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Abstract. Groundwater nitrate contamination remains a significant environmental and health concern, as the effectiveness of 

nitrogen management programs has shown mixed results. This study leverages nearly two decades of groundwater monitoring 

data to assess and explain nitrate contamination trends in vulnerable zones in Wallonia, Belgium, following the implementation 10 

of the regional sustainable nitrogen management program. 

Using nitrate concentration time series (2002–2020) from 36 monitoring points across four groundwater bodies, we calculated 

six nitrate pollution indicators that capture temporal dynamics. Spatially explicit variables describing potential contamination 

drivers were compiled, and their relationships with the nitrate pollution indicators were assessed using correlations and 

multivariate regressions. 15 

AResults showed a decrease in the rate of nitrate concentration changes, though lthough mean groundwater nitrate 

concentrations remained stable due to nitrogen legacy effects, there was an overall improvement as nitrate concentrations 

decreased over the study period. mean concentrations remained stable, reflecting the influence of legacy nitrogen. Spatial 

patterns revealedDecreases reductions were observed in the Brusselian sands, where concentrations were initially higher, 

whileand increases were found in the Geer basin chalks, which are typically less contaminated. These diverging trends can be 20 

explained by differences in aquifer characteristics and nitrate transfer time lags. AThis divergence likely reflects differences 

in aquifer characteristics and time lags in nitrate transfer, with shallow groundwater showing greater improvements than deeper 

zones. Agricultural land cover consistently exerted a significant influence on nitrate levels, underscoring the enduring 

impactgricultural land cover continues to have a negative impact on nitrate contaminationof land use as a contamination driver, 

even after 20 years of PGDA implementation. The limited predictive power of the regression models highlights the 25 

multifaceted nature of groundwater nitrate contamination and the challenges in representing controlling factors, mainly due to 

lack of data. 

Overall, this study emphasizes the need for sustained and adaptive nitrogen management policies, especially in vulnerable 

aquifers and cropland-dominated regions, alongside long-term monitoring to address time lags and nitrogen legacy effects. It 

also underscores the importance of detailed datasets to support advanced non-linear machine learning approaches that can 30 

capture the complex interactions involved.Tlimited predictive power of the  multifaceted nature This study underscores the 
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importance of sustained and adaptive nitrogen management practices, particularly in vulnerable aquifers and cropland-

dominated regions. It also suggests the need to sustain and intensify measures over extended periods to address time lags and 

nitrogen legacy effects, and the development of a more comprehensive and denser monitoring network to improve data 

resolution and track contamination trends effectively. 35 

1 Introduction 

For several decades, concerns have beenbeing raised about elevated nitrate concentrations in groundwaters. These high nitrate 

levels are harmful to the environment, as they contribute to the biodiversity loss and eutrophication of the aquatic ecosystems 

(de Vries et al., 2024; Grizzetti et al., 2011; Hornung, 1999), and can pose serious health risks when the groundwater is used 

for drinking water (Bouchard et al., 1992; Comly, 1945; de Vries et al., 2024; Schullehner et al., 2018; M. Ward et al., 2018). 40 

Despite extensive research, uUnderstanding the factors underlying nitrate concentrations and trends is complicated by the 

diffuse, long-term and multi-causal nature of the contamination (Shukla & Saxena, 2018).  

The primary anthropogenic sources of nitrates in groundwater are agricultural activities (Spalding & Exner, 1993; Wick et al., 

2012). However, non-agricultural sources such as inadequate treatment and disposal of human waste and wastewater, landfill 

and waste tip, and industrial waste can also be significant contributor to high concentrations in aquifers (Mattern et al., 2009; 45 

Vanclooster et al., 2020; Wakida & Lerner, 2005). While human activities are the drivers ofdrive increased nitrogen input to 

the soils, the leaching of nitrates tolevels in groundwater , theis modulatedgoverned by key natural processes, referred to as  

the nitrogen cycle (B. B. Ward, 2013). Specifically, se increases are modulated by the natural properties such as climate, soil 

composition, geological formation, and depth of the groundwater tablesnNitrate formation is primarily driven by the 

nitrification process, a process in which ammonium, introduced through human activitiesfertilizer and mineralization of 50 

organic matterwaste, is oxidized to nitrate. In contrast, Nnitrate degradation ,concentration levels decrease  on the other hand, 

occurs through its uptake by plants and microbial uptakeoorgani sms, as well as through denitrification, the which 

transformsation of nitrate into nitrogen gas, which takes place under anaerobic conditions. These processes are further 

influenced by environmental factors depend on natural properties such as climate, soil composition, geological formation, and 

the depth of the groundwater tables.  55 

To address the environmental and health risks associated with nitrate pollution, the European Union’s Nitrate Directive 

(91/676/EEC) has played a central role in promoting best management practices (BMPs) that mitigate agricultural nitrate 

contamination. Established in 1991, the directive aims to protect water bodies by requiring member states to identify Nitrate 

Vulnerable Zones (NVZs) and implement targeted measures to reduce nitrate leaching, aiming to maintain surface and 

groundwater nitrate concentrations below 50 mg/L. 60 

Recognizing the environmental and health hazards related to nitrate pollution, many regions have introduced best management 

practices (BMPs) to mitigate nitrate pollution. A notable example is the European Union’s Nitrate Directive (91/676/EEC), 

established in 1991 to protect water bodies from agricultural nitrate pollution. Under this directive, member states must identify 
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Nitrate Vulnerable Zones (NVZs) and implement targeted measures to reduce nitrate leaching, with the aim of maintaining 

groundwater nitrate concentration levels below 50 mg/l.  65 

Studies evaluating the effectiveness of such policies have shown mixed results. While many report encouraging signs of 

reduced nitrate pollution due to improved nitrogen management practices, others highlight persistenting challenges, with a 

continued increases or minimal limited improvement in concentrations in many locations (Ferguson, 2015; Hansen et al., 2012, 

2017; Van Grinsven et al., 2012, 2016).  

In Wallonia (Belgium), the European Directive was transposed into a program for sustainable nitrogen management 70 

(“Programme de Gestion Durable de l'Azote en Agriculture”, PGDA) in , that was implemented at the end of 2002. This 

program includes region-wide measures that apply to the entire region of Wallonia, alongand additional measures only 

applicablerequirements in the NVZs in the Nitrate Vulnerable Zones, including restrictions on manure spreading, mandatory 

soil cover, and groundwater monitoringspecific spreading periods and conditions, obligations regarding soil cover, and 

monitoring requirements (Picron et al., 2017). In compliance with the Water Framework Directive (WFD, 2000/60/EC) and 75 

the Groundwater Directive (GWD, 2006/118/EC), the Walloon regional authority assessesmonitors groundwater nitrate 

concentrations, and trends to identify vulnerable areas and to evaluate the effectiveness of the PGDA (SPW - DEE - Direction 

des Eaux souterraines, 2024). Since their most recent extension in 2013, the Nitrate Vulnerable Zones now cover 69% of the 

utilized agricultural land in Wallonia.  The observed effectiveness of the program so far remains mitigatedis debated without 

clear overall signs of improvement (Batlle Aguilar et al., 2007; SPW - DEE - Direction des Eaux souterraines, 2024).  Many 80 

control sites keep exceeding the European guide level of 25 mg/l and most of the groundwater bodies in the Nitrate Vulnerable 

Zones (NVZ), partially or locally, have high levels and several exceedances of the standard of 50 mg/l, although. Despite this, 

the average nitrate concentration values levels in some aquifers have been shown to stabilize orand even, in some aquifers, to 

decrease in recent years.e.   

To better understand the impacts of the PGDA on nitrogen dynamics, Sohier & Degré (2010) modeled soil nitrogen surpluses 85 

using a modified version of the process-oriented EPIC model (Williams et al., 1984). Their work demonstrated the positive 

effects of certain agricultural practices whilebut also highlightinged significant variability driven by weather conditions, 

particularly precipitation. The regional authority uses this model to assess the agricultural soil nitrogen balance (SPW, 2022). 

