
RC1: Anonymous Referee #1 

Dear Reviewer, 

Thank you for your valuable and constructive comments on our manuscript. Following your suggestions, we expanded 
the literature review to provide a broader context by referencing relevant work from North America and other regions, 
especially focusing on studies that utilize snowpack and climate indices for seasonal streamflow forecasting. We also 
refined the terminology to clarify distinctions between process-based and data-driven approaches and ensure the 
manuscript uses consistent, field-appropriate language. Additionally, we amended the methodological descriptions to 
better explain the rationale behind the chosen models and improve the clarity and precision of our wording throughout 
the paper. We believe that the revised version is now better aligned with current research in the field. Please find 
below your referee comments (in black) and our responses (in blue). 

With regards, 

The authors. 
 

Review of ‘The value of hydroclimatic teleconnections for snow-based seasonal streamflow forecasting,’ 
Umirbekov et al., HESS Discussions 

This submission summarizes the motivation for, and development, implementation, and performance of, a 
data-driven model for seasonal river runoff volume forecasting in Central Asia.  The method uses as 
predictors a combination of SWE data from existing large-scale operational remote sensing and land surface 
modeling products, and indices of various atmosphere-ocean circulation patterns, as predictors; it employs a 
multi-model ensemble model structure, which has some machine learning elements; and is intended to serve 
as an actual operational forecasting tool for directly supporting water management decision-making.   

My overall recommendation is for publication pending minor revisions. 

The article will be an excellent contribution to HESS.  The paper is succinct and well-organized.  The study 
location considered has been historically understudied, though admittedly not so severely as some other 
regions of the developing world.  The candidate predictor data combinations are geophysically sensible, but 
also to some degree original in the particular way they are used here.  Though it is possible to quibble with 
certain aspects of the predictor selection process used, it is a reasonable and defensible approach for the task 
at hand.  Its multi-model ensemble philosophy is fully consistent with a large body of evidence demonstrating 
its value, yet it is only one of a tiny handful of hydrologic modeling examples where several separate data-
driven/statistical/machine learning modeling systems are used and their results pooled to form a best estimate, 
and it is also novel as implemented here.  Unlike some research papers claiming to present a forecast model, 
this article makes a point of clearly confirming that the predictor datasets considered are available going 
forward on a near-real-time basis, a necessity if a modeling system is actually going to be useful for real-
world operational forecasting.  The submission also clearly identifies (e.g., lines 400 to 410) where, when, 
and why each of the candidate predictor datasets are or are not useful for water supply forecasting, which is 
crucially important for physical credibility of the forecasts and the systems and data generating them, and 
which is sometimes overlooked in research around data-driven models. 

Thank you for your positive and detailed feedback. We appreciate your feedback on study contributions and your 
recommendation for publication pending minor revisions.  

That said, I think a few improvements will be needed before the paper is ready for publication.  I hope the 
following comments will be helpful to the authors if they move forward with submitting a revised manuscript: 



1. Though in general the article is well-crafted, some passages are written poorly enough that their meaning 
is unclear.  For example, the wrong word is used, or words are used incorrectly, or elaborate vocabulary or 
phrasing is used when simpler wording would do.   
 

2. The literature review is not quite adequate.  While there seems to be sufficient reference to prior work in 
the study area, this article is not just a case study, and HESS is an international journal.  More broadly, the 
methods described here need to be placed in the wider and deeper context of previous work, not just 
locally but globally, in order for readers to understand its contributions and wider implications – the 
methods used here may be applicable in entirely different regions of the world.  The wider literature does 
not need to be discussed in detail, nor do the methods used in this submission need to be compared against 
them, but the paper does need to leave some clues for readers about relevant prior publications.  What 
stood out for me is that prior research (and practice) around seasonal water supply forecasting in western 
Canada and the western US, directly relevant to this study, has not been adequately acknowledged.  Some 
points of particular note are the following (full citations are provided at the end of this review): 
 

2.a.    It would probably be helpful to note in the article that the type of seasonal river discharge volume 
forecast modeling considered here is widely referred to as “water supply forecasting” (WSF) in the western 
North American operational hydrology and water management communities.  They don't need to use the 
term throughout the article, but just pointing out at the start of the paper that they're working on what is 
commonly called WSF will help readers connect the study to a large existing body of prior research and 
practice. 

2.b.    Contrary to what seems to be implied in this article, given the way certain passages are phrased and 
the sparseness of literature citations, combining teleconnection indices with snow data as inputs to statistical 
seasonal water supply forecasting models is neither new nor rare.  It appears to have first been implemented 
decades ago (Garen, 1998) in the large-scale (hundreds of forecast locations) operational forecasting systems 
of the US Department of Agriculture’s Natural Resources Conservation Service (NRCS) (Perkins et al., 
2009), predictions from which are a staple for water managers across the American West.  These principal 
component regression models (Garen, 1992) have used a combination of SWE, accumulated precipitation, 
and in some cases antecedent streamflow and El Niño-Southern Oscillation indices (Garen, 1998) as 
predictors of seasonal river flow volumes; these methods have since be adopted widely across western North 
America by other operational forecast agencies.  Furthermore, continued applied R&D on combined use of 
snowpack observations and teleconnection indices as input variables to statistical seasonal discharge forecast 
models has been continued by many, such as Gobena et al (2013) in western Canada, and Moradkhani and 
Meier (2010) and Regonda et al. (2006a, 2006b) in the western US, to give just a few examples.  It has also 
been extended to discovering new climate prediction skill using nonlinear methods or new indices in areas 
where conventional linear teleconnections are weak, such as southern Oregon and northern California 
(Kennedy et al., 2009; see also Fleming and Dahlke 2014). 

