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Abstract. Groundwater nitrate contamination remains a significant environmental and health concern, as the effectiveness of 

nitrogen management programs has shown mixed results. This study leverages nearly two decades of groundwater monitoring 

data to assess and explain nitrate contamination trends in vulnerable zones in Wallonia, Belgium, following the implementation 

of the regional sustainable nitrogen management program. 10 

Using nitrate concentration time series (2002–2020) from 36 monitoring points across four groundwater bodies, we calculated 

six nitrate pollution indicators that capture temporal dynamics. Spatially explicit variables describing potential contamination 

drivers were compiled, and their relationships with the nitrate pollution indicators were assessed using correlation analyses 

and multivariate regressions. 

Although mean groundwater nitrate concentrations remained stable due to nitrogen legacy effects, decreases were observed in 15 

the Brusselian sands, where concentrations were initially higher, while increases were found in the Geer basin chalks, typically 

less contaminated. While these diverging trends could be explained by differences in aquifer characteristics and nitrate transfer 

time lags, results also suggest that agricultural land cover continues to have a negative impact on nitrate contamination, even 

after 20 years of PGDA implementation.  

Importantly, the findings are not fully conclusive due to the limited predictive power of the regression models. This highlights 20 

the multifaceted nature of groundwater nitrate contamination and the challenges in defining input variables that accurately 

capture the drivers. Future studies could explore integrating modelling approaches to supplement observational data with 

modelled data as inputs to statistical models, or to combine data-driven models and process-based models.  

Overall, this study emphasizes the need for sustained and adaptive nitrogen management policies, especially in vulnerable 

aquifers and cropland-dominated regions, alongside sustained long-term monitoring to address time lags and nitrogen legacy 25 

effects. It also underscores the need of spatially and temporally detailed datasets to successfully conduct non-linear machine 

learning approaches that can capture the complex interactions involved. 
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 1 Introduction 

For several decades, concerns have been raised about elevated nitrate concentrations in groundwaters. These high nitrate levels 

are harmful to the environment as they contribute to the biodiversity loss and eutrophication of the aquatic ecosystems 30 

(Grizzetti et al., 2011; Hornung, 1999; de Vries et al., 2024), and can pose serious health risks when the groundwater is used 

for drinking water (Bouchard et al., 1992; Comly, 1945; de Vries et al., 2024; Schullehner et al., 2018; Ward et al., 2018). 

Despite extensive research, understanding the factors underlying nitrate concentrations and trends is complicated by the 

diffuse, long-term and multi-causal nature of the contamination (Shukla and Saxena, 2018).  

The primary anthropogenic sources of nitrates in groundwater are agricultural activities (Spalding and Exner, 1993; Wick et 35 

al., 2012). However, non-agricultural sources such as inadequate treatment and disposal of human waste and wastewater, 

landfill, and industrial waste can also be significant contributors to high concentrations in aquifers (Mattern et al., 2009; 

Vanclooster et al., 2020; Wakida and Lerner, 2005). While human activities drive increased nitrogen input to the soils, the 

leaching of nitrates to groundwater is also influenced by natural processes, part of the nitrogen cycle (Ward, 2013). 

Specifically, nitrate formation is driven by nitrification, a process in which ammonium, introduced into soils through 40 

atmospheric deposition, fertilizers and the mineralization of organic matter, is oxidized to nitrate. In contrast, nitrate 

concentration levels decrease through plants and microbial uptake as well as through denitrification, which transforms nitrate 

into nitrogen gas under anaerobic conditions. These processes are influenced by environmental factors such as climate, soil 

composition, geological formation, and the depth of groundwater tables.  

To address the environmental and health risks associated with nitrate pollution, the European Union’s Nitrate Directive 45 

(91/676/EEC) has played a central role in promoting best management practices (BMPs) that mitigate agricultural nitrate 

contamination. Established in 1991, the directive aims to protect water bodies by requiring member states to identify Nitrate 

Vulnerable Zones (NVZs) and implement targeted measures to reduce nitrate leaching, aiming to maintain surface and 

groundwater nitrate concentrations below 50 mg/L. 

Studies evaluating the effectiveness of such policies have shown mixed results. While many report encouraging signs of 50 

reduced nitrate pollution due to improved nitrogen management practices, others highlight persistent challenges, with 

continued increases or limited improvement in concentrations in many locations (Ferguson, 2015; Van Grinsven et al., 2012, 

2016; Hansen et al., 2012, 2017). In Wallonia (Belgium), the European Directive was transposed into a program for sustainable 

nitrogen management (“Programme de Gestion Durable de l'Azote en Agriculture”, PGDA) in 2002. This program includes 

region-wide measures and additional requirements in the NVZs, including restrictions on manure spreading, mandatory soil 55 

cover, and groundwater monitoring (Picron et al., 2017). In compliance with the Water Framework Directive (WFD, 

2000/60/EC) and the Groundwater Directive (GWD, 2006/118/EC), the Walloon regional authority monitors groundwater 

nitrate concentrations, to identify vulnerable areas and to evaluate the effectiveness of the PGDA (SPW - DEE - Direction des 

Eaux souterraines, 2024). The observed effectiveness so far is debated without clear overall signs of improvement (Batlle 

Aguilar et al., 2007; SPW - DEE - Direction des Eaux souterraines, 2024). Many control sites keep exceeding the European 60 
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guide level of 25 mg/l and most of the groundwater bodies in the Nitrate Vulnerable Zones (NVZ), partially or locally, have 

high levels and several exceedances of the standard of 50 mg/l. Despite this, average nitrate levels in some aquifers have been 

shown to stabilize or even decrease in recent years.  

