Ayutthaya Bypass 

channel (JICA, 2018) and ongoing land use changes in the lower CPY basin (Visessri and Ekkawatpanit, 2020), which impact 660 

flood map simulations.  

The results of the flood map comparisons demonstrate that the CSI value is relatively better when compared with GISTDA, 

but lower when compared with WorldWater. It is observed that the overall WorldWater flood map shows relatively low 

flooding compared to the GISTDA flood map. This is due to fundamental differences in the mapping approaches with 

WorldWater aiming to provide long-time series of the typical distribution and persistence of monthly surface water presence 665 

whereas GISTDA is targeting real time maps showing the extent of flooding at a specific moment in time. Additionally, 

WorldWater uses only Sentinel-1 and Sentinel-2 data, whereas GISTDA combines data from multiple other satellites, as 

described in Sect. 3.5.1. This can be further verified for accuracy with additional information from news sources and by cross-

referencing with ICESat-2 ATL13 data, extracted from ICESat-2 ATL03 (inland water surface heights), in main rivers ((Coppo 

Frias et al., 2023) and (Dandabathula and Srinivasa Rao, 2020)). This suggests that the flood analysis workflow can effectively 670 

verify the performance of flood simulation using satellite data. Although the flood simulation results in this study meet 
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acceptable standards and are sufficiently reliable for practical applications, the SWE data were generated using different 

algorithms and satellite sources, resulting in variations in the datasets. These observed datasets were subsequently compared 

to simulated flood maps derived from various DEM products. 

6.3 Advantages and Limitations 675 

This study proposes enhance  the performance of 1D-2D flood models using satellite laser altimetry and multi-mission surface 

water extent maps from EO data. The proposed workflows, encompassing comprehensive DEM analysis and flood map 

analysis, are designed be adaptable, scalable, and standardized for the development of 1D-2D flood models. These workflows 

enable their application across diverse spatial domains, ranging from local to national scales, and can be readily tailored to 

address flood management challenges in other regions or countries.  680 

Furthermore, the increasing availability of EO data has proven highly effective in improving the accuracy of 1D-2D flood 

models, particularly in calibration and validation processes. ICESat-2 data, with its high precision and 91-day exact repeat 

orbit, serves as a robust benchmark for evaluating DEM products. Its near-real-time capability is particularly beneficial in 

areas undergoing rapid land-use changes. Freely available global DEM products, developed using advanced EO techniques, 

provide high-resolution and high-quality elevation data essential for accurate modeling. 685 

Datasets such as WorldWater's SWE maps and GISTDA's flood maps are valuable resources for assessing the accuracy and 

reliability of simulated flood maps. By comparing observed flood extents with model outputs, these datasets help identify 

discrepancies, refine model parameters, and enhance the performance of flood models. This iterative process facilitates the 

development of more reliable and accurate tools for flood forecasting and management. 

Despite these advantages, EO data is not without limitations. For instance, ICESat-2 offers an elevation accuracy of 690 

approximately 0.70 m  ((Neuenschwander and Pitts, 2019) and (Carabajal and Boy, 2020)). However, delays or gaps in EO 

data acquisition, as discussed in Sect. 3.4 and 3.5, can affect the evaluation of simulated flood maps. Furthermore, while the 

best available DEMs were selected for this study, elevation inaccuracies in certain areas may still compromise the precision 

of flood inundation maps. Periodic updates to the data, as explained in Sect.6.2, are necessary to address these limitations and 

maintain modeling accuracy. 695 

6.4 Future applications 

The workflows developed in this study represent a significant advancement in upgrading 1D-2D flood models by integrating 

satellite laser altimetry and multi-mission satellite surface water extent (SWE) maps. These workflows not only enhance the 

accuracy and reliability of flood inundation simulations but also offer scalable solutions for improving flood forecasting 

systems across multiple regions. Their success in the Chao Phraya River Basin sets the foundation for expanding these 700 

methodologies to other regions of Thailand, including the Eastern (Finn et al., 2018), Northeastern (Thanathanphon et al., 

2014), Southern, and Western regions. These regions will benefit from improved model calibration, validation, and more 
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accurate flood forecasts, thereby supporting better decision-making for flood mitigation, response, and water resource 

management. 

