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Abstract. Due to the long memory of snow processes, statistical seasonal streamflow predictions in snow-dominated 

catchments typically rely on snowpack estimates. Using mountainous catchments in Central Asia as a case study, we 

demonstrate how seasonal hydrological forecasts benefit from incorporating large-scale climate oscillations (COs). First, we 15 

examine the teleconnections between the major COs and peak precipitation season in eight catchments across the Pamir and 

Tian-Shan mountains from February to June. We then employ a machine learning framework that incorporates snow water 

equivalent (SWE) and dominant COs indices as predictors for mean discharge from April to September. Our workflow 

leverages an ensemble technique that uses multiple SWE estimates from near-time global data sources and diverse types of 

explainable machine-learning models. We find that the winter states of the El Niño-Southern Oscillation and the North Atlantic 20 

Oscillation enhance SWE-based forecasts of seasonal discharge in the study catchments. We identify three instances in which 

the inclusion of COs as additional predictors could be instrumental for snowpack-based seasonal streamflow forecasting: 1) 

when forecasts are issued at extended lead times and accumulated SWE is not yet representative of seasonal terrestrial water 

storage; 2) when climate variability during the forecasted season plays a larger role in shaping seasonal discharge; and 3) SWE 

estimates for a catchment are subject to larger uncertainty. Our approach provides a novel way to reduce uncertainties in 25 

seasonal discharge predictions in data-scarce snowmelt-dominated catchments. 

1. Introduction 

Snowmelt-driven streamflow is a vital source of water supply for downstream regions around the globe, where it sustains 

ecosystems, agriculture, hydropower, and numerous other human activities (Immerzeel et al., 2020; Viviroli et al., 2007).  It 

is estimated that around two billion of the world`s population lives in snow-sensitive basins (Mankin et al., 2015) and it is 30 

projected that around a quarter of world`s lowland population will be critically dependent on snow- and glacier-melt runoff 

from mountains by the middle of the century (Viviroli et al., 2020). Accurate water availability forecasts are essential for the 

sustainability and resilience of water-dependent human and ecological systems in these regions.    

 

Seasonal streamflow forecasts are usually generated using either dynamic or statistical approaches. Dynamic forecasts 35 

encompass a hydrological or land-surface model to estimate current hydrologic conditions, typically with assimilation of 

observational data and climate forecasts to update and correct the resulting model state variables (Troin et al., 2021). One 

major advantage of dynamical approaches is the continuous production of future streamflow states (Modi et al., 2022). On the 

other hand, one of the main limitations of dynamical forecasts is their high computational demands and dependence on spatially 

distributed meteorological variables obtained from numerical climate models, which might be prone to uncertainties. Statistical 40 

approaches rely on the empirical relationship between one or multiple variables and seasonal streamflow. In this respect, 
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statistical hydrological forecasts in the context of snow-dominated catchments offer advantages in terms of lower 

computational complexity and reliance primarily on initial hydrological conditions. 

 

Because accumulated snowpack is a primary source of predictability of river streamflow in snowmelt-dominated basins 45 

(Pechlivanidis et al., 2020), statistical forecasts of seasonal streamflow often rely solely on accumulated snowpack. Emerging 

evidence suggests that statistical-based forecast techniques that leverage initial hydrological conditions and large-scale climate 

indices could improve skill compared to current forecast approaches (Mendoza et al., 2017; Lehner et al., 2018). Apart from 

cases when catchments are influenced by strong teleconnections with large-scale climate oscillations (Mendoza et al., 2017), 

it remains unclear under what other conditions combining snow with climate indices offers benefits.  50 

 

Water is inextricably intertwined with the development challenges of Central Asia, yet its timely availability during vegetation 

season remains erratic. The hydrological discharge in Central Asian rivers is subject to large seasonal temperature and 

precipitation cycles; the latter falls as snow in winter, and its melting contributes to spring and summer runoff. The high 

variability of precipitation during the cold season thus eventually determines high interannual volatility of river streamflow in 55 

Central Asian endorheic rivers since most discharge originates from snowmelt in the Pamir and Tian Shan mountains (Viviroli 

& Weingartner, 2004). This high hydroclimatic variability subsequently underscores the need for improved water availability 

forecasting during the irrigation season (Xenarios et al., 2019). 

