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Abstract  

Principal Component Analysis (PCA) of synchronous time series of one variable, e.g. water level or discharge, measured at 

multiple locations, has been applied in a wide spectrum of hydrological analyses. Principal Components (PCs) were used 

forin regionalisation and to identify dominant modes, signals, processes or other hydrological properties of the analysed 15 

system. The possibility that the PCs of such analysis can exhibit domain dependence (DD) found only little recognition in 

the hydrological PCA literature so far. DD describes the situation in which the spatial PC patterns are mainly determined by 

the size and shape of the analysed spatial domain. Domain size means the spatial extent of the analysed data set (domain 

size) and, domain shape the spatial arrangement of the data sets´ locations (domain shape). Thus, instead of the hydrological 

functioning of the analysed system, the spatial PC patterns rather reflect the functioning of the PCA within the context of the 20 

data set´s spatial domain. The effect is caused by homogeneous spatial autocorrelation in the analysed series. , a common 

feature in hydrological data sets. DD patterns are distinct, with strong gradients and contrasts, and. We show that it can come 

together with substantial accumulation of variance in the leading PCs. In addition, DD can cause effectively degenerate 

multiplets, i.e. PCs which are not well separable. All these features are highly suggestive and easily lead to wrong 

hydrological interpretations. Consequently, DD should be considered for any application in which the PCs are used to draw 25 

conclusions about spatially distinct properties of the analysed system. For most practical applications checking the first few 

leading PC patterns should be sufficient. Visual comparison of the spatial PC patterns from subdomains with markedly 

different shapes and/or sizes can serve as quick qualitative check. ReferenceDD patterns  calculated for the analysed spatial 

domain can be used as reference to test whether spatial PC patterns differ significantly from pure DD patterns. We present 

two methods, one stochastic, one analytic, to calculate DD reference patterns for defined spatial correlation properties and 30 

arbitrary spatial domains. With a series of synthetic examples, we explore the DD effect with respect to a) domain shape, b) 

domain size and spatial correlation length and c) effectively degenerate multiplets. Particular focus is given to the effect of 

DD on the explained variance of the PCs and the contrasts of their spatial patterns. Finally, An application example with a 

precipitation raster data set is presented and different options to detect and diminish DD areconsidering DD is discussed. 

Accompanying this technical note, R-scripts to (i) demonstrate and explore the DD effect, and (ii) perform the presented DD 35 

reference methods are provided. 
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1 Introduction 

In hydrology, Principal Component Analysis (PCA), also known as Empirical Orthogonal Function (EOF) analysis or 

Karhunen–Loève Transform, is a popular tool to analyse spatio-temporal data sets. The analysed data can be structured in 40 

various ways (Richman, 1986; Demšar et al., 2013). Here, the focus is on PCA of data sets comprising synchronous time 

series of one observed variable, e.g. water level, with the time series (a) being distributed in space at multiple locations and 

(b) being used as variables for the PCA. This is known as S-mode PCA (Richman, 1986) or atmospheric science PCA 

(Demšar et al., 2013). In this setting, the covariance among the time series from the different locations is analysed (Richman, 

1986; Isaak et al., 2018). For each PC there is a temporal and a spatial pattern. The PCs are series of the same length as the 45 

analysed time series and can be plotted against the common time index (temporal PC patterns). The eigenvector of each PC 

is associated with the complete set of locations and can be plotted against the locations´ coordinates (spatial PC patterns). All 

spatial patterns are orthogonal, all temporal patterns are mutually uncorrelated. With this, the leading PCs provide a compact 

description of the spatio-temporal variability of the data set. S-mode PCA can be applied to data from very different 

hydrological systems such as catchments or soil columns. 50 

A non-exhaustive list of hydrological applications comprises S-mode PCA to describe the spatio-temporal variability of 

streamflow (Smirnov, 1973; Bartlein, 1982; Lins, 1985ab, 1997; Kalayci and Kahya, 2006), groundwater level (Winter et al., 

2000; Longuevergne et al., 2007; Lehr and Lischeid, 2020), lake water level (Lischeid et al., 2010), soil moisture (Korres et 

al., 2010; Nied et al., 2013; Hohenbrink et al., 2016; Bieri et al., 2021), precipitation (Kumar and Duffy, 2009; Thomas et al., 

2012; Bieri et al., 2021), drought (Karl and Koscielny, 1982; Santos et al., 2010; Ionita et al., 2015), atmospheric rivers (Li et 55 

al., 2023), or river water temperature (Isaak, et al., 2018). In stark contrast to its widespread use, the possibility that the PCs 

of such analysis can exhibit domain dependence (DD) is rather unknown in hydrological PCA literature. 

DD describes the situation in which the spatial PC patterns from S-mode PCA are mainly determined by the size and shape 

of the analysed spatial domain, meaning the spatial extent of the data set and the spatial arrangement of its locations (Buell, 

1975, 1979; Richman, 1986). If the spatial autocorrelation of the data set´s variable is homogeneous across the domain, its 60 

size and shape induce distinct sequences of spatial PC patterns due to the variance maximization of the PCs and the 

orthogonality constraint of the PCs` eigenvectors (Jolliffe, 2002; Wilks, 2006). Buell (1975) identified classical sequences 

for data sets with basic geometric domain shapes and isotropic spatial autocorrelation (e.g. Figure 1Figure 1). The spatial 

pattern of PC 1 is a weighted spatial average emphasizing the centroid of the network ("mean behaviour"). The PC 2 pattern 

is a gradient depicting the variability along the axis of the longest extent of the domain. The PC 3 pattern covers the next 65 

largest spread of spatial variability orthogonal to the spatial patterns of PC 1 and PC 2, etc. Given the functioning of the 

PCA, the sequence simply reflects (a) that the covariance between the locations has its maximum in the centroid of the 

network because it is the point which is on average closest to all other locations, and (b) that the only structure in the 

variability of the data set is the homogeneous decay of covariance with distance (Dommenget, 2007). On a sphere the 

resulting spatial PC patterns of such a data set would be the spherical harmonics (North and Cahalan, 1981).  70 

Ignorance about DD can easily lead to wrong interpretations of PCA results. DD patterns are distinct, with strong gradients 

and contrasts, and therefore highly suggestive to indicate physically meaningful drivers or properties of the analysed system. 

In the climatological literature DD was intensely discussed (Buell, 1975, 1979; Horel, 1981; Richman, 1986, 1987, 1993; 

Jolliffe, 1987; Legates, 1991, 1993). Apparently, the topic did not reach the hydrological community, even though the effect 

of size and shape of the network geometry on the results was observed in early hydrological S-mode PCA applications 75 

(Smirnov, 1973; Bartlein, 1982; Lins, 1985b). For that reason, we want to raise attention to the DD effect among PCA users 

in the hydrological community again to reduce the risk of drawing wrong hydrological conclusions from spatio-temporal 

PCA.  

Whether at all a set of PCs is an appropriate model to describe the features of interest from the analysed system is a different 

question that should be considered carefully for each individual case. For example, for physical processes or modes of 80 



4 

 

geosystems, the S-mode PC properties orthogonality of spatial patterns and linear uncorrelatedness of temporal patterns are 

heavy constraints (Buell, 1979; Jolliffe, 2002; von Storch and Zwiers, 2003; Hannachi et al., 2007; Monahan et al., 2009).  

DD is one aspect in the general discussion on the physical interpretation of S-mode PCs. There are strongly diverging 

opinions, ranging from "never physically interpret any PCs" to "distinct processes can be meaningfully assigned to single 

PCs". For physical processes or modes of geosystems, the S-mode PC properties orthogonality of spatial patterns, linear 85 

uncorrelatedness of temporal patterns and successive maximization of variance are heavy constraints (Buell, 1979; Jolliffe, 

2002; von Storch and Zwiers, 2003; Hannachi et al., 2007; Monahan et al., 2009). By extracting maximal variance, different 

sources of variability can get pulled onto the first eigenvector, thereby mixing the sources (e.g. Figure 14A in Karl and 

Koscielny, 1982). The successive order of the PCs implies that they should not be interpreted isolated, but only with 

reference to the preceding PCs. The spatio-temporal patterns of the first PC set the reference for all subsequent PC patterns. 90 

Forced by the orthogonality constraint, prominent features of the first spatial PC pattern cascade down to the spatial patterns 

of the other PCs (Cahalan et al., 1996). The analysis is limited to linear relationships and assumes stationarity of mean and 

variance of the analysed variable. If single features are assigned to single PCs, this raises the question whether the 

hydrological features in the analysed system are expected to exhibit orthogonal spatial patterns, to be linearly uncorrelated in 

time and to successively maximize variance. If not, PCA is simply the wrong model (Jolliffe 1987; 2002).  95 

Rotation of PCs can relax the aforementioned PCA constraints (Richman, 1986; Hannachi et al., 2007; Monahan et al., 

2009). It is regularly used in atmospheric mode detection. Several studies found that rotated PCA performed better than 

unrotated PCA for this purpose, and that their spatial patterns were less prone to DD (Richman, 1986; Compagnucci and 

Richman, 2006; Huth and Beranova, 2021). Despite these findings, unrotated PCA is still often used (Huth and Beranova, 

2021). Regardless of whether rotated or unrotated PCA is used, the physical interpretation depends on the spatial PC patterns 100 

and requires that they are not domain dependent. The knowledge which locations carry the most variance can already be 

helpful to improve the physical understanding of the analysed system (Monahan et al., 2009). In hydrology, unrotated PCA 

is to our knowledge much more common than rotated PCA. Therefore, we mainly focus on unrotated PCA here.  