However,  . By using modelled data, tTthe results are dependent on the hypotheses and assumptions about the physical 

processes underlying the model. When these processes are not well defined, which is challenging due to their complexity, the 90 

accuracy of the predictions is limited. Although Eefforts have been made to measure in-situ soil nitrate concentrations at the 

end of the agricultural crop season, known as potentially leachable nitrogen (APL). The in-situ APL measurements are 

correlated with agricultural practices such as fertilization and crop management, as well as with nitrate concentrations in soil 

water (Vandenberghe, 2016). However,  these such measurements remain limited in both space and time, which constrains 

comprehensive assessments of nitrate contamination trends. Moreover, soil and soil water nitrate concentrations can differ 95 

from groundwater nitrate concentrations, as the latter are affected by nitrate transfer lags through soil matrices (Hansen et al., 

2012; Mattern & Vanclooster, 2010; Visser et al., 2007) and the slow release of accumulated nitrogen (Ascott et al., 2017; 
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Kyte et al., 2023; Liu et al., 2024) — a phenomenon referred to as the “nitrogen legacy effect” (Basu et al., 2022; Van Meter 

et al., 2016).  

. and the slow release of N that have accumulated over time in the landscape elements including soils and vadose zone , what 100 

certain author call “the nitrogen legacy effect” Wn the other hand, ehile fforts have been madepursued to mmeasured soil n 

and analyse nitrate concentrations in agricultural soils at the end of the agricultural cropping season, - , known as ”potentially 

leachable nitrogen“ - APL. This indicator was shown to be correlated to agricultural practices such as fertilization and crop 

management, and to the nitrate concentrations of the water at the base of the root zone -  control the processe, such as the time 

lag of nitrate transfer through the soil matrix HenceGiven these complexities, data-driven approaches leveraging long-term 105 

groundwater quality data is a promising approach   and spanning long periods, are a promising path (He et al., 2022; Rodriguez-

Galiano et al., 2014) . Such data encode all the relevant processes of the nitrate contamination process, they  and are , which 

offer the advantage of beinwidely available and they , enablinge broader insights into nitrate pollution trends and drivers. For 

example, Vanclooster et al. (2020) used a data-driven approach to model groundwater nitrate pollution in the Brussels-Capital 

Region, Belgium, focussing on , however they focused on spatial variability, and did not address the drivers of  but not on the 110 

temporal evolution of nitrate concentrations. 

(SPW - DEE - Direction des Eaux souterraines, 2024)This study aims to leverage groundwater monitoring data to assess 

interpret the effect iveness of the PGDA on groundwater quality in Wallonia over an almost 20 year periodnearly two decades. 

In particular Specifically, our objectives are: 

(i) To assess the long-term (2002 – 2020) evolution of nitrate concentrations since thefollowing the PDGA 115 

implementation of the PGDA; 

(ii) To identify the factors driving controlling the nitrate concentration changes over time and across different locations.  

2. Material and Methods 

To address the first objective, we captured the nitrate concentration dynamics between 2002 and 2020 with six 

indicators. To address the second objective, we computed a set of potential explanatory variables standing for 120 

environmental and anthropogenic factors which may impact the nitrate concentration dynamics. We then assessed the 

relationships between these explanatory variables and six nitrate pollution indicators. 

2.1 Study area 

Our study area focuses on thekey  Nitrate Vulnerable Zones (NVZ) of the Region Wallonia, Belgium, where  because Xnitrate 

contamination levels are the highest (SPW - DEE - Direction des Eaux souterraines, 2024). Specifically, Iit includes all 125 

monitored sites where levels currently exceed 50 mg/l.  since when?The PGDA defines additionalstricter  measures which are 

applicable only in these areas, such as specific spreading periods and conditions, obligations regarding soil cover, and 

monitoring requirements (Picron et al., 2017).  to mitigate the contaminationWe selected four groundwater bodies where thea 

major drinking water company supplying the monitoring data operates several extraction sites:We selected four groundwater 
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bodies located in the Region of Wallonia, Belgium: the Geer basin chalks, the Brusselian sands, the Haine basin chalks and 130 

the Landenian sands (Figure 1Figure 1).  The concept of "water body" was introduced within the Water Framework Directive 

to classify the various aquatic environments that characterize the European territory. A groundwater body consists of a distinct 

volume of groundwater within one or more aquifers. In Wallonia, the groundwater bodies were delineated by a group of experts 

based on hydrogeological criteria such as the extent of geological layers or the interaction with surface waters, as well as non-

hydrogeological criteria such as the administrative limits.  135 

The four selected groundwater bodies are part of Nitrate Vulnerable Zone (NVZ). The NVZ covers 69% of Wallonia’s utilized 

agricultural land, and includes all monitored sites where levels exceeding 50 mg/l have been measured. The Geer basin chalks 

and the Brusselian sands were part of the first nitrate vulnerable zones as defined in 1994, and have thus been subjected to the 

associated regulations since then. The Haine basin chalks and the Landenian sands were added in the NVZ in 2013.  

The Geer basin chalks groundwater body covers an area of 440 km² and is located in the Meuse hydrographic basin (SPW, 140 

2016). The groundwater body’s aquifer, the Hesbaye aquifer, is said to have a substantial storage capacity and a high porosity. 

It is partly overlaid in its northeast portion by the Landenian sands groundwater body. Agricultural land covers approximately 

68% of the land surface, with 14% of it being meadows and 86% crops. The region has a high population density with 340 

inhabitants per square kilometre.  

The Landenian sands groundwater body spans a surface of 206 km² and is located within the Scheldt hydrographic basin (SPW, 145 

2010). The groundwater body’s aquifer is the Landenian sands aquifer. Due to limited exploitation, the hydrogeological 

properties of this aquifer remain poorly defined. Agricultural land covers approximately 78% of the total land surface, with 

meadows accounting for 8% and crops making up the remaining 92%. The population density is relatively low, with 160 

inhabitants per square kilometre.  

The Brusselian sands groundwater body spans a surface of 964,5 km² and is situated in the Scheldt hydrographic basin (SPW, 150 

2006b). Its aquifer is the Brusselian sands aquifer, which has a high storage capacity but a low hydraulic conductivity. 

Agriculture covers 71% of the land surface and another 10% is urban land. 

The Haine basin chalks groundwater body covers an area of 644 km² and is situated in the Scheldt hydrographic basin (SPW, 

2006a). The main aquifer of this water body is the Mons basin chalks aquifer. The aquifer’s porosity has a permeability ranging 

from 10-5 to 10-7 m/s, while the fissures in the chalk formation entail a permeability of 2.10-3 to 5.10-5 m/s. In the northwest, 155 

the groundwater body is partially overlaid by the Haine valley sands groundwater body. The land surface area consists of 64% 

agricultural land and 23% urban land. 
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Figure 1. Location of the four groundwater bodies and the 36 monitoring points. 

2.2 Groundwater nitrate concentration dataResponse variables 160 

2.2.1 Data collectionNitrate concentration data 

The monitoring points are water intake structures exploited for drinking water production by the Société Wallonne des Eaux 

(SWDE). They are wells, galleries, springs or drains. We selected points oOnly points in unconfined parts of the aquifers, and 

for whichwith a the water quality monitoring period was longer thanexceeding ten years were selected. Since our focus is on 

vulnerable groundwater with high nitrate concentrations, we excluded one monitoring point located in anoxic groundwater, 165 

where nitrate levels are below 3 mg/l, probably resulting from high denitrification rates We removed points located in anoxic 

groundwater as they are prone to denitrification (Rivett et al., 2008). We defined the anoxic conditions as O2 concentrations 

inferior to 0.5 mg/l and Mn concentrations superior to 0.05 mg/l according to The final dataset includedcontained 36 

monitoring points from which 13 points are in the Haine basin chalks, nine points in the Geer basin chalks, nine points in the 

Brusselian sands and five points in the Landenian sands (Figure 1Figure 1). 170 

 

Time series were available for some points from the sixties onwards, but Tthe trend and causal analysis covers 2002-2020We 

focused our analysis on the period 2002 to 2020, starting at the onset to start at the onset of the sustainable nitrate management 

program (PGDA) and ending with the most recent year for which data were available. For nine out of the 36 points the first 
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available data started after 2002: seven in 2003, one in 2006, and one in 2009.  The temporal resolution of the nitrate 175 

measurements is variable, with the total number of measurements per point ranging from 53 to 948 over the study period. The 

water samples were analysed by the laboratory of the drinking water production company, the SWDE, under ISO 17025 

accreditation.  
The nitrate concentration time series contained some problematic values that were noticeably lower or higher than their 

neighbours due to reported human errors. We thus filtered the time series using a moving window of two years, with an upper 180 

and lower limit being the mean of the data within the window plus and minus three times the standard deviation. Figure 2Figure 

2 shows the annual averages of the resulting time series. 

