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Abstract. Current nitrogen management programs within the agricultural crop production sector aim at optimizing crop 

productivity while minimizing environmental externalities, in particular groundwater contamination with nitrates.  However, 

the effectiveness of these programs has been varied, with many studies indicating mixed or minimal results. Understanding 10 

the drivers of nitrate concentration in groundwater and its change is crucial for evaluating nitrogen regulations and guiding 

policy and management in the agricultural sector. 

In this context, our study focused on assessing the effectiveness of the sustainable nitrogen management program for 

agriculture in Wallonia (PGDA), Belgium, on groundwater protection against nitrate contamination. We analysed nitrate 

concentration time series over the period 2002-2020 from 36 locations across four groundwater bodies within the Walloon 15 

nitrate vulnerable zones, situated in the agricultural belt. To capture the extent and dynamics of nitrate pollution, we developed 

and applied six indicators, providing a detailed view of both the current state and temporal trends of nitrate levels. Additionally, 

we computed spatially-explicit variables for each monitoring point to describe potential nitrate sources and their migration 

potential towards groundwater, and we examined their explanatory power in relation to the six nitrate pollution indicators. 

Our findings indicate a modest overall improvement in average nitrate concentrations post-PGDA implementation. However, 20 

a closer examination at the individual site level reveals encouraging trends, with some locations showing pronounced decreased 

nitrate levels and with a decline in the average rate of change in nitrate concentration in 2020 indicating a slowdown in the 

rate of increase (or an acceleration in the rate of decrease) compared to 2002. Our results also underscore a complex array of 

factors influencing nitrate pollution and trends, with land use patterns and aquifer characteristics identified as key determinants. 

The study suggests that the absence of desired changes in certain areas could be attributed to a time lag between the introduction 25 

of regulatory measures and the observable impact on groundwater quality. This research highlights the intricate relationship 

between environmental regulation, land use, and groundwater quality, emphasizing the need for continued monitoring and 

adaptive management strategies to effectively address nitrate pollution in groundwater. 
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1 Introduction 30 

Elevated nitrate levels in drinking water pose serious health risks, including methemoglobinemia or 'blue baby syndrome' in 

infants (Comly, 1945), and potential links to cancers (Bouchard et al., 1992) and thyroid disorders (Ward et al., 2018). 

Furthermore, nitrate contamination contributes to eutrophication in aquatic ecosystems, leading to algal blooms and subsequent 

hypoxia, which can devastate aquatic life (Hornung, 1999). Consequently, high nitrate levels in groundwater is a significant 

environmental (Grizzetti et al., 2011). The primary anthropogenic sources of nitrates in groundwater are agricultural activities 35 

(Spalding & Exner, 1993; Wick et al., 2012), but non-agricultural sources such as inadequate treatment and disposal of human 

waste and wastewater, landfill and waste tip, and industrial waste can also be significant contributor to high concentrations in 

aquifers (Mattern et al., 2009; Vanclooster et al., 2020; Wakida & Lerner, 2005). While human activities are the drivers of 

increased nitrate levels in groundwater, these increases are modulated by the natural properties such as climate, soil 

composition, geological formation, and depth of the groundwater tables.  40 

Recognizing the environmental and health hazards related to nitrate pollution, many regions have introduced best management 

practices (BMPs) aimed at reducing nitrogen loading into the environment. The European Union instituted the Nitrate Directive 

(91/676/EEC) in 1991 for the protection of waters against pollution caused by nitrates from agricultural sources. Under the 

mandate of this directive, the member states are required to identify Nitrate Vulnerable Zones within which specific actions 

must be implemented to diminish nitrate leaching, aiming to maintain nitrate levels in groundwater below 50 mg/l.  45 

Studies have provided insights into how such policy interventions have influenced groundwater quality. Most of them have 

demonstrated encouraging signs of effectiveness of nitrogen management regulations in reducing nitrate pollution in 

groundwater, but other studies pointed to persisting challenges with a continued increase or minimal improvement in 

concentrations in many locations (Ferguson, 2015; Hansen et al., 2012; Van Grinsven et al., 2012). 

In Wallonia (Belgium), the European Directive was transposed into a program for sustainable management of nitrogen 50 

(“Programme de Gestion Durable de l'Azote en Agriculture”, PGDA), that was implemented at the end of 2002. This program 

includes measures that apply to the entire region of Wallonia, along with additional measures only applicable in the Nitrate 

Vulnerable Zones, such as specific spreading periods and conditions, obligations regarding soil cover, and monitoring 

requirements. Since their most recent extension in 2013, the Nitrate Vulnerable Zones now cover 69% of the utilized 

agricultural land in Wallonia.  The observed effectiveness of the program so far remains mitigated without clear overall signs 55 

of improvement (Batlle Aguilar et al., 2007; SPW - DEE - Direction des Eaux souterraines, 2024).  Many control sites exceed 

the European guide level of 25 mg/l and most of the groundwater bodies in the Nitrate Vulnerable Zones (NVZ), partially or 

locally, have high levels and several exceedances of the standard of 50 mg/l, although the average nitrate concentration values 

have been shown to stabilize and even, in some aquifers, to decrease. 

Understanding the factors underlying nitrate concentrations and trends is important for assessing nitrogen management 60 

programs, identifying potential contamination risks, and proposing more effective strategies when needed. However, this 

understanding is complicated by the multiplicity and complexity of factors and processes involved. Besides, the apparent 
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failures in the nitrogen management program can likely be attributed to time lags in water quality improvement due to the long 

water residence time (Hansen et al., 2012; Mattern & Vanclooster, 2010; Visser et al., 2007) and the slow release of N that 

have accumulated over time in the landscape elements including soils and vadose zone (Ascott et al., 2017; Kyte et al., 2023), 65 

what certain author call “the nitrogen legacy effect” (Basu et al., 2022; Van Meter et al., 2016). 