To better understand the impacts of the PGDA on nitrogen dynamics, Sohier and Degré (2010) modeled soil nitrogen surpluses 

using a modified version of the process-oriented EPIC model (Williams et al., 1984). Their work demonstrated the positive 65 

effects of certain agricultural practices while also highlighting significant variability driven by weather conditions, particularly 

precipitation. The regional authority uses this model to assess the agricultural soil nitrogen balance (SPW, 2022). However, 

the results are dependent on the hypotheses and assumptions underlying the model. They might overlook part of the complex 

biological, physical and chemical interactions at play and limit the prediction accuracy (Sit et al., 2020). As a complement to 

the modeling approach, in order to evaluate the impact of nitrate management considering variations in geographical location, 70 

weather conditions and culture types, soil nitrate concentrations have been measured at the end of the agricultural crop season 

in 55 reference farms in Wallonia, to assess potentially leachable nitrogen (APL) (Marcoen et al., 2002). Vandenberghe (2016) 

showed the in-situ APL measurements are correlated with agricultural practices such as fertilization and crop management, as 

well as with nitrate concentrations in soil. However, as these measurements are limited in both space and time, they do not 

allow comprehensive assessments of nitrate contamination trends. Moreover, soil and soil water nitrate concentrations differ 75 

from groundwater nitrate concentrations, as the latter are affected by nitrate transfer lags through soil matrices (Hansen et al., 

2012; Mattern and Vanclooster, 2010; Visser et al., 2007) and the slow release of accumulated nitrogen (Ascott et al., 2017; 

Kyte et al., 2023; Liu et al., 2024) — a phenomenon referred to as the “nitrogen legacy effect” (Basu et al., 2022; Van Meter 

et al., 2016).  

Here, we consider that data-driven techniques, leveraging long-term groundwater quality data, are a promising approach (He 80 

et al., 2022; Rodriguez-Galiano et al., 2014) to complement the limitations raised and enable broader insights into nitrate 

pollution drivers.Such data encode all the processes controlling the nitrate contamination, and they are becoming widely 

available.  

This study aims to conduct a data-driven approach to assess and explain the groundwater nitrate contamination trends in 

Wallonia over nearly two decades, following the implementation of the PGDA. Specifically, our objectives are: 85 

(i) To assess the long-term (2002 – 2020) evolution of nitrate concentrations; 

(ii) To identify the factors driving the nitrate concentration changes over time and across different locations.  

2. Material and Methods 

2.1 Study area 

Our study area focuses on key Nitrate Vulnerable Zones (NVZ) of the Region Wallonia, Belgium, where nitrate contamination 90 

levels are the highest (SPW - DEE - Direction des Eaux souterraines, 2024). Specifically, it includes all monitored sites where 

levels currently exceed 50 mg/l. The PGDA defines stricter measures which are applicable only in these areas, such as specific 
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spreading periods and conditions, obligations regarding soil cover, and monitoring requirements (Picron et al., 2017). We 

selected four groundwater bodies where a major drinking water company supplying the monitoring data operates several 

extraction sites:: the Geer basin chalks, the Brusselian sands, the Haine basin chalks and the Landenian sands (Figure 1). The 95 

concept of "water body" was introduced within the Water Framework Directive to classify the various aquatic environments 

that characterize the European territory. A groundwater body consists of a distinct volume of groundwater within one or more 

aquifers. In Wallonia, the groundwater bodies were delineated by a group of experts based on hydrogeological criteria such as 

the extent of geological layers or the interaction with surface waters, as well as non-hydrogeological criteria such as the 

administrative limits. The Geer basin chalks and the Brusselian sands were part of the first nitrate vulnerable zones as defined 100 

in 1994, and have thus been subjected to the associated regulations since then. The Haine basin chalks and the Landenian sands 

were added in the NVZ in 2013.  

The Geer basin chalks groundwater body covers an area of 440 km² and is located in the Meuse hydrographic basin (SPW, 

2016). The groundwater body’s aquifer, the Hesbaye aquifer, is said to have a substantial storage capacity and a high porosity. 

It is partly overlaid in its northeast portion by the Landenian sands groundwater body. Agricultural land covers approximately 105 

68% of the land surface, with 14% of it being meadows and 86% crops. The region has a high population density with 340 

inhabitants per square kilometre.  

The Landenian sands groundwater body spans a surface of 206 km² and is located within the Scheldt hydrographic basin (SPW, 

2010). The groundwater body’s aquifer is the Landenian sands aquifer. Due to limited exploitation, the hydrogeological 

properties of this aquifer remain poorly defined. Agricultural land covers approximately 78% of the total land surface, with 110 

meadows accounting for 8% and crops making up the remaining 92%. The population density is relatively low, with 160 

inhabitants per square kilometre.  

The Brusselian sands groundwater body spans a surface of 964,5 km² and is situated in the Scheldt hydrographic basin (SPW, 

2006b). Its aquifer is the Brusselian sands aquifer, which has a high storage capacity but a low hydraulic conductivity. 

Agriculture covers 71% of the land surface and another 10% is urban land. 115 

The Haine basin chalks groundwater body covers an area of 644 km² and is situated in the Scheldt hydrographic basin (SPW, 

2006a). The main aquifer of this water body is the Mons basin chalks aquifer. The aquifer’s porosity has a permeability ranging 

from 10-5 to 10-7 m/s, while the fissures in the chalk formation entail a permeability of 2.10-3 to 5.10-5 m/s. In the northwest, 

the groundwater body is partially overlaid by the Haine valley sands groundwater body. The land surface area consists of 64% 

agricultural land and 23% urban land. 120 
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Figure 1. Location of the four groundwater bodies and the 36 monitoring points. 

2.2 Groundwater nitrate concentration  

2.2.1 Data collection 

The monitoring points are water intake structures exploited for drinking water production by the Société Wallonne des Eaux 125 

(SWDE). They are wells, galleries, springs or drains. Only points in unconfined aquifers, with a water quality monitoring 

period exceeding ten years were selected. Since our focus is on vulnerable groundwater with high nitrate concentrations, we 

excluded one monitoring point located in anoxic groundwater, where nitrate levels are below 3 mg/l, probably resulting from 

high denitrification rates (Rivett et al., 2008). The final dataset included 36 points from which 13 points are in the Haine basin 

chalks, nine points in the Geer basin chalks, nine points in the Brusselian sands and five points in the Landenian sands (Figure 130 

1). 