DD is of importance for any application in which a PCA of observed data is used to draw conclusions about spatially distinct 

properties of the analysed system. This concerns descriptive applications in which the spatial PC patterns are used to identify 105 

dominant hydrological modes (Smirnov, 1973; Bartlein, 1982; Lins, 1985ab, 1997; Kalayci and Kahya, 2006; Thomas et al., 

2012; Ionita et al., 2015) or regions with similar hydrological behaviour (regionalisation) (Karl and Koscielny, 1982; Santos 

et al., 2010; Nied et al., 2013), as well as the interpretation that they represent the spatial variability of concrete hydrological 

signals (Longuevergne et al., 2007; Lewandowski et al., 2009), hydrological processes (Hohenbrink et al., 2016; Isaak et al., 

2018; Scholz et al., 2024) or physical properties (Korres et al., 2010; Lischeid et al., 2010). For all those applications it is 110 

essential that there is a physical counterpart for the spatial PC patterns in the analysed system. Thus, DD touches the very 

basic question whether the applied combination of data set and data analysis method allows inference on the analysed 

system. 

DD is critical in particular for any interpretation of the PCs based on correlation analysis with other variables (Korres et al., 

2010; Lischeid et al., 2010; Hohenbrink et al., 2016; Isaak et al., 2018; Scholz et al., 2024). In case of “strong DD” the 115 

correlation between their spatial patterns depends mainly on the selected spatial domain. Consider for example a soil texture 

gradient in west-east direction and the classical Buell patterns in Figure 1. Depending on the selected domain the spatial 

patterns from different PCs would correlate strongly, moderately or not at all with the gradient. Consequently, those 

correlations would be neither useable for the interpretation of the PCs nor for the identification of predictors for their spatio-

temporal patterns. Thus, spatial PC patterns should be checked for DD prior to any interpretation implying causal 120 

relationships. 

When checking for DD, it has to be considered that DD patterns are original for every combination of spatial domain and 

spatial correlation properties of the analysed data set. Thus, the “classical Buell patterns” are DD patterns for the distinct 
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combinations of size and shape of the domain, spatial covariance function and spatial correlation length used in Buell´s 

(1975) numerical experiments (e.g. Figure 1). Spatial PC patterns of real-world data sets can be expected to deviate from 125 

those archetypes due to possible differences in all these aspects. In addition, there might be a blurring effect of measurement 

errors. For spatially regular distributed data sets with strong homogeneous autocorrelation and domain boundaries similar to 

one of Buell´s basic domains the DD patterns of the leading PCs are commonly visually easy to recognize as Buell-like. This 

gets is less clear for those of the PCs with smaller eigenvalues (low ranked PCs). They are more finely detailed and less 

robust against deviations from Buell´s settings. Furthermore, there might be intermixing of the variance structures when the 130 

eigenvalues from successive eigenvectors are of very similar size (North et al., 1982; Quadrelli et al., 2005). These PCs 

which are not well separated with the PCA are called effectively degenerated multiplets (North et al., 1982). For their 

separation, additional post-processing is required, e.g. rotation of eigenvectors (Richman, 1986; Jolliffe, 1989). DD patterns 

from data sets with more complex domain shapes and / or spatially irregular distributed locations, which is the common case 

in hydrology, can differ substantially from Buell´s archetypes. All in all, visual recognition by comparison with Buell 135 

patterns is rather limited. Comparison with DD patterns calculated for the analysed spatial domain overcome these 

limitations (Cahalan et al., 1996; Dommenget, 2007). They can be used as reference to test whether spatial PC patterns differ 

significantly from what has to be expected from DD alone.  

The objective of this technical note is to introduce (i) the domain dependenceDD effect and (ii) the application of domain 

dependenceDD reference patterns to the hydrological community. We illustrate our introduction primarily with synthetic 140 

examples only. This ensures that the statistical properties of the examples, in particular their spatial correlation properties 

and spatial domains, are strictly defined. It further clarifies that all observed effects are solely caused by the specified 

statistical properties. Another advantage is that series of examples with systematic differences can be constructed to study 

the effects of specific properties, e.g. spatial correlation length or spatial extent, on the PCA results. 

Note that we aim for an illustrative introduction for PCA practitioners. For a mathematically rigid introduction to the DD 145 

phenomenon see Buell (1975, 1979) and North and Cahalan (1981). All the here presented analyses were performed in R (R 

Core Team, 2019). Scripts to reproduce the results,  explore the DD effect and calculate DD reference patterns for defined 

spatial correlation properties and arbitrary spatial domains are provided (Lehr, 2024). After presenting the two implemented 

DD reference methods and the scripts, a series of synthetic examples is used to explore the DD effect with respect to a) 

domain shape, b) domain size and spatial correlation length and c) effectively degenerate multiplets, i.e. PCs which are not 150 

well separable. Particular focus is given to the effect of DD on the explained variance of the PCs and the contrasts of their 

spatial patterns, both common indicators for the interpretation of PCA results. Finally, an application example with a 

precipitation raster data set is presented and different options to detect and diminish DD are discussedconsidering DD is 

discussed. 

 155 

 

Figure 1 Exemplary reproduction of some “classical Buell patterns” for differently shaped domains of relatively similar size: 

(a) 6 × 6 square, (b) 5 × 10 rectangle and (c) 8 × 8 triangle (Figure 2, 5 and 4 adapted from Buell, 1975). The signs indicate positive 

and negative values of the spatial PC patterns. The patterns are for data exhibiting exponentially decaying spatially isotropic 

autocorrelation with spatial correlation length of 2 grid cells (function F1, scale parameter L = 2 in Buell (1975)). The spatial PC 160 
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patterns of the rectangular shape are for the gaussian covariance function (function F2 in Buell (1975)) but Buell noted that the 

patterns of the exponential function are essentially the same. The dashed circle of PC 1 indicates that its pattern is of one sign in 

the entire domain with absolute values being highest within the circle and fading out towards the domain boundaries. 

 

2 Data 165 

2.1. Synthetic data 

The synthetic data sets consist of synchronous spatially distributed time series exhibiting spatial but no temporal 

autocorrelation. Each data set is produced by concatenating realizations of a random field with identical spatial correlation 

properties (Figure 2). The grid cells (cells) of the random field represent the locations of a data set. The spatial 

autocorrelation is defined with a spatial covariance model. Each realization of the field represents one instant of time of a 170 

data set. Thus, at each location the respective time series consists of a sequence of random numbers. The number of field 

realizations gives the length of the simulated time series. The random fields were simulated with the “RandomFields” 

package (Schlather et al. 2015, 2020). 

 

 175 

Figure 2 Three realizations of a 20 × 20 random field simulated with an isotropic exponential covariance model and spatial 

correlation length of 10 cells representing three instants of time of a simulatedynthetic data set. 

 

2.2. Precipitation data 

As an application example based on observed data we use time series of monthly precipitation sums from the years 1991–180 

2020 out of a 200 km × 200 km square in northeast Germany (Figure 3). The precipitation series were selected from the 

1 km × 1 km HYRAS-DE-PR precipitation grid provided by the German Weather Service (Deutscher Wetterdienst, 2025). 

Amongst others, the HYRAS-DE-PR precipitation product is suggested as input data for hydrological modeling (see the 

description file at Deutscher Wetterdienst (2025)). The monthly precipitation sums are based on daily measurements of 

precipitation height at the monitoring stations. The raster layers are interpolated by combining multiple linear regression 185 

considering topography with inverse distance weighting. The interpolation method preserves the measured precipitation 

values at the grid cells of the stations. For details, see Rauthe et al. (2013) and the description file of the data (Deutscher 

Wetterdienst, 2025). Except from z-scaling, no pre-processing of the precipitation series was applied.  

 

 190 
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Figure 3 Maps of the precipitation data showing the permanent precipitation stations (crosses) that were used by the German 

Weather Service to produce raster of monthly precipitation sums in the monitoring period 1991–2020. Left panel: Federal States 

of Germany (black lines) and the domain selected for PCA (red square). Right panel: Sample raster from the first two months of 

the selected data set. The maps are in ETRS89 / LAEA Europe projection. 195 

 

23 Methods 

2.1.3.1. Principal Component Analysis  

PCA maps an m × n data matrix 𝑋 to n new linearly uncorrelated variables, the Principal Components (PCs), such that the 

PCs successively maximise represented fractions of the data set’s variance (Wilks, 2006). The data set´s variance is defined 200 

as the sum of variances of the variables 𝑥. It equals the sum of the diagonal elements (trace) of its covariance matrix. PCA 

can be performed as eigenvalue decomposition of the variables’ covariance matrix or as singular value decomposition of the 

variables’ matrix with the variables being centred to their mean (Jolliffe, 2002). Unfortunately, the terminology is not used 

consistently throughout the literature. Here, we follow the terminology used by Jolliffe (2002) and Jolliffe and Cadima 

(2016) for the eigenvalue approach.   205 

Each PC is associated with an eigenvalue 𝜆, scores and an eigenvector 𝑎. The scores are the values of a PC are termed 

scores. The variance of the scores of a PC equals its eigenvalue. The ratio of a PC eigenvalue to the sum of all PC 

eigenvalues gives the fraction of the data set’s variance assigned to that PC. EachThe PCs, i.e. the PC scores, are is 

calculated as linear combination of all 𝑛 analysed variables 𝑥 (non-locality).  