Thank you for these suggestions. We admit that the initial submission lacked overview of similar practices for seasonal 
hydrological forecasting, especially using data-driven methods. We also appreciate your highlighting the relevant 
studies in 2.c. We expanded the Introduction with additional paragraphs (lines 51-76 in the tracked changes version 
of the manuscript) that provide a better context of seasonal forecasting in snowmelt dominated regions, particularly 
those that employ teleconnections. Relevant research mostly comes from U.S., though we also managed to locate a 
few similar studies in South Asia and South America. The new exerts also make a reference to term “water supply 
forecasting” adopted in the western U.S. 

2.c.    Though the computational model presented here appears to be novel, major elements of its philosophy 
and structure are strongly reminiscent of other recent advances in data-driven predictive modeling of seasonal 
river discharge volumes.  Of note here is the multi model machine-learning metasystem (M4), which was 
developed for and is currently being operationally implemented by the US Department of Agriculture NRCS 
as its new western US-wide seasonal river discharge volume forecast model.  This system has been run using 
in-situ SWE, precipitation, and antecedent streamflow data, as well as combinations of in-situ and remotely 
sensed snow data, as predictors (Fleming et al., 2021, 2024).  It uses a multi-model ensemble approach in 



which six data-driven (statistical and machine learning) forecast systems are run independently and the results 
are pooled to form a best estimate, closely analogous to the modeling philosophy used in this HESS 
contribution.  There are also significant differences between M4 and the method used in this submission, but 
citing M4 will better-place this HESS article’s contributions in the larger research and applications literature, 
and provide literature support to the methods the submitted paper uses.  By the same token, some related 
exploratory work on methods for combining outputs from multiple data-driven seasonal river discharg 
forecast models by Najafi and Moradkhani (2016) should be cited in this regard as well. 

Thank you for these suggestions. Upon reviewing the noted models/studies, we found many concept-wise similarities 
and believe these are valuable addendums to the literature review, particularly regarding methods and methodological 
advancements in the field. We have a new paragraph (lines 78-92 in the tracked changes version) which provide a 
brief overall overview of the methodological developments in the field.  

2.d.    The foregoing are just some examples I happen to be familiar with.  I’d suggest that the authors scour 
the literature for other prior work, including work in other regions globally, that ought to be at least briefly 
cited in their revised paper. 

3.    The following are a few additional suggestions for improvements: 

3.a.    Line 35 and elsewhere: this paper distinguishes between what it calls “dynamic” vs. “statistical” 
approaches.  This jargon tends to be used more in other (broadly related) disciplines like regional climate 
modeling, with “process-based” vs. “data-driven” being more common in the operational hydrology 
literature.  Also, it’s usually “dynamical” not “dynamic”, and “data-driven” also tends to be preferable to 
“statistical” today because of the increasing popularity of machine learning techniques (including this 
submission).  The authors can use “dynamical” and “statistical” if they like, but to better orient readers, 
including the operational water resource forecasting community, to which this article seems to be in part 
addressed, please provide some synonyms where the terms are first introduced (line 35).  It could read 
something like “generated using either dynamical (process-based, physics-oriented) or statistical (data-driven 
including machine learning and conventional statistical) modeling approaches” or something similar. 

Thank you for highlighting this issue. We agree with your suggestions and revised the manuscript to use 'process-
based' instead of 'dynamic' and 'data-driven' instead of 'statistical.'  

3.b.    Line 46, “statistical forecasts of seasonal streamflow often rely solely on accumulated snowpack.”  Yes 
and no.  Yes, data on winter-spring seasonal snowpack provides the primary source of predictive skill in data-
driven forecast models of spring-summer river runoff volume in snowmelt-dominated rivers.  But these 
models, in both the research literature and (in particular) in operational practice, at least in western North 
America, also almost always use additional predictor data types.  Examples include wintertime accumulated 
precipitation, early-season precipitation, and at some locations, antecedent streamflow and/or El Niño 
indices.  See point 2.b above. 

Thank you for the correction, and we apologize for the confusion. What we intended to convey is that accumulated 
terrestrial water storage is the main determinant of seasonal water supply in snowmelt-driven basins, with snowpack 
being its key component. We amended this sentence to avoid confusion (lines 51-53). In addition, we now note this 
in Data section (lines 184-186). In our study, we limited the predictors to two groups—SWE and teleconnections—
because we aimed to assess the added value of teleconnections compared to SWE-based predictions. Additionally, we 
sought to keep the model parsimonious given the limited number of observations. 

3.c.    Line 50: excellent point! 

3.d.     Lines 52-53 and elsewhere: if the authors want to call the Apr-Sep target period the “vegetation 
season,” that’s fine I suppose, but it’s not standard nomenclature.  Typically this would be called either the 
“growing season,” looking at it from an agricultural water supply or broader ecological perspective, or the 
“runoff season”, looking at it from a hydrological perspective.  And given that they call Nov-Mar the “cold 



season” rather than the “snowpack accumulation season”, it might also be more consistent to simply call Apr-
Sept the “warm season.”  Overall, “growing season” seems like it might be the best fit here? 

Thank you for your feedback. To ensure consistency and clarity, the revised manuscript now uses 'growing season', 
which also resembles the term used by local hydrometeorological agencies in Central Asia. We also ensured that Nov-
Mar period remains as 'cold season' for consistency with our current nomenclature. 