Time series were available for some points from the sixties onwards, but the trend and causal analysis covers 2002-2020, 

starting at the onset of the sustainable nitrate management program (PGDA) and ending with the most recent year for which 

data were available. For nine out of the 36 points the first available data started after 2002: seven in 2003, one in 2006, and 

one in 2009. The temporal resolution of the nitrate measurements is variable, with the total number of measurements per point 135 

ranging from 53 to 948 over the study period. The water samples were analysed by the laboratory of the drinking water 

production company, the SWDE, under ISO 17025 accreditation.  
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The nitrate concentration time series contained some problematic values that were noticeably lower or higher than their 

neighbours due to reported human errors. We thus filtered the time series using a moving window of two years, with an upper 

and lower limit being the mean of the data within the window plus and minus three times the standard deviation. Figure 2 140 

shows the annual averages of the resulting time series. 

 

 

Figure 2. Time series of the yearly mean nitrate concentrations at the 36 monitoring points, sorted by groundwater body. In grey, 

the time series of all points. In colour, the time series of the points in each groundwater body. 145 

2.2.2 Definition of nitrate pollution indicators 

We defined a set of six indicators that capture the state and rate of change in nitrate concentration in 2002, in 2020 and the 

evolution in between. The indicators are used to assess the spatial and temporal evolution of nitrate contamination at each 

monitoring point, and, they serve as dependent variables in our data analysis to identify factors influencing nitrate 

concentrations. The indicators and their interpretation are defined in Table 1 and illustrated in Figure 3. 150 

 

Table 1. Definition and interpretation of the nitrate pollution indicators. 
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Pollution indicator (I) Unit Usage and interpretation 

I1  Average nitrate concentration 

in 2002 

mg/l Snapshot of nitrate concentration levels in the groundwater before the 

implementation of the PGDA. Serves as a baseline for comparison with future 

years.  

I2  Average nitrate concentration 

in 2020 

mg/l Snapshot of nitrate concentration levels in the groundwater in a recent year. 

Allows for direct comparison with past data to assess changes over time. 

I3   Concentration difference 

between 2020 and 2002 (I3 = 

I2-I1) 

mg/l Indicates how the concentration has changed since the implementation of the 

PGDA. A positive value indicates an increase in nitrate levels, while a 

negative value indicates a decrease. 

I4 Slope in 2002 mg/l/year Rate of change in nitrate concentration on 01-01-2002. Provides insight into 

how rapidly nitrate levels were changing at the beginning of the period.  

I5 Slope in 2020 mg/l/year Rate of change in nitrate concentration on 01-01-2020. Useful for 

understanding recent dynamics and informing current policy decisions. 

I6 Difference in slope between 

2020 and 2002 (I6 = I5-I4) 

mg/l/year Indicates how the rate of change in nitrate concentration has changed over the 

study period. A positive value indicates an accelerating increase (or 

decelerating decrease) in nitrate levels, while a negative value suggests a 

decelerating increase (or accelerating decrease). 

 

 

Figure 3. Illustration of the six indicators of the nitrate pollution indicators. Times series data from a monitoring station in the 155 
Brusselian sands is used for illustrative purpose. 



8 

 

The method used for slope computation (I4 and I5) affects the trend diagnostics. The non-parametric Mann-Kendall test has 

been widely applied and recommended for groundwater pollution trend assessments (Frollini et al., 2021; Grath et al., 2001; 

Hirsch et al., 1991; Urresti-Estala et al., 2016). This method only captures a single linear trend, making it not directly applicable 

to detect trend changes in long, non-linear time series. To address this limitation, Lee et al. (2010) computed trends using local 160 

regression. In our analysis, we applied two different approaches: (i) computing tangent lines to a local regression and (ii) 

detecting change point and applying the Mann-Kendall test. Since both methods produced similar slope indicators, we focus 

on the local regression approach in the main text, with details of the change-point detection approach provided in the 

supplementary materials.  

The local regression approach consisted in smoothing the time series using locally weighted scatterplot smoothing (lowess) 165 

(Cleveland, 1979) and computing the slope of the tangent line to the smoothed time series on January 1, 2002 (=I4), and on 

January 1, 2020 (=I5). The lowess window length was set to eight years for time series longer than twelve years, allowing to 

capture the long-term fluctuations, and to 2/3 of the time series length for shorter series. Within a local window of 90 days, a 

linear interpolation was applied instead of a weighted regression to increase stability.  

For the nine monitoring points whose first measurements were taken after 2002, the slope of the trend in 2002 (I4) was taken 170 

as the slope at the first data point, and the mean absolute nitrate concentration in 2002 (I1) was obtained by hindcasting that 

trend. All time series cover a period longer than eight years, the minimum length recommended by Grath et al. (2001) for 

groundwater pollution trend assessments.  

2.3 Candidate explanatory variables 

We computed a set of potential explanatory variables standing for environmental and anthropogenic factors which may impact 175 

the nitrate concentration dynamics. We used these variables as independent variables in our data analysis to identify factors 

influencing nitrate concentrations. The variables encompass both the inherent vulnerability to pollution and the anthropogenic 

influence, which include human activities that could cause or affect punctual and/or diffuse pollution. The definitions of these 

indicators, computation means and data sources are given in Table 2. The descriptive statistics of the values of these variables 

for the monitored locations are given in 180 

Table 3. 

2.3.1 Delineation of the influence zones 

The risk of groundwater contamination at a specific location is influenced by the traits of the land surface area that can 

potentially transport pollutants to it. Therefore, delineating this land surface area, here referred to as the 'influence zone', is 

crucial in the analysis of groundwater nitrate concentrations (Mattern et al., 2009). We defined the influence zones as the 185 

topographic surface watersheds of the legal protect zones of each water intake structure (Zones de protection des captages 

d’eau souterraine - État de l’environnement wallon, 2024). These zones correspond either to the groundwater table area with 

a maximum transfer time of 50 days to the water intake structure as estimated through geological modelling, or they are defined 
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as circular areas centred around the structure location, whose radius depends on the aquifer substrate: 100 meters for sandy 

aquifers, 500 meters for gravel aquifers and 1000 meters for karstic aquifers. The boundaries of these zones are available on 190 

the regional institution’s geographical data portal (Catalogue des données et services | Géoportail de la Wallonie, 2023). We 

delineated the watersheds with the ArcGIS watershed toolbox, using a 2-meter resolution raster of flow direction and flow 

accumulation generated by the LIDAX project (SPW, 2019).   