𝑝𝑐𝑗 = 𝑎𝑗𝑋 = ∑ 𝑎𝑖𝑗
𝑛
𝑖=1 𝑥𝑖      (1) 210 

The coefficients 𝑎𝑖𝑗 in this linear combination are termed loadings. The loadings of a PC 𝑗 are defined as the 𝑛 elements of 

the eigenvector 𝑎𝑗 associated with that PC. The eigenvectors of all PCs define the orthogonal basis of the new ordination 

system into which the analysed data is mapped projected to (orthogonality constraint). Subject to the eigenvectors being 

orthogonal and the PCs being uncorrelated, the linear combinations of the PCs provide the optimal linear functions to 
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successively maximise variance accounted for (variance maximization). The maximum variance that can be described by a 215 

linear combination of the analysed variables is assigned to the first PC, the maximum of the remaining variance to the 

second PC, and so forth. Thus, the leading PCs provide a compact description of the data set´s variance. It is quite common 

that a few PCs suffice to summarize a major part of a data set´s variance.  

For the synthetic data, PCA was performed with the function “prcomp” from the default “stats” package (R Core Team, 

2019). For the precipitation data, a truncated PCA, calculating the first 20 PCs only, was performed with the "prcomp_irlba" 220 

from the "irlba" package to reduce computation time. The equivalence of the results of both PCA algorithms with respect to 

the leading PCs was confirmed by comparison of the results from smaller data sets. 

 

2.1.1.3.1.1. S-mode PCA 

In S-mode PCA, the analysed variables are synchronous time series distributed in space at multiple locations (Figure S1; 225 

Richman, 1986). Thus, the PCs scores are series of the same length as the analysed time series (temporal PC patterns) and 

the loadings yield values for each location (spatial PC patterns), describing the weighting of the analysed time series to 

calculate the PC scores. All temporal PC patternsseries are linearly uncorrelated with each other, each temporal PC 

patternseries is associated with a spatial pattern and all spatial PC patterns are orthogonal to each other. Note that in this 

studyhere, we perform S-mode PCA only. 230 

 

2.1.2.3.1.2. Correlation matrix based PCA, correlation loadings and contrasts of spatial PC patterns 

Normalizing the variables to zero mean and standard deviation one (z-scaling) prior applying PCA ensures equal weighting 

of the analysed variables. This is of particular importantce if the range of values between the analysed variables differs 

substantially. A PCA with z-scaled variables is identical to an eigenvalue decomposition of the correlation matrix of the 235 

analysed variables. In hydrology, correlation matrix based PCA is to our knowledge more common than covariance matrix 

based PCA.   

For the eigenvectors, different scaling conventions exist (Wilks, 2006). Here, the eigenvectors that are used to calculate the 

PCs are of unit length (Equation 1). In correlation matrix based PCA, normalizing the loadings from the unit length 

eigenvector 𝑎𝑗 of a PC j by multiplying it with the square root of its eigenvalue 𝜆𝑗 is equivalent to the Pearson correlation 240 

between the scores of that PC 𝑝𝑐
𝑗
 and the analysed variables 𝑋.  

𝑐𝑗 = 𝑎𝑗√𝜆𝑗 = 𝑐𝑜𝑟(𝑝𝑐𝑗 , 𝑋)      (2) 

Thus, the loadings are normalized to the commonly well-known Pearson correlation range from -1 to 1 which simplifies 

reading and interpretation of the PCA results. To prevent confusionHere, we use the term “correlation loadings” for these 

normalized loadings 𝑐𝑗 . We do so to prevent confusion with the coefficients that are used in the linear combination to 245 

calculate the PCs, which are not normalized to a common range (Equation 1). The sum of the squared correlation loadings 𝑐𝑗 

of a PC j equals its eigenvalue λj. Thus, they can be used to calculate the fractions of variance associated with the PCs. In the 

following, the spatial PC patterns are described with correlation loadings only.Using correlation loadings can simplify 

reading and interpretation of the PCA results.  

For S-mode PCA, the normalization enables direct comparison of the contrasts of spatial patterns from different PCs or 250 

PCAs. Here, we define the contrast of a spatial PC pattern as the range between the minimum and maximum of the 

correlation loading values of that PC. Thus, the maximum contrast possible would be 2. Note that this is different from the 
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“classical loadings”, used in the linear combination to calculate the PC scores, which are not normalized to a common range. 

In the following, the spatial PC patterns are described with correlation loadings only.  

 255 

2.2.3.2. DD reference patterns 

DD reference patterns are the DD patterns of a distinct combination of spatial domain and spatial correlation properties. 

They can be used as null hypothesis to test whether spatial PC patterns differ significantly from what has to be expected 

from DD alone.  

Here, we tested the association between two patterns with simple Pearson correlation. The statistical significance of the 260 

correlations was assessed with t-tests and the significance level 0.05.  

 

2.2.3.3.2.1. Stochastic method 

In the stochastic method, PCA is applied on simulated synthetic data sets (Section 2.1) to derive DD reference patterns. The 

data sets consist of synchronous spatially distributed time series exhibiting spatial but no temporal autocorrelation. Each data 265 

set is produced by concatenating realizations of random fields with identical spatial correlation properties (Figure 2). The 

spatial autocorrelation is defined with a spatial covariance model. Each realization of the field represents one instant of time 

of a data set. Thus, at each location the respective time series consists of a sequence of random numbers. The number of field 

realizations gives the length of the simulated time series. As the data sets consist of spatially correlated white noise time 

series, their temporal PC patterns are white noise as well. The spatial PC patterns of the data sets are solely determined by 270 

the spatial domain and the spatial correlation properties defined in the simulation. The spatial PC patterns of data sets 

simulated with identically parameterized random fields differ due to the randomness in the simulations. Therefore, a three-

step procedure is applied to get stable patterns (Figure 4). 

Step 1: An ensemble of data sets with identical spatial domain and spatial correlation properties is simulated. Each of the 

data sets is analysed separately with a PCA, resulting in a PCA ensemble. 275 

Step 2: The stability of the spatial PC patterns is assessed by pairwise correlating the spatial patterns of all possible 

combinations of PCs with identical ranks from the PCA ensemble. For each PC rank, the mean R2 of the correlations is used 

to describe the overall similaritycongruence of the respective spatial PC patterns. 

Step 3: For each PC rank (a) the mean spatial patterns from all PCAs of the ensemble and (b) their standard deviation 

patterns are calculated. They are calculated as the mean and standard deviation of the correlation loadings of PCs with 280 

identical rank from the PCA ensemble.  

The mean spatial PC patterns are the DD reference patterns for data sets with the spatial domain and the spatial correlation 

properties defined in step 1. The standard deviation patterns serve as their spatially discrete uncertainty estimation. The 

variance represented with the DD reference patterns (“explained variance”) is estimated with the mean and standard 

deviation of the explained variances of PCs with identical rank from the ensemble. 285 

PCs with identical rank from different data sets of an ensemble might exhibit basically the same spatial pattern but with 

opposite signs due to the randomness of the field simulations, i.e. the pattern of one data set might be basically a negative 

version of another one. For the calculation of mean and standard deviation of the spatial PC patterns of an ensemble (step 3), 

the spatial patterns of PCs with identical rank are therefore harmonized such that they all are correlating positively. Thus, the 

correlation loadings of PCs that are correlating negatively with those of identically ranked PCs from the first data set are 290 

multiplied by -1 and therefore reversed. 
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Note that the suggested method requires the use of correlation loadings to describe the spatial PC patterns. Thus, it is 

restricted to correlation matrix-based S-mode PCA, meaning the analysed series have to be z-scaled (Sections 3.1.12.1.1 and 

3.1.22.1.2). Furthermore, the mean spatial PC patterns are derived from a data set ensemble, not from a distinct single data 

set. Thus, they cannot be scaled to classical loadings and they cannot be used to calculate PC scores.  295 

 

 

Figure 2 Three realizations of a 20 × 20 random field simulated with an isotropic exponential covariance model and spatial 

correlation length of 10 cells representing three instants of time of a simulated data set. 

 300 

Figure 4 Stochastic DD reference method. n: number of locations, m: number of time steps, N: number of data sets, respectively 

PCAs, index j: PC rank, c: correlation loadings, a: loadings, λ: eigenvalue, S: stability, indices k, l: running indices for PCAs from 

the ensemble, 𝒄̃: harmonized correlation loadings, V: explained variance. 

 

 305 
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2.2.4.3.2.2. Analytic method 

Another possibility to produce DD reference patterns is to perform a PCA with the “analytic”, or "exact", covariance matrix 

(North et al., 1982; Cahalan et al., 1996; Dommenget, 2007) of a spatially homogeneous covariance function (Figure 5). The 

analytic covariance matrix consists of the covariances between all of the data set´s locations calculated directly with their 

interpoint distances from the function.  310 

Confidence limits to identify clearly separated eigenvalues and eigenvectors can be estimated e.g. with North´s rule of thumb 

(North et al., 1982; Hannachi et al., 2007) based on the data set´s effective sample size 𝑛∗, also known as number of 

independent observations in the sample or the number of degrees of freedom (Hannachi et al., 2007). The 95 % confidence 

interval of the eigenvalue 𝜆𝑘 is given by 𝛿𝜆𝑘~𝜆𝑘√2 𝑛∗⁄ . In our case here, 𝑛∗ equals the length of the analysed time series 

because the series do not exhibit temporal autocorrelation. The confidence interval for the associated eigenvector 𝑢𝑘 can then 315 

be estimated with 𝛿𝑢𝑘~ (𝛿 𝜆𝑘 ∆𝜆⁄ )𝑢𝑗  where 𝑢𝑗  is the eigenvector of 𝜆𝑗 , the closest eigenvalue to 𝜆𝑘, and ∆𝜆 the spacing 

(𝜆𝑗 − 𝜆𝑘) between both eigenvalues. For consistency with the stochastic method (Section 3.2.12.2.1), the eigenvectors 

(spatial patterns) were scaled to correlation loadings (Section 3.1.22.1.2).  