 

This study aims to assess the effectiveness of the PGDA and identify bottlenecks in some groundwater bodies of Wallonia 

(Belgium). 

In particular our objectives are: 70 

(i) To assess the long-term (2002 – 2020) evolution of nitrate concentrations since the implementation of the PGDA; 

(ii) To identify the factors controlling the nitrate concentration and temporal trend. 

2. Material and Methods 

To address the first objective, we captured the nitrate concentration dynamics between 2002 and 2020 with six indicators. To 

address the second objective, we computed a set of potential explanatory variables standing for environmental and 75 

anthropogenic factors which may impact the nitrate concentration dynamics. We then assessed the relationships between these 

explanatory variables and six nitrate pollution indicators. 

2.1 Study area 

We selected four groundwater bodies located in the Region of Wallonia, Belgium: the Geer basin chalks, the Brusselian sands, 

the Haine basin chalks and the Landenian sands (Figure 1).  The concept of "water body" was introduced within the Water 80 

Framework Directive to classify the various aquatic environments that characterize the European territory. A groundwater 

body consists of a distinct volume of groundwater within one or more aquifers. In Wallonia, the groundwater bodies were 

delineated by a group of experts based on hydrogeological criteria such as the extent of geological layers or the interaction 

with surface waters, as well as non-hydrogeological criteria such as the administrative limits.  

The four selected groundwater bodies are part of Nitrate Vulnerable Zone (NVZ). The NVZ covers 69% of Wallonia’s utilized 85 

agricultural land, and includes all monitored sites where levels exceeding 50 mg/l have been measured. The Geer basin chalks 

and the Brusselian sands were part of the first nitrate vulnerable zones as defined in 1994, and have thus been subjected to the 

associated regulations since then. The Haine basin chalks and the Landenian sands were added in the NVZ in 2013.  

The Geer basin chalks groundwater body covers an area of 440 km² and is located in the Meuse hydrographic basin (SPW, 

2016). The groundwater body’s aquifer, the Hesbaye aquifer, is said to have a substantial storage capacity and a high porosity. 90 

It is partly overlaid in its northeast portion by the Landenian sands groundwater body. Agricultural land covers approximately 

68% of the land surface, with 14% of it being meadows and 86% crops. The region has a high population density with 340 

inhabitants per square kilometre.  

https://doi.org/10.5194/hess-2024-173
Preprint. Discussion started: 25 June 2024
c© Author(s) 2024. CC BY 4.0 License.



4 

 

The Landenian sands groundwater body spans a surface of 206 km² and is located within the Scheldt hydrographic basin (SPW, 

2010). The groundwater body’s aquifer is the Landenian sands aquifer. Due to limited exploitation, the hydrogeological 95 

properties of this aquifer remain poorly defined. Agricultural land covers approximately 78% of the total land surface, with 

meadows accounting for 8% and crops making up the remaining 92%. The population density is relatively low, with 160 

inhabitants per square kilometre.  

The Brusselian sands groundwater body spans a surface of 964,5 km² and is situated in the Scheldt hydrographic basin (SPW, 

2006b). Its aquifer is the Brusselian sands aquifer, which has a high storage capacity but a low hydraulic conductivity. 100 

Agriculture covers 71% of the land surface and another 10% is urban land. 

The Haine basin chalks groundwater body covers an area of 644 km² and is situated in the Scheldt hydrographic basin (SPW, 

2006a). The main aquifer of this water body is the Mons basin chalks aquifer. The aquifer’s porosity has a permeability ranging 

from 10-5 to 10-7 m/s, while the fissures in the chalk formation entail a permeability of 2.10-3 to 5.10-5 m/s. In the northwest, 

the groundwater body is partially overlaid by the Haine valley sands groundwater body. The land surface area consists of 64% 105 

agricultural land and 23% urban land. 

 

Figure 1. Location of the four groundwater bodies and the 36 monitoring points. 
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2.2 Response variables 

2.2.1 Nitrate concentration data 110 

The monitoring points are water intake structures exploited for drinking water production by the Société Wallonne des Eaux 

(SWDE). They are wells, galleries, springs or drains. We selected points only in unconfined parts of the aquifers, and for which 

the water quality monitoring period was longer than ten years. We removed points located in anoxic groundwater as they are 

prone to denitrification (Rivett et al., 2008). We defined the anoxic conditions as O2 concentrations inferior to 0.5 mg/l and 

Mn concentrations superior to 0.05 mg/l according to Jurgens et al. (2009). The final dataset contained 36 monitoring points 115 

from which 13 points are in the Haine basin chalks, nine points in the Geer basin chalks, nine points in the Brusselian sands 

and five points in the Landenian sands (Figure 1). 

 

We focused our analysis on the period 2002 to 2020, to start at the onset of the sustainable nitrate management program 

(PGDA) and end with the most recent year for which data were available. For nine out of the 36 points the first available data 120 

started after 2002: seven in 2003, one in 2006, and one in 2009.  The temporal resolution of the nitrate measurements is 

variable, with the total number of measurements per point ranging from 53 to 948 over the study period. The water samples 

were analysed by the laboratory of the drinking water production company, the SWDE, under ISO 17025 accreditation.  
The nitrate concentration time series contained some problematic values that were noticeably lower or higher than their 

neighbours due to reported human errors. We thus filtered the time series using a moving window of two years, with an upper 125 

and lower limit being the mean of the data within the window plus and minus three times the standard deviation. Figure 2 

shows the annual averages of the resulting time series. 
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Figure 2. Time series of the yearly mean nitrate concentrations at the 36 monitoring points, sorted by groundwater body. In grey, 

the time series of all points. In colour, the time series of the points in each groundwater body. 130 

2.2.2 Nitrate pollution indicators 

We defined a set of six indicators that collectively provide a comprehensive view of the state and changes in nitrate 

concentration over time, between 2002 and 2020. The indicators and their interpretation are defined in Table 1 and illustrated 

in Figure 3 

Table 1. Definition and interpretation of the nitrate pollution indicators. 135 

Pollution indicator (I) Unit Usage and interpretation 

I1  Average nitrate concentration 

in 2002 

mg/l Snapshot of nitrate concentration levels in the groundwater before the 

implementation of the PGDA. Serves as a baseline for comparison with future 

years.  