 

Research on seasonal river discharge forecasting in Central Asia can be classified into two mainstream approaches. One 60 

approach explored the predictability of mean discharge during April-September (from now on referred to as ‘vegetation 

season”) by using estimates of terrestrial water storage that accumulates in mountain catchments throughout preceding 

November to March (from now on referred to as “cold season”). Terrestrial water storage in Central Asia is dominated by 

large annual cycles, with most precipitation during the extended cold season that lasts from autumn to spring and accumulates 

as snowpack in the mountain catchments. In the absence of in-situ snow water equivalent (SWE) data, several studies explored 65 

the use of proxies such as cumulative precipitation over the cold season (Dixon and Wilby, 2016; Schär et al., 2004), or 

satellite-derived snow cover derived from satellite, antecedent discharge, and other predictors (Apel et al., 2019; Gafurov et 

al., 2016). 

 

Another approach uses climate indices of global climate oscillations as predictors, some of which are known to have a 70 

noticeable impact on hydroclimate variability in Central Asia. It was found that El Niño-Southern Oscillation (ENSO) during 

its warm phase (aka El-Niño) increases precipitation intensity in Central Asia, most pronounced from autumn to summer 

(Mariotti, 2007; Chen et al., 2018). In contrast, ENSO in its cold phase (i.e. La-Niña) is associated with below-average 

precipitation in the region. The Pacific Decadal Oscillation (PDO) can intensify ENSO's effects: during ENSO's La Niña phase, 

when the PDO is in its negative phase, Central Asia is more susceptible to severe droughts (Wang et al., 2014). The North 75 

Atlantic Oscillation (NAO), Scandinavian pattern (SCAN), and East Atlantic/Western Russia pattern (EAWR), all of which 

refer to periodic fluctuations in atmospheric pressure between specific regions of the Atlantic Ocean and Eurasia, are also 

known to affect hydroclimatic variability in Central Asia (Syed et al., 2010). Several studies previously showed that indices 

of these climate oscillations can be used for forecasting seasonal precipitation (Gerlitz et al., 2019; Umirbekov et al., 2022) 

and streamflow in the region (Barlow and Tippett, 2008; Dixon and Wilby, 2019).   80 

 

Both approaches have strengths and weaknesses. Using terrestrial water storage estimates as predictors produces accurate 

seasonal runoff predictions, though their accuracy gradually degrades with extending lead times (Apel et al., 2018). In contrast, 

climate indices offer seasonal hydrological outlooks well before the start of the vegetation season, though at the cost of higher 
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uncertainties. Combining the strengths of both approaches into a two-tiered approach was suggested for forecasting seasonal 85 

runoff (Gerlitz et al., 2020). Accordingly, early seasonal outlooks should employ large global oscillations to predict cold season 

precipitation anomalies. By the start of the vegetation season, seasonal hydrological projections should rely more on the 

abovementioned proxies of seasonal water storage. However, a common approach to seasonal hydrological forecasting 

typically builds on two main elements: initial hydrological conditions and future climate variability (WMO, 2021). From this 

perspective, combining the main predictors the two approaches rely on could be more appropriate: so that the accumulated 90 

catchment snowpack represents the initial hydrological conditions, and climate oscillation indices serve as precursors to 

climate variability during the targeted season.   

 

Another challenge hampering the development of advanced forecasting techniques in the region is a scarcity of in-situ 

meteorological observations, particularly for snow mass measurements. In the past, local hydrometeorological agencies used 95 

to conduct snow depth measurements across the region's main catchments. This practice was discontinued mainly due to the 

underfinancing of the relevant agencies that persisted for the past three decades (Xenarios et al., 2019). Satellite or reanalysis 

datasets available in near-real time can be an alternative source for estimating SWE. Still, they might be prone to inherent 

uncertainties and insufficient spatial resolution to capture variations of accumulated SWE in complex terrain. A promising 

option to reduce uncertainty in modelled products is to apply an ensemble technique instead of relying on a single model 100 

estimate (Murray, 2018; Zounemat-Kermani et al., 2021).  