A brief review of different variants using the analytic covariance matrix to produce PCA reference patterns is given in 

Appendix A.  320 

For the synthetic examples, the analytic method was performed as eigendecomposition of the analytic covariance matrix 

with the function “eigen” from the default “base” package (R Core Team, 2019). For the precipitation data, a truncated PCA, 

calculating the first 20 PCs only, was performed with the function "eigs_sym" from the "RSpectra" package to reduce 

computation time. The equivalence of the results of both algorithms with respect to the leading PCs was confirmed by 

comparing the results from smaller data sets. 325 
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Figure 5 Analytic DD reference method. 

 

3.3. Matching of spatial PC patterns 330 

The matching of the spatial patterns from different PCAs was quantified with the congruence coefficient (Lorenzo-Seva and 

ten Berge, 2006) and Pearson correlation. The congruence coefficient 𝜑 is defined as the cosine of the angle between two 

vectors of component or factor loadings 𝑎1 and 𝑎2, both being based at the origin.  

𝜑 =
∑ 𝑎1𝑎2

√∑ 𝑎1
2 ∑ 𝑎2

2
       (3) 

In contrast, Pearson correlation gives the cosine of the angle between two vectors, both being based at the mean loading. 335 

Thus, the matching coefficient 𝑟 in the following equation gives the Pearson correlation when b = mean(𝑎1), d = mean(𝑎2) 

and the congruence coefficient when b = d = 0 (see the help of R-function "factor.congruence"). 

𝑟 =
∑(𝑎1−𝑏)(𝑎2−𝑑)

√∑(𝑎1−𝑏)2 ∑(𝑎2−𝑑)2
      (4) 

If the compared vectors have zero mean values (mean(𝑎1) = mean(𝑎2) = 0), both indices are identical. In all other cases, the 

results differ. The congruence coefficient is sensitive to the addition of constants, because the vector means are not removed 340 

(Lorenzo-Seva and ten Berge, 2006). Two eigenvectors with different means can be closely correlated even though their 

magnitude patterns differ substantially such that some variables load high on the one PC and low on the other (Richman, 

1986; Lorenzo-Seva and ten Berge, 2006). In the S-mode PCA case, this means that two spatial PC patterns with different 
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means can be closely correlated even though some locations load high on the one PC and low on the other (thus, the 

maximum loadings of the two PCs could be in different locations). If that is the case, the congruence coefficient would be 345 

low, indicating the difference in magnitude patterns. Thus, in contrast to Pearson correlation it incorporates vector 

magnitudes in the comparison (Richman, 1986). This is desirable for the comparison of eigenvectors from PCA or factor 

analysis because the magnitude of the loadings is important for the interpretation of the components (Richman, 1986). 

Therefore, the congruence coefficient is recommended as matching coefficient over Pearson correlation for the comparison 

of eigenvectors from PCA or factor analysis (Richman, 1986). However, a major benefit of Pearson correlation is that it is 350 

well known and the results in terms of r or R2 can easily be contextualized by the analyst.  

Note that the stability analysis of the stochastic approach (step 2, Section 3.2.1) was performed with Pearson correlation 

only, because all compared PC patterns (i) were of identical rank and (ii) were based on synthetic data sets simulated with 

identical spatial correlation properties and identical domains. For this setting, we considered the effect of the pattern mean 

subtraction by Pearson correlation as negligible. 355 

Both indices have a value range from -1 to 1, with 1 indicating a perfect match, 0 no relationship and -1 a perfect inverse 

match (Richman, 1986). Compared with Pearson correlation, the congruence coefficient is biased towards higher values 

(Richman, 1986). Several guidelines were suggested that assign specific ranges of absolute congruence coefficients (aCC) to 

categories of goodness-of-match, or specific thresholds as indication for the identity of components/factors (Richman, 1986; 

Lorenzo-Seva and ten Berge, 2006). Here, we follow Lorenzo-Seva and ten Berge (2006) who suggested that aCC values 360 

between 0.85 and 0.94 indicate fair similarity of the two components, values larger than 0.95 indicate that they can be 

considered equal and values below 0.85 should not be interpreted as indication for similar components. 

The congruence coefficient was calculated with the function "factor.congruence" from the "psych" package. The statistical 

significance of the correlations was assessed with t-tests and the significance level 0.05 using the function “cor.test” from the 

default “stats” package (R Core Team, 2019).  365 

 

3.4. North´s rule of thumb 

Confidence limits to identify clearly separated eigenvalues and eigenvectors can be estimated e.g. with North´s rule of thumb 

(North et al., 1982; Hannachi et al., 2007) based on the data set´s effective sample size 𝑛∗, also known as number of 

independent observations in the sample or the number of degrees of freedom (Hannachi et al., 2007). The 95 % confidence 370 

interval of the eigenvalue 𝜆𝑘 is given by 𝛿𝜆𝑘~𝜆𝑘√2 𝑛∗⁄ . In our case here, 𝑛∗ equals the length of the analysed time series 

because the series do not exhibit temporal autocorrelation. The confidence interval for the associated eigenvector 𝑢𝑘 can then 

be estimated with 𝛿𝑢𝑘~ (𝛿 𝜆𝑘 ∆𝜆⁄ )𝑢𝑗  where 𝑢𝑗  is the eigenvector of 𝜆𝑗 , the closest eigenvalue to 𝜆𝑘, and ∆𝜆 the spacing 

(𝜆𝑗 − 𝜆𝑘) between both eigenvalues. 

 375 

3.5. Varimax rotation 

Rotation aims at separating a subset of PCs more clearly such that the association between the eigenvectors and the PCs is 

more distinct. The goal is to reach a so called "simple structure" with the loadings being either close to zero or close to the 

maximum possible absolute values (Wilks, 2006). Thus, the magnitudes of the loadings are changed. The total variance of 

the rotated subspace is preserved, but the variance among the rotated PCs is redistributed more evenly (Jolliffe, 2002), 380 

potentially affecting which PCs are rated dominant. Different rotation methods are available (Richman, 1986). The rotation 

is performed by multiplication of the selected eigenvectors by a rotation matrix. If the rotation matrix is orthogonal, the 
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rotation is called orthogonal, otherwise oblique (Wilks, 2006). To support the interpretability of the results, the rotation 

matrix is chosen to optimize a simplicity criterion (Jolliffe and Cadima, 2016). Depending on the selected simplicity 

criterion, the rotation changes the properties of the eigenvectors and PCs. The results can depend on the number of 385 

eigenvectors that are rotated (Jolliffe, 2002; Wilks, 2006). This is different from standard PCA where the patterns and the 

associated variances from a set of PCs do not depend on the number of considered PCs. For example, in standard PCA the 

patterns and variance distributions of the first two PCs are identical, regardless of whether only the first two PCs are 

considered or, say, the first four PCs. Often the results are affected more by the choice of how many eigenvectors are rotated 

than by the choice of the simplicity criterion (Hannachi et al., 2006; Jolliffe and Cadima, 2016).  390 

Here, we applied varimax rotation with Kaiser normalization (Kaiser, 1958). It is the most popular rotation method (Wilks, 

2006). Varimax is an orthogonal rotation that maximizes the sum of the variances of the squared elements from the 𝑟 

selected eigenvectors 𝑏  by iteratively rotating pairs of eigenvectors (Richman, 1986; Wilks, 2006). With the Kaiser 

normalization the eigenvectors 𝑏 are normalized with the communalities ℎ2 of the 𝑛 analysed variables (here the time series 

from the 𝑛 different locations) prior rotation and renormalized afterwards. The communality ℎ𝑖
2 of variable 𝑖 is the fraction 395 

of variance from the variable that is depicted by the 𝑟 rotated PCs. The normalized varimax criterion 𝑉 can be calculated as 

𝑉 = ∑ {[𝑛 ∑ (𝑏𝑖𝑗
2 /ℎ𝑖

2)2𝑛
𝑖=1 − [∑ (𝑏𝑖𝑗

2 /ℎ𝑖
2)𝑛

𝑖=1 ]
2

] /𝑛2}
𝑟

𝑗=1
     (5) 

Note that the scaling of the eigenvectors that are rotated affects the varimax results (Jolliffe, 1995; Wilks, 2006). Either the 

orthogonality of the eigenvectors, the uncorrelatedness of the PCs or both get lost. The most popular scaling and the default 

in many software packages is to use eigenvectors scaled to the square root of their eigenvalues, derived from correlation 400 

matrix PCA (what we term correlation loadings here). In that case, the orthogonality of the eigenvectors and the 

uncorrelatedness of the PCs are lost. Other options are to use unit length eigenvectors which preserves the orthogonality of 

the eigenvectors, or to divide the unit length eigenvectors by the square root of their eigenvalues which preserves the 

uncorrelatedness of the PCs. For the introductory purpose we use the most popular variant and rotate correlation loadings 

only. Varimax rotation was performed with the function “varimax” from the default “stats” package (R Core Team, 2019).  405 