I2  Average nitrate concentration 

in 2020 

mg/l Snapshot of nitrate concentration levels in the groundwater in a recent year. 
Allows for direct comparison with past data to assess changes over time. 

I3   Concentration difference 

between 2020 and 2002 (I3 = 

I2-I1) 

mg/l Indicates how the concentration has changed since the implementation of the 

PGDA. A positive value indicates an increase in nitrate levels, while a 

negative value indicates a decrease. 

I4 Slope in 2002 mg/l/year Rate of change in nitrate concentration in 2002. Provides insight into how 

rapidly nitrate levels were changing at the beginning of the period.  

https://doi.org/10.5194/hess-2024-173
Preprint. Discussion started: 25 June 2024
c© Author(s) 2024. CC BY 4.0 License.



7 

 

I5 Slope in 2020 mg/l/year Recent rate of change in nitrate concentration. Useful for understanding recent 

dynamics and informing current policy decisions. 

I6 Difference in slope between 

2020 and 2002 (I6 = I5-I4) 

mg/l/year Indicates how the rate of change in nitrate concentration has changed over the 

study period. A positive value indicates an accelerating increase (or 

decelerating decrease) in nitrate levels, while a negative value suggests a 

decelerating increase (or accelerating decrease). 

 

 

Figure 3. Illustration of the six indicators of the nitrate concentration status and long-term change. 

Note that we calculated the rate of change (slope) at the start and the end of the considered time period instead of conducting 

a single trend test. This choice is because the change in concentration values in most monitored locations was not gradual 140 

(Figure 2) but showed irregular or non-linear patterns within the considered time period, which is not suitable for a simple 

trend test. 

The method used for slope computation can lead to different conclusions in trend diagnostics. We used two different 

approaches, based on lowess (Lo) and on change point detection (CP), and tested whether the results from both approaches 

corroborated with each other. We referred to the indicators as I4Lo and I5Lo, and I4CP and I5CP, respectively.  145 

For the Lo approach we first smoothed the time series using locally weighted scatterplot smoothing (lowess) (Cleveland, 1979) 

and we then determined I4Lo and I5Lo by computing the slope of the tangent line at the points corresponding to January 1, 2002, 

and January 1, 2020, respectively. The window length for lowess was set to eight years for time series longer than twelve 

years, and to 2/3 of the time series length for shorter series. Within a local window of 90 days, a linear interpolation was 

applied instead of a weighted regression to increase stability. 150 

In the CP approach, we determined I4CP and I5CP as the slopes in 2002 and 2020 of the segments between the change points of 

the time series. The segments’ slopes were calculated using the Theil slope estimator, robust to outliers (Helsel & Hirsch, 

2002). The change points were determined by fitting a continuous spline function to the time series, computed using the optimal 

search algorithm implemented by the Python ‘ruptures’ package (Truong et al., 2020). We employed an iterative approach to 

determine the optimal number of change points, increasing from 0 to the maximum feasible while ensuring a minimum five-155 
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year interval between the change points. The selection of the optimal number of change points was based on the Bayesian 

information criterion (BIC, Schwarz, 1978).   

For the nine monitoring points whose first measurements were taken after 2002, the slope of the trend in 2002 (I4Lo and I4CP) 

was taken as the slope at the first data point, and the mean absolute nitrate concentration in 2002 (I1) was obtained by 

hindcasting that trend, using I4CP.  160 

 

Figure 4. Illustration of the two alternative methods, the lowess (Lo) and change point (CP) methods, used to model the time series 

and identify the trends in 2002 (I4 indicators) and in 2020 (I5 indicators). 

2.3 Potential explanatory variables 

We tested the ability of a set of variables to explain the spatial and temporal variability of the nitrate concentration indicators. The 165 
variables encompass both the inherent vulnerability to pollution and the anthropogenic influence, which include human activities 

that could cause or affect punctual and/or diffuse pollution. The definitions of these indicators, computation means and data sources 

are given in Table 2. The descriptive statistics of the values of these variables for the monitored locations are given in  

Table 3. 

2.3.1 Delineation of the influence zones 170 

The risk of groundwater contamination at a specific location is influenced by the traits of the land surface area that can 

potentially transport pollutants to it. Therefore, delineating this land surface area, here referred to as the 'influence zone', is 

crucial in the analysis of groundwater nitrate concentrations (Mattern et al., 2009). We defined the influence zones as the 

topographic surface watersheds legally protecting each water intake structure (SPW, n.d.). These zones correspond either to 

the groundwater table area with a maximum transfer time of 50 days to the water intake structure as estimated through 175 

geological modelling, or they are defined as circular areas centred around the structure location, whose radius depends on the 

aquifer substrate: 100 meters for sandy aquifers, 500 meters for gravel aquifers and 1000 meters for karstic aquifers. The 

boundaries of these zones are available on the regional institution’s geographical data portal (SPW, n.d.). We delineated the 
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watersheds with the ArcGIS watershed toolbox, using a 2-meter resolution raster of flow direction and flow accumulation 

generated by the LIDAX project (SPW, 2019).   180 

2.3.2 Inherent vulnerability 

To quantify the natural vulnerability, we considered the seven factors of groundwater natural vulnerability to pollution as 

defined in the DRASTIC model of the U.S. Environmental Protection Agency (Aller et al., 1985):  aquifer depth, recharge, 

aquifer media, soil type, the topography, impact of the vadose zone, and hydraulic conductivity. We used the depth of the 

water intake structures as a proxy of the depth to the groundwater table since piezometric measurements were not available 185 

for all structures. We used the mean annual rainfall as a proxy for the net recharge. We used a single categorical variable, 

namely the groundwater body of the water intake structure, as a proxy for the three DRASTIC vulnerability factors aquifer 

media, impact of the vadose zone and hydraulic conductivity. The variable standing for the topography was the mean slope in 

the influence zone calculated using a 2 m resolution digital slope product derived from a 1 m digital elevation model.  We did 

not include the soil in the set of explanatory variables since the main soil type of all influence zones was identical, namely 190 

loam. We considered all the vulnerability variables to be time-invariant over the studied period. 