3.e.    Figure 1: this figure is good, but for a wide international readership, please provide an additional map 
showing the location of the study area within the larger geographic context of Eurasia. 

Thank you for your suggestion. Figure 1 now includes an additional map to provide geographical context for the study 
region. 

3.f.    Line 124: predictand, not predicant 

Our apologies for the mistake, we corrected the wording.  

3.g.    Line 125: An 18 year data record – in other words, 18 samples - is pretty short; it’s enough to defensibly 
create one of these models, but just barely.  Commensurate limitations to the authors’ ability to train model 
parameters and validate model predictions could be viewed as a source of uncertainty in this study; the 
counterargument, of course, is that with rapid climate change in mountain regions such as this study area, the 
statistical nonstationarity in a longer data record would have reduced its value anyway.  This might be worth 
a sentence or two here.  A brief explanation of why the record doesn’t go back further or continue to the 
present could be helpful to readers as well.  My understanding of the political history of this region isn’t 
great, but I think this was part of the Soviet Union, which (its grave misdeeds notwithstanding) wasn’t too 
bad at keeping streamflow records, so one might have been forgiven for guessing that there might be some 
usable historical data here? 

Thank you for highlighting this issue. Most of the data we used is derived from a previous study by Apel et al. (2018). 
Unfortunately, we do not have recent updates extending beyond that period until today. Moreover, historical data for 
most catchments also spans from the 1970s to the 1990s, with relatively more complete records available for the 
largest rivers extending up to 2000. However, incorporating these earlier records is challenging, as the datasets used 
to derive some SWE estimates (FLDAS and GPM) are only available from 2000 onward. Extending the observations 
back in time would restrict the ensemble to only ERA5-L and MSWX datasets, thereby reducing its diversity, as MSWX 
is generated by bias-correcting ERA5-L and may exhibit similar predictions for some catchments.  Furthermore, 
contrary to our earlier feedback on this point, we now agree that using records from 1970s to 1990s may introduce 
issues of non-stationarity. We acknowledge the short length of records in the current version of the discussion section 
and now highlighted this limitation more explicitly in new exert in the Data section (lines 209-219).   

3.h.    Lines 129-130: excellent point re: near-real time input data availability – this is a prerequisite for an 
operational forecasting model, and it’s sometimes overlooked in research articles. 

Thank you for your feedback.  

3.i.    Lines 173-175: a little more information about the constituent models (“base models”) is needed 
here.  What link function was used in the GLM?  And why were linear kernels used in the GP and SVR 
models?  Does this imply that most of the base models are essentially variants of standard, multiple linear 
regression?  If so, what are the pros and cons?  Note that work in the western US has shown that the 
relationships between winter-spring hydroclimatic forcing and spring-summer runoff response in data-driven 
WSF models range from nearly linear to moderately nonlinear, with clear physical explanations for these 
inferred functional forms (see Fleming et al., 2021). 



Thank you for these guiding questions. We applied a Gaussian family link function for the GLM model. Indeed, the 
selected base models are linear, except for the RF model, though they differ in their approach to estimation and 
optimization. We tested several other ML techniques as base models, including using the same models with non-linear 
kernels. In most cases, the presented combination of models yielded a better accuracy in terms of MAE and R-squared 
coefficients during LOOCV. In some instances, depending on the basin or issue date, certain non-linear models 
produced slightly better predictions. However, when generalizing across all basins and issue dates, the existing 
structure still showed superior performance. We assume this may be due to two major and non-exclusive factors: (1) 
a relatively smaller number of observations and predictors, which makes non-linear machine learning models less 
efficient and prone to overfitting, and (2) the selection of predictors based on a linear metric (Pearson’s correlation) 
may have inherently favored linear models. We have now reflected on these findings in lines 410-418 of the revised 
version of the manuscript. 

3.j.    Lines 181-185: in defense of their methodological choice, which has no literature citations attached to 
it in the submission, the authors might wish to note that LOOCV is standard practice in western US WSF 
modeling; see references in point 2.b above. 

Thank you for this suggestion and the references. Now, we now also refer to LOOCV as a standard practice in western 
US WSF modelling with corresponding references in lines 267-268. 

3.k.    Lines 187-190: to improve accessibility to a broad readership which may not be uniformly well-versed 
in machine learning, it might be helpful to add just a sentence or two, with an additional reference or two, 
explaining the concept of a meta-learner.  It might also be helpful, in terms of connecting this concept to prior 
work in data-driven WSF, to refer to the work of Najafi and Moradkhani (2016) on exploring different 
methods for creating multi-model ensembles from the predictions of several data-driven models.  

Thank you for the suggestion. To improve accessibility, we included a brief description  of the ensemble stacking 
concept, and provided some references on the respective applications in hydrological sciences in lines 242-246. 

3.l.    Line 205: in the context of operational hydrologic prediction models, data “assimilation” has a very 
specific connotation: formal methods for using new observational data, such as observed snowpack, to update 
the internal states, such as predicted snowpack, of a process-based (dynamical, physics-oriented) streamflow 
simulation model, often using fairly complex methods like ensemble Kalman filtering.  It is not normally 
used to refer to the use of some particular data type, such as snow data, as an input predictor variable in a 
data-driven (statistical or machine-learning) streamflow model. 

Thank you for highlighting this inconsistency in the use of terminology. We amended the wording throughout the text 
following your suggestions . 

3.m.    Lines 287-288: excellent point.  The authors might wish to cite literature that backs up this result, such 
as the excellent overview article of Hagedorn et al. (2005) and the multi-model ensemble WSF modeling 
article of Fleming et al. (2021). 