3 Scripts 

The selection of scripts accompanying this technical note (Lehr, 2024) contains: (1) A Demo in which the DD of PCs is 

demonstrated by visual examination of the spatial PC patterns from single simulated data sets, (2) an implementation of the 

stochastic DD reference method (Section 2.2.1), and (3) an implementation of the analytic method (Section 2.2.2) based on 

Dommenget (2007) and the associated Matlab scripts. The user can define domains with distinct sizes and shapes, and the 410 

spatial correlation properties. The scripts and their documentation can directly be used for educational purposes. We 

recommend going first step by step through the Demo to get into the functioning and logic of the scripts. For the Demo and 

the stochastic reference script, it is best to start with the pdf documentation which includes a formatted version of the script, 

extra annotations and sample results. All scripts are written in R (R Core Team, 2019). The simulations of the data sets are 

performed with the “RandomFields” package (Schlather et al. 2015, 2020). PCA is performed with the function “prcomp” 415 

and the significance test of the correlation analysis with the function “cor.test” from the default “stats” package (R Core 

Team, 2019). 
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4 Exploring the DD effect 

4.1. Exploring Buell patterns and their stabilityFirst examples 420 

As a start, we estimated DD reference patterns for Buell´s (1975) three basic geometric domain shapes (Figure 1Figure 1) 

using the stochastic method (Section 3.2.12.2.1). Ensembles of 100 data sets were simulated for each of the three shapes. 

The domain boundaries are shown in Figure 6Figure 3. All cells within the boundaries were used. (Note that the shape of a 

domain means the spatial arrangement of the data set´s locations. It should not be confused with the shape of its boundary.) 

The sides of the square, the long side of the rectangle and the legs of the perpendicular triangle were 20 cells long, the short 425 

side of the rectangle was 10 cells long. Thus, the rectangular and the triangular domain were of half the size of the square. 

Each data set was simulated with a spatially isotropic exponential covariance model and a spatial correlation length of 10 

cells.  

For the reliability of the stochastic DD reference patterns, their stability is essential. Figure 7Figure 4 summarizes the results 

of the stability analyses (step 2 of the stochastic method) from a series of ensembles with identical spatial domain and spatial 430 

correlation properties but different time series lengths. Thus, the plot shows for each PC rank the dependency of its spatial 

patterns’ stability from the time series length if all other parameters used in the simulation are identical. Based on that 

information it can be decided whether additional ensembles with longer time series shall be simulated to improve the 

estimation. Here, we considered a time series length of 10 000 sufficient for all three domains.  

Note, that here and in the following we show the results for the first ten leading PCs. The decision was taken merely for the 435 

illustrative purpose. We found it to be a good balance between showing the DD pattern sequences and some degree of detail, 

but not too much detail that it is still visually easy to grasp. There was no other specific truncation criterion, e.g. based on 

eigenvalue magnitude or percent variance extracted, applied. 

Figure 8Figure 5 shows the mean spatial PC patterns of these ensembles. Those are the stochastic DD reference patterns. 

Most of them correspond to the Buell patterns shown in Figure 1Figure 1. Some exhibit switches in the ranking, e.g. PC 3+4 440 

of the rectangular domain or PC 7+8 of the square domain. The uncertainty estimation of the stochastic DD reference 

patterns, given by the standard deviation of the spatial PC patterns from the data set ensembles, is shown in Figure 9Figure 6.  

Exemplarily, the mean and standard deviation patterns of the square domain are shown in more detail (Figure S2Figure 7). 

The scales provide information on the magnitude of both patterns. To make use of the standard deviation patterns (Figure 

S2Figure 7b) as uncertainty estimation of the DD reference patterns, it is necessary to consider their magnitudes in relation 445 

to the contrast from the mean spatial patterns (Figure S2Figure 7a). In addition, the fractions of variance assigned to the DD 

reference are given. 

The stability of the DD patterns reflects their distinctness in the sequence of spatial PC patterns according to the PCA 

constraints. It depends on the specific combination of domain size and shape and spatial correlation properties of the data set. 

For example, for the properties here, PCs 8 to 10 of the triangle are more stable than the ones of the rectangle (Figure 450 

7Figure 4c+b). Generally, there is the tendency that the spatial patterns of low ranked PCs, which contain also more fine 

details, require longer times series to gain stability. It seems counter intuitive at first that PC 2 of the rectangle stabilizes 

faster than its PC 1 (Figure 7Figure 4b). It indicates that for the properties of the simulated data the rectangular domain shape 

gives a clearer orientation for the spatial pattern of PC 2 than for the one of PC 1. Thus, especially for short time series the 

orientation of the gradient along the long side of the rectangle (PC 2) is more distinct than the position of the monopole in 455 

the centroid of the rectangle (PC 1) (Figure 8Figure 5b). Similarly for the triangle, the orientation of the gradient patterns of 

PC 2 and 3 induced by its long side are more distinct than the position of its PC 1 monopole (Figure 7Figure 4c and Figure 

8Figure 5c).  

PCs with ambiguous orientation of spatial patterns are more likely to occur for symmetric domain shapes than for 

asymmetric ones (North et al., 1982). The basic geometric domain shapes used here exhibit rotational symmetry of order 4 460 
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(square), order 2 (rectangle) and order 1, i.e. no rotational symmetry, (triangle). Accordingly, within the range of the 

analysed time series lengths the number of PCs that exhibited unstable spatial patterns differed between the domain shapes 

(square: 8, rectangle: 5, triangle: 2 in Figure 7Figure 4). Unstable spatial PC patterns are indicative for effectively 

degenerated multiplets and will be discussed in Section 4.4. 

The stochastic reference script enables theo production ofe catalogues of stability plots and DD patterns like in Figure 465 

7Figure 4 and Figure S2Figure 7 for data sets with different spatial domains and spatial correlation properties (for sample 

catalogues see Lehr (2024)). Both plots in combination can be used to explore how the properties of a data set affect the DD 

patterns. Sample catalogues are provided with the scripts (Lehr, 2024) Here, we neglect the effect of measurement errors. 

However, it can be simulated by adding noise to the realizations of the random field (Figure 2).   

 470 

 

 

Figure 63 (a) Square, (b) rectangular and (c) triangular domain boundaries on the 20 × 20 grid. The grid cells represent locations 

from a data set. 

 475 

 

Figure 74 Stability of the spatial patterns from the leading ten PCs in relation to the time series length of the simulated data within 

the (a) square, (b) rectangular and (c) triangular domain boundaries of Figure 6Figure 3. All cells within the boundaries were 

used. For each domain the results from 12 data set ensembles are shown. Each ensemble consists of 100 data sets simulated with 
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identical time series length, an isotropic exponential covariance model and a spatial correlation length of 10 cells. Each simulated 480 
data set was analysed separately with PCA. Symbols depict the mean R2 of the correlation between the spatial patterns of all PCs 

with identical rank derived from the respective ensemble. The legends in (c) apply also to (a) and (b) of the respective row.  

 

 

Figure 85 Overview of the leading ten mean spatial PC patterns (DD reference patterns), estimated with the stochastic method 485 
from the data set ensembles with time series length 10 000 shown in Figure 7Figure 4. Instead of the +/- schemes used by Buell 

(1975) (Figure 1) we use colour gradients to picture the spatial patterns. 

 

 

Figure 96 As in Figure 8Figure 5 but for the standard deviation patterns (uncertainty estimation of the stochastic DD reference 490 
patterns). From blue to yellow the colour gradients depict increasing uncertainty. 
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Figure 7 Detail plot of mean (a) and standard deviation (b) of the spatial patterns from the leading ten PCs of the data set 

ensemble with the square domain shown in Figure 5a and Figure 6a. The panel titles of (a) contain the mean (and standard 495 
deviation) of the fractions of variance assigned to the respective PCs from the 100 PCAs of the ensemble.  

 

4.2. Effects of the dDomain shape 

For data sets with identical spatial correlation properties and similar domain size, the DD patterns are original for every 

domain shape. This is obvious for domains of such simple and clearly different shape like the three geometric shapes used so 500 

far. The sequence of their DD patterns is visually easy to recognize and kind of intuitive. For more complex shapes, the DD 

patterns are less predictable, a priori,foreseeable and visual recognition is rather more limited. 

For demonstration, we compared the DD patterns from data sets with identical spatial correlation properties in which all cells 

within the three geometric boundaries of Figure 6Figure 3 were selected (Figure 8Figure 5) with two variants in which only 

40 % of the cells were randomly selected. In the first variant the subsampling was spatially homogeneous (Figure 10Figure 505 

8), in the second spatially heterogeneous (Figure 11Figure 9). The domain of the second variant contained a subregion with 

higher sampling probability than the rest of the domain, i.e. within each domain there is one area in which the locations 

cluster. Clusters of locations have more weight in the calculation of the PCs analogue to the calculation of a weighted spatial 

mean (Karl et al., 1982). For the DD pattern of PC 1 the effect is obvious. Its monopole is placed in the centroid of the 

network. In comparison with the regular variant (Figure 1Figure 1, Figure 8Figure 5 and Figure 10Figure 8) it is therefore 510 

shifted according to the density of the locations (Figure 11Figure 9). The patterns of all other PCs are not so easy to foresee 

predictable without calculating DD reference patterns.  