 

 

Figure 2. Time series of the yearly mean nitrate concentrations at the 36 monitoring points, sorted by groundwater body. In grey, 185 
the time series of all points. In colour, the time series of the points in each groundwater body. 

2.2.2 Definition of nitrate pollution indicatorsNitrate pollution indicators 

We defined a set of six indicators that collectively providecapture a comprehensive view of the state and rate of changes in 

nitrate concentration in over time, between 2002, and in 2020 and the evolution in between. The indicators are used to assess 

the spatial and temporal evolution of nitrate contamination at each monitoring point, and, they serve as dependent variables in 190 
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our data analysis to identify factors influencing nitrate concentrations. The indicators and their interpretation are defined in 

Table 1Table 1 and illustrated in Figure 3Figure 3. 

 

Table 1. Definition and interpretation of the nitrate pollution indicators. 

Pollution indicator (I) Unit Usage and interpretation 

I1  Average nitrate concentration 

in 2002 

mg/l Snapshot of nitrate concentration levels in the groundwater before the 

implementation of the PGDA. Serves as a baseline for comparison with future 

years.  

I2  Average nitrate concentration 

in 2020 

mg/l Snapshot of nitrate concentration levels in the groundwater in a recent year. 

Allows for direct comparison with past data to assess changes over time. 

I3   Concentration difference 

between 2020 and 2002 (I3 = 

I2-I1) 

mg/l Indicates how the concentration has changed since the implementation of the 

PGDA. A positive value indicates an increase in nitrate levels, while a 

negative value indicates a decrease. 

I4 Slope in 2002 mg/l/year Rate of change in nitrate concentration on 01-01-in 2002. Provides insight into 

how rapidly nitrate levels were changing at the beginning of the period.  

I5 Slope in 2020 mg/l/year RRecent rate of change in nitrate concentration on 01-01-2020. Useful for 

understanding recent dynamics and informing current policy decisions. 

I6 Difference in slope between 

2020 and 2002 (I6 = I5-I4) 

mg/l/year Indicates how the rate of change in nitrate concentration has changed over the 

study period. A positive value indicates an accelerating increase (or 

decelerating decrease) in nitrate levels, while a negative value suggests a 

decelerating increase (or accelerating decrease). 

 195 
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Figure 3. Illustration of the six indicators of the nitrate concentration status and long-term changepollution indicators. We use 

theTtimes series data from  of one a the monitoring points station in the XBrusselian sands bodyis are used for illustrative purposeas 

example. 

Note that we calculated the rate of change (slope) at the start and the end of the considered time period instead of conducting 200 

a single trend test. This choice is because the change in concentration values in most monitored locations was not gradual 

(Figure 2) but showed irregular or non-linear patterns within the considered time period, which is not suitable for a simple 

trend test. 

The method used for slope computation (I4 and I5)can affectslead to different conclusions inthe trend diagnostics. The non-

parametric Mann-Kendall test has been widely applied and recommended for groundwater pollution trend assessments (Frollini 205 

et al., 2021; Grath et al., 2001; Hirsch et al., 1991; Urresti-Estala et al., 2016). This method only captures a single linear trend, 

making it not directly applicable to detect trend changes in long, non-linear time series. To address this limitation, Lee et al. 

(2010) computed trends using local regression. In our analysis, Wwe applied used two different approaches: , based on (i) 

computing tangent lines to a llocalowess regression(Lo) and on (ii) detecting change point and applying the Mann-Kendall test 

(CP)., Since both methods produced similar slope indicators, we focus on the local regression approach in the main text, with 210 

details of the change-point detection approach provided in the supplementary materials.and tested whether the results from 

both approaches corroborated with each other.  We referred to the indicators as I4Lo and I5Lo, and I4CP and I5CP, respectively.  

The local regressionFor the Lo approach consisted inwe first smoothedsmoothing the time series using locally weighted 

scatterplot smoothing (lowess) (Cleveland, 1979) and we then determined I4Lo and I5Lo by computing the slope of the tangent 

line at the points corresponding toto the smoothed time series on January 1, 2002 (=I4), and on January 1, 2020 (=I5), 215 

respectively. The lowess window length for lowess was set to eight years for time series longer than twelve years, allowing to 

capture the long-term fluctuations, and to 2/3 of the time series length for shorter series. Within a local window of 90 days, a 

linear interpolation was applied instead of a weighted regression to increase stability.  

In the CP approach, we determined I4CP and I5CP as the slopes in 2002 and 2020 of the segments between the change points of 

the time series. The segments’ slopes were calculated using the Theil slope estimator, robust to outliers  220 
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For the nine monitoring points whose first measurements were taken after 2002, the slope of the trend in 2002 (I4Lo and I4CP) 

was taken as the slope at the first data point, and the mean absolute nitrate concentration in 2002 (I1) was obtained by 

hindcasting that trend, using I4CP. All time series cover a period longer than eight years, the minimum length recommended 

by Grath et al. (2001) for groundwater pollution trend assessments.  

 225 

Figure 4. Illustration of the two alternative methods, the lowess (Lo) and change point (CP) methods, used to model the 

time series and identify the trends in 2002 (I4 indicators) and in 2020 (I5 indicators). 

2.3 Defining Nnitrate pollutioncontaminationCandidate potentialexplanatory variables Potential explanatory variables 

We computed a set of potential explanatory variables standing for environmental and anthropogenic factors which may impact 

the nitrate concentration dynamics. We used these variables as independent variables in our data analysis to identify factors 230 

influencing nitrate concentrations. We tested the ability of a set of variables to explain the spatial and temporal variability of 

the nitrate concentration indicators. The variables encompass both the inherent vulnerability to pollution and the anthropogenic 

influence, which include human activities that could cause or affect punctual and/or diffuse pollution. The definitions of these 

indicators, computation means and data sources are given in Table 2Table 2. The descriptive statistics of the values of these 

variables for the monitored locations are given in  235 

Table 3 

Table 3. 

2.3.1 Delineation of the influence zones 

The risk of groundwater contamination at a specific location is influenced by the traits of the land surface area that can 

potentially transport pollutants to it. Therefore, delineating this land surface area, here referred to as the 'influence zone', is 240 

crucial in the analysis of groundwater nitrate concentrations (Mattern et al., 2009). We defined the influence zones as the 

topographic surface watersheds of the legally protect zones ofing each water intake structure (SPW, 2020). These zones 
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correspond either to the groundwater table area with a maximum transfer time of 50 days to the water intake structure as 

estimated through geological modelling, or they are defined as circular areas centred around the structure location, whose 

radius depends on the aquifer substrate: 100 meters for sandy aquifers, 500 meters for gravel aquifers and 1000 meters for 245 

karstic aquifers. The boundaries of these zones are available on the regional institution’s geographical data portal (SPW, n.d.). 

We delineated the watersheds with the ArcGIS watershed toolbox, using a 2-meter resolution raster of flow direction and flow 

accumulation generated by the LIDAX project (SPW, 2019).   

2.3.2 Inherent vulnerability 

To quantify the natural vulnerability, we considered the seven factors of groundwater natural vulnerability to pollution as 250 

defined in the DRASTIC model of the U.S. Environmental Protection Agency (Aller et al., 1985):  aquifer depth, recharge, 

aquifer media, soil type, the topography, impact of the vadose zone, and hydraulic conductivity. We used the depth of the 

water intake structures as a proxy of the depth to the groundwater table since piezometric measurements were not available 

for all structures. We used the mean annual rainfall as a proxy for the net recharge. We used a single categorical variable, 

namely the groundwater body of the water intake structure, as a proxy for the three DRASTIC vulnerability factors aquifer 255 

media, impact of the vadose zone and hydraulic conductivity. The variable standing for the topography was the mean slope in 

the influence zone calculated using a 2 m resolution digital slope product derived from a 1 m digital elevation model.  We did 

not include the soil in the set of explanatory variables since the main soil type of all influence zones was identical, namely 

loam. We considered all the vulnerability variables to be time-invariant over the studied period. 

To be able to include the categorical variable aquifer media (GWbody) in our analysis, we replaced it by four binary variables 260 

using one-hot encoding. We called the new variables GWbodyLS, GWbodyBS, GWbodyHBC and GWbodyGBC, they 

indicate respectively the monitoring points in the Landenian sands, the Brusselian sands, the Haine basin chalks and the Geer 

basin chalks. We do not expect any change of these variables over the study period.  