We appreciate your positive feedback. We have supplemented the paragraph with a respective sentence in lines 381-
383.  

3.n.    Figure 6: this a great illustration!  I do have one question though: are all the base models used for the 
Vaksh and Kashkadarya rivers?  It’s hard to tell from the figure panels. 

We appreciate your positive feedback on Figure 6. For the meta-learning model, we used base model predictions 
that meet a 0.2 R-squared coefficient threshold (noted in lines 268-271) In addition, we now also note (lines 385-
389) “.. the resulting stacked ensembles typically consist of fewer than 16 base models. We observe two trends in 
this regard: (1) the later the issue date, the greater the number of base models included in the ensemble, and (2) 
larger catchments tend to incorporate more base models.” 



3.o.    Line 348, might suggest rephrasing this in a more specific way, such as “suggest that useful near-real 
time SWE estimates, suitable for operational seasonal river discharge volume forecasting, can be effectively” 

3.p.    Line 350: “and enlarge during the snow ablation phase” – confusing wording 

3.q.    Lines 365-370: the entire paragraph (except for the excellent final sentence) is muddled.  Please rewrite 
more simply and clearly. 

3.r.    Line 373: “confirms this assumption” – what assumption? 

3.s.    Lines 398, “is assumingly reasoned by their compensation” – this is meaningless, please rewrite. 

3.t.    Lines 400-410: excellent points. 

Thank you for these suggestions. We revised the text to enhance clarity. 

  



RC2: Anonymous Referee #2 

Dear Reviewer, 

Thank you for your detailed and valuable feedback. In response to your comments, we refined the text to better reflect 
the specific contributions of our study. We acknowledge that teleconnections and the use of SWE in streamflow 
forecasting are well-established, and we clarify our findings by focusing on the operational insights specific to Central 
Asia. The literature review is now expanded to better contextualize our contribution, and we refer to other relevant 
work, including studies from North America and other regions. 

Regarding forecast uncertainty (comment 2), we incorporated analysis of bootstrap-based prediction uncertainty of 
the forecasts and Q-Q plots. In addition, to address concerns about the limited sample size (comment 3), we reduced 
the number of predictors to a maximum of three and did not split the data to LOOCV and hold-out subsamples. We 
believe that the suggested changes, along with updates to figures and more consistent terminology, improved the 
clarity and rigor of the manuscript. Please find below our responses (in blue) to your referee comments (in black). 

With regards,  

The authors. 

In this manuscript, the authors explore the relative contribution of large-scale climate oscillation predictors 
and snow water equivalent on the quality of April-September seasonal streamflow forecasts in eight 
catchments located across the Pamir and Tian-Shan mountains (central Asia). To this end, the authors first 
examine the correlation between climate modes of variability and (i) catchment-scale precipitation over the 
peak precipitation season (February-July), and (ii) April-September seasonal streamflow. Then, the authors 
adjust 16 models resulting from the combination of four statistical models and four SWE products, using 
SWE (at four forecast initialization times) as one of the predictors, and large-scale climate indices as 
additional predictors. The total sample size (i.e., 18 points obtained from 18 years with data) is split into a 
sample of 15 points for cross-validation, and the remaining points are used for additional testing. The authors 
conclude that their technique is “a novel way to reduce uncertainties in seasonal discharge predictions in 
data-scarce snowmelt-dominated catchments”. 

This is basically a seasonal hindcasting study, generally well written and concisely presented. Nevertheless, 
my main critiques with this work are (1) the overselling, especially in the title, abstract and conclusions, (2) 
the lack of forecast uncertainty characterization (which is highlighted by the authors as a key contribution), 
and (3) the limited sample size, and the way the authors address this problem in their analyses. Therefore, I 
think that the manuscript needs major revisions before being considered for publication in HESS. 

Major comments 

1. Title, abstract and conclusions: it is well known that the value of hydroclimatic teleconnections on seasonal 
streamflow forecasts is huge in snowmelt-driven catchments, especially during the preceding Fall season, 
when initial hydrologic conditions have not been fully developed (e.g., Mendoza et al., 2017) – as the authors 
write in L22-24, and conclude in L403-404. There is a long history on the use of large-scale climate 
information for seasonal streamflow forecasting (e.g., Piechota et al., 1998), and what the authors state in 
L20-21 and other parts of the manuscript was neatly shown nearly two decades ago using custom-based 
climate indices in two western US catchments (see Figure 8 in Grantz et al., 2005; and also Regonda et al., 
2006; Opitz-Stapleton et al., 2007; Bracken et al., 2010; Mendoza et al., 2014, etc.). Additionally, the use of 
simulated catchment-averaged SWE as a predictor to feed statistical models (L105-106) is not new either 
(e.g., Rosenberg et al., 2011; Mendoza et al., 2017). In other words, the findings reported by the authors are 
not novel and, based on this, I think that they should refine the title, abstract and conclusions to make them 
more specific to their actual contribution to the existing literature. 



Thank you for your detailed feedback and for highlighting that teleconnections have been explored in seasonal 
streamflow forecasting, including for snowmelt-driven catchments. As you correctly noted, we mention this in the 
manuscript, although those excerpts were succinct and warrant to be expanded. Our manuscript offers additional 
contributions that expand on the valuable insights from Mendoza et al. (2017) and other researchers. As noted in the 
abstract and discussion, our study identifies specific instances when teleconnections may become more influential: at 
extended lead times, during strong in-season climate variability, or when catchment snow estimates are less reliable. 
Furthermore, while acknowledging that the use of large-scale climate indices and snow data for such forecasting has 
been previously explored, most of the cited references focus on North America. We believe our study offers novelty 
by demonstrating how teleconnections are pertinent to Central Asia and how their inclusion can aid seasonal water 
supply forecasting. 