Visually, the domains of the subsampling variants are still clearly of square, rectangular and triangular shape. Their leading 

DD patterns are recognizable as distinct spatial patterns. Most of those from the homogeneous subsampling variant (Figure 

10Figure 8) appear like as noisy counterparts of the all cells patterns (Figure 8Figure 5). In the heterogeneous case (Figure 515 
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11Figure 9), the patterns of the square domain appear again relatively similar, whereasile for the triangular and rectangular 

domain only a few PCs exhibit visually similar patterns, e.g. PC 2.  

But what about tThe similarity of patterns formed by congruent selections of cells from the different variants is of particular 

interest.? It addresses the question whether theIn other words, does calculating spatial PC patterns calculated from two 

different domains result in different relations between the values at locations with coincident coordinates.? This is visually 520 

only poorly assessible. ThereforeTo check that, we correlated the patterns of the subsampling variants with the patterns 

formed by the corresponding subsets from their all cells counterpart (that is, the all cells patterns clipped with the coordinates 

of the subsampling variant). For example, the patterns from the homogeneously subsampled square (Figure 10Figure 8a) 

were correlated with the patterns from the all cells square (Figure 8Figure 5a) clipped with the coordinates of the subsampled 

square. 525 

For the spatial patterns of the homogeneous subsampling variant and the all cells variant, the correlation analysis confirmed 

the visual impression of overall similarity (Table 1Table 1). But it also showed that there are differences. The patterns of the 

subsampling variant can be:  

1) simply noisy variants of the all cells patterns (e.g. PC 1 and 2 from all domains), 

2) simply noisy variants of the all cells patterns but with different ranking (e.g. PC 3 and 4 from the rectangular 530 

domains), 

3) a mix of all cells patterns (e.g. PC 4 and 5 from the square domains1), or 

4) very different from the all cells patterns (e.g. PC 10 from all domains2). 

Transitions between 3) and 4) are possible (e.g. PC 6 and 7 of the rectangular domain). Generally, and that the differences 

generally increase towards the lower ranked PCs with the more detailed patterns. But, there are also substantial differences 535 

between the patterns from relatively high ranked PCs possible (e.g. PC 4 and 5 from the square domains). Thus, even for 

rather homogeneous subsampling, the DD patterns are not necessarily simply noisy variants of the classical Buell patterns. 

The comparison with the heterogeneous variant yielded substantially stronger deviations (Table 2Table 2). Thus, generally, 

visual recognition of Buell like patterns in S-mode PCA results is a concrete indication for DD. However, it is so in 

particular for the leading PC patterns from domains with rather homogeneous spatial arrangement of locations within 540 

boundaries similar to Buell´s archetypes. Even for domains of similar size and identical spatial correlation properties, 

deviations from strictly regular inhomogeneous distribution of locations alone can result in DD patterns substantially 

deviating from what one might expect with the classical Buell patterns in mind.  

Side note: The spatial PC patterns of the subsampling variants required shorter time series lengths to stabilize (Figure 

12Figure 10 and Figure S3Figure S1) than the all cells variant (Figure 7Figure 4). This indicates that the subsampling 545 

resulted in a more unbalanced arrangement of locations and therefore a more distinct orientation for the order of the 

orthogonal spatial PC patterns.  

 

                                                           
1 In the all cells variant, PC 4 exhibits two maxima in the upper left and lower right corner and two minima in the lower left 

and upper right corner, PC 5 exhibits the maximum in the centre and four minima in the four corners. In the subsampling 

variant, PC 4 exhibits two maxima in the upper left and lower right corner and the minimum in the centre, PC 5 exhibits 

basically the same structure but rotated by 90°. 
2 For PC 10, the patterns of the all cells variant are for all domains already so fine structured that the subsampling results in 

quite different patterns. 
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Figure 108 DD reference patterns as in Figure 8Figure 5 but for a random selection of only 40 % from the cells within the three 550 
geometric domain boundaries of Figure 6Figure 3. The sampling probability was homogeneous across the domain (spatially 

homogeneous case). 

 

 

Figure 119 DD reference patterns as in Figure 8Figure 5 but for a random selection of only 40 % from the cells within the three 555 
geometric domain boundaries of Figure 6Figure 3. The sampling probability within the small square in the lower left was three 

times higher than in the rest of the domain (spatially heterogeneous case).  
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Figure 1210 Stability of the spatial PC patterns as in Figure 7Figure 4 but for the patterns of the homogeneous subsampling 560 
variant (Figure 10Figure 8. 

 

 Hom PC PC 1 PC 2 PC 33 PC 4 PC 5 PC 66 PC 77 PC 88 PC 99 PC 1010 

Square aCC 10.94 0.990.97 0.960.93 0.73 

\50.52 \5 

0.64 

\40.45 \4 

0.880.79 0.850.

73 

0.740.55 0.77 

\100.59 

\10 

0.62 

\90.38 \9 

R2 0.94 0.97 0.93 0.52 \5 0.45 \4 0.79 0.73 0.55 0.59 \10 0.38 \9 

Rectangle aCC 10.87 0.980.97 0.90 

\40.80 \4 

0.88 

\30.78 \3 

0.900.83 0.72 

\70.52 \7 

0.560.

32 

0.66 

\90.43 \9 

0.64 

\80.40 \8 

0.480.23 

R2 0.87 0.97 0.80 \4 0.78 \3 0.83 0.52 \7 0.32 0.43 \9 0.40 \8 0.23 

Triangle aCC 0.990

.89 

0.960.95 0.960.92 0.930.87 0.960.93 0.890.80 0.910.

84 

0.920.84 0.65 

\100.42 

\10 

0.53 

\90.28 \9 

R2 0.89 0.95 0.92 0.86 0.93 0.80 0.84 0.84 0.42 \10 0.28 \9 

Table 11 Best matches between the DD patterns of the square, rectangular and triangular domains from the homogeneous 

subsampling variant (Figure 10) and the patterns formed by the corresponding subsets from their all cells counterpart (that is, the 

all cells patterns (Figure 8 (a) to (c)) clipped with the coordinates of the subsampling variant (Figure 10 (a) to (c))), quantified by 565 
the absolute values of the Congruence Coefficient (aCC) and R2. Mostly, the best matches were of identical PC rank. If the best 

match was with an all cells pattern subset of different rank, that rank is given after the "\". Hom PC: PC ranks from the 

homogeneous subsampling variant. Bold aCC values indicate fairly similar PC patterns, grey shaded and bold aCC values PC 

patterns that can be considered equal (Section 3.3).  

R2s of the strongest correlations between the DD patterns of the square, rectangular and triangular shaped domains from the 570 
homogeneous subsampling variant (Figure 8) and the patterns formed by the corresponding subsets from their all cells 

counterpart (that is, the all cell patterns (Figure 5 (a) to (c)) clipped with the coordinates of the subsampling variant (Figure 8 (a) 
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to (c))). Mostly the best correlating patterns were of identical PC rank. If the best correlation was with a clipped all cell pattern of 

different rank, that rank is given after the "\". For example, for the rectangular shape the PC 3 pattern of the subsampling variant 

correlated best with PC 4 of the clipped all cell patterns. All correlations were significant (p < 0.05).  575 

 

 

 Het PC PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 

Square aCC 0.930.56 

\3 

0.82 

\30.85 \3 

0.97 

\20.97 \2 

0.670.43 0.77 

\60.61 \6 

0.55 

\50.33 

0.650.44 0.66 

\90.43 \9 

0.500.25 0.540.30 

R2 0.56 \3 0.85 \3 0.97 \2 0.43 0.61 \6 0.32 0.44 0.43 \9 0.25 0.30 

Rectangle aCC 0.910.85 

\2 

0.650.76 0.73 

\40.52 \4 

0.93 

\30.85 \3 

0.69 

\60.48 \6 

0.60 

\70.37 \7 

0.69 

\100.49 

\10 

0.610.39 0.750.56 0.43 

\70.19 \7 

R2 0.85 \2 0.76 0.52 \4 0.85 \3 0.48 \6 0.37 \7 0.49 \10 0.39 0.56 0.18 \7 

Triangle aCC 0.980.73 0.800.64 0.610.43 0.710.49 0.93 

\60.86 \6 

0.53 

\80.30 \8 

0.640.42 0.62 

\100.39 

\10 

0.39 

\100.15 

\10 

0.70 

\90.49 \9 

R2 0.73 0.64 0.43 0.49 0.86 \6 0.29 \8 0.42 0.39 \10 0.15 \10 0.49 \9 

Table 22 As in Table 1Table 1 but for the heterogeneous subsampling variant (Figure 11Figure 9).  

 

4.3. Effects of the dDomain size and spatial correlation length 580 

The ratio between domain size and the spatial correlation length affects the fractions of variance allocated to the PCs (Figure 

13Figure 11) as well as the contrasts of the spatial PC patterns (Figure 14Figure 12). If there is no spatial correlation (spatial 

“white noise”), the spatial patterns of all PCs are white noise. All PCs represent the same fraction of variance, one divided by 

the total number of PCs. The magnitudes of the contrasts of their spatial patterns are small and on the same level. For spatial 

correlation length increasing from zero towards infinity, the data sets´ series from all locations get more and more similar, 585 

converging towards identity of all series (perfect correlation). If the latter is reached, there is no variance in the data that 

could be distributed and, consequently, there are no patterns or contrasts in the PC patterns. In between the two extremes, 

successive allocation of variance to the PCs and spatial PC patterns with distinct contrasts appear.  