2.3.2 Inherent vulnerability 

To quantify the natural vulnerability, we considered the seven factors of groundwater natural vulnerability to pollution as 195 

defined in the DRASTIC model of the U.S. Environmental Protection Agency (Aller et al., 1985):  aquifer depth, recharge, 

aquifer media, soil type, the topography, impact of the vadose zone, and hydraulic conductivity. We used the depth of the 

water intake structures as a proxy of the depth to the groundwater table since piezometric measurements were not available 

for all structures. We used the mean annual rainfall as a proxy for the net recharge. We used a single categorical variable, 

namely the groundwater body of the water intake structure, as a proxy for the three DRASTIC vulnerability factors aquifer 200 

media, impact of the vadose zone and hydraulic conductivity. The variable standing for the topography was the mean slope in 

the influence zone calculated using a 2 m resolution digital slope product derived from a 1 m digital elevation model.  We did 

not include the soil in the set of explanatory variables since the main soil type of all influence zones was identical, namely 

loam. We considered all the vulnerability variables to be time-invariant over the studied period. 

To be able to include the categorical variable aquifer media (GWbody) in our analysis, we replaced it by four binary variables 205 

using one-hot encoding. We called the new variables GWbodyLS, GWbodyBS, GWbodyHBC and GWbodyGBC, they 

indicate respectively the monitoring points in the Landenian sands, the Brusselian sands, the Haine basin chalks and the Geer 

basin chalks. We do not expect any change of these variables over the study period.  

2.3.3 Land use characteristics 

Agricultural land is a significant source of nitrate leaching to groundwater (Cameron et al., 2013; Strebel et al., 1989), with 210 

nitrates originating from nitrogen fertilizers applied on cropland, and from grazing livestock on meadows. Consequently, both 

crop land and meadow area were considered as potential drivers in this study. We included specifically potato crop cover, as 

it is known to leave a high concentration of potentially leachable nitrates in the upper soil layer after the growing season (Bah 

et al., 2015). In contrast, forested and green areas are generally less prone to nitrate leaching (Cameron et al., 2013; Zhang et 

al., 2013), hence we also considered it as driver, but expecting them to have a mitigating impact. Urban wastewater losses 215 

represent an additional nitrate source (Torres-Martínez et al., 2020). We used built infrastructure area as a proxy to estimate 

wastewater production. We visually examined the trends in these variables over the study period, finding that only the meadow 

area exhibited a trend. Therefore, we included a sixth variable that accounts for the change in meadow cover over the study 

period. 
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2.3.4 Point pollution sources 220 

We considered three potential point pollution sources. Graveyards can contribute to nitrate pollution through the decomposition 

of organic materials (Mattern et al., 2009). Farm buildings are included because they are often associated with manure storage 

and handling, which can be a direct source of nitrates if not managed properly. Finally, buildings not connected to the collective 

sewage system indicate potential nitrate sources from septic tanks or dry wells, which can leach untreated wastewater. The 

datasets used capture the situation in 2020 (Table 2). We expect little change for these variables over the studied period.  225 

 

Table 2. Definition of the potential explanatory variables used in the statistical models. IZ: influence zone. SPW: Service Public de 

Wallonie. SPF: Service Public Fédéral. SPGE : Société Publique de Gestion de l’Eau. SWDE : Société Wallonne de Gestion de l’Eau. 

IRM : Institut Royal Météorologique.  

Variable ID Definition and unit Source dataset Provider 

Water 

extraction depth 

Depth Depth of the bottom part of the water intake 

structures (m) 

Documentation of water intake 

structures 

SWDE 

Groundwater 

body 

GWBody Groundwater body (Brusselian sands, 

Landenian sands, Haine basin chalks and Geer 

basin chalks) 

Documentation of water intake 

structures 

SWDE 

Mean annual 

rainfall 

Rainfall Interannual (1961-2019) average of annual 

rainfall (mm/year) 

1961-2019, 5000 m resolution 

climate dataset for Belgium  

IRM 

Topography TerrainSlope Average of the terrain slope in the IZ  (%) 1 m resolution digital slope model 

2013-2014  

SPW 

Crop cover  CropLU Interannual (1998-2019) mean percentage of 

IZ area with crop cover (%) 

 

Anonymous agricultural land 

registry (annual data from 1998-

2019) 

  

 

SPW 

 

Potato crop 

cover  

PCropLU 

Meadow cover MeadowLU 

Change in 

meadow cover 

MeadowReg Trend in meadow area calculated as the slope 

of the linear regression of the yearly meadow 

area percentage between 2002 and 2020 

(%/year) 

Built area BuiltLU Interannual (1998-2019) mean percentage of 

IZ area with built infrastructures (%) 

Walloon land registry (annual data 

from 1998-2019) 

 

 

SPF 
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Forested and 

green areas 

GreenLU Percentage of IZ area with forests and green 

spaces in 2003 (%) 

Land cover map 2003 

  

SPF 

Presence of 

farm(s) 

Farms Number of farms in the IZ in 2020 divided by 

the surface of the IZ (nb/km2) 

Continuous cartographic mapping 

project 

SPW 

Presence of 

graveyard(s)  

Graveyards Number of graveyards in the IZ in 2020 

divided by the surface of the IZ (nb/km2)  

Continuous cartographic mapping 

project 

SPW 

Buildings with 

automonous 

sewage regime 

NoSewage  Number of buildings not connected to the 

sewage system in 2020 divided by the surface 

of the IZ (nb/km2)  

Walloon land registry (2020) 

Wastewater management plan 

SPF 

SPGE 

 230 

Table 3.  Descriptive statistics of the independent variables for the 36 monitoring points. NA: not applicable. 