We expanded literature review on use of climate teleconnections in seasonal water supply forecasting (lines 51-59 in 
the tracked changes version of the manuscript), and amended the manuscript’s Title, Abstract, and Discussion to better 
reflect our study’s contributions. 

2. L25: the authors declare that their approach “provides a novel way to reduce uncertainties in seasonal 
discharge prediction”. Do they refer to the spread of seasonal forecasts? Although they describe an ensemble 
stacking framework to produce a final forecast, only deterministic evaluation metrics (coefficient of 
determination and normalized mean absolute error) are reported, and no characterizations of hydrological 
prediction uncertainties are presented. A popular to do so is through ensembles (Georgakakos et al., 2004; 
also, see publications produced by the HEPEX community on this topic), analyzing, for example, the 
statistical consistency of seasonal forecasts with graphical devices like rank histograms (Hamill, 2001) or Q-
Q plot (Renard et al., 2010), complementing with ensemble verification metrics (e.g., De Lannoy et al., 
2006). Therefore, I recommend the authors to take advantage of the multiple models developed to 
characterize forecast uncertainty or, alternatively, delete any references to “forecast uncertainty” from their 
manuscript (which I think would diminish the quality of their research). 

Thank you for your valuable feedback. To address this well-grounded point, we integrated uncertainty assessment 
with bootstrapping by resampling the data and retraining the SVM meta-learner on each bootstrapped sample. In this 
way we estimated 80% prediction intervals based on the variability across bootstrapped forecasts. To complement this 
uncertainty characterization, we also implemented Q-Q plots to assess the consistency between predicted and observed 
discharge values. These results are incorporated into the manuscript as a new subsection 5.4 Predictive uncertainty 
(lines 459 -496 in the tracked changes version) 

3. Sample size (L126-127): this is a major issue in seasonal streamflow forecasting, since only one 
training/verification point is available per year. Therefore: In my opinion, the sample size is not large enough 
to support – being extremely generous – more than three predictor variables in their models (the authors 
report up to five predictors in Figure 5 for the Chu River basin), given the high risk of overfitting (see Wilks, 
2011 or any other book on Statistics). Hence, I think that the authors should revisit their statistical models, 
removing combinations of predictors that may introduce multicollinearity. 

Thank you for highlighting the issue of small sample size. Most of the data we used is derived from a previous study 
by Apel et al. (2018) . Unfortunately, we do not have recent updates extending beyond that period until today. 
Moreover, available historical data spans from 1970 to the 1990s for most rivers, with more complete observations 
for the largest rivers (Amudarya and Naryn) up to around 2018. However, using this extended dataset is problematic 
because the two datasets used to derive SWE estimates, FLDAS and GPM, are only available starting from 2000. 
Extending the observations further back in time would limit our ensemble to only ERA5-L and MSWX, reducing the 
diversity of the ensemble, as MSWX is generated by bias-correcting ERA5-L and may exhibit similar predictions for 
some catchments. 

We acknowledge the limitations imposed by a small sample size, which could impact the generalizability of our 
results. To address this, we integrated several strategies: we employed an ensemble approach which is particularly 
effective for addressing the challenges associated with small datasets by combining the strengths of multiple models 
(Dietterich, 2000; Zounemat-Kermani et al., 2021). Furthermore, we adhered to parsimony in model selection and 
parametrization, and therefore we employed relatively simple machine learning models with parameters fixed at 



conservative level to minimize overfitting.  To further enhance the robustness of the framework given the limited 
length of observations, we incorporated multiple independent data sources into the ensemble model.  

Since descriptions of these approaches have been succinct in the initial version of the manuscript, we had explicitly 
highlighted these strategies in a revised version of the manuscript, linking them directly to the limitations posed by 
the small data sample (e.g. lines 89-92, 143-145, 209-219). We also reduced the number of predictors to a maximum 
of three in a revised version of the manuscript (noted in lines 251-252).  

While we acknowledge that multicollinearity can distort the interpretation of individual predictor effects, evidence 
suggests it is less problematic for predictive performance (Kiers and Smilde, 2007). The selected model types, 
especially Support Vector Machines (SVM) and Random Forests (RF), are inherently more robust to multicollinearity 
and can accommodate more predictor variables than observations without a loss in predictive power. A brief check of 
collinearity among the predictors revealed that correlation coefficients are generally low, except for PDO and SOI at 
their selected months (used in two basins), where the coefficient reaches 0.55. While we are unsure if this constitutes 
strong multicollinearity, to be cautious with the interpretation of results, we have amended a set of predictors per each 
basin so that they either include SOI or PDO (Figure 5). For reference, we also included Figure S2 in the Supplement, 
which shows a density histogram of all pairwise correlations of the predictors across all basins and issue dates.  

 

I do not think it is appropriate to split their sample of points (n = 18) into a smaller sample for leave-one-out 
cross validation (with n =15), and another sample for verification that contains three (L314) or even two 
points. I recommend the authors using the entire sample to perform cross-validation and compute verification 
metrics. Further, they should characterize the impact of sampling uncertainty, which could be done by adding 
confidence intervals created through bootstrapping with replacement (see section 5.5 in Araya et al., 2023). 
This is a critical point that the authors should address, given the very small sample size. 