For the variance allocation, it is simple. Increasing correlation lengths result in increasing accumulation of variance in the 

leading PCs, converging towards accumulation of the total variance in PC 1. 590 

For the contrasts, it is more complex. The maximum contrasts appear for correlation lengths in the order of magnitude of the 

domain size. The exact maximum is specific for the different PCs and depends on the particular domain shape. For example, 

for the triangular domain here (Figure 14Figure 12c), the contrasts of the PC 1 patterns peak at a correlation length of 13 

cells, the ones of the PC 2 patterns at a correlation length of 21 cells (not shown). The increase of the contrasts between zero 

correlation length and the correlation lengths of the maximum contrasts reflects the increasing fraction of covarying 595 

locations that support the poles of the DD patterns. The decrease of the contrasts between the correlation lengths of the 

maximum contrasts and infinite correlation length reflects the increasing similarity of all locations which leads to smoother 

spatial PC patterns with contrasts converging towards zero.  

Within a DD sequence, the magnitude of the contrasts differs between the PCs. Generally, they peak at PC 2 (Figure 

14Figure 12) and decay with decreasing PC order (Figure S4Figure S2). In this sequence it is first the coarse structures with 600 

stronger contrasts that are described and then the more fined detailed structures which tend to be smoother (Figure 8Figure 5 
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and Figure 14Figure 12). The “spatial average” pattern of the PC 1 monopole generally exhibits contrasts on low to 

intermediate level compared with the “strongest contrast” pattern of the PC 2 dipole. 

Substantial accumulation of variance in the leading PCs is commonly interpreted as indication for dominant processes or 

modes of the analysed system. In particular the combination with distinct PC patterns exhibiting strong contrasts is highly 605 

suggestive. The results demonstrate that both aspects are rather limited indicators and not sufficient for such interpretation. 

Quite the contrary, if spatially homogeneous autocorrelation is dominant in the data, both have to be expected.  

Note also that the effect of the autocorrelation is spread over all PCs. Thus, for process identification etc., it is the question 

whether the features of interest cause signatures (spatio-temporal heterogeneities) distinct enough to stick out ofbe salient 

against the homogeneous background (Cahalan et al., 1996). Next question is whether they get clearly assigned to single PCs 610 

or whether they are as well smeared over several, if not all, PCs.  

Whether at all a set of PCs is an appropriate model to describe the features of interest from the analysed system is a different 

question that should be considered carefully for each individual case. For example, for physical processes or modes of 

geosystems, the S-mode PC properties orthogonality of spatial patterns and linear uncorrelatedness of temporal patterns are 

heavy constraints (Buell, 1979; Jolliffe, 2002; von Storch and Zwiers, 2003; Hannachi et al., 2007; Monahan et al., 2009).  615 

 

 

Figure 1311 Variance representation of the ten leading PCs modelled with the analytic DD reference method using an isotropic 

exponential covariance model, nine different spatial correlation lengths and the domain boundaries (a) square, (b) rectangle and 

(c) triangle from Figure 6Figure 3. All cells within the boundaries were used. The scale of the Y-axisscale is square root 620 
transformed for better readability. 

 

 

Figure 1412 As in Figure 13Figure 11 but for the contrasts of the DD patterns.  

 625 
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4.4. Effectively degenerate multiplets 

Effectively degenerate multiplets are PCs with consecutive ranks, often PC pairs, which are not well separated by the PCA 

(North et al., 1982). They are indicated by noticeably similar eigenvalues (fractions of explained variance) considering their 

position in the ranking of the PCs, e.g. PC 2+3 in Figure 13Figure 11a and PC 3+4 in Figure 13Figure 11b, both for spatial 

correlation length of 10 cells. Within the subspace spanned by the multiplets’ eigenvectors their rotation is arbitrary. All 630 

eigenvectors of the multiplet are needed to adequately describe the multiplets’ subspace. Consequently, the multiplet should 

not be split for summarizing the data set, interpretation, further analysis (North et al., 1982) or rotation (Jolliffe, 1987, 1989). 

In particular, special care has to be taken that the truncation point of a PCA does not split a multiplet (North et al., 1982). 

The concept of effectively degenerate multiplets (short: effective multiplets, as in Wilks (2006)) is closely related to 

degeneracy of eigenvalues. For clarification we provide a brief introduction in Appendix B.  635 

In S-Mode PCA, spatial and temporal patterns are associated to the PCs. Often the hope is that the leading PCs represent the 

dominant spatio-temporal features of the data set. In case of effective multiplets, one spatio-temporal feature is described by 

the two or more PCs forming the multiplet. This feature can be described with any linear combination of the spatio-temporal 

patterns of the involved PCs (Appendix B). For example, a degenerated PC pair could indicate “a signal that is propagating 

in space” (von Storch and Zwiers, 2003; Roundy et al., 2015) like the Madden-Julian Oscillation (Kessler, 2001). Note that 640 

such signal might be further modified by lower ranked PCs that are clearly separated from the degenerated pair (Kessler, 

2001; Roundy et al., 2015). Thus, at first glance an effective multiplet could be considered indicative for a rather complex 

spatio-temporal feature. But as we showcase here, it might as well simply result from DD. 

In the only spatial correlation case applied here, the temporal PC patterns are white noise (Section 3.2.12.2.1). Thus, the 

issue of one spatio-temporal feature being represented by two or more PCs is reduced to spatial features only. Effective 645 

multiplets are built by PCs of which the orientation of their eigenvectors, i.e. their spatial patterns, in the DD sequence is 

ambiguous. Therefore, their patterns are very sensitive to even small variations inof the analysed data. All the multiplet 

members in combination describe a spatial feature of the data set. Thus, in case of a degenerated pair, a variation in the one 

pattern implies a complementary variation in the other. For the simple geometric shapes here, the pair´s spatial patterns from 

an ensemble of data sets simulated with identical spatial domain and spatial correlation properties will usually exhibit two 650 

predominant patterns with ambiguous ranking. Gradual variations of the predominant patterns and the switches in the 

ranking result simply from the randomness of the simulations. 

For example, the two predominant spatial patterns of the degenerated pair formed by PC 3 and 4 from data sets simulated 

with rectangular domain (20 × 10 cells), isotropic spatial correlation with exponential decay and a correlation length of 10 

cells (Figure 8Figure 5b) randomly switch rank between distinct data sets (Figure 15Figure 13). This results in the low 655 

stability of the PC 3 and 4 patterns from the respective ensemble (Figure 7Figure 4b). For both PCs, the correlation of the 

ensemble´s patterns converge for long simulated time series around a mean R2 of 0.5, indicating that the degeneracy of this 

pair cannot be resolved with longer time series. The complementarity of both parts of the pair is visible in the ensemble´s 

mean and standard deviation patterns. The standard deviation pattern of PC 3 reflects an absolute variant of the mean spatial 

pattern of PC 4, and vice versa (Figure 9Figure 6b and Figure 8Figure 5b). The R2s of the correlation between the two 660 

patterns were 0.64 and 0.78, respectively. The aCCs of the two patterns were. 0.95 and 0.96. 

Note, however that degeneracy might cause domain dependent patterns that don´t seem to be DD patterns because they are 

intermixed into new patterns. For example, in Figure 15 the patterns of the multiplet pairs of simulations 1, 4 and 5 exhibit 

different patterns than those of simulations 2 and 3. 

Symmetry of the domain shape triggers degeneracy (North et al., 1982). Thus, generally, it is recommendable to check 665 

spatial PCA results from data with symmetric domains for DD induced degeneracy. For example, the data sets simulated 

with the square domain yielded the four effectively degenerated PC pairs PC 2+3, PC 5+6, PC 7+8 and PC 9+10 (Figure 

7Figure 4a). Again, the complementarity within the pairs yields standard deviation patterns of the one PC reflecting an 
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absolute version of the mean spatial patterns of the counterpart PC (Figure S2Figure 7). The R2s between match of the 

respective two patterns was very close, with ere all R2s being larger than 0.810 and all aCCs being larger than 0.95.  670 

Asymmetrical distribution of locations diminishes the likelihood probability of DD induced degeneracy. In the subsampling 

variants (Figure 12Figure 10 and Figure S3Figure S1) most of the degenerated PC pairs of the all cells variant (Figure 

7Figure 4) disappeared. The subsampling reduced the symmetry of the domain shape, resulting in a less ambiguous 

orientation for the eigenvectors. Consequently, the order of the DD sequence is clearer defined.  

Effective degeneracy depends not only on the spatial domain but also on the effective sample size of the series, which equals 675 

here the time series lengths (Section 3.4 2.2.2). For example, in the triangular domain the effective degeneracy of the PC pair 

6+7 which is prominent at a time series length of 2000 gradually disappears with increasing time series length (Figure 

7Figure 4c). However, for very symmetric domains no sample size might be sufficient to resolve the degeneracy (e.g., see 

PC 2+3 and 5–10 of the square domain in Figure 7a or Table II in Richman, 1986). 