 

This paper aims to introduce and test a new framework for statistical forecasts of seasonal river discharge in snow-dominated 

catchments by coupling estimates of snow water equivalent with climate oscillation indices that condition hydroclimatic 

variability in the upcoming season.  Our approach relies on an ensemble of diverse estimates of catchment-averaged SWE 105 

derived or simulated using multiple global reanalysis products supplemented with climate indices that affect hydroclimatic 

variability across Central Asia. We used generalized linear regression and machine learning techniques, such as Random 

Forest, Gaussian Process, and Support Vector Regression, which produce a range of individual forecasts. Finally, we employ 

an ensemble stacking approach, a type of ensemble learning that uses the forecasts from individual models as inputs to a model 

that produces a more reliable final prediction. 110 

2. Study Area 

The study area encompasses eight diverse snowmelt-dominated catchments in the Pamir, Hindukush, and Tian-Shan mountains 

(Figure 1, Table 1). The size of the selected catchments varies from 343 to 296,000 km2, and the mean catchment altitude 

ranges from 1,700 to 3,500 meters. The catchments include the largest rivers in the region, the Amudarya and Naryn (the main 

tributary of the Syrdarya), which embed several smaller tributary sub-catchments.  115 

 

Table 1. Major geographical and climatic characteristics of the study catchments 

 Catchment 
Gauging station 

name 

Station 

location 

 (lat, lon) 

Catchment 

area (km2) 

Catchment 

mean 

altitude 

(m.a.s.l) 

Mean 

seasonal 

discharge 

Apr-Sep 

(m3/sec) 

Mean annual 

precipitation 

(mm) 

1 Murghab Takhta Bazar 35.96, 62.91 35,582 1,710 41 320 

2 Amudarya Kerki 37.84, 65.23 296,300 2,550 1,876 380 
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 Catchment 
Gauging station 

name 

Station 

location 

 (lat, lon) 

Catchment 

area (km2) 

Catchment 

mean 

altitude 

(m.a.s.l) 

Mean 

seasonal 

discharge 

Apr-Sep 

(m3/sec) 

Mean annual 

precipitation 

(mm) 

3 Varzob Dagana 38.70, 68.79 1,279 2,700 79 654 

4 Vaksh Komsomolabad 38.86, 69.94 28,908 3,530 996 530 

5 Kashkadarya  Varganza 40.81, 73.26 343 2,663 18 530 

6 Zarafshan Dupuli 39.49, 67.80 10,310 3,125 243 516 

7 Naryn  Toktogul  41.77, 73.29 46,667 2,940 561 392 

8 Chu Kochkor 42.25, 75.83 5,305 2,934 35 391 

 

 

 120 
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Figure 1. Location of the study catchments (upper map), monthly means and ranges for precipitation and runoff in 
mm (bottom graphs) 

3. Data 

The predictant variable represents seasonal discharge, calculated as the mean discharge from April to September. We obtained 

monthly discharge data for the study catchments from 2000 to 2018 from hydrometeorological agencies in Central Asian 125 

countries. We aggregated these into mean discharge from April to September, resulting in approximately eighteen observations 

of seasonal discharge for each catchment. 

 

As the primary predictor variable, we use four basin-averaged SWE estimates that can be derived from near-real time global 

climate datasets available in near real time (Table 2). These include two SWE estimates from global and regional reanalysis 130 

datasets, i.e. ERA5-Land (Muñoz-Sabater et al., 2021) and Land Data Assimilation System Central Asia (McNally et al., 

2022). In addition, we simulated two SWE estimates using the GEMS snow model (Umirbekov et al., 2023) forced by global 

precipitation and temperature data available in near-real time. One simulated SWE time series is obtained by forcing the snow 

model with  the Multi-Source Weather dataset, which is generated by bias-correcting and downscaling ERA5 (Beck et al., 

2021). The fourth SWE estimate is simulated using precipitation estimates from the Integrated Multi-satellite Retrievals 135 

GPM IMERG (Huffman et al., 2019) and temperature estimates from MSWX. We used a ‘Late Run’ version of GPM IMERG 

precipitation estimates, accessible in near-real time albeit lacking adjustments using ground precipitation data as in the ‘Final’ 

product, which becomes available two months later.  

Candidates for additional predictors include the monthly indices of the El Niño–-Southern Oscillation (ENSO), the Pacific 

Decadal Oscillation (PDO), the North Atlantic Oscillation (NAO) and the Scandinavian Pattern (SCAN).  140 

 

Table 2. Snow water equivalent estimates and climate oscillation indices that were used as predictors in this study 