Variable Unit Mean Min Median Max 

CropLU % 57 6 53 91 

PCropLU  % 5 0,1 5 14 

MeadowLU  % 8 0,4 7 19 

MeadowReg  %/year -0,02 -0,66 -0,09 0,92 

BuiltLU % 3 0,2 2 8 

GreenLU % 6 0,1 3 63 

Farms  nb/km2 0,3 0 0,4 1,2 

Graveyards nb/km2 0,06 0 0 0,3 

NoSewage  nb/km2 0,2 0,03 0,1 0,5 

Depth  m 29 0,6 19 120 

Rainfall mm/year 814 760 807 867 

TerrainSlope  % 4,6 2,6 4,4 9,0 

Groundwater body - NA NA NA NA 
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2.4 Data analysis 

2.4.1 Evolution of the nitrate concentrations 

We computed descriptive statistics and visuals to depict the past and present status and temporal changes of the nitrate 

concentrations in the studied groundwater bodies, using the nitrate pollution indicators  (Table 1). 235 

2.4.2 Bivariate analysis to identify the controlling factors 

We tested the strength and direction of the association between the nitrate pollution indicators (Table 1) and each independent 

variable (Table 2) separately by computing the Kendall rank correlation (also known as Kendall's tau coefficient, Kendall, 

1938). The value of Kendall's tau ranges from -1 to 1 and the closer the coefficient is to either -1 or 1, the stronger the 

association. A higher positive value indicates a strong positive association, while a higher negative value indicates a strong 240 

negative association.  

2.4.3 Multivariate linear regressions to identify the controlling factors 

We used multiple linear regression to assess the individual contribution of each independent variable (Table 2) to account for 

potential confounding effects. 

Before applying the regression models, we addressed multicollinearity by removing highly collinear variables, hence ensuring 245 

that the remaining variables provide reliable contributions to the analysis. First, we replaced the four binary variables 

representing the groundwater bodies, which were highly collinear, with one single binary variable ‘Aquifer’, distinguishing 

the aquifer media of the groundwater bodies: a value of 1 for the Brusselian and Landenian sands and a value of 0 for the Geer 

and Haine basin chalks. We then removed one variable at a time until the variance inflation factor (VIF) values (Mansfield 

and Helms, 1982) of all remaining variables were below a threshold of 5 (James et al., 2013). The variable to remove at each 250 

iteration was selected based on its VIF value, correlation with other variables and importance as explanatory variable, assessed 

by the authors’ expert judgment.  

We built nine multiple linear regression models with the remaining independent variables, one for each indicator and slope 

calculation method. We used the ordinary least square (OLS) function of the Python statsmodels library (Seabold et al., 2010). 

We standardized the independent variables to a mean of zero and a standard deviation of one, facilitating the comparison of 255 

their respective impacts on the nitrate concentration indicators. We applied a stepwise multiple linear regression to identify 

the most important predictor variables, eliminating at each iteration the independent variable with the highest p-value until the 

p-values of all remaining variables were below 0.05.  
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3. Results 

3.1 Evolution of the nitrate concentrations 260 

Table 4 shows statistical summaries for the six pollution indicators. It shows that the average concentration of nitrates in 2002 

was 37.7 mg/l with a standard deviation of 12.2 mg/l and hardly decreased in 2020 with an average of 36.5 mg/l and a standard 

deviation of 10.8 mg/l. The mean change in concentration levels between 2002 and 2020 (I3) exhibits a slight decrease of 1.2 

mg/l on average, but with a wide variation (standard deviation of 8.8 mg/l), ranging from a decrease of 21.3 mg/l to an increase 

of 12.5 mg/l. Forty seven percent of the monitored locations have witnessed a decrease in concentration, while the other 53% 265 

have seen an increase (Figure 4). The average rate of change in nitrate concentrations (I4 and I5) are slightly negative 

whichever the method, but with variations ranging from a negative to a positive rate. They are slightly more negative in 2020 

than in 2002. The maximum rate of change has decreased from +2.7 mg/l/year in 2002 to 0.6 mg/l/year in 2020, which indicates 

an overall deceleration of the rate of change over the study period. This is confirmed by the negative values of the averaged 

I6.  270 

While these statistics indicate a slightly mild decrease in nitrate concentrations since 2002, the distributions of the indicators 

color-coded by the type of aquifer in Figure 4 suggest that the decrease has mainly been significant in the Brusselian sands, 

while the pink stacks of the histogram for I3 indicate an increase in the Geer basin chalks.  

 

Table 4. Descriptive statistics of the six nitrate indicators.  275 

Pollution indicator 

(I) 

Unit Mean ± 

standard 

deviation 

Minimum Percentile 

25 (Q1) 

Median 

Q2 

Percentile 

75 (Q3) 

Maximum IQR 

(Q3-

Q1) 

I1 – Concentration in 

2002 
mg/l 37,7 ± 12,2 15,4 28,3 38,1 44,3 69,2 16,0 

I2 - Concentration in 

2020 
mg/l 36,5 ± 10,8 14,1 28,6 37,0 44,7 61,6 16,1 

I3 - Concentration 

difference 
mg/l -1,2 ± 8,8 -21,3 -4,9 0,1 3,6 12,5 8,5 

I4 – Slope in 2002 mg/l/year -0,1 ± 1,1 -3,1 -0,5 0,1 0,5 2,7 1,1 
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I5 – Slope in 2020 mg/l/year -0,5 ± 1,1 -5,2 -0,7 -0,2 0,1 0,6 0,8 

I6 – Slope difference mg/l/year -0,4 ± 1,2 -3,6 -0,8 -0,4 -0,0 2,7 0,7 

 

 

Figure 4. Histograms of the six pollution indicators. The black arrow at the bottom indicates that, for each indicator, lower values 

are more desirable than higher values, as this entail lower nitrate concentrations, decreasing trends and a decrease in concentration 

from 2002 to 2020.  280 
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3.2 Identification of the controlling factors 

3.2.1 Bivariate analysis 

The analysis reveals a consistent positive correlation between the crop and potato crop area and all the pollution indicators, 

and hence an undesirable effect of these variables (Figure 5). This effect is only significative on the nitrate concentration in 

2020 (I2) and rate of change in 2002 (I4). On the other hand, the analysis reveals a consistent negative correlation between the 285 

forest and green space area and all the pollution indicators, and hence a desirable effect of this variable. This effect is only 

significative on the nitrate concentration in 2020 (I2). Results also indicate a significant positive relationship, or undesirable 

effect, of the meadow area on the rate of change in 2020 (I5). Temporal trend in the meadow area (MeadowReg) shows a 

significant negative correlation with concentrations in 2020 (I2), suggesting a desirable effect of an increase in meadow area 

on I2, but shows a positive correlation with the change in concentrations (I3), suggesting an undesirable effect of an increase 290 

in meadow area on I3.   