Thank you for your concern regarding the adequacy of the training sample and the subsequent suggestions. Our two-
tiered validation approach, combining LOOCV on the training sample with hold-out validation on the testing data, 
was intended as additional element for checking forecast reliability. However, we acknowledge that the hold-out 
validation sample, consisting of only 2 to 3 observations, may appear unrepresentative. In line with your suggestions, 
we removed the hold-out validation and incorporated bootstrap-based prediction intervals. 

Specific comments 

4. L13: The authors use the term “predictions”, which is an excessively ample word for what they really do. 
In this line, I recommend the authors using the word “forecasts”, and consider using the words “hindcasts” 
and “hindcasting” in the remainder of the manuscript, especially when describing their methods and results 
(please see section 3 in Beven and Young, 2013). 

Thank you for your suggestion. We replaced "predictions" with "forecasts" and "hindcasts" as appropriate. 

5. L30: This population estimate is for almost ten years old. I suggest updating the number and the 
reference. 

We could not find updates to this estimate in the given context. Immerzeel et al. (2020)  provide a similar estimate of 
~1.9 billion people, though they focus on populations dependent on mountains.  

6. L35: Sometimes you use “dynamic”, and sometimes “dynamical”. Please pick one term and be 
consistent. 

Thank you for highlighting this inconsistency.  We changed the wording throughout the manuscript to use 'process-
based' instead of “dynamic/dynamical” and “data-driven” instead of “statistical”. 



7. L36-37: This sentence is incorrect. Climate forecasts are not used until the IHCs have been produced by 
running a model with a historical meteorological dataset up to the forecast initialization time. 

We appreciate this comment and apologize for the confusion. We intended to convey the same point, but used incorrect 
wording. In the revised version of the manuscript, the sentence reads as: “Process-based forecasts use a hydrological 
or land-surface model to estimate current hydrologic conditions, typically with assimilation of observational data, 
followed by the use of climate forecasts to project future conditions.” (lines 39-41) 

8. L39: I disagree with the authors’ statement, since computational demand depends on model complexity 
and, therefore, a model simulation might take from seconds (e.g., GR4J, SAC-SMA) to several minutes (e.g., 
VIC, SUMMA) in a home PC. 

Thank you for highlighting this. We agree that computational demand depends on model complexity. However, 
depending on the type of model and the level of spatial resolution, a simulation can take significantly longer than just 
a few minutes. Since the paragraph compares process-based and data-driven modelling approaches for hydrological 
forecasting, we split the original sentence into two, with the new sentence: “In addition, process-based models 
typically exhibit higher computational demands.” (lines 46-47) 

9. L40: Note that meteorological variables obtained from numerical climate models ARE prone to 
uncertainties. 

Thank you for bringing this to our attention. We revised the wording accordingly. 

10. L45-46: I think that the authors should cite more papers when referring to the relevance of SWE as a 
predictor in mountainous catchments (e.g., Garen, 1992; Rosenberg et al., 2011; Mendoza et al., 2014). In 
general, I recommend the authors strengthening the literature review in this paragraph. 

Thank you for this suggestion. We admit that the initial submission lacked overview of existing practices for seasonal 
hydrological forecasting based on accumulated snowpack, especially using data-driven methods. We expanded the 
literature review to better place our study in a global context, particularly by referencing relevant work from North 
America, but also including similar studies in other regions (lines 51-76). 

11. L46: “statistical forecasts of seasonal streamflow often rely solely on accumulated snowpack”. I disagree 
with this statement. The current operational systems managed by the NRCS for the western US and the DGA 
for Chile use, besides SWE, in situ measurements of precipitation, air temperature and streamflow measured 
in the preceding months. 

Thank you for the correction; we apologize for the confusion. What we intended to convey is that accumulated 
terrestrial water storage is the main determinant of seasonal water supply, with snowpack being its key component. 
We revised this sentence to avoid confusion (lines 51-52). In addition, the Data section has a new exerpt which notes 
additional predictors (lines 184-188).  

12. L74: Are the authors referring to hydrological droughts? I think that any paper by Anne Van Loon (e.g., 
Van Loon, 2015) may be useful to clarify this point. 

Thank you for the suggested references. In this sentence we are referring to seasonal precipitation levels lower than 
the historical norm, which may represent droughts. However, as this paragraph aims to overview climate 
teleconnections relevant to the Central Asian region, rather than droughts, we find it challenging to refer to Van Loon 
(2015) in this specific context. 

13. L88-89: This approach was proposed and tested more than two decades ago (e.g., Piechota et al., 1998). 



In this context, the noted sentence refers to a general principle of combining initial hydrological conditions with future 
climate, rather than specifically to the earliest case where this was tested. We suggest keeping the reference unchanged. 
While Piechota et al. (1998) provides an interesting case study, it appears to rely primarily on predictors that 
characterize future climate. 

14. L97: It would be good clarifying here that SWE can be directly obtained from reanalysis, or estimated by 
combining satellite remotely sensed snow depth and a snow density model. 

15. L99-101: Please note that ensemble techniques have been used for decades in seasonal streamflow 
forecasting (e.g., Twedt et al., 1977; Day, 1985; Regonda et al., 2006; Wang et al., 2011; Arnal et al., 2018; 
Emerton et al., 2018; Lucatero et al., 2018; Girons Lopez et al., 2021; Araya et al., 2023). 

Thank you for these suggestions. We expanded the literature review on use of ensemble approaches now as a separate 
dedicated paragraph (lines 78-92). Since there are numerous studies that use this approach, we focused primarily on 
those that resemble contextual similarities, specifically data-driven streamflow forecasting in snowmelt-dominated 
regions. 