Type 
Predictor 

(abbreviation) 
Description Source 

Sn
ow

 W
at

er
 E

qu
iv

al
en

t e
st

im
at

es
 

ERA5-L 
Retrieved from the ERA5-Land 

reanalysis dataset 

Muñoz-Sabater et al., 

2021 

FLDAS 
Retrieved from the Land Data 

Assimilation System Central Asia 
McNally et al., 2022 

MSWX 

Simulated using GEMS model forced 

by precipitation and temperature 

estimates from Multi-Source Weather 

dataset 

Beck et al., 2021 

GPM 

Simulated using GEMS model forced by 

precipitation from GPM IMERG and 

temperature from MSWX datasets 

Huffman et al., 2019 

C
li

m
at

e 
O

sc
il

la
tio

n 

In
di

ce
s 

SOI Southern Oscillation Index Ropelewski and Jones 1987 

PDO Pacific Decadal Oscillation Mantua et al 1997 

EAWR 
East Atlantic/West Russia pattern 

(EAWR) 
Barnston and Livezey 1987 
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NAO North Atlantic Oscillation (NAO) Barnston and Livezey 1987 

SCAN Scandinavian pattern Barnston and Livezey 1987 

 

4. Methods 

4.1 Determining associations between climate oscillations and hydroclimatic variability across study 145 
catchments 

To determine linkages between the selected climate oscillations and hydroclimatic variability across the catchments, we 

calculated Spearman's rank correlations with precipitation during months with higher magnitude and interannual variability. 

We used the CHELSA-W5E5 precipitation dataset (Karger et al., 2022) to construct catchment-averaged precipitation time 

series from 1979 to 2016.  The annual precipitation cycle in the studied catchments exhibits two distinct sub-regional patterns 150 

(see Figure 1). Catchments in the Pamir and western Tian-Shan experience increasing precipitation during winter, peaking in 

the spring, and decreasing during summer. In contrast, the Naryn and Chu catchments, located in the interior and northern 

Tian-Shan, receive most precipitation from late spring to early summer and less precipitation in winter. Across all catchments, 

the interannual variability is greatest during the months with the highest precipitation totals. We have defined the common 

peak precipitation season for the region as February to June, since this period covers the months with the highest precipitation 155 

levels and the greatest interannual variability across all the studied catchments.We then calculated Spearman's rank correlation 

coefficient between the catchment averaged precipitation for February-July (referred to here as ‘peak precipitation season’) 

and each climate oscillation index at varied lead-lag times. To identify when oscillations show the strongest association with 

the precipitation season, we calculated the correlation for each oscillation index from August of the preceding year to July, the 

final month of the peak precipitation season.In addition, we calculated correlations between the climate indices and mean 160 

discharge during the vegetation season using the same procedure. 

 

4.2 Stacked ensemble-based prediction of seasonal discharge 

Our forecast modelling framework employs an ensemble stacking approach with four main steps (Figure 2). In the first stage, 

we combine each basin-averaged SWE estimate with climate oscillation indices at months when they exhibit higher association 165 

with in-season precipitation peaks. Four different SWE products result in four datasets with varying SWE estimates but the 

same set of selected climate oscillation indices for each catchment.  
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 170 

Figure 2. Workflow of the ensemble-based forecast approach 

We then use four different forecast models (from now on referred to as “base models”), each forced with the four input datasets 

to produce a range of 16 seasonal forecasts. The four base models are comprised of the generalized linear model (GLM), 

gaussian process regression with the linear kernel (GP), support vector regression with the linear kernel (SVR) and random 

forest (RF). The latter two model algorithms have parameters that control internal model complexity. For example, the “cost” 175 

parameter in SVR limits training errors against maximizing the margin of the decision function, and “mtry” in RF determines 

the number of predictors that can be taken into account at each split point of a single tree.  We set these parameters to relatively 

lower levels (cost=0.3 in the case of SVR and mtry=2 in the case of RF), which helps to avoid overfitting and facilitates a 

higher degree of generalizability.  

 180 

In the next step, we evaluate each of the 16 base model predictions using leave-one-out cross-validation (LOOCV).  Rather 

than using all 16 base model forecasts in subsequent steps, we apply a threshold that filters out weaker predictions. This 

threshold requires a leave-one-out cross-validated R-squared coefficient of base model performance to be greater than 0.2 to 

be considered for further analysis. This threshold was optimal during LOOCV regarding predictive performance for the 

stacking ensemble. 185 

 

In the final step, those base model predictions that pass the LOOCV test become inputs for a final forecast model (from now 

on called “ensemble model”). Since all selected base model predictions would exhibit some degree of correlation among 

themselves, we employ the SVR algorithm as a meta-learner model, which is known to be less sensitive to multicollinearity 

(Farrell et al., 2019). The final prediction of the meta-learner model is again assessed using LOOCV. Finally, we validate the 190 

resulting model using a few observations of seasonal discharge, which were held out during the training of the models. 