The results show a positive relationship and hence undesirable effect of the number of farms on all indicators, and of the 

number of graveyards on the change in concentrations (I3) and the rate of changes in 2002 and 2020 (I4 and I5). Conversely, 

graveyards displayed a significant negative relationship with concentrations in 2002 (I1). Finally, there is no detected influence 

of the presence of building area, a proxy for population density, and buildings not connected to wastewater treatment plants. 295 

The depth of the water intake structure, serving as a surrogate for groundwater table depth, shows a significant correlation with 

the indicator of change in concentration (I3). However, it does not exhibit any correlation with the other indicators. There is a 

significant negative relationship between the annual rainfall, a proxy for recharge, and the indicator of change in concentrations 

(I3), while there is a significant positive relationship with the concentration in 2002 (I1). A weak negative relationship (positive 

effects) was found between the terrain slope and all the indicators.  300 

Results also confirm a clear influence of the aquifer media. While concentrations in 2002 and 2020 were higher in Brusselian 

sands and lower in the chalks aquifers, the decrease and rate of decrease has been more prominent in the sands.   
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Figure 5 Heatmap of the Kendall rank correlation coefficients between the explanatory variables and the six pollution indicators. 

Coefficients in bold indicate a significant relationship (p-value<0.1) NR: not relevant. The black arrow on the right indicates that 305 
low correlation is more desirable than high correlation, as low correlation entails that high values of the explanatory variables are 

correlated to low values for the six pollution indicators and vice versa.  

3.2.2 Multivariate linear regression analyses 

In the process of refining our multivariate regression models, we made several adjustments to address issues of 

multicollinearity among the variables. We removed the variable ‘Rainfall’ for its high VIF of 242. The variables ‘CropLU’ 310 

and ‘PCropLU’ had a VIF of respectively 20 and 12, and were highly correlated (R²=0.77). Considering the importance of 

'CropLU' as explanatory variable, we chose to retain it and remove 'PCropLU.' The next variables we removed were ‘Slope’ 

and ‘NoSewage’ as they each had the highest VIF among the remaining variables (9 and 7 respectively). Finally, we removed 

the variables ‘Farms’ and ‘Graveyards’, allowing to satisfy the condition of all remaining variables having a VIF < 5. The 

decision to exclude 'Farms' was based on its redundancy with ‘CropLU’ and ‘MeadowLU’, which already represent agricultural 315 

activity. As for ‘Graveyards’, their very sparse distribution in the considered areas led us to expect a limited effect. 

The results of the multivariate regression models with the selected independent variables are presented in Table 5. The table 

shows the coefficients of the independent variables for each model, after stepwise removal of all non-significant variables (p-
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value of coefficient < 0.05). Note that the interpretation of the coefficient value is difficult because the independent variables 

have been normalized. In this normalized context, the coefficient indicates the expected change in the dependent variable per 320 

standard deviation change in the independent variable. However, it allows to interpret the relative importance of the variables, 

as a higher coefficient indicates a higher change of the pollution indicator per standard deviation change. 

The regression models highlight the significant role of the aquifer media in explaining the variability of multiple indicators. 

Sandy aquifers tend to have higher nitrate concentrations but have also shown more desirable concentration changes and rates 

of change over the study period. The land use variables (CropLU, MeadowLU, GreenLU) exhibit varying influences across 325 

the response indicators. Larger crop areas correlate with higher concentrations and less desirable rate changes in 2020 (I2 and 

I5), while more forested and green areas are associated with more favorable concentration changes (I3). The models explain 

only 18 to 46% of the variance in the indicator values, as indicated by the R2 coefficients. 

 

Table 5. Coefficients of the variables used in the multiple linear regressions. Only statistically significant coefficients (p-value < 0.05) 330 
are shown. NR : not relevant. 

 Cc 2002 (I1) Cc 2020 (I2) 
Difference cc 

(I3) 

Rate of 

change 2002 

(I4) 

Rate of 

change 2020 

(I5) 

Difference 

rate of 

change (I6) 

Constant + 37,7 + 36,5 - - - 0,49 - 

CropLU - + 5,3 - - + 0,66 - 

MeadowLU - + 4,0 - - - - 

MeadowReg NR - - - - - 

BuiltLU - - - - + 0,62 - 

GreenLU - - - 3,9 - - - 

Aquifer + 6,2 + 5,4 - 4,8 - - 0,38 - 

Depth - + 5,6 - - - - 

R2 0,26 0,40 0,46 - 0,31 - 

4. Discussion 

4.1 Evolution of the nitrate concentrations  

Since the implementation of the PDGA, the average nitrate concentration across monitoring sites has shown relative stability 

(Table 4). However, this overall trend conceals variations:  53% of the sites recorded an increase in nitrate levels, while 47% 335 
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experienced a decrease. The most significant reduction was observed in the Brusselian sands, while concentrations increased 

at most sites in the Geer basin chalks (Figure 4). These findings are consistent with those reported by (SPW - DEE - Direction 

des Eaux souterraines, 2024). The observed disparity in nitrate trends between these regions reflects differences in the 

hydrogeological characteristics of the aquifers. The Brusselian sands, characterized by higher permeability and lower nitrogen 

storage capacity, may exhibit shorter response times to changes in surface nitrogen loading, resulting in more immediate 340 

declines in nitrate concentrations. Conversely, the Geer basin chalks, with greater capacity for nitrogen storage and slower 

groundwater flow, may exhibit a delayed response to reduced nitrogen inputs. This lag effect suggests that, despite reductions 

in nitrogen loading (SPW, 2022), improvements in nitrate levels in the Geer basin chalks may only become evident in the 

coming years, provided that nitrogen management measures continue to be implemented. As Liu et al. (2024) emphasize, 

addressing the delayed response caused by lag effects and nitrogen legacy requires the implementation of sustained, long-term 345 

strategies. 