To be able to include the categorical variable aquifer media (GWbody) in our analysis, we replaced it by four binary variables 

using one-hot encoding. We called the new variables GWbodyLS, GWbodyBS, GWbodyHBC and GWbodyGBC, they 

indicate respectively the monitoring points in the Landenian sands, the Brusselian sands, the Haine basin chalks and the Geer 

basin chalks. 195 

2.3.3 Land cover and land use 

We considered five different land cover and land use types that are susceptible to impact diffuse nitrate pollution: crop, potato 

crop, meadow, urban/buildings and forested or green cover. We included specifically the potato crop cover as it is known to 

leave a high concentration of potentially leachable nitrates in the upper soil layer after the growing season (Bah et al., 2015). 

We examined the trends in land use type covers over the study period through a visual analysis, which revealed that only the 200 

meadow areas exhibited a trend. We thus included a sixth variable, the change in meadow cover.  

2.3.4 Potential punctual pollution sources 

Finally, we considered three types of potential punctual pollution sources, i.e. features related to the presence of graveyards, 

farms and buildings not connected to the collective sewage system. The latter can indicate the presence of septic tanks or dry 

wells. The datasets used capture the situation in 2020 (Table 2). We expect little change for these variables over the studied 205 

period.  

Table 2. Definition of the potential explanatory variables used in the statistical models. IZ: influence zone. SPW: Service Public de 

Wallonie. SPF: Service Public Fédéral. SPGE : Société Publique de Gestion de l’Eau. SWDE : Société Wallonne de Gestion de l’Eau. 

IRM : Institut Royal Météorologique.  
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Variable ID Definition and unit Source dataset Provider 

Water extraction 

depth 

Depth Depth of the bottom part of the water intake 

structures (m) 

Documentation of water intake 

structures 

SWDE 

Groundwater 

body 

GWBody Groundwater body (Brusselian sands, 

Landenian sands, Haine basin chalks and Geer 

basin chalks) 

Documentation of water intake 

structures 

SWDE 

Rainfall Rainfall Interannual (1961-2019) average of annual 

rainfall (mm/year) 

1961-2019, 5000 m resolution 

climate dataset for Belgium  

IRM 

Topography TerrainSlope Average of the terrain slope in the IZ  (%) 1 m resolution digital slope model 

2013-2014  

SPW 

Crop cover  CropLU Interannual (1998-2019) mean percentage of 

IZ area with crop cover (%) 

 

Anonymous agricultural land 

registry (annual data from 1998-

2019) 

  

 

SPW 

 

Potato crop 

cover  

PCropLU 

Meadow cover MeadowLU 

Change in 

meadow cover 

MeadowReg Trend in meadow area calculated as the slope 

of the linear regression of the yearly meadow 

area percentage between 2002 and 2020 

(%/year) 

Built area BuiltLU Interannual (1998-2019) mean percentage of 

IZ area with built infrastructures (%) 

Walloon land registry (annual data 

from 1998-2019) 

 

 

SPF 

Forested and 

green areas 

GreenLU Percentage of IZ area with forests and green 

spaces in 2003 (%) 

Land cover map 2003 

  

SPF 

Presence of 

farm(s) 

Farms Number of farms in the IZ in 2020 divided by 

the surface of the IZ (nb/km2) 

Continuous cartographic mapping 

project 

SPW 

Presence of 

graveyard(s)  

Graveyards Number of graveyards in the IZ in 2020 

divided by the surface of the IZ (nb/km2)  

Continuous cartographic mapping 

project 

SPW 

Buildings with 

automonous 

sewage regime 

NoSewage  Number of buildings not connected to the 

sewage system in 2020 divided by the surface 

of the IZ (nb/km2)  

Walloon land registry (2020) 

Wastewater management plan 

SPF 

SPGE 

 210 

Table 3.  Descriptive statistics of the independent variables for the 36 monitoring points. NA: not applicable. 

Variable (unit) Unit Mean Min Median Max 

CropLU % 57 6 53 91 

PCropLU  % 5 0,1 5 14 

MeadowLU  % 8 0,4 7 19 

MeadowReg  %/year -0,02 -0,66 -0,09 0,92 
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BuiltLU % 3 0,2 2 8 

GreenLU % 6 0,1 3 63 

Farms  nb/km2 0,3 0 0,4 1,2 

Graveyards nb/km2 0,06 0 0 0,3 

NoSewage  nb/km2 0,2 0,03 0,1 0,5 

Depth  m 29 0,6 19 120 

Rainfall mm/year 814 760 807 867 

TerrainSlope  % 4,6 2,6 4,4 9,0 

Groundwater body - NA NA NA NA 

2.4 Data analysis 

2.4.1 Status and temporal evolution of the nitrate concentrations 

We computed descriptive statistics and visuals to depict the past and present status and temporal changes of the nitrate 

concentrations in the studied groundwater bodies. 215 

2.4.2 Bivariate analysis to identify the controlling factors 

We tested the strength and direction of the association between the nitrate concentration indicators and each independent 

variable separately by computing the Kendall rank correlation (also known as Kendall's tau coefficient, Kendall, 1938). The 

value of Kendall's tau ranges from -1 to 1 and the closer the coefficient is to either -1 or 1, the stronger the association. A 

higher positive value indicates a strong positive association, while a higher negative value indicates a strong negative 220 

association.  