2.3.3 Land cover and land use characteristics 

Agricultural land is a significant source of nitrate leaching to groundwater (Cameron et al., 2013; Strebel et al., 1989), with 265 

nitrates originating from nitrogen fertilizers applied on cropland, and from grazing livestock on meadows. Consequently, both 

crop land and meadow area were considered as potential drivers in this study. We included specifically the potato crop cover, 

as it is known to leave a high concentration of potentially leachable nitrates in the upper soil layer after the growing season 

(Bah et al., 2015). In contrast, forested and green areas are generally less prone to nitrate leaching (Cameron et al., 2013; Zhang 

et al., 2013), hence we also considered it as driver, but expecting them to have a mitigating impact. Urban wastewater losses 270 

represent an additional nitrate source (Torres-Martínez et al., 2020). We used built infrastructure area as a proxy to estimate 

wastewater production. We included specifically the potato crop cover as it is known to leave a high concentration of 

potentially leachable nitrates in the upper soil layer after the growing season . We visually examined the trends in land use 

type coversthese variables over the study period through a visual analysis, which revealedfinding that only the meadow areas 
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exhibited a trend. Therefore, Wwe thus included a sixth variable that accounts for , the change in meadow cover over the study 275 

period.. This is particl 

2.3.4 Potential punctualPoint pollution sources 

Finally, weWe considered three types of potential pointunctual pollution sources. Graveyards can contribute to nitrate pollution 

through the decomposition of organic materials (Mattern et al., 2009). Farm buildings are included because they are often 

associated with manure storage and handling, which can be a direct source of nitrates if not managed properly. Finally, 280 

buildings not connected to the collective sewage system indicate potential nitrate sources from septic tanks or dry wells, which 

can leach untreated wastewater. , i.e. features related to the presence of graveyards, farms and buildings not connected to the 

collective sewage system. The latter can indicate the presence of septic tanks or dry wells. The datasets used capture the 

situation in 2020 (Table 2Table 2). We expect little change for these variables over the studied period.  

 285 

Table 2. Definition of the potential explanatory variables used in the statistical models. IZ: influence zone. SPW: Service Public de 

Wallonie. SPF: Service Public Fédéral. SPGE : Société Publique de Gestion de l’Eau. SWDE : Société Wallonne de Gestion de l’Eau. 

IRM : Institut Royal Météorologique.  

Variable ID Definition and unit Source dataset Provider 

Water 

extraction depth 

Depth Depth of the bottom part of the water intake 

structures (m) 

Documentation of water intake 

structures 

SWDE 

Groundwater 

body 

GWBody Groundwater body (Brusselian sands, 

Landenian sands, Haine basin chalks and Geer 

basin chalks) 

Documentation of water intake 

structures 

SWDE 

Mean annual 

Rrainfall 

Rainfall Interannual (1961-2019) average of annual 

rainfall (mm/year) 

1961-2019, 5000 m resolution 

climate dataset for Belgium  

IRM 

Topography TerrainSlope Average of the terrain slope in the IZ  (%) 1 m resolution digital slope model 

2013-2014  

SPW 

Crop cover  CropLU Interannual (1998-2019) mean percentage of 

IZ area with crop cover (%) 

 

Anonymous agricultural land 

registry (annual data from 1998-

2019) 

  

 

SPW 

 

Potato crop 

cover  

PCropLU 

Meadow cover MeadowLU 

Change in 

meadow cover 

MeadowReg Trend in meadow area calculated as the slope 

of the linear regression of the yearly meadow 
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area percentage between 2002 and 2020 

(%/year) 

Built area BuiltLU Interannual (1998-2019) mean percentage of 

IZ area with built infrastructures (%) 

Walloon land registry (annual data 

from 1998-2019) 

 

 

SPF 

Forested and 

green areas 

GreenLU Percentage of IZ area with forests and green 

spaces in 2003 (%) 

Land cover map 2003 

  

SPF 

Presence of 

farm(s) 

Farms Number of farms in the IZ in 2020 divided by 

the surface of the IZ (nb/km2) 

Continuous cartographic mapping 

project 

SPW 

Presence of 

graveyard(s)  

Graveyards Number of graveyards in the IZ in 2020 

divided by the surface of the IZ (nb/km2)  

Continuous cartographic mapping 

project 

SPW 

Buildings with 

automonous 

sewage regime 

NoSewage  Number of buildings not connected to the 

sewage system in 2020 divided by the surface 

of the IZ (nb/km2)  

Walloon land registry (2020) 

Wastewater management plan 

SPF 

SPGE 

 

Table 3.  Descriptive statistics of the independent variables for the 36 monitoring points. NA: not applicable. 290 

Variable Unit Mean Min Median Max 

CropLU % 57 6 53 91 

PCropLU  % 5 0,1 5 14 

MeadowLU  % 8 0,4 7 19 

MeadowReg  %/year -0,02 -0,66 -0,09 0,92 

BuiltLU % 3 0,2 2 8 

GreenLU % 6 0,1 3 63 

Farms  nb/km2 0,3 0 0,4 1,2 

Graveyards nb/km2 0,06 0 0 0,3 

NoSewage  nb/km2 0,2 0,03 0,1 0,5 

Depth  m 29 0,6 19 120 
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Rainfall mm/year 814 760 807 867 

TerrainSlope  % 4,6 2,6 4,4 9,0 

Groundwater body - NA NA NA NA 

2.4 Data analysis 

2.4.1 Status and temporal eEvolution of the nitrate concentrations 

We computed descriptive statistics and visuals to depict the past and present status and temporal changes of the nitrate 

concentrations in the studied groundwater bodies, using the nitrate pollution indicators of (Table 1).. 

2.4.2 Bivariate analysis to identify the controlling factors 295 

We tested the strength and direction of the association between the nitrate concentration pollution indicators (Table 1) and 

each independent variable (Table 2) separately by computing the Kendall rank correlation (also known as Kendall's tau 

coefficient, Kendall, 1938). The value of Kendall's tau ranges from -1 to 1 and the closer the coefficient is to either -1 or 1, the 

stronger the association. A higher positive value indicates a strong positive association, while a higher negative value indicates 

a strong negative association.  300 

2.4.3 Multivariate linear regressions to identify the controlling factors 

We used multiple linear regression to assess the individual contribution of each independentexplanatory variable (Table 2) 

while considering the influence of the other variables, and thus, accountingto account for potential confounding effects. 

Before applying the regression models, we identified and removed variables that demonstrated highaddressed multicollinearity 

by removing highly collinear variables, . This approach was essential tohence ensureing that the remaining variables in the 305 

model could provide clearer, more distinctreliable contributions to the analysis.s, enhancing the reliability and accuracy of our 

model's results.  

First, we replaced the four binary variables representing the groundwater bodies, which were highly collinear, with one single 

binary variable ‘Aquifer’, distinguishing representing the aquifer media of the groundwater bodies: a value of 1 for . A value 

of 1 indicates monitoring points in the Brusselian and Landenian sands and a value of 0 indicates monitoring points infor the 310 

Geer and Haine basin chalks.  

We then removed one variable at a time until the variance inflation factor (VIF) values ((Mansfield & Helms, 1982) of all 

remaining variables were below a threshold of 5 (James et al., 2013). The variable to remove at each iteration was selected 

based on its VIF value, correlation with other variables and importance as explanatory variable, assessed by the authors’ expert 

judgment.  315 
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Using the remaining variables, weWe built nine multiple linear regression models with the remaining independent variables, 

one for each indicator and slope calculation method., We usedusing the ordinary least square (OLS) function of the Python 

statsmodels library (Seabold et al., 2010). We standardized the independent variables to have a mean of zero and a standard 

deviation of one, which facilitatinges the comparison of their respective impacts on the nitrate concentration indicators. We 

applied a stepwise multiple linear regression to identify the most important predictor variables, eliminating at each iteration 320 

the independent variable with the highest p-value until the p-values of all remaining variables were below 0.05.  