Encouragingly, although nitrate levels continue to rise at some sites, the pace has slowed, being lower in 2020 (I5) compared 

to 2002 (I4, Table 4). The maximum rate of increase has also dropped  from 2,7 mg/l/year in 2002 to 0,6 mg/l/year in 2020 

(Table 4). These results indicate a positive outcome of the measures implemented under the PDGA. 

4.2 Identification of the controlling factors 350 

Our analysis confirms the anticipated relationship between agricultural land use and nitrate contamination, as nitrate 

concentrations showed a positive correlation with cropland area (Figure 5 and Table 5, I1 and I2) (Gurdak and Qi, 2012; Wick 

et al., 2012). However, while this correlation was expected for 2002 (I1, prior to the full implementation of the PGDA), its 

persistence in 2020 (I2) is concerning. Nearly two decades after the introduction of the PGDA, which was designed to reduce 

nitrogen inputs and nitrate leaching, the correlation between cropland and high nitrate concentrations suggests limited 355 

effectiveness of the measures in altering the relationship between land use and groundwater quality. This lack of decoupling 

might also reveal "legacy nitrogen" effects, whereby nitrate accumulated in soils and aquifers from past agricultural practices 

continues to leach into groundwater long after inputs have been reduced (Basu et al., 2022; Van Meter et al., 2016). 

Additionally, one might have expected the croplands to be negatively related to the rate of nitrate concentration change (I5 in 

Table 5) due to the implementation of nitrogen management measures under the PGDA. Contrary to this expectation, the 360 

observed positive relationship suggests that nitrate accumulation in groundwater is ongoing. This may reflect the combined 

effects of legacy nitrogen and potentially insufficient compliance or enforcement of PGDA measures in some regions (Ascott 

et al., 2017; Hansen et al., 2012). These findings emphasize the importance of considering both historical nitrogen loads and 

ongoing agricultural practices when interpreting nitrate concentration data. Efforts to enhance the effectiveness of nitrate 

reduction policies should consider the incorporation of measures to accelerate the recovery of aquifers and reduce the potential 365 

nitrate leaching loss, such as the promotion of deep-rooted crops (Pierret et al., 2016; Thorup-Kristensen et al., 2020). 

Enhanced monitoring and stricter enforcement of fertilizer application limits may also help to mitigate further contamination. 
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Furthermore, given the evident lag effects, long-term policy evaluations should account for the temporal dynamics of nitrate 

transfer and accumulation within aquifers. 

Forested and green areas exhibit a negative association with nitrate pollution, showing a lesser contribution to nitrate leaching, 370 

which can be explained by lower nitrogen inputs and natural buffering effects. This aligns with findings by Zhang et al. (2013) 

and Cameron et al. (2013), who noted that  forests promote nitrogen uptake and reduce its runoff. Moreover, the data suggests 

that nitrate contamination evolution (I3) was slightly better in more forested zones (Table 5). This implies that PGDA measures 

might currently be more effective in areas with lower inherent vulnerability. Interestingly, while reductions in meadow area 

over time correlate with lower nitrate concentrations, meadow area itself does not show a significant impact on nitrate levels. 375 

This may result from the failure to differentiate between pasture—typically associated with high nitrate leaching—and other 

types of meadows (Sacchi et al., 2013). Addressing this distinction in future assessments could enhance the specificity of land-

use-related policies. 

No significant negative effect was observed from built infrastructures, which contrasts with the findings of Mattern et al. 

(2009) who identified residential land as having negative influence on nitrate concentrations in the Brusselian sands. This 380 

discrepancy may be due to our study’s focus on semi-rural areas, where built-up areas are limited (under 8% of total land use, 

Table 3) and the associated sewage pressure is likely low. Expanding monitoring to include more urbanized areas could clarify 

the influence of residential land use on nitrate trends. 

 

Aquifer type emerges as a critical predictor of nitrate vulnerability, with sandy aquifers showing higher contamination levels 385 

than chalk aquifers. This suggests that policies should prioritize sandy aquifer regions, particularly those under cropland, for 

targeted measures like stricter nitrogen application limits and buffer zones. However, aquifer type also predicts changes over 

time (I3), with a general decrease in nitrate concentrations in the Brusselian sands contrasting with increases in the Geer basin 

chalks (Figure 5). This finding underscores the importance of tailoring strategies to the hydrogeological characteristics of 

aquifers. For example, in chalk aquifers, where response times to management measures are longer due to nitrogen storage 390 

and slower groundwater flow, additional interventions may be needed to address legacy nitrogen.  

Depth also plays a significant role, with shallow groundwater intake structures, only a few meters deep, showing greater 

improvement in nitrate concentrations compared to deeper structures, which can extend beyond 100 meters. This delayed 

response in deeper groundwater bodies to the PGDA measures reflects a time lag in nitrate transfer through the vadose zone. 

Supporting evidence from Masetti et al. (2008) in Northern Italy highlights how higher annual precipitation and recharge rates 395 

can shorten lag times and improve nitrate trends. 

 

The correlation between graveyards and less favorable nitrate trends warrants careful consideration, as sparse distribution of 

the graveyards may obscure localized effects. Targeted monitoring near such potential point sources could help identify 

specific mitigation needs. 400 
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The low predictive power of the multivariate models (R² = 18–46%) reflects the complexity of groundwater systems and the 

factors influencing nitrate concentrations Groundwater systems are influenced by numerous natural and anthropogenic 

elements, some of which have not been fully captured due to data limitations or to unaccounted sources of nitrate leachate 

(Masetti et al., 2008). This complexity is compounded by non-linear relationships and time lags between surface changes and 405 

groundwater response, which our linear regression models may not fully capture (Wick et al., 2012). Furthermore, the limited 

number of groundwater data points (36) restricts the model’s ability to account for the full variability of the system (Ishwaran, 

2007). 

To mitigate multicollinearity, variables with high Variance Inflation Factor (VIF) values were removed from the multivariate 

regression, which likely improved the stability of the coefficient estimates but could also have led to the exclusion of significant 410 

predictors. Rainfall was removed as it exhibited highest collinearity, as expected, given its regional variability, which also 

applies to other variables such as aquifer type, crop land use, and depth. Potato cropland was quite obviously highly collinear 

with cropland and therefore excluded. Interestingly, land use variables were not as collinear as anticipated, which can be 

explained by the fact that built infrastructure only accounts for buildings rather than the total urban area, and that the land use 

variables (crop + forest + built) thus not encompass the entire area. The methodological trade-off of removing potential 415 

controlling factors to avoid collinearity further contributes to the relatively low model performance (Ishwaran, 2007). 