2.4.3 Multivariate linear regressions to identify the controlling factors 

We used multiple linear regression to assess the individual contribution of each explanatory variable while considering the 

influence of the other variables, and thus, accounting for potential confounding effects. 

Before applying the regression models, we identified and removed variables that demonstrated high multicollinearity. This 225 

approach was essential to ensure that the remaining variables in the model could provide clearer, more distinct contributions 

to the analysis, enhancing the reliability and accuracy of our model's results. 

First, we replaced the four binary variables representing the groundwater bodies, which were highly collinear, with one single 

binary variable ‘Aquifer’, representing the aquifer media of the groundwater bodies. A value of 1 indicates monitoring points 

in the Brusselian and Landenian sands and a value of 0 indicates monitoring points in the Geer and Haine basin chalks.  230 

We then removed one variable at a time until the variance inflation factor (VIF) values (Mansfield & Helms, 1982) of all 

remaining variables were below a threshold of 5 (James et al., 2013). The variable to remove at each iteration was selected 
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based on its VIF value, correlation with other variables and importance as explanatory variable, assessed by the authors’ expert 

judgment.  

Using the remaining variables, we built nine multiple linear regression models, one for each indicator and slope calculation 235 

method, using the ordinary least square (OLS) function of the Python statsmodels library (Seabold et al., 2010). We 

standardized the variables to have a mean of zero and a standard deviation of one, which facilitates the comparison of their 

respective impacts on the nitrate concentration indicators. We applied a stepwise multiple linear regression to identify the most 

important predictor variables, eliminating at each iteration the independent variable with the highest p-value until the p-values 

of all remaining variables were below 0.05.  240 

3. Results 

3.1 Status and temporal evolution of the nitrate concentrations 

Table 4 show statistical summaries for the different pollution indicators. It shows that the average concentration of nitrates in 

2002 was 37.7 mg/l with a standard deviation of 12.2 mg/l and hardly decreased in 2020 with an average of 36.5 mg/l and a 

standard deviation of 10.8 mg/l. The change in concentration levels between 2002 and 2020 (I3) exhibits a slight decrease of 245 

1.2 mg/l on average, but with a wide variation (standard deviation of 8.8 mg/l), ranging from a decrease of 21.3 mg/l to an 

increase of 12.5 mg/l. Forty seven percent  of the monitored locations have witnessed a decrease in concentration, while the 

other 53% have seen an increase (Figure 5). The average rate of change in nitrate concentrations (I4 and I5) are slightly negative 

whichever the method, but with variations ranging from a negative to a positive rate. They are slightly more negative in 2020 

than in 2002. The maximum rate of change has decreased from +2.2 mg/l/year (I4CP) or +2.7 mg/l/year (I4Lo) in 2002 to 0.6 250 

mg/l/year in 2020, which indicates an overall deceleration of the rate of change over the study period. This is confirmed by the 

negative values of the averaged I6.  

While these statistics indicate a slightly mild decrease in nitrate concentrations since 2002, the distributions of the indicators 

color-coded by the type of aquifer in Figure 5 suggest that the decrease has been significant in the Brusselian sands.  

The statistics for the rate of change (I4 and I5) and the difference in rate (I6) are comparable regardless of the slope calculation 255 

method employed (CP or Lo). 

Table 4. Descriptive statistics of the six nitrate indicators. CP and Lo: change point and Lowess method for slope computation. 

Pollution indicator (I) Unit Mean ± 

standard 

deviation 

Minimum Percentile 

25 (Q1) 

Median 

Q2 

Percentile 

75 (Q3) 

Maximum IQR 

(Q3-

Q1) 

I1 – Concentration in 

2002 
mg/l 37,7 ± 12,2 15,4 28,3 38,1 44,3 69,2 16,0 
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I2 - Concentration in 

2020 
mg/l 36,5 ± 10,8 14,1 28,6 37,0 44,7 61,6 16,1 

I3 - Concentration 

difference 
mg/l -1,2 ± 8,8 -21,3 -4,9 0,1 3,6 12,5 8,5 

I4CP – Slope in 2002– 

CP 
mg/l/year 0,0 ± 1,1 -2,6 -0,4 0,1 0,6 2,2 0,9 

I4 Lo – Slope in 2002 - 

Lo 
mg/l/year -0,1 ± 1,1 -3,1 -0,5 0,1 0,5 2,7 1,1 

I5CP – Slope in 2020 - 

CP 
mg/l/year -0,5 ± 1,0 -3,9 -0,9 -0,2 0,2 0,6 1,1 

I5 Lo – Slope in 2020 – 

Lo 
mg/l/year -0,5 ± 1,1 -5,2 -0,7 -0,2 0,1 0,6 0,8 

I6CP – Slope difference 

- CP 
mg/l/year -0,5 ± 1,2 -3,6 -1,1 -0,6 0,0 2,4 1,1 

I6 Lo – Slope 

difference - Lo 
mg/l/year -0,4 ± 1,2 -3,6 -0,8 -0,4 -0,0 2,7 0,7 
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Figure 5. Histograms of the six pollution indicators. CP: change point method for slope. Lo: Lowess method for slope. 

3.2 Identification of the controlling factors 260 

3.2.1 Bivariate analysis 

The analysis reveals a consistent positive correlation between the crop and potato crop area and all the pollution indicators, 

and hence an undesirable effect of these variables (Figure 6). This effect is only significative on the nitrate concentration in 

2020 (I2) and rate of change in 2002 with the Lo method (I4Lo). On the other hand, the analysis reveals a consistent negative 

correlation between the forest and green space area and all the pollution indicators, and hence a desirable effect of this variable. 265 

This effect is only significative on the nitrate concentration in 2020 (I2). Results also indicate a significant positive relationship, 

or undesirable effect, of the meadow area on the rate of change in both 2002 and 2020 (I4CP and I5Lo). Temporal trend in the 

meadow area (MeadowReg) shows a significant negative correlation with concentrations in 2020 (I2), suggesting a desirable 

https://doi.org/10.5194/hess-2024-173
Preprint. Discussion started: 25 June 2024
c© Author(s) 2024. CC BY 4.0 License.