 

We apply the procedures described above for each standard forecast issue time adopted by hydrological agencies in Central 

Asia, starting from January 1st, that is a three-month lead time concerning the April-September season, and ending with the 

final forecast issued just before the start of the season, i.e., on April 1st.  Each forecast uses inputs that are accessible by its 195 

issue date. For example, three-month lead forecasts can only use estimates of catchment SWE by January 1st and state of 

climate oscillations in previous months. To attain parsimonious forecast models, rather than incorporating all studied climate 

oscillation indices into a set of predictors, we followed a stepwise approach: each of the climate indices was added one at a 

time to the predictors set, which was then evaluated. This approach led to a final predictor set with the minimal combination 

necessary to produce plausible predictions for each catchment and each forecast issue date.  200 
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4.3 Determination of supplementary importance of incorporating climate oscillations as additional 
predictors 

We implement two track evaluation analyses to determine the value of adding COs as additional predictors into snow-based 

forecasts. First, we elaborate forecast models that assimilate only SWE estimates, using the same approach described in the 205 

previous section, and compare their performance with those that assimilate SWE and COs. Second, we determine the relative 

importance of COs using the feature importance ranking measure method (Greenwell et al., 2018), which quantifies how much 

each input variable influences the predictions made by the model. The method assesses the impact of each input variable by 

estimating partial dependence plots (Friedman, 2001) and assigning higher (lower) importance rank to features that exhibit a 

steeper (flatter) partial dependence effect.  210 

5. Results 

5.1 Evaluation of SWE estimates  

 

Figure 3. Pearson`s correlation coefficients between the SWE estimates and mean seasonal discharge between April and 

September at different forecast lead months. The red line is the median across all snow products. Figure 3 summarizes the 215 

correlation coefficients between catchment-averaged SWE at different forecast issue dates and mean discharge during the 

vegetation season. The SWE estimates obtained from global reanalysis and satellite data exhibit varied degrees of connection 

with the seasonal discharge. For all catchments, the correlation in general tends to increase with shorter lead times, i.e., with 

SWE estimates for January 1st having the lowest correlation and those for April 1st having the highest. There is no discernible 

best-performing product across the four SWE estimates overall, with some products better performing in one catchment but 220 

underperforming in another. Nevertheless, SWE estimates based on ERA5-L and MSWX generally show  a higher correlation 

with seasonal discharge across most catchments.  

 

 Figure 3. Pearson`s correlation coefficients between the SWE estimates and mean seasonal discharge between April 
and September at different forecast lead months. The red line is the median across all snow products.  225 

 

5.2 Association between climate oscillations and hydroclimatic variability across the study catchments 
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Evaluation of the climate oscillation indices revealed diverse associations with peak season precipitation and mean river 

discharge during the vegetation season across the catchments (Figure 4, upper graph). In all catchments, the February-July 230 

precipitation exhibits a robust and persistent association with ENSO, represented by the Southern Oscillation Index (SOI) and 

the Pacific Decadal Oscillation (PDO), over an extended timeframe compared to other oscillations. There is a significant 

negative correlation between peak precipitation season and SOI in all catchments, evident three months before the season's 

commencement. This relationship persists for a longer duration compared to any other climate oscillation. On the other hand, 

PDO exhibits a positive link with seasonal precipitation, becoming noticeable as early as four months before the season's onset 235 

and reaching its most substantial level in November. 

 

Like ENSO and PDO, the East Atlantic/West Russia pattern (EAWR) consistently demonstrates a stronger correlation across 

most catchments before the peak precipitation season. Notably, the October state of EAWR shows a substantial positive 

correlation with peak precipitation across all catchments; however, it becomes more variable as the season progresses.  240 

 

On the other hand, the North Atlantic Oscillation (NAO) and the Scandinavian Pattern (SCAN) show a relatively less 

pronounced association with the peak precipitation season, with correlations that vary depending on the lead time. From 

December to March, the NAO shows a weak but persistent negative relationship with the peak precipitation season in most 

catchments. In January, at the beginning of the peak precipitation season, a considerable portion of the catchments 245 

demonstrates a negative correlation with the state of SCAN. However, as the season progresses and reaches March, there is a 

noticeable shift, with all catchments showing a stronger and positive correlation with the state of SCAN. 