3. Results 

3.1 Status and temporal evolutionEvolution of the nitrate concentrations 

Table 4Table 4 shows statistical summaries for the six different pollution indicators. It shows that the average concentration 

of nitrates in 2002 was 37.7 mg/l with a standard deviation of 12.2 mg/l and hardly decreased in 2020 with an average of 36.5 325 

mg/l and a standard deviation of 10.8 mg/l. The mean change in concentration levels between 2002 and 2020 (I3) exhibits a 

slight decrease of 1.2 mg/l on average, but with a wide variation (standard deviation of 8.8 mg/l), ranging from a decrease of 

21.3 mg/l to an increase of 12.5 mg/l. Forty seven percent  of the monitored locations have witnessed a decrease in 

concentration, while the other 53% have seen an increase (Figure 4Figure 5). The average rate of change in nitrate 

concentrations (I4 and I5) are slightly negative whichever the method, but with variations ranging from a negative to a positive 330 

rate. They are slightly more negative in 2020 than in 2002. The maximum rate of change has decreased from +2.2 mg/l/year 

(I4CP) or +2.7 mg/l/year (I4Lo) in 2002 to 0.6 mg/l/year in 2020, which indicates an overall deceleration of the rate of change 

over the study period. This is confirmed by the negative values of the averaged I6.  

While these statistics indicate a slightly mild decrease in nitrate concentrations since 2002, the distributions of the indicators 

color-coded by the type of aquifer in Figure 4Figure 5 suggest that the decrease has mainly been significant in the Brusselian 335 

sands, while the pink stacks of the histogram for I3 indicate an increase in the Geer basin chalks.  

 

The statistics for the rate of change (I4 and I5) and the difference in rate (I6) are comparable regardless of the slope calculation 

method employed (CP or Lo). 

Table 4. Descriptive statistics of the six nitrate indicators. CP and Lo: change point and Lowess method for slope computation. 340 

Pollution indicator 

(I) 

Unit Mean ± 

standard 

deviation 

Minimum Percentile 

25 (Q1) 

Median 

Q2 

Percentile 

75 (Q3) 

Maximum IQR 

(Q3-

Q1) 

I1 – Concentration in 

2002 
mg/l 37,7 ± 12,2 15,4 28,3 38,1 44,3 69,2 16,0 
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I2 - Concentration in 

2020 
mg/l 36,5 ± 10,8 14,1 28,6 37,0 44,7 61,6 16,1 

I3 - Concentration 

difference 
mg/l -1,2 ± 8,8 -21,3 -4,9 0,1 3,6 12,5 8,5 

I4CP – Slope in 2002– 

CP 
mg/l/year 0,0 ± 1,1 -2,6 -0,4 0,1 0,6 2,2 0,9 

I4 Lo – Slope in 2002 - 

Lo 
mg/l/year -0,1 ± 1,1 -3,1 -0,5 0,1 0,5 2,7 1,1 

I5CP – Slope in 2020 - 

CP 
mg/l/year -0,5 ± 1,0 -3,9 -0,9 -0,2 0,2 0,6 1,1 

I5 Lo – Slope in 2020 

– Lo 
mg/l/year -0,5 ± 1,1 -5,2 -0,7 -0,2 0,1 0,6 0,8 

I6CP – Slope 

difference - CP 
mg/l/year -0,5 ± 1,2 -3,6 -1,1 -0,6 0,0 2,4 1,1 

I6 Lo – Slope 

difference - Lo 
mg/l/year -0,4 ± 1,2 -3,6 -0,8 -0,4 -0,0 2,7 0,7 
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Figure 45. Histograms of the six pollution indicators. The black arrow at the bottom indicates thate, for each indicator, lower values 345 
are more desirable than higher values, as this entails lower nitrate concentrations, decreasing trends and a decrease in concentration 

from 2002 to 2020. CP: change point method for slope. Lo: Lowess method for slope. 

3.2 Identification of the controlling factors 

3.2.1 Bivariate analysis 

The analysis reveals a consistent positive correlation between the crop and potato crop area and all the pollution indicators, 350 

and hence an undesirable effect of these variables (Figure 5Figure 6). This effect is only significative on the nitrate 

concentration in 2020 (I2)  and rate of change in 2002 (I4).with the Lo method (I4Lo). On the other hand, the analysis reveals 

a consistent negative correlation between the forest and green space area and all the pollution indicators, and hence a desirable 
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effect of this variable. This effect is only significative on the nitrate concentration in 2020 (I2). Results also indicate a 

significant positive relationship, or undesirable effect, of the meadow area on the rate of change in both 2002 and 2020 (I5I4CP 355 

and I5Lo). Temporal trend in the meadow area (MeadowReg) shows a significant negative correlation with concentrations in 

2020 (I2), suggesting a desirable effect of an increase in meadow area on I2, but shows a positive correlation with the change 

in concentrations (I3), suggesting an undesirable effect of an increase in meadow area on I3.   

The results show a positive relationship and hence undesirable effect of the number of farms on all indicators, and of the 

number of graveyards on the change in concentrations (I3) and the rate of changes in 2002 and 2020 (I4 and I5). Conversely, 360 

graveyards displayed a significant negative relationship with concentrations in 2002 (I1). Finally, there is no detected influence 

of the presence of building area, a proxy for population density, and buildings not connected to wastewater treatment plants. 

The depth of the water intake structure, serving as a surrogate for groundwater table depth, shows a significant correlation with 

the indicator of change in concentration (I3). However, it does not exhibit any correlation with the other indicators. There is a 

significant negative relationship between the annual rainfall, a proxy for recharge, and the indicator of change in concentrations 365 

(I3),  and change in rate of change (I6CP), while there is a significant positive relationship with the concentration in 2002 (I1). 

A weak negative relationship (positive effects) was found between the terrain slope and all the indicators.  

Results also confirm a clear influence of the aquifer media. While concentrations in 2002 and 2020 were higher in Brusselian 

sands and lower in the chalks aquifers, the decrease and rate of decrease has been more prominent in the sands.   
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Figure 56 Heatmap of the Kendall rank correlation coefficients between the explanatory variables and the six pollution indicators. 

Coefficients in bold indicate a significant relationship (p-value<0.1) NR: not relevant. The black arrow on the right indicates that 

low correlation is more desirable than high correlation, as low correlation entails that high values of the explanatory variables are 375 
correlated to low values for the six pollution indicators and vice versa.  

3.2.2 Multivariate linear regression analyses 

In the process of refining our multivariate regression models, we made several adjustments to address issues of 

multicollinearity among the variables. We removed the variable ‘Rainfall’ for its high VIF of 242. The variables ‘CropLU’ 

and ‘PCropLU’ had a VIF of respectively 20 and 12, and were highly correlated (R²=0.77). Considering the importance of 380 

'CropLU' as explanatory variable, we chose to retain it and remove 'PCropLU.' The next variables we removed were ‘Slope’ 

and ‘NoSewage’ as they each had the highest VIF among the remaining variables (9 and 7 respectively). Finally, we removed 

the variables ‘Farms’ and ‘Graveyards’, allowing to satisfy the condition of all remaining variables having a VIF < 5. The 

decision to exclude 'Farms' was based on its redundancy with ‘CropLU’ and ‘MeadowLU’, which already represent agricultural 

activity. As for ‘Graveyards’, their very sparse distribution in the considered areas led us to expect a limited effect. 385 
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The results of the multivariate regression models with the selected independent variables are presented in Table 5Table 5. The 

table shows the coefficients of the independent variables for each model, after stepwise removal of all non-significant variables 

(p-value of coefficient < 0.05). Note that the interpretation of the coefficient value is difficult because the independent variables 

have been normalized. In this normalized context, the coefficient indicates the expected change in the dependent variable per 

standard deviation change in the independent variable. However, it allows to interpret the relative importance of the variables, 390 

as a higher coefficient indicates a higher change of the pollution indicator per standard deviation change. 

The regression models highlight the significant role of the aquifer media in explaining the variability of multiple indicators. 

Sandy aquifers tend to have higher nitrate concentrations but have also shown more desirable concentration changes and rates 

of change over the study period. The land use variables (CropLU, MeadowLU, GreenLU) exhibit varying influences across 

the response indicators. Larger crop areas correlate with higher concentrations and less desirable rate changes in 2020 (I2 and 395 

I5Lo), while more forested and green areas are associated with more favorable concentration changes (I3) and rates of change 

(I4CP and I5CP).  

The models explain only 18 to 46% of the variance in the indicator values, as indicated by the R2 coefficients. 

 

Table 55. Coefficients of the variables used in the multiple linear regressions. Only statistically significant coefficients (p-value < 400 
0.05) are shown. CP: change point method for slope. Lo: Lowess method for slope. NR : not relevant. 