16. Table 1: I suggest adding the period used to compute the variables and more hydroclimatic descriptors, 
like mean annual runoff (mm/yr), mean annual runoff ratio and aridity index. Please change the units of 
seasonal discharge to mm/yr, 

We appreciate this suggestion as it allowed us to detect some inconsistencies in the precipitation data. Due to absence 
of in-situ data, we estimated basin-averaged precipitation in Table 1 using the CHELSA-W5E5 dataset. However, 
when comparing mean annual runoff and precipitation estimates per mm/m2 using this data, in three basins (Varzob, 
Vaksh and Kashkadarya) the runoff coefficient surpasses 1 (Table R1). We assume that this discrepancy may be 
reasoned by underestimation of the CHELSA-W5E5 precipitation at least over those basins. To check this, we 
retrieved monthly station precipitation data from the recently published GHCN dataset (Applequist et al., 2024). It 
should be noted that available stations in the database do not cover all the basins, furthermore the stations monthly 
timeseries are largely fragmented in this domain (i.e. contain significant gaps). For the three mentioned basin the 
database contains only a station within Vaksh basin, with 17 to 19 complete observations per each month from 1979 
to 2016 (temporal coverage of CHELSA-W5E5 dataset). Figure R1 below compares median monthly precipitation 
between station and corresponding CHELSA-W5E5 cell. While the annual cycle follows the same signature, the 
comparison suggests that CHELSA-W5E5 tends to underestimate precipitation across all months except August when 
precipitation is the lowest in this part of the domain. On average the annual bias of CHELSA-W5E5 estimate for this 
location constitutes around -25%. However, it is unclear whether station records are corrected for precipitation 
undercatch, which implies that the discrepancy could be even larger. In addition, this station is located at an elevation 
of 1,319 m.a.s.l., significantly below the basin's average elevation (3,530 m.a.s.l.), and we don’t know the magnitude 
of bias at higher elevations in the catchment.  

Table R1. Basin mean precipitation, runoff and runoff ratio estimated using CHELSA-W5E5 precipitation dataset 

Basin 
Mean annual 
precipitation 

(mm) 

Mean annual 
runoff 
(mm)  

Runoff ratio 

1.Murghap 319 31 0.10 

2.Amudarya 380 129 0.34 

3.Varzob 654 1121 1.71 

4.Vaksh 530 644 1.22 

5.Kashkadarya 530 1023 1.93 

6.Zarafshan 516 424 0.82 

7.Naryn 392 235 0.60 

8.Chu 391 186 0.48 
 



 

Figure R1. Comparison of monthly precipitation between Station observations and corresponding CHELSA W5E5 
data in the Vaksh Basin over 1979-2016. Station GHCN ID: TI000038851 (GARM/RASHT), latitude = 39.02, 

longitude = 70.36, elevation = 1316 m.a.s.l. 
 

The revealed discrepancy does not affect the main findings of the study, as inter-annual peak season precipitation was 
used only to determine correlations with climate indices (Subsection “5.2 Association between climate oscillations 
and hydroclimatic variability across the study catchments”). A similar analysis using seasonal discharge shows almost 
identical patterns (Figure 3 in the original version of the manuscript) which suggests that the CHELSA-W5E5 dataset 
plausibly captures interannual variability in precipitation.  

In this context, we believe it would be misleading to report basin-averaged precipitation in Table 1, and consequently, 
we cannot use these estimates to calculate the runoff ratio or other metrics such as the Aridity Index. Therefore, we 
have removed the respective column from Table 1. Additionally, since the CHELSA-W5E5 estimates are only 
available until 2016, we decided to use precipitation data from the TerraClimate dataset (Abatzoglou et al., 2018),) 
for displaying annual cycles across basins in Figure 1 and for estimating correlations in Subsection 5.2. The 
TerraClimate dataset covers the entire temporal range of discharge data across all basins, though it exhibits similar 
bias as CHELSA-W5E5 (not shown here). While this replacement does not affect the respective findings, as the annual 
cycles and correlations with climate indices show identical patterns, it is more appropriate for ensuring consistent 
temporal coverage. 

17. L173: what link function did you use in your GLM? 

We applied a Gaussian link function for the GLM model, now specified in the same line (59) 

18. L189: Looks like the SVR works as a post-processor, right? 

Yes, the SVR functions as a post-processor in our ensemble stacking approach.  

19. L190-191: given the small sample size, I recommend deleting this step from your workflow (see comment 
#3). 



Thank you for the suggestion. We revised our validation strategy in line with your recommendation in comment #3. 
All relevant sections of the manuscript were amended accordingly. 

20. L205, L206, L297, L351 and L353 and everywhere else: the authors use the term “assimilate” when 
referring to the use of modeled SWE as a predictor in their statistical model. Nevertheless, such term is 
typically used when referring to a family of techniques that combine imperfect models with uncertain 
observations to improve dynamical model estimates (e.g., Liu and Gupta, 2007; Reichle, 2008; Kumar et al., 
2016; Smyth et al., 2022). Since the authors do not refer to the former concept anywhere in this manuscript, 
I suggest deleting the words “assimilate” or “assimilation”. 

Thank you for highlighting this inconsistency in used terms. We amended the terms used accordingly throughout the 
text. 

21. L221: what do you mean with the word “underperforming”? 

22. L221-222: I think that this sentence contradicts the previous one. Also, if ERA5-L and MSWX are better, 
why don't you just pick one of these products for subsequent analyses? Some of your subsequent figures are 
unnecessarily complicated. 