15 

 

effect of an increase in meadow area on I2, but shows a positive correlation with the change in concentrations (I3), suggesting 

an undesirable effect of an increase in meadow area on I3.   270 

The results show a positive relationship and hence undesirable effect of the number of farms on all indicators, and of the 

number of graveyards on the change in concentrations (I3) and the rate of changes in 2002 and 2020 (I4 and I5). Conversely, 

graveyards displayed a significant negative relationship with concentrations in 2002 (I1). Finally, there is no detected influence 

of the presence of building area, a proxy for population density, and buildings not connected to wastewater treatment plants. 

The depth of the water intake structure, serving as a surrogate for groundwater table depth, shows a significant correlation with 275 

the indicator of change in concentration (I3). However, it does not exhibit any correlation with the other indicators. There is a 

significant negative relationship between the annual rainfall, a proxy for recharge, and the indicator of change in concentrations 

(I3) and change in rate of change (I6CP), while there is a significant positive relationship with the concentration in 2002 (I1). A 

weak negative relationship (positive effects) was found between the terrain slope and all the indicators.  

Results also confirm a clear influence of the aquifer media. While concentrations in 2002 and 2020 were higher in Brusselian 280 

sands and lower in the chalks aquifers, the decrease and rate of decrease has been more prominent in the sands.   

 

Figure 6 Heatmap of the Kendall rank correlation coefficients between the explanatory variables and the six pollution indicators. 

Coefficients in bold indicate a significant relationship (p-value<0.1) NR: not relevant. 
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3.2.2 Multivariate linear regression analyses 285 

In the process of refining our multivariate regression models, we made several adjustments to address issues of 

multicollinearity among the variables. We removed the variable ‘Rainfall’ for its high VIF of 242. The variables ‘CropLU’ 

and ‘PCropLU’ had a VIF of respectively 20 and 12, and were highly correlated (R²=0.77). Considering the importance of 

'CropLU' as explanatory variable, we chose to retain it and remove 'PCropLU.' The next variables we removed were ‘Slope’ 

and ‘NoSewage’ as they each had the highest VIF among the remaining variables (9 and 7 respectively). Finally, we removed 290 

the variables ‘Farms’ and ‘Graveyards’, allowing to satisfy the condition of all remaining variables having a VIF < 5. The 

decision to exclude 'Farms' was based on its redundancy with ‘CropLU’ and ‘MeadowLU’, which already represent agricultural 

activity. As for ‘Graveyards’, their very sparse distribution in the considered areas led us to expect a limited effect. 

The results of the multivariate regression models with the selected independent variables are presented in Table 5. The table 

shows the coefficients of the independent variables for each model, after stepwise removal of all non-significant variables (p-295 

value of coefficient < 0.05). Note that the interpretation of the coefficient value is difficult because the independent variables 

have been normalized. In this normalized context, the coefficient indicates the expected change in the dependent variable per 

standard deviation change in the independent variable. However, it allows to interpret the relative importance of the variables, 

as a higher coefficient indicates a higher change of the pollution indicator per standard deviation change. 

The regression models highlight the significant role of the aquifer media in explaining the variability of multiple indicators. 300 

Sandy aquifers tend to have higher nitrate concentrations but have also shown more desirable concentration changes and rates 

of change over the study period. The land use variables (CropLU, MeadowLU, GreenLU) exhibit varying influences across 

the response indicators. Larger crop areas correlate with higher concentrations and less desirable rate changes in 2020 (I2 and 

I5Lo), while more forested and green areas are associated with more favorable concentration changes (I3) and rates of change 

(I4CP and I5CP). 305 

The models explain only 18 to 46% of the variance in the indicator values, as indicated by the R2 coefficients. 

Table 5. Coefficients of the variables used in the multiple linear regressions. Only statistically significant coefficients (p-value < 0.05) 

are shown. CP: change point method for slope. Lo: Lowess method for slope. NR : not relevant. 

 Cc 2002 (I1) Cc 2020 (I2) 
Difference cc 

(I3) 

Rate of change 

2002 (I4) 

Rate of change 

2020 (I5) 

Difference rate 

of change (I6) 

CP Lo CP Lo CP Lo 

Constant + 37,7 + 36,5 - - - - 0,50 - 0,49 - - 

CropLU - + 5,3 - - - - + 0,66 - - 

MeadowLU - + 4,0 - - - - - - - 

MeadowReg NR - - NR - NR - - - 

BuiltLU - - - - - - + 0,62 - - 

GreenLU - - - 3,9 - 0,45 - - 0,46 - - - 
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Aquifer + 6,2 + 5,4 - 4,8 - - - 0,30 - 0,38 - - 

Depth - + 5,6 - - - - - - - 

R2 0,26 0,40 0,46 0,18 - 0,30 0,31 - - 

4. Discussion 

4.1 Status and temporal evolution of the nitrate concentrations 310 

Since the implementation of the PDGA, the average nitrate concentration across the various sites studied has remained 

relatively stable. However, this stability masks underlying variations:  53% of the sites have experienced an increase in nitrate 

levels, and 47% have seen a decrease. Notably, the most significant reduction in nitrate concentrations between 2002 and 2020 

was observed in the Brusselian sands, as detailed in Table 3 and Figure 5, which confirms results from SPW, 2020. This trend 

is likely due to their higher conductivity and faster renewal rate, making that they exhibit a shorter lag response time in surface 315 

nitrogen loading changes. In contrast, other aquifers, characterized by potentially longer lag response times, might only show 

a decrease in nitrate concentrations in the years to come.  