 

 Cc 2002 (I1) Cc 2020 (I2) 
Difference cc 

(I3) 

Rate of 

change 2002 

(I4) 

Rate of 

change 2020 

(I5) 

Difference 

rate of 

change (I6) 

Constant + 37,7 + 36,5 - - - 0,49 - 

CropLU - + 5,3 - - + 0,66 - 

MeadowLU - + 4,0 - - - - 

MeadowReg NR - - - - - 

BuiltLU - - - - + 0,62 - 

GreenLU - - - 3,9 - - - 

Aquifer + 6,2 + 5,4 - 4,8 - - 0,38 - 

Depth - + 5,6 - - - - 

R2 0,26 0,40 0,46 - 0,31 - 
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4. Discussion 

4.1 Evolution of the nitrate concentrations Status and temporal evolution of the nitrate concentrations 

Since the implementation of the PDGA, the average nitrate concentration across the variousmonitoring sites studied has  shown 405 

remained relative ly stabilityle (Table 4). However, this stability masksoverall trend conceals  underlying variations:  53% of 

the sites have experienced recorded an increase in nitrate levels, whileand 47% have seen experienced a decrease. Notably 

Notably, theThe most significant reduction in nitrate concentrations between 2002 and 2020 was observed in the Brusselian 

sands, while concentrations increased at most sites in the Geer basin chalks (as detailed in Table 3 and Figure 4Figure 5). 

These findings are consistent with those reported by ,  which aligns withconfirms results from (SPW - DEE - Direction des 410 

Eaux souterraines, 2024)SPW, (2020), supporting the reliability of our dataset.. The observed disparity in nitrate trends 

between these regions reflects differences in the hydrogeological characteristics of the aquifers. The Brusselian sands, 

characterized by higher permeability and lower nitrogen storage capacity, may exhibit shorter response times to changes in 

surface nitrogen loading, resulting in more immediate declines in nitrate concentrations. Conversely, the Geer basin chalks, 

with greater capacity for nitrogen storage and slower groundwater flow, may exhibit a delayed response to reduced nitrogen 415 

inputs. This lag effect suggests that, despite reductions in nitrogen loading (SPW, 2022), improvements in nitrate levels in the 

Geer basin chalks may only become evident in the coming years, provided that nitrogen management measures continue to be 

implementedThis lag effect suggests that improvements in nitrate levels in the Geer basin chalks might only become apparent 

in subsequent years, contingent upon sustained reductions in nitrogen loading and continued implementation of nitrogen 

management measures. As Liu et al. (2024) emphasize, addressing the delayed response caused by lag effects and nitrogen 420 

legacy requires the implementation of sustained, long-term strategies. 

On an encouraging note,Encouragingly, the nitrate concentration trends show improvement, with lower the rates of change in 

nitrate concentrations is slightly lower in 2020 (I5) than it is incompared to 2002 (I4) , and a drop in the (Table 4), which is 

also confirmed by the multivariate regression models (Table 5). The maximum rate of increase from 2,7 mg/l/year in 

2002change in nitrate concentrations has shown a downward trend from 2002 to only 0,6 mg/l/year in 2020 (Table 4Table 4). 425 

This suggestsindicates that, although nitrate levels continue to rise atin some sites, the pace has slowedthe rate of increase is 

slower than it used to be. This trend suggests a gradual improvement, indicating a  and could be seen as a positive outcome of 

the measures implemented under the PDGA. 

 

4.2 Identification of the controlling factors 430 

Our analysis confirms the anticipated relationship between agricultural land use and nitrate contamination, with, as nitrate 

concentrations were positively correlated with cropland area (Figure 5 and Table 5, I1 and I2) (Gurdak & Qi, 2012; Wick et 

al., 2012). However, while this correlation was expected for 2002 (I1, prior to the full implementation of the PGDA), its 

persistence in 2020 (I2) is concerning. Nearly two decades after the introduction of the PGDA, which was designed to reduce 
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nitrogen inputs and nitrate leaching, the correlation between cropland and high nitrate concentrations suggests limited 435 

effectiveness of the measures in altering the relationship between land use and groundwater quality. This lack of decoupling 

highlights the challenge of mitigating "legacy nitrogen" effects, whereby nitrate accumulated in soils and aquifers from past 

agricultural practices continues to leach into groundwater long after inputs have been reduced (Basu et al., 2022; Van Meter 

et al., 2016). 

Additionally, one might have expected the croplands to be negatively related to the rate of nitrate concentration change (I5 in 440 

Table 5) due to the implementation of nitrogen management measures under the PGDA. Contrary to this expectation, the 

observed positive relationship  suggests that nitrate accumulation in groundwater is ongoing. This may reflect the combined 

effects of legacy nitrogen and potentially insufficient compliance or enforcement of PGDA measures in some regions (Ascott 

et al., 2017; Hansen et al., 2012).  

These findings emphasize the importance of considering both historical nitrogen loads and ongoing agricultural practices. 445 

Efforts to enhance the effectiveness of nitrate reduction policies should consider the incorporation of measures to accelerate 

the recovery of aquifers, such as the promotion of deep-rooted crops that reduce leaching. Enhanced monitoring and stricter 

enforcement of fertilizer application limits may also help to mitigate further contamination. Furthermore, given the evident lag 

effects, long-term policy evaluations should account for the temporal dynamics of nitrate transfer and accumulation within 

aquifers. 450 

Forested and green areas exhibit a negative association with nitrate pollution, showing a lesser contribution to nitrate leaching. 

This aligns with findings by Zhang et al. (2013) and (Cameron et al., 2013), who noted that forests act as natural buffers by 

promoting nitrogen uptake and reducing runoff. Moreover, the data suggests that nitrate contamination evolution (I3) was 

slightly better in more forested zones (Table 5). This implies that PGDA measures might currently be more effective in areas 

with lower inherent vulnerability. Interestingly, while reductions in meadow area over time correlate with lower nitrate 455 

concentrations, meadow area itself does not show a significant impact on nitrate levels. This may result from the failure to 

differentiate between pasture—typically associated with high nitrate leaching—and other types of meadows (Sacchi et al., 

2013). Addressing this distinction in future assessments could enhance the specificity of land-use-related policies. 

Our analysis aligns with the expected impacts of agricultural and forested land use on nitrate contamination. Although potato 

cropland do not show a greater effect compared cropland overall, both variables are linked with higher nitrate concentrations 460 

as well as higher rates of change (I1, I2, I4 and I5 in Table 5). Forested and green areas show a negative association with nitrate 

pollution, hence less contributing to nitrate leaching as showed by other authors (Zhang 2012, Cameron 2013). Interestingly, 

while a reduction in meadow area over time correlates with lower nitrate concentrations, meadow area itself does not show 

any impact on nitrate levels, possibly because we did not differentiate between pasture, typically associated with high nitrate 

leaching, and other meadow types (Sacchi et al. 2013).  465 

No significant negative effect was observed from built infrastructures, whicht contrasts with the findings of Mattern et al. 

(2009) who identified residential land as having negative influence on nitrate concentrations in the Brusselian sands. This 

discrepancy may be due to our study’s focus on semi-rural areas, where built-up areas are limited (under 8% of total land use, 
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Table 3) and the associated sewage pressure is likely low. Expanding monitoring to include more urbanized areas could clarify 

the influence of residential land use on nitrate trends.This could be explained by our study’s focus on semi-rural areas, with 470 

built area not exceeding 8% (Table 3), hence low sewage pressure is expected.  

 

Aquifer type emerges as a critical predictor of nitrate vulnerability, with sandy aquifers showing higher contamination levels 

than chalk aquifers. This suggests that policies should prioritize sandy aquifer regions, particularly those under cropland, for 

targeted measures like stricter nitrogen application limits and buffer zones. However, aquifer type also predicts changes over 475 

time (I3), with a general decrease in nitrate concentrations in the Brusselian sands contrasting with increases in the Geer basin 

chalks (Figure 5). This finding underscores the importance of tailoring strategies to the hydrogeological characteristics of 

aquifers. For example, in chalk aquifers, where response times to management measures are longer due to nitrogen storage 

and slower groundwater flow, additional interventions may be needed to address legacy nitrogen. Aquifer type emerges as a 

key predictor, revealing varying vulnerability among groundwater bodies, with higher contamination in the sandy aquifers 480 

compared to the chalk aquifers.  