 

The correlation between the climate indices and mean river discharge during April-September exhibits almost the same pattern 

(Figure 4, bottom graph), which implies that discharge variability is predominantly driven by precipitation that falls during 250 

February-July.   
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Figure 4. Spearman's rank correlation coefficients between the climate oscillation indices and precipitation from 255 
February to July precipitation (top) and mean seasonal discharge from April to September (bottom). The X-axis denotes 
months of a climate index. The red line represents a median for correlation coefficients across all catchments in each month. 

 

5.3 Performance of seasonal discharge forecasts 

Figure 5 below summarizes a set of final predictors per studied catchment, obtained after screening COs associations with 260 

peak precipitation and mean discharge during vegetation season and following a stepwise selection procedure using the 

ensemble-stacking forecast approach described in section 4.2.  

 

While the input dataset for the base models included SWE estimates, the combination of climate oscillations they rely on varies 

depending on a catchment location and elevation. In most catchments, the base models incorporated the late autumn state of 265 

PDO or the December state of SOI. While SOI appears equally crucial in most catchments, PDO generally persisted in 
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catchments located in Pamir and west Tian-Shan. The winter state of NAO and SCAN are another source of predictability in 

many of the catchments but have variable temporal signatures. In the case of the Murghap, where workable base models were 

obtained only for the April 1st forecast, they rely solely on SWE estimates and do not include any of the climate oscillations 

as predictors. 270 

 

Selected NAO or SCAN predictors tend to have the same temporal lags for neighbouring catchments. For instance, the Naryn 

and Chu catchments in the Tian-Shan, which have similar seasonal precipitation patterns, use the NAO condition in December 

as one of their predictors. The Varzob and Vaksh rivers, which are high-elevation tributaries of the Amudarya, use the January 

state of SCAN, while the latter becomes a more robust forecast for the larger Amudarya watershed only one month later, in 275 

February.  

 

 

Figure 5. Predictors at different forecast issue times. Abbreviations within boxes indicate the month of the respective 
climate oscillation index or catchment-averaged SWE used as predictors. For example, the April 1st forecast models for the 280 
Amudarya river use as predictors the SWE estimate as of the end of March, the state of the PDO index in November, and the 
SCAN index in February.  

 

The ensemble-based forecasting framework plausibly simulated seasonal discharge across all catchments, albeit with varying 

temporal performance based on lead time (Figure 6). The ensemble model's LOOCV R-squared coefficient ranges between 285 

0.3 and 0.5 for the extended lead time forecast (1 January) but gradually increases with decreasing lead time, reaching 0.8 and 

0.9 for the April 1 forecast. The performance of the meta-learner model depends on the number and diversity of the resultant 

individual base models and is typically superior to those of the latter. 

 

Fewer base models appear capable of predicting seasonal discharge at longer lead times, resulting in a relatively lower 290 

performance of the meta-learner model on the January 1st forecast. For the Murghab, Kashkadarya, and Chu catchments, no 

feasible base models were obtained for the January 1st forecast. Furthermore, workable base models and the derived meta-

learner model for Murghap are only obtainable for the April 1st forecast.  

 

There are no discernible winners in terms of performance of the base model types across lead times, especially for the final 295 

(April 1st) forecast. However, the base models' performance has some distinct spatial heterogeneity, depending on which SWE 
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product they assimilate. For example, all base models for the Kashkadarya retained after cross-validation rely only on 

SWEERA5-L or SWEMSWX as inputs. In contrast, all base models obtained for the Vaksh catchment rely only on SWEFLDAS and 

SWEGPM. The seasonal discharge in the largest catchments, such as Amudarya and Naryn, is also better explained by base 

models that use SWEERA5-L or SWEMSWX.  300 

 

The results suggest that models incorporating GPM IMERG have higher uncertainty, reflected in overall lower cross-validation 

performance, except in the highly elevated Varzob and Zarafshan catchments. This is likely due to the lower accuracy of the 

GPM IMERG`s Late Run product, which includes only climatological adjustment. In contrast, its final product (“Final Run”) 

comes with adjustments using gauge data. However, the latter is only available at a three-month latency time, precluding its 305 

operational forecasting use.  

 

 

Figure 6. Resulted LOOCV R-squared coefficients of individual base models at different lead months and the LOOCV 
R-squared of the meta-learner model (red line).   310 

The performance of the meta-learner model also yielded comparable results for both LOOCV validation and hold-out test set 

in terms of normalized Mean Absolute Error (Figure 7, upper graph). The normalized MAEs follow the same temporal pattern 

as the R-squared coefficient, with relatively larger errors for early forecasts that gradually decrease with decreasing lead times. 