On an encouraging note, the rate of change in nitrate concentrations is slightly lower in 2020 (I5) than it is in 2002 (I4) (Table 

4), which is also confirmed by the multivariate regression models (Table 5). The maximum rate of change in nitrate 

concentrations has shown a downward trend from 2002 to 2020 (Table 4). This indicates that, although nitrate levels continue 320 

to rise in some sites, the rate of increase is slower than it used to be. This trend suggests a gradual improvement and could be 

seen as a positive outcome of the measures implemented under the PDGA. 

4.2 Identification of the controlling factors 

The bivariate analysis highlights notable correlations between land use patterns and nitrate pollution. Expectedly, areas under 

crop and potato cultivation, along with the number of farms, show a predominantly positive rank-correlation with all pollution 325 

indicators. This is especially evident in the impact on nitrate concentration in 2020 (I2), as well as the rate of change in 2002 

(I4) and 2020 (I5CP), as detailed in Figure 6. A significant positive relationship was also found between meadow areas and 

nitrate concentration rate of change in both 2002 and 2020. These findings reinforce the contribution of agricultural practices 

to elevated nitrate levels and underscore the less favorable trends in locations with more agricultural activities. Due to data 

limitations, we were unable to differentiate between grazed meadows, with manure effluents, and ungrazed meadows. This 330 

distinction could thus have implications on the amount of nitrates leached and hence on the results (Sacchi et al., 2013). 

Conversely, forest and green space areas indicate lower nitrate pollution rates, with a significant negative correlation with I2.  

Graveyards also show a negative impact on the change in concentrations (I3) and the rate of changes in 2002 and 2020 (I4 and 

I5), though interestingly, they are found to have a significant negative relationship with the concentration in 2002. The absence 

of a detected influence from buildings not connected to wastewater treatment plants is notable, indicating that such sources 335 
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may not be significant contributors to nitrate pollution in the studied locations. This contrasts with the findings of Mattern et 

al. (2009) who identified residential land as having negative influence on nitrate concentrations in the Brusselian sands. 

The negative relationship between water intake structure depth and the indicators of change in concentration (I3) and in rate 

of change (I6) suggests a delayed response in deeper groundwater bodies to nitrogen regulation measures. Higher annual 

rainfall, indicative of increased recharge, appears to shorten this lag. Such a relationship between  groundwater recharge and 340 

nitrate concentrations was also found in Northern Italy’s groundwater (Masetti et al., 2008). The weak negative relationship 

(positive effects) between terrain slope and all indicators suggests that slope may play a less significant role in nitrate pollution 

than anticipated. Overall, the results  corroborate with those from (Wick et al., 2012) who sought to explain the factors 

influencing  groundwater nitrate concentrations in more than 1000 locations. They observed a positive correlation between the 

proportion of cropland in a region and the nitrate concentration in its groundwater and negative correlation with precipitations. 345 

While the outcomes of the multivariate regression model align with the findings of the bivariate analysis, they are less 

pronounced. The influence of crop cover is significant but limited to explaining the variability in concentrations and the rate 

of change in 2020 (I2 and I5Lo). The area with meadows shows significance solely for I2. Conversely, green and forested areas 

exhibit significant negative coefficients for all three indicators of change (I3, I4CP, and I5CP), indicating a distinct inverse 

relationship with these variables. Bivariate and multivariate analyses find a clear influence of aquifer media, with Brusselian 350 

sands showing higher concentrations in 2002 and 2020 but also a more pronounced decrease and rate of decrease over the 

study period. Despite the overall decrease in concentration in the sands, it is important to note that some sites still exhibit 

positive concentration rates in 2020 (I5) and positive rate changes (I6), which may be indicative of a legacy effect (Figure 5). 

The findings from the multivariate models suggest that the key determinants for predicting elevated nitrate concentrations in 

2020 (I2) include the extent of crop and meadow areas, along with the characteristics of the aquifer (media and depth). In 355 

contrast, only the extend of green and forested areas and the type of aquifer are found to be predictive of temporal changes in 

concentration (I3, I4CP, I5CP). These outcomes are in line with the research by Gurdak & Qi (2012), who identified dissolved 

oxygen, crop and irrigated land areas, fertilizer usage, seasonally high water tables, and soil properties as crucial factors in 

forecasting elevated nitrate levels across 17 aquifers in the USA. 

Unsurprisingly, the Tau Kendall coefficients and the predictive power of the multivariate models are fairly low, explaining 360 

only 18 to 46% of the variance in the indicator values, as indicated by the R2 coefficients. The relatively low predictive power 

can be attributed to several factors. The first factor lies in the inherent complexity of the groundwater systems, and the 

multitude of natural and anthropogenic factors controlling the nitrate concentrations. While we tried to characterize as many 

features to capture that complexity, we undoubtedly missed some and mischaracterize others due to data limitations and the 

unawareness of possible sources that could generate nitrate leachate. Besides, the relationships between various factors 365 

influencing nitrate concentrations are often non-linear and involve complex interactions. A direct implication of this 

complexity is the time lag between changes on the surface and the observable impact on groundwater quality. Multivariate 

regression models are linear and might therefore have failed to account for these interactions and too simplistic to capture the 
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complexity of the data. Finally, the limited number of groundwater data points (36) used to feed the models likely impede 

them to capture the full range of variability.  370 

Another important aspect that could explain lower performance lies in the approach of removing variables based on Variance 

Inflation Factor (VIF) values in our multivariate linear regression to mitigate multicollinearity. This method likely improved 

the stability and reliability of the coefficient estimates. However, it is important to acknowledge that this could have resulted 

in excluding significant predictors, as noted by Ishwaran (2007).  

4.3 Indicators of nitrate pollution trend 375 

We provide six nitrate pollution indicators useful to provide a detailed picture of nitrate pollution state and trends over a given 

period. However, when using these indicators, it is necessary to keep in mind certain limitations. The indicator on the difference 

in nitrate concentration (I3) may overlook nuances, such as temporary spikes, short-term fluctuations, or declines within the 

period. The indicators I4 and I5, the slopes at the beginning and end of the study period reflect only the trend at a specific point 

in time and may not be representative of longer-term patterns. 380 

Finally, the indicator I6, the difference in slopes, is more abstract and might be harder to interpret. It also assumes that the 

slopes are linear and may not capture non-linear changes. 