 

Depth also plays a significant role, with shallow groundwater points showing more improvement in nitrate concentrations 

compared to deeper ones. This delayed response in deeper groundwater bodies to the PGDA measures reflects a time lag in 

nitrate transfer through the vadose zone. Supporting evidence from (Masetti et al., 2008) .  in Northern Italy highlights how 485 

higher annual precipitation and recharge rates can shorten lag times and improve nitrate trends.Looking at changes over time, 

aquifer type also appears as a significant predictor of nitrate concentration changes (I3), with as already highlighted in section 

4.1, a general decrease in the Brusselian sands, but a general increase in the Geer basin chalks (Figure 5).  Depth is also 

significantly correlated to I3, with shallow groundwater points showing more improvement than deeper ones. This suggests a 

delayed response in deeper groundwater bodies to the PGDA measures. Higher annual precipitation, indicative of increased 490 

recharge, could shorten this lag (Figure 5). Such a relationship between groundwater recharge and nitrate concentrations was 

also found in Northern Italy’s groundwater (Masetti et al., 2008)(Masetti et al., 2008) 

 

The correlation between graveyards and less favorable nitrate trends warrants careful consideration, as sparse distribution of 

the graveyards may obscure localized effects. Targeted monitoring near such potential point sources could help identify 495 

specific mitigation needs. 

 

There is slight indication that nitrate contamination evolution (I3) was better in more forested zones (Table 5), which suggests 

that PGDA measures might currently be more effective in  lesser vulnerable areas. Graveyards correlate with less favorable 

nitrate trends, though results for the point pollution variables should be analysed with care, as their sparse distribution (Table 500 

3) may obscure more localized effects. 
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(Wick et al., 2012)Gurdak & Qi (2012)The low predictive power of the multivariate models (R² = 18–46%) reflects the 

complexity of groundwater systems and the factors influencing nitrate concentrations Groundwater systems are influenced by 

numerous natural and anthropogenic elements, some of which have not been fully captured due to data limitations or to 

unaccounted sources of nitrate leachate (Masetti et al., 2008). This complexity is compounded by non-linear relationships and 505 

time lags between surface changes and groundwater response, which our linear regression models may not fully capture (Wick 

et al., 2012). Furthermore, the limited number of groundwater data points (36) restricts the model’s ability to account for the 

full variability of the system (Ishwaran, 2007). 

To mitigate multicollinearity, variables with high Variance Inflation Factor (VIF) values were removed from the multivariate 

regression, which likely improved the stability of the coefficient estimates but could also have led to the exclusion of significant 510 

predictors. Rainfall was removed as it exhibited highest collinearity, as expected, given its regional variability, which also 

applies to other variables such as aquifer type, crop land use, and depth. Potato cropland was quite obviously highly collinear 

with cropland and therefore excluded. Interestingly, land use variables were not as collinear as anticipated, which can be 

explained  by the fact that built infrastructure only accounts for buildings rather than the total urban area, and that the land use 

variables (crop + forest + built) thus not encompass the entire area. The methodological trade-off of removing potential 515 

controlling factors to avoid collinearity further contributes to the relatively low model performance (Ishwaran, 2007). 

                                                                                                                                                                                                                                                       

.  

4.3 Indicators of nitrate pollution trend 

We provide six nitrate pollution indicators useful to provide a detailed picture of nitrate pollution state and trends over 520 

a given period. However, when using these indicators, it is necessary to keep in mind certain limitations. The indicator 

on the difference in nitrate concentration (I3) may overlook nuances, such as temporary spikes, short-term fluctuations, 

or declines within the period. The indicators I4 and I5, the slopes at the beginning and end of the study period reflect 

only the trend at a specific point in time and may not be representative of longer-term patterns. 

Finally, the indicator I6, the difference in slopes, is more abstract and might be harder to interpret. It also assumes that 525 

the slopes are linear and may not capture non-linear changes. 

It is also clear that the value of these indicators depends on the quality and completeness of the underlying data.  

The indicators of rate of change (I4, I5 and I6) are not very sensitive to the chosen method for defining local slope, as 

evidenced by the similar statistics (Table 4) and correlation values (Figure 6Error! Reference source not found.). This 

indicates a robustness of these indicators and increases confidence in their values.  530 

4.34 Database and iChallenges in definingnfluence zone the pollution indicators and the independent variables 

We provide six nitrate pollution indicators that collectively capture nitrate pollution state and trends over time. However, the 

use of these indicators, comes with certain limitations. The indicator on the difference in nitrate concentration (I3) may miss 
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short-term fluctuations, while indicators I4 and I5, representing the slopes at the beginning and end of the study period, may 

not be representative of the longer-term trend. The indicator I6, the difference in slopes, is quite abstract and harder to interpret.  535 

The reliability of these indicators depends on the quality and completeness of the underlying data, as well as on the methods 

used to compute them. The indicators of rate of change (I4, I5 and I6) demonstrate robustness, as they are not very sensitive 

to the chosen method for defining local slope, as evidenced by the similar statistics (see supplementary materials - Table S1), 

which increases confidence in their values.  

 540 

The precise delineation of the influence zones is essential for effectively characterizing and quantifying the independent 

variables representing the factors factors that potentially impact inherent vulnerability to pollution and identifying possible 

pollution sourcesaffecting nitrate pollution, as highlighted by Nobre et al. (2007) and Mattern et al. (2009). However, the task 

of accurately defining these zones is fraught with challenges, including the intricate nature ofdue to complex subsurface 

geology, the ever-changing dynamics of groundwater flow, and constraints related to data availability. In our study, we had to 545 

resort toused methodological simplifications to delineate these zones, acknowledging that this approach, while the best feasible 

under the circumstances, does introduce a certain degree of limitation to our analysis.the resulting approximation. 

 Another pitfall resides in the fact thatis the spatial overlap of the influence zones among of some monitoring points were 

overlapping spatially. This overlap implies that the monitoring points are not entirely independent, leading to similar values 

of ities in potential explanatory variables for these points. This dependency in our dataset Consequently, this could have 550 

influenced the identification of factors affecting nitrate pollutiondata analysis. 

 

Our study'sA key strength of our study lies in the comprehensive computation of a broad array of potential 

explanatoryindependent variables that could influence observed pollution levels and their changesrepresenting potential 

controlling factors. However, this strength is counterbalanced by certain somedata availability-driven choicesassumptions 555 

made to characterize these variables, driven by data-availability limitations,, may have introduced additional noise or 

uncertainty to the data analysis.  which also represent a potential weakness in our work. For instance, in consideringFor 

instance, we used  the variable 'Depth Structure,' rather than the more precise variable ‘Groundwater table depth’, unavailable 

at the necessary spatial scale, to account for the travel time in the saturated zone. Similarly,  ‘Rainfall’ was used as a proxy for 

‘Precipitation surplus’, also unavailable at the necessary spatial scale, to approximate net recharge. These substitutions, while 560 

necessary, can affect that accuracy of our analysis, and mainly the lack of more significant relationships between the 

independent variable and the nitrate pollution indicators. Furthermore, some potentially important controlling factors, such as 

agricultural practices, mitigation measures, livestock density, and manure and fertilizer storage practices, could not be included 

in our analysis due to the lack of regionally available proxies for these variables.our analysis focuses on the bottom of the 

structure, thereby incorporating the travel time in the saturated zone whose thickness is changing. This approach contrasts with 565 

methods like DRASTIC, where the assessment of vulnerability is based on conditions at the top of the aquifer. Such a 

difference in methodology could lead to variations in interpreting the vulnerability. 
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Regarding the ‘Recharge' variable our analysis exclusively considered precipitation as a contributing factor, neglecting 

the potential effects of evapotranspiration and the complex processes that control the actual recharge. Including 

evapotranspiration might have offered more nuanced insights into the recharge process and its impact on pollution 570 

levels. 

4.5 Perspectives 

The findings of our current study open several pathways for future research. A primary direction, contingent to the data-

availability of additional data, is the enhancement of independent variables representing controlling factors., would involve 

conducting multivariate linear regressions with different subsets of variables to gain a more nuanced understanding of the 575 

factors driving nitrate pollution. Future work should Rrefine existing variables by distinguishing between more specific crop 

types and rotations, as well as differentiating grazed from non-grazed meadows. ing the selection of predictors, such as a more 

detailed classification of land use that differentiates between meadow and pasture, could enhance the precision of our analysis. 