Due to a limited number of discharge observations, the hold-out included only three last observations for seasonal discharge 

(which even became two in the case of the Naryn and Zarafshan catchments). In many instances, the hold-out set across the 315 

catchments contained a diverse combination of high and low observed seasonal discharge, which were plausibly predicted by 

the final meta-learner model (Figure 8). For the Kashkadrya and Chu rivers, the model correctly predicted the lowest observed 

seasonal discharges over the entire observation period, which were in the hold-out set. Similarly, the final meta-learner model 

coherently reproduced lower discharges from hold-out sets in the Amudarya andNaryn rivers below the 25th quantile of all 

observation years. 320 

 

Figure 7 (bottom graph) also compares the performance of the forecast models based only on SWE estimates. SWE-only 

forecasts have larger uncertainties, with higher MAE errors for the LOOCV validation, especially the hold-out test set. The 

mean absolute errors also tend to be larger at shorter lead times, which may imply higher uncertainties in SWE estimates 

https://doi.org/10.5194/hess-2024-174
Preprint. Discussion started: 26 July 2024
c© Author(s) 2024. CC BY 4.0 License.



13 
 

during the snow-melt phase. In addition in certain catchments, we could not develop effective meta-learner models for extended 325 

lead times. 

 

 

Figure 7. Normalized MAE of the simulated seasonal discharge by ensemble models for training and hold-out sets at 
different forecast lead months, including SWE and climate oscillation indices (upper) and only SWE (bottom) as 330 
predictors.  
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Figure 8. Observed vs simulated seasonal discharge using Apr 1st  forecast ensemble model 

 335 

5.4 Importance of climate oscillation indices as predictors 

The importance of predictors varies depending on the catchment location and the forecast issue date (Figure 9). Regardless of 

the forecast issue date, SWE is a major predictor in most catchments located in Pamir, and its significance generally arises 

with decreasing lead times. Its incremental value is evident in the basins in the western part of the study area, the Pamir 

Mountains. Nevertheless, the supplementary predictive value of COs is visible in all basins regardless of their location except 340 

for Murghap, where forecast models rely only on SWE estimates.  The predictive power of COs is highest for the two 

catchments located in the inner and northern Tian-Shan, Naryn and Chu. Especially in Chu, the COs contribute to more than 

half of the predictive power of the forecast models across all forecast issue dates.  

 

 345 

Figure 9. The relative importance of predictors at different forecast issue dates 
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6. Summary and Discussion 

Our findings suggest that near real-time SWE estimates can be effectively derived from global reanalysis or satellite data. Still, 

they are subject to spatial bias and uncertainty, which may be due to uncertainties in underlying precipitation and temperature 

inputs. The uncertainties in the SWE estimates may propagate across time and enlarge during the snow ablation phase. 350 

Assimilating SWE data from multiple global sources helps mitigate these biases, and predictions that pass cross-validation 

filters reflect the accuracy of SWE products specific to catchment locations. Nevertheless, although catchment-averaged SWE 

estimates improve with the assimilation of multiple snow products, they may still tend to contain spatial uncertainties that 

increase during the ablation phase.   

 355 

Multiple global ocean-atmospheric oscillations modulate the seasonal hydroclimatic patterns in the Pamir and Tian-Shan 

mountains, each with different temporal effects. The findings suggest that the magnitude of both seasonal precipitation and 

discharge is associated with the late autumn to winter state of ENSO (approximated in our study with SOI). PDO is known to 

mimic ENSO-like variability on monthly scales and has a pronounced impact on the interdecadal scale. This could explain the 

similarity in dominant lead times observed in our analysis with SOI. Late winter to spring states of NAO and SCAN contribute 360 

to hydroclimatic predictability in many studied catchments, mainly showing higher significance in the Tian-Shan domain. All 

these spatial and temporal patterns are broadly consistent with several earlier findings (e.g., Mariotti 2007, Wang et al. 2014, 

Dixon and Wilby 2019, Gerlitz et al. 2019). 

 

The associations between the climate indices with both precipitation and discharge exhibit an almost identical pattern, implying 365 

that river discharge's interannual volatility from April to September is substantially driven by the peak precipitation period, 

which we determine as February to July. This implies that SWE accumulated by the middle of winter is a weak precursor of 

hydrologic variability in the upcoming season, which our findings assert. On the other hand, this serves as an argument for 

using climate oscillation indices beside the catchment snowpack in discharge forecasts at extended lead times. Following the 

traditional approach towards seasonal hydrological predictions, SWE estimates initial hydrological conditions and climate 370 

oscillation indices as a proxy of climate variability during the target season.   