It is also clear that the value of these indicators depends on the quality and completeness of the underlying data.  

The indicators of rate of change (I4, I5 and I6) are not very sensitive to the chosen method for defining local slope, as evidenced 

by the similar statistics (Table 4) and correlation values (Figure 6Error! Reference source not found.). This indicates a r385 

obustness of these indicators and increases confidence in their values.  

4.4 Database and influence zone 

The precise delineation of influence zones is essential for effectively characterizing and quantifying the factors that potentially 

impact inherent vulnerability to pollution and identifying possible pollution sources, as highlighted by Nobre et al. (2007) and 

Mattern et al. (2009). However, the task of accurately defining these zones is fraught with challenges, including the intricate 390 

nature of subsurface geology, the ever-changing dynamics of groundwater flow, and constraints related to data availability. In 

our study, we had to resort to methodological simplifications to delineate these zones, acknowledging that this approach, while 

the best feasible under the circumstances, does introduce a certain degree of limitation to our analysis. 

Another pitfall resides in the fact that the influence zones among some monitoring points were overlapping spatially. This 

overlap implies that the monitoring points are not entirely independent, leading to similarities in potential explanatory variables 395 

for these points. Consequently, this could have influenced the identification of factors affecting nitrate pollution. 

Our study's strength lies in the comprehensive computation of a broad array of potential explanatory variables that could 

influence observed pollution levels and their changes. However, this strength is counterbalanced by certain data availability-

driven assumptions made to characterize these variables, which also represent a potential weakness in our work. For instance, 

in considering the variable 'Depth Structure,' our analysis focuses on the bottom of the structure, thereby incorporating the 400 
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travel time in the saturated zone whose thickness is changing. This approach contrasts with methods like DRASTIC, where 

the assessment of vulnerability is based on conditions at the top of the aquifer. Such a difference in methodology could lead 

to variations in interpreting the vulnerability. 

Regarding the ‘Recharge' variable our analysis exclusively considered precipitation as a contributing factor, neglecting the 

potential effects of evapotranspiration and the complex processes that control the actual recharge. Including evapotranspiration 405 

might have offered more nuanced insights into the recharge process and its impact on pollution levels. 

4.5 Perspectives 

The findings of our current study open several pathways for future research. A primary direction, contingent to the availability 

of additional data, would involve conducting multivariate linear regressions with different subsets of variables to gain a more 

nuanced understanding of the factors driving nitrate pollution. Refining the selection of predictors, such as a more detailed 410 

classification of land use that differentiates between meadow and pasture, could enhance the precision of our analysis. 

Additionally, incorporating data on the application rates of nitrogen fertilizer, potentially leachable nitrates, or metrics derived 

from the gross nitrogen balance, as done by Wick et al. (2012), would be valuable.  

Exploring variables that represent the concentration and trends of other pollutants, like specific pesticides and pharmaceuticals, 

could provide insights into the environmental impact of agricultural and urban activities. Improving the estimation of water 415 

table depth is another aspect that warrants attention, given its relevance in understanding groundwater dynamics. 

The integration of groundwater dating and outputs from chemical and isotopic analyses (Böhlke & Denver, 1995; Christiaens 

et al., 2023; Mattern et al., 2011; Vanclooster et al., 2020) could offer critical temporal perspectives on the source and evolution 

of groundwater contamination. Expanding the network of monitoring points, particularly in vulnerable regions, would 

significantly enhance the representativeness and reliability of our study. 420 

Moreover, experimenting with alternative predictive models, allowing to capture non-linear effects could lead to more robust 

findings. However, it's important to recognize that more sophisticated models typically require larger datasets for effective 

training. Thus, expanding our dataset is a crucial step for such advanced modelling. This expansion is not a trivial task due to 

the lack of monitoring points with long records. Moreover, due to the multiplicity of actors owning the records, data collection 

and pretreatment is time consuming. Addressing these challenges is essential for the successful implementation of more 425 

complex analytical models in future studies. 

5. Conclusions 

Our study provides insights into the current state and temporal evolution of nitrate concentrations in groundwater since the 

implementation of the nitrogen regulation (PGDA) in the agricultural crop production sector in Wallonia, Belgium. We showed 

that all monitored sites had nitrate concentrations below the 50mg/l threshold in 2020, but that the average concentration across 430 

the studied sites has remained relatively stable, although with significant variations across sites. We also showed that the 
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average rate of change in nitrate concentration was decreasing in 2020, and a decelerating increase (or accelerating decrease) 

in the rate of change in nitrate concentrations compared to 2002.  

Overall, the results post-PGDA implementation confirm the complex interplay of factors influencing nitrate pollution and 

trend, with land use and aquifer characteristics emerging as significant determinants. Positive relationships were found between 435 

crop and potato cultivation, meadow areas, and nitrate levels and change, highlighting the significant impact of farming 

activities. The study also finds a delayed response of deeper groundwater bodies to nitrogen regulation measures.  Notable 

reduction in nitrate levels was also observed, especially in the Brusselian sands likely due to the higher conductivity and faster 

renewal rate of that aquifer. These results show encouraging sign about the effectiveness of the PGDA and suggest that longer 

time lag between the implementation of regulatory measures and observable changes in groundwater quality might explain 440 

that the other locations with lower conductivity may only exhibit decreases in nitrate concentrations in future years. They 

underscore the importance of long-term approaches and sustained efforts in managing and monitoring groundwater quality.  

The multivariate regression models were only able to explain between 18 to 40% of the variability of the indicators, which 

suggests that while the identified factors are influential, other unaccounted variables or inherent complexities in nitrate 

pollution dynamics are at play.  445 
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