4.3 Challenges in defining the pollution indicators and the independent variables 

We provide six nitrate pollution indicators that collectively capture nitrate pollution state and trends over time. However, the 

use of these indicators comes with certain limitations. The indicator on the difference in nitrate concentration (I3) may miss 

short-term fluctuations, while indicators I4 and I5, representing the slopes at the beginning and end of the study period, may 420 

not be representative of the longer-term trend. The indicator I6, the difference in slopes, is quite abstract and harder to interpret.  

The reliability of these indicators depends on the quality and completeness of the underlying data, as well as on the methods 

used to compute them. The indicators of rate of change (I4, I5 and I6) demonstrate robustness, as they are not very sensitive 

to the chosen method for defining local slope, as evidenced by the similar statistics (see supplementary materials - Table S1), 

which increases confidence in their values.  425 

The precise delineation of the influence zones is essential for effectively characterizing and quantifying the independent 

variables representing the factors affecting nitrate pollution, as highlighted by Nobre et al. (2007) and Mattern et al. (2009). 

However, defining these zones is fraught with challenges, due to complex subsurface geology, the ever-changing dynamics of 

groundwater flow, and constraints related to data availability. In our study, we used methodological simplifications to delineate 

these zones, acknowledging the resulting approximation. Another pitfall is the spatial overlap of the influence zones of some 430 

monitoring points. This overlap implies that the monitoring points are not entirely independent, leading to similar values of 

potential explanatory variables for these points. This dependency in our dataset could have influenced the data analysis. 

A key strength of our study lies in the comprehensive computation of a broad array of independent variables representing 

potential controlling factors. However, some choices made to characterize these variables, driven by data-availability 
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limitations, may have introduced additional noise or uncertainty to the data analysis. For instance, we used the variable 'Depth 435 

Structure,' rather than the more precise variable ‘Groundwater table depth’ to account for the travel time in the saturated zone, 

and ‘Rainfall’ was used as a proxy for ‘Precipitation surplus’ to approximate net recharge. These substitutions, while necessary, 

can affect that accuracy of our analysis, and mainly the lack of more significant relationships between the independent variable 

and the nitrate pollution indicators. Furthermore, some potentially important controlling factors, such as agricultural practices, 

mitigation measures, livestock density, and manure and fertilizer storage practices, were not included in our analysis due to 440 

the lack of readily available regional-scale proxies.  Incorporating modelled variables as inputs, rather than relying solely on 

observational data, could improve certain current proxies and enable the inclusion of new critical drivers. 

4.5 Perspectives 

The findings of our current study open several pathways for future research. A primary direction, contingent to the data-

availability, is the enhancement of independent variables representing controlling factors. Future work should refine existing 445 

variables by distinguishing between more specific crop types and rotations, as well as differentiating grazed from non-grazed 

meadows. Additionally, incorporating data on fertilizer application rates, livestock densities, nitrogen surplus estimations, in-

situ leachable nitrogen measurements, the state of sewage systems, actual groundwater table depth and precipitation surplus, 

and concentrations of other pollutants, representative of nitrate-generating activities, would help increase the representation of 

all factors potentially influencing nitrate contamination. These advancements depend heavily on the availability of 450 

comprehensive and open datasets.  

A way forward is to supplement observational data with modelled data, leveraging outputs from models like EPIC-grid, which 

computes nitrate recharge and precipitation surplus (Sohier et al., 2009). Additionally, groundwater dating and chemical and 

isotopic analyses (Böhlke and Denver, 1995; Christiaens et al., 2023; Mattern et al., 2011; Vanclooster et al., 2020) could offer 

valuable temporal perspectives on the source and evolution of groundwater contamination. Expanding on the integration of 455 

methods, data-driven techniques could also be combined with process-based models, leveraging the strengths of both 

approaches. While process-based models capture the mechanisms affecting nitrate leaching, data-driven methods can harness 

the full potential of available data, sometimes outperforming traditional mechanistic equations. 

Expanding the groundwater nitrate concentration dataset by incorporating additional monitoring points would strengthen the 

representativeness and predictive power of models. With a larger dataset and better quality independent variables, more 460 

advanced, non-linear machine learning techniques could be employed to uncover new insights and capture the complexities of 

nitrate contamination. These approaches could provide a deeper understanding of the underlying processes and hence help 

guide future best management practices. However, expanding the dataset and collecting better-quality independent variables 

is a challenging task due to the limited availability of long-term and spatially explicit data, and the complexities associated 

with data collection across multiple stakeholders. Addressing these challenges will be crucial for the development of more 465 

robust and advanced analytical approaches in future studies. 
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5. Conclusions 

This study investigates the long-term spatial and temporal dynamics of nitrate contamination in groundwater, linking these 

trends to land use and hydrogeological conditions. By leveraging two decades of data following the implementation of the 

Wallonia’s Sustainable Nitrogen Management Program, it provides insights into persistent contamination sources, such as 470 

cropland, and highlights the critical role of aquifer characteristics and depth in mediating nitrate responses. To enhance policy 

effectiveness, our results reinforce the relevance of targeted interventions by prioritizing vulnerable aquifers and cropland-

dominated zones. They also highlight the need to sustain and intensify monitoring to capture time lags and nitrogen legacy 

effects. 

The limited predictive power of the regression models reflects the inherent complexity of groundwater nitrate contamination 475 

and the difficulty of adequately representing its controlling factors. Constraints such as data availability and required 

simplifications in defining independent variables limit model reliability. This underlines the need for more detailed and 

accessible datasets that better capture the controlling factors, and the need to sustain and perhaps expand the monitoring 

systems to better capture spatial variability and localized impacts of land use. Integrating modelled data alongside 

observational data could also offer potential to improve the representation of controlling factors. As well, combining data-480 

driven techniques with process-based models, leveraging the strengths of both approaches, could help improve model 

performance.  
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