 

Our experiment, which combines snow and climate indices as predictors, confirms this assumption. The resulting forecast 

models generate credible simulations of seasonal discharge across all studied catchments, albeit with performance variations 

depending on lead time. The forecast models incorporating both SWE and COs perform better than the SWE-only models, 375 

evidenced by lower forecast uncertainties and minor errors in LOOCV validation and hold-out test sets. Due to a limited 

number of observations, our evaluation only included a small set of the most recent discharge data for some rivers. Despite 

this limitation, the meta-learner models accurately predicted high and low seasonal discharge values in the hold-out set for 

some catchments, showcasing its effectiveness in predicting hydrological extremes on seasonal scales. 

 380 

The resulting forecast models underscore the significance of SWE as one of the primary predictors in most catchments in the 

Pamir region, with its importance becoming more pronounced during the peak SWE period, typically occurring in mid-

spring.Nevertheless, the forecast models also gain valuable predictive power from climate oscillation indices during extended 

and shorter lead times. The importance of specific climate oscillations as predictors varied across catchments. In most 

catchments, the SOI, PDO, or both were utilized, indicating the dominant influence of ENSO phenomena. Moreover, the 385 

results suggest that the NAO and SCAN exhibit a relatively higher predictive power for catchments in the Tian-Shan region. 

 

The predictive importance of climate oscillations equalled or exceeded that of SWE in the Naryn and Chu catchments located 

in Tian-Shan, as well as in high-elevated catchments in Pamir, such as Zarafshan, Varzob, and Vaksh. The former might be 
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explained by a distinctive precipitation cycle across Tian-Shan, which peaks during summer, i.e., considerably later than the 390 

final forecast issue date (April 1st). Consequently, SWE estimates have comparably smaller power to capture upcoming 

hydroclimatic variability than other catchments where precipitation peaking occurs during spring months and thus is embedded 

in SWE estimates by April 1st. This is better exemplified by the forecast model for the Murghap catchment, which doesn't 

integrate any climate oscillations, likely due to the majority of seasonal precipitation occurring before spring.The higher 

predictive power of the oscillations for high-elevated catchments may be attributed to the poorer performance of the satellites 395 

and reanalyses of precipitation estimates over high elevations in the region (Peña-Guerrero et al., 2022), which subsequently 

propagate as uncertainties in the SWE estimates. In this regard, the higher predictive performance of climate oscillation indices 

across those catchments is assumingly reasoned by their compensation for uncertainties in SWE estimates.  

 

Based on the abovementioned, we identify three specific cases when the incorporation of COs as additional predictors helps 400 

to improve seasonal discharge forecasts in snow-dominated catchments:  

1) Extended lead time forecasts with early seasonal SWE: When seasonal discharge forecasts are made well in advance, 

but SWE is not a reliable representation of seasonal terrestrial water storage, climate oscillations may provide additional 

insights into anticipated hydroclimatic conditions. 

2) Dominant climate variability regime during the target season: When the seasonal discharge is more influenced by in-405 

season climate variability than by accumulated SWE before the season, climate oscillations can serve as adequate proxies 

for this variability. 

3) Uncertainties in catchment SWE estimates: High uncertainties in SWE estimates for a particular catchment result in 

higher errors in discharge predictions. These uncertainties can be partially compensated by leveraging the forecasts with 

climate oscillations, leading to more reliable seasonal discharge predictions. 410 

 

In-situ observations of essential climate variables, such as snowpack properties, are scarce in Global South, especially 

mountainous regions, impeding hydrological forecasting. Previous research has demonstrated how, in the absence of in-situ 

snow observations, satellite-derived snow cover, precipitation and temperature can serve as proxies of terrestrial water storage 

and improve seasonal discharge forecasting in Central Asia (Apel et al., 2018; Gafurov et al., 2016). Additionally, other studies 415 

have investigated how climate indices characterize hydroclimatic variability in the region over longer lead times (Dixon and 

Wilby, 2019). By combining the strengths of these two approaches, our modelling framework offers a new way to make 

hydrological predictions in the region. It leverages an ensemble technique that uses multiple estimates from global data, a 

diverse set of more straightforward types of machine learning methods with loose tuning parameters. These elements allow us 

to achieve reliable forecast models even when in-situ discharge observations are short. 420 
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