Additionally, incorporating data on fertilizer the application rates of nitrogen fertilizer, livestock densities, nitrogen surplus 

estimations, in-situ leachable nitrogen measurements, the state of sewage systems,  actual groundwater table depth and 580 

precipitation surplus, and concentrations of other pollutants, representative of nitrate-generating activities, would help increase 

the representation of all factors potentially influencing nitrate contamination. However, these advancements depend heavily 

on the availability of comprehensive and open datasets.potentially leachable nitrates, or metrics derived from the gross nitrogen 

balance, as done by, would be valuable.  

Exploring variables that represent the concentration and trends of other pollutants, like specific pesticides and pharmaceuticals, 585 

could provide insights into the environmental impact of agricultural and urban activities. Improving the estimation of water 

table depth is another aspect that warrants attention, given its relevance in understanding groundwater dynamics. 

 

Our data-driven approach could be combined with complementary methodologies. The integration of Ggroundwater dating 

and outputs from chemical and isotopic analyses (Böhlke & Denver, 1995; Christiaens et al., 2023; Mattern et al., 2011; 590 

Vanclooster et al., 2020) could offer critical temporal perspectives on the source and evolution of groundwater contamination. 

Numerical process-oriented models could allow to better take into account the mechanisms known to affect nitrate leaching to 

groundwater.  

Expanding the groundwater nitrate concentration dataset by incorporating additional monitoring points would strengthen the 

representativeness and predictive power of models. 595 

With a larger dataset and better quality independent variables, more advanced, non-linear machine learning techniques could 

be employed to uncover new insights and capture the complexities of nitrate contamination. These approaches could provide 

a deeper understanding of the underlying processes and hence help guide future best management practices. However, 

expanding the dataset and collecting better-quality independent variables is a challenging task due to the limited availability 

of long-term and spatially explicit data, and the complexities associated with data collection across multiple stakeholders. 600 
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Addressing these challenges will be crucial for the development of more robust and advanced analytical approaches in future 

studies. 

Expanding the network of monitoring points, particularly in vulnerable regions, would significantly enhance the 

representativeness and reliability of our study. 

Moreover, experimenting with alternative predictive models, allowing to capture non-linear effects could lead to more 605 

robust findings. However, it's important to recognize that more sophisticated models typically require larger datasets 

for effective training. Thus, expanding our dataset is a crucial step for such advanced modelling. This expansion is not 

a trivial task due to the lack of monitoring points with long records. Moreover, due to the multiplicity of actors owning 

the records, data collection and pretreatment is time consuming. Addressing these challenges is essential for the 

successful implementation of more complex analytical models in future studies. 610 

5. Conclusions 

Our study leverages two decades of groundwater monitoring data to evaluate nitrate contamination trends and identify 

controlling factors in nitrate-vulnerable zones following the implementation of the sustainable nitrogen management 

program (PGDA) in 2002 in Wallonia. The spatially extensive and long-term dataset enabled a comprehensive analysis 

of both spatial variability and temporal dynamics.  615 

This study contributes to global scientific knowledge by investigating the long-term spatial and temporal dynamics of nitrate 

contamination in groundwater, linking these trends to land use, hydrogeological conditions, and nitrogen management policies. 

By leveraging two decades of data, it provides insights into persistent contamination sources, such as cropland, and highlights 

the critical role of aquifer characteristics and depth in mediating nitrate responses. To enhance policy effectiveness, our results 

suggest the relevance of targeted interventions by prioritizing sandyvulnerable aquifers and cropland-dominated zones zones 620 

with stricter nitrogen application limits and conservation measures. They also highlight the need to address time lags and 

nitrogen legacy effects by sustaining and intensifying measures over extended periods. Our study also underscores the need to 

sustain and perhaps expand the monitoring systems to better capture spatial variability and localized impacts of land use, and 

long-time changes.  

 625 

The limited predictive power of the regression models reflects the inherent complexity of groundwater nitrate contamination 

and the difficulty of adequately representing its controlling factors. Constraints such as data availability and required 

simplifications in defining independent variables further limit model reliability. These findingsThis underlines the need for 

more detailed and accessible datasets that better capture the controlling factorso deepen our understanding of contamination 
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dynamics, and the need to sustain and perhaps expand the monitoring systems to better capture spatial variability and localized 630 

impacts of land use, and long-term changes. This will f. Enhanced data availability would facilitate the development of 

advanced machine-learning modelingmodelling approaches , including non-linear machine learning techniques, capable of 

better addressing the multifaceted and nonlinear processes governing nitrate pollution. 

 

 635 

To enhance policy effectiveness, our results suggest the relevance of targeted interventions by prioritizing sandy 

aquifers and cropland-dominated zones with stricter nitrogen application limits and conservation measures. They also 

highlight the need to address time lags and nitrogen legacy effects by sustaining and intensifying measures over 

extended periods. Our study also underscores the need to sustain and perhaps expand the monitoring systems to better 

capture spatial variability and localized impacts of land use, and long-time changes.  640 

Data availability 

The data used in this study are not publicly available. For data access, please contact the corresponding author.Particularly, 

the temporal focus revealed a decrease in nitrate concentration rate of changes in 2020 compared to 2002, while mean 

concentrations remained almost stable overall. We foundshowed that all monitored sites had nitrate concentrations below the 

50 mg/l threshold in 2020, but that the average concentration across the studied sites has remained relatively stable, although 645 

with significant variations across sites. We also showed that the average rate of change in nitrate concentration was decreasing 

in 2020, and a decelerating increase (or accelerating decrease) in the rate of change in nitrate concentrations compared to 2002.  

 

Our findings aligns with previously observed patterns. A temporal decrease in nitrate levels in the Brusselian sands, where 

concentrations are typically higher, and an increase in the Geer basin chalks, where they are generally lower. Improvements 650 

were more pronounced in shallow groundwater points than in deeper ones, likely due to varying time lags between the 

implementation of regulatory measures and observable changes in groundwater quality. Locations with lower conductivity 

may require additional time to exhibit reductions in nitrate concentrations, underscoring the importance of long-term strategies 

and sustained efforts in managing and monitoring groundwater quality. The study also finds a delayed response of deeper 

groundwater bodies to nitrogen regulation measures.  We also observed a persistent negative influence of agricultural land 655 

cover on nitrate concentrations over the entire study period, even on current nitrate concentration trends. This highlights the 

ongoing necessity of implementing and maintaining best management practices (BMPs) in agricultural areas to mitigate 

contamination risks effectively.  
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The limited predictive power of the regression models reflect the complexity of groundwater nitrate contamination and the 

challenges of adequately representing controlling factors. Limitations related to data availability and the simplifications made 660 

in defining independent variables further hinder the development of reliable models. These findings emphasize the need for 

more detailed and open-access datasets to improve our understanding of contamination dynamics. Such improvements would 

enable the development of more advanced models, including non-linear machine learning techniques, which could better 

account for the multifaceted nature of groundwater nitrate pollution. 

Our study provides insights into the current state and temporal evolution of nitrate concentrations in groundwater since the 665 

implementation of the nitrogen regulation (PGDA) in the agricultural crop production sector in Wallonia, Belgium. We showed 

that all monitored sites had nitrate concentrations below the 50mg/l threshold in 2020, but that the average concentration across 

the studied sites has remained relatively stable, although with significant variations across sites. We also showed that the 

average rate of change in nitrate concentration was decreasing in 2020, and a decelerating increase (or accelerating decrease) 

in the rate of change in nitrate concentrations compared to 2002.  670 

Overall, the results post-PGDA implementation confirm the complex interplay of factors influencing nitrate pollution and 

trend, with land use and aquifer characteristics emerging as significant determinants. Positive relationships were found between 

crop and potato cultivation, meadow areas, and nitrate levels and change, highlighting the significant impact of farming 

activities. The study also finds a delayed response of deeper groundwater bodies to nitrogen regulation measures.  Notable 

reduction in nitrate levels was also observed, especially in the Brusselian sands likely due to the higher conductivity and faster 675 

renewal rate of that aquifer. These results show encouraging sign about the effectiveness of the PGDA and suggest that longer 

time lag between the implementation of regulatory measures and observable changes in groundwater quality might explain 

that the other locations with lower conductivity may only exhibit decreases in nitrate concentrations in future years. They 

underscore the importance of long-term approaches and sustained efforts in managing and monitoring groundwater quality.  

The multivariate regression models were only able to explain between 18 to 40% of the variability of the indicators, which 680 

suggests that while the identified factors are influential, other unaccounted variables or inherent complexities in nitrate 

pollution dynamics are at play.  
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