Moreover, satellite technology offers new opportunities for measuring water surface elevation (WSE) such as ICESat-2 ATL13 705 

(Jasinski et al., 2023), Surface Water and Ocean Topography (SWOT) (Biancamaria et al., 2016), CryoSat-2 ((Kittel et al., 

2021);(Shen et al., 2020)), Jason-2 and Envisat (Okeowo et al., 2017). These technologies enhance calibration, validation, 

error diagnosis, and monitoring of main river systems, especially in areas with limited ground-based instrumentation. 

On a broader scale, the workflows could be adapted for use in other countries, particularly in regions facing similar challenges 

related to data scarcity, terrain complexity, and high flood risk. The integration of satellite EO data, combined with local 710 

hydrological models, could provide valuable insights for flood-prone regions across Southeast Asia and beyond, contributing 

to global efforts in disaster risk reduction and climate resilience. 

7 Conclusion 

The present study enhanced the performance of 1D-2D flood models using satellite laser altimetry and multi-mission surface 

water extent maps from Earth Observation (EO) data. We demonstrated two workflows in the lower CPY basin.  715 

 DEM analysis workflow:  This involved evaluating DEM accuracy using satellite laser altimetry data from ICESat-2 

ATL08 before integrating the DEM products into the flood model. The assessment aimed to assess the overall performance 

of DEM products through vertical, spatial, track-wise analysis, and statistics measures to select the most suitable DEM 

for the study area. Furthermore, this workflow is transferable to other study areas, providing a method to reduce 

uncertainty before developing flood models. The results show that the merged LDD-JICA and FABDEMv1-2 DEMs are 720 

highly suitable in the study area, with RMSE values of 1.93 and 1.95 m., respectively. 

 Flood map analysis workflow: This workflow encompassed riverine flood classification and the evaluation of simulated 

flood maps generated by the 1D-2D flood model using multi-mission satellite SWE maps. While the flood classification 

algorithm still presents challenges, it is important to recognize that SWE maps derived from satellite EO cannot be directly 

compared with the output of flood models without further processing. The flood map evaluation method facilitated the 725 

assessment of flood simulation accuracy against satellite SWE maps, employing statistical and spatial analyses. These 

evaluations contribute significantly to the calibration and validsation of flood maps derived from the 1D-2D flood model. 

The results indicate that simulated flood maps based on FABDEMv1-2 DEM can improve the performance of the 1D-2D 

flood model by 13.55% to 25.56%, as determined by the CSI, when compared to simulated flood maps based on the 

merged LDD-JICA DEM. 730 

Integrating these workflows will enhance the efficiency of the 1D-2D flood model and showcase the potential of utilizing EO 

satellite data to enhance flood modelling capabilities for operational flood forecasting in Thailand and elsewhere. 
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Appendix A 

Table A 1: Descriptive statistics of ten different DEM products. 735 

DEM product 

Statistical Parameters 

Min (m.) Max (m.) Mean (m.) Standard 

Deviation (m.) 

Median 

ICESat-2 ATL08 -7.00 218.42 5.29 6.81 2.49 

LDD -9.41 254.27 4.34 7.75 1.51 

JICA -22.97 239.31 4.20 5.48 1.95 

merged LDD-

JICA 
-16.00 378.73 5.21 8.26 1.87 

ASTER -2.00 267.93 6.23 8.23 2.85 

SRTM -34.97 262.17 8.02 8.47 5.25 

MERIT -1.29 257.32 7.53 8.17 4.34 

GlO30 -15.93 271.15 6.87 8.30 4.15 

FABDEMv1-2 -14.99 267.93 6.22 8.23 2.85 

TanDEM-X -7.00 274.93 7.06 8.48 4.24 

TanDEM-EDEM -36.91 271.26 6.93 8.35 4.13 

 

 

Figure A 1: 1D-2D Flood model 
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