Thank you for this comment. We amended this sentence so that now reads as: “While SWE estimates based on ERA5-
L and MSWX generally show a higher correlation with seasonal discharge across most catchments, though in the 
absence of in-situ snow measurements, it is impossible to assert which of the four SWE estimates is relatively more 
consistent.” (lines 307-309). Figure 3 is intended not only to illustrate the association between snowpack and seasonal 
streamflow and how this relationship changes across forecast issue dates, but also to highlight the differences between 
the snow estimates.  

23. Section 5.2 and Figure 4: since your target variable is seasonal streamflow, you could show correlation 
results between this variable and climate indices here, and move the correlation results with precipitation to 
supplementary material. 

We appreciate this suggestion. We propose retaining the correlation graph between peak-season precipitation and 
climate indices in the main text, while moving the streamflow correlation graph to the supplementary material. We 
believe this graph provides valuable context, which we also reflect on in the Summary and Discussion section  in lines 
532-534. We moved the other graph to Supplement (Figure S1)  

24. Figure 5: I do not think you can support more than three predictors with a sample size n = 18 (see comment 
#3). 

We now use up to three predictors per basin, with corresponding updates made across the text and figures. 

25. L295: Do you mean winner among statistical models? Can you please be more specific? 

Thank you for your comment. The sentence now reads “There are no model types that are consistently superior in 
terms of performance across lead times, especially for the final (April 1st) forecast.” 

26. L301-302: I do not think that the authors are quantifying uncertainty (see comment #2). 

27. Figure 6 is quite difficult to read. Since the focus of the paper is on the relevance of climate information 
in seasonal streamflow forecasting, why don't you just show the best-performing statistical model, with the 
best SWE product? Further, you should include the assessment period in each figure caption. 

Thank you for your suggestion. We would like to retain Figure 6, as it not only displays the accuracy of both the base 
model forecasts and the final ensemble forecast, but it also illustrates the varying performance of the base models 



across different issue dates. It also conveys the message that the ensemble forecast outperforms single model forecasts. 
We believe this broader comparison is useful for demonstrating the added value of the ensemble approach. Regarding 
the assessment periods, since they are now indicated in the Introduction and Data section, as well as in the caption to 
Figure 1., we do not see the need to repeat them again in this figure.  

28. L313: This is not true for all catchments. See, for example, the red bars for the Kashkadarya and Chu 
basins. 

With the revised version now incorporating all observations in the LOOCV and no hold-out validation sample, both 
the reported results and figures have been updated accordingly. 

29. L322: Do you mean larger errors? Are you comparing against the results obtained with SWE and climate 
information? In that case, I really think you should define a Skill Score for a comparative assessment. 

Thank you for the comment. Yes, we are comparing two configurations of the same models—one using only SWE 
and the other using both SWE and climate indices. To ensure a more consistent comparison, and in line with your 
previous suggestion (i.e. removing hold-out validation), there is now a single graph that compares normalized MAEs 
for both configurations for each basin and issue date.  

30. Figure 8: I recommend presenting these results using scatter plots (eight panels), along with the 1:1 line, 
percent bias, MAE and R2. 

We appreciate this suggestion. We displayed these results as Q-Q plots. We did not embed the three metrics, as they 
would obscure the plots, given that each basin plot includes up to four forecast issue dates, resulting in up to 12 text 
elements per plot. However, upon your request, we could present these results as a table in the Supplement. 

31. L348: What do you mean with 'effectively'? That near real-time SWE estimates are actually useful for 
seasonal streamflow forecasting? 

By 'effectively,' we intended to convey that SWE estimates derived from or modelled using global sources, despite 
their biases and spatio-temporal inconsistencies, can still provide added value for seasonal streamflow forecasting. 
While this point may seem trivial, we believe it is relevant in the context of forecasting without in-situ data on 
predictors. We revised this sentence to ensure clarity (line 514 in the tracked changes version). 

32. L350: I do not think the authors have presented any uncertainty or error propagation analysis (please see 
comment #2) 

We assume that the message of the sentence is now valid since it now also relies on incorporated uncertainty analysis.  

33. L352: Did you actually assess the accuracy of SWE products using in-situ observations? 

No, as we note in the Introduction (lines_137-41) systematic in-situ SWE measurements are absent in the region.  

34. L420: In my opinion, models adjusted with such a small sample cannot be regarded as “reliable”. 

We changed the wording to ‘plausible’.  

Suggested edits 

35. L28: “where it sustains” -> “sustaining”. 

36. L32: “Accurate water availability forecasts” -> “accurate water supply forecasts”. 



37. L36: “current hydrologic conditions” -> “initial hydrologic conditions”. 

38. L42: “multiple variables” -> “multiple predictor variables”. 

39. L43: delete “the context of”. 

40. L61 and L63: replace “from now on” by “hereafter”. 

41. L67: delete “from satellite”. 

42. L73: “ENSO in its cold phase” -> “the cold phase of ENSO”. 

43. L74: delete “ENSO’s”. 

44. L95-96: “used to conduct” -> “conducted”. 

45. L124: I think that the right word is “predictand”. 

46. L130: delete “in near real-time”. 

47. L132: “we simulated” -> “we obtained”. 

48. L155-156: “precipitation levels” -> “precipitation amounts”. 

49. L174: add “SVR” after “support vector regression”. 

50. L214-215:  I suggest deleting this sentence. 

Thank you for the proposed edits. We updated these parts in line with your suggestions. 
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