Commonly, degenerated multiplets are detected qualitatively by checking for noticeably similar eigenvalues of PCs with 680 

adjacent ranks, forming steps in the sequence of the PC eigenvalues, or quantitatively with North´s rule of thumb (Figure 

S6Figure S4). Analogue steps in the sequence of contrasts can serve as additional indication (Figure 14Figure 12). With the 

stochastic DD reference method these steps are particularly pronounced, standing out as PCs of adjacent ranks with similar 

and rather low contrasts given their position in the DD sequence, e.g. PC 2+3, PC 5+6, PC 7+8 and PC 9+10 for most 

correlation lengths in Figure S5Figure S3a, and PC 3+4 for spatial correlation length of 10 cells in Figure S5Figure S3b. It is 685 

an effect of averaging patterns that switch ranks between the data sets from an ensemble. The magnitude of the drop depends 

on the specific patterns that are averaged.   

Note also, that intermixing might be easier overlooked for the smaller eigenvalues that are more closely spaced. If the 

analysist selects PCs to separate noise from signal, this could possibly result in truncation within a multiplet and 

consequently intermixing of noise and signal in the last considered PCs. Here, we selected the first ten PC merely for the 690 

illustrative purpose (Section 4.1). If the goal would be to further analyse PC 10, it would be necessary to check its patterns 

for intermixing - also with the subsequent PCs, in particular PC 11. Indications for intermixing in the PC 10 pattern can be 

seen in the stability plots of Figures Figure 7a, Figure 12c, Figure S3a+c. In case of Figure 12c, PC 9 does not show sign of 

intermixing, thus, in this case the intermixing is probably with PC 11. 

 695 

 

Figure 1513 Spatial patterns of the degenerated PCs 3 and 4 from five distinct data sets, each simulated with rectangular domain 

(20 × 10 cells), isotropic exponentially decaying spatial autocorrelation of correlation length 10 cells and time series length 10 000. 

Identical properties were used to simulate the ensembles from Figure 7Figure 4b, Figure 8Figure 5b and Figure 9Figure 6b. The 

spatial patterns that belong to the same data set are plotted above each other with PC 3 on the top (white panel titles) and PC 4 on 700 
the bottom (grey panel titles). The index of the simulated data set and the fraction of assigned variance is given in the panel titles. 
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5 Approaches to Cconsidering DD 

The preceding section introduced different aspects of DD. It demonstrated the strong effect the domain´s size and shape can 

have on spatial PC patterns from S-mode PCA. In this section we continue with suggestions how to detect and 705 

considerdiminish DD. Note, however, that S-mode is not the only option to analyse synchronous time series of one variable 

measured at multiple locations with PCA (Richman, 1986; Demšar et al., 2013; Isaak, et al., 2018). Recall that PCA 

summarizes the covariance of the data set´s variables. In S-mode PCA the time series from the different locations are used as 

variables and the values from the instants of time are used as observations. Thus, the covariance between time series from 

different locations is analysed. S-mode PCA can be used to identify locations with similar temporal patterns, for example 710 

groundwater wells with similar water level dynamics (Winter et al., 2000; Lehr and Lischeid, 2020). In T-mode PCA the 

instants of time are used as variables and the values from the different locations are used as observations, i.e. the S-mode 

data is transposed. Thus, the covariance between spatial patterns from different instants of time is analysed. T-mode PCA 

can be used to identify times with similar spatial patterns which can be useful in the analysis of system states. For example, 

Isaak et al. (2018) used it to identify winter and summer regimes of daily stream water temperature and the transition 715 

between both phases. Both modes are related and produce spatial and temporal PC patterns. Accordingly, DD should be 

considered in both. However, in hydrology T-mode PCA is way less common. So, for the introductory purpose here we 

restricted us to the S-mode case.  

 

5.1. Detecting DD 720 

5.1.1. Comparing spatial PC patterns from markedly different subdomains 

The simplest way to check whether the spatial PC patterns of a data set are affected by DD is to visually compare the spatial 

PC patterns from sub-data sets with markedly different domains. It Such a comparison can serve as quick qualitative check 

to detect cases in which DD is a prominent feature. We recommend to perform partitioning of the original domain with basic 

geometric domain shapes like we used here. Thus, first take a subset with a square shaped domain, then taking from the 725 

squared shaped domain further subsets with rectangular and triangular domains of different orientation and compare the 

spatial PC patterns of these subsets. This proceeding is demonstrated in the associated dDemo scripts of the associated script 

selection (Lehr, 2024).  

A real-world data case is shown in Figure 16. Three sets of spatial PC patterns with square, rectangular and triangular 

domains were derived from raster of monthly precipitation sums from the years 1991 to 2020 in northeast Germany (Section 730 

2.2). The square domain is the 200 km × 200 km square from the 1 km × 1 km precipitation grid in Figure 3. The rectangular 

and triangular domain were fitted in the square domain, analogue to the proceeding with the synthetic examples (Figure 6). 

Thus, the data sets consist of time series with 360 months length and 40 000 locations in case of the square domain, and 

20 000 locations in case of the rectangular and triangular domains. The DD of the spatial PC patterns is clearly visible 

(Figure 16). Visually, the spatial PC patterns appear as noisy variants of the already well-known Buell patterns (Figure 1 and 735 

Figure 8). The very strong accumulation of variance in the centred monopole pattern of PC 1 (Table 3, Figure 16) is another 

indication for DD. Thus, in this case the quick check already clarifies the DD of the PCA results.   

If the subdomains are of similar size, the focus is primarily on the domain shape aspect.  

Analogue, the PCA results can be checked for dependency from the selected domain size. However, we assume that 

commonly an analysis is focused on a specific scale and the domain size as well as the interpretation of results fit to that 740 

scale. Thus, usually the dependency from the domain´s shape should be more an issue than the dependency from its size.  
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Figure 16 Overview of the leading ten spatial PC patterns from the PCAs of the precipitation data with the square, rectangular 

and triangular domain. The location of the square domain is marked in Figure 3. The two other domains are fit in the square 745 
domain. 

 

 PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 

Square 79.96 4.93 3.69 1.58 1.16 0.90 0.55 0.44 0.44 0.37 

Rectangle 83.22 5.06 2.49 1.30 0.92 0.67 0.61 0.42 0.36 0.32 

Triangle 82.79 5.04 3.01 1.35 0.78 0.61 0.56 0.47 0.39 0.31 

Table 3 Fractions of assigned variances in percent from the PCAs of the precipitation data with the square, rectangular and 

triangular domain (Figure 16). 

 750 

5.1.2. Comparison with DD reference patterns 

DD reference patterns can be tailored for defined spatial domain and spatial correlation properties of a data set. Spatial PC 

patterns can be visually compared against the reference or checked for significant deviations from the reference with the 

congruence coefficient or simple correlation analysis (Table 1Table 1). With the stability analysis of the stochastic method 

(Figure 7Figure 4) or the confidence intervals of the analytic method (Figure S6Figure S4) it can be identified for each PC 755 

rank which time series length is required to reach stable and clearly defined DD patterns. Consequently, PCA results from 

(observed) data sets with identical spatial domain and spatial correlation properties but shorter time series have to be 

interpreted with the reservation that the DD might be stronger than the comparison with the reference suggests. The fractions 

of variance represented by the DD reference (Figure 11) can serve as benchmark, e.g. to consider only the patterns from PCs 

that represent more variance than their reference counterpart.  760 

As a real-world data case we look again at the precipitation PCAs (Figure 16). DD reference patterns were fitted for all three 

domains using an isotropic spherical covariance model and the analytic method (Figure S7). The spatial patterns of the 

leading precipitation PCs exhibited strong similarity with their DD reference counterparts (Table 4), clearly indicating DD. 

For the first four PCs, the main difference was the separation of PCs 2+3 from the square domain in the precipitation PCAs 

(Figure S8) which form a multiplet in the DD reference (Table S1). Meaning, while typical DD patterns occurred, the 765 

deviations of the precipitation PCA patterns from the pure theoretical DD case were strong enough to result in a clear 

ranking. In accordance with the findings of the synthetic experiments (Figure 13), the very large fraction of variance 

assigned to PC 1 of the precipitation PCAs (Table 3) is reflected in the very large theoretical correlation length of the DD 

reference (Figure S7), being substantially longer than the domain size.  

That the patterns of the low ranked PCs exhibit stronger deviations from the DD reference than those of the leading PCs is 770 

no indication against DD. Recall that PCs should not be analysed in isolation, but only in reference to all PCs with preceding 

ranks. If the leading PCs exhibit DD, DD for the whole sequence of PC patterns can be concluded. It is not necessary to find 
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DD reference patterns that perfectly fit to the patterns of the low ranked PCs for such conclusion. Because of the more finely 

structured spatial patterns, it can be expected that the patterns of the low ranked PCs from real-world data will deviate 

stronger from the DD reference than those of the leading PCs. Thus, the comparison with the DD reference confirmed the 775 

finding of strong DD from the visual comparison of the patterns from the three domains (Section 5.1.1).  

We introduced building DD reference patterns for data sets exhibiting isotropic spatial but no temporal autocorrelation. It 

enables to test the null hypothesis that the spatial PC patterns from observed data merely result from simple isotropic spatial 

autocorrelation between random white noise time series. The main feature of the null hypothesis is the ratio of spatial 

correlation length to the domain size, in particular to the distances between the data set´s locations. To our knowledge, such 780 

test was suggested first by Cahalan et al. (1996). They fitted models to observed precipitation and temperature data and 

compared the eigenvalues and spatial PC patterns of observed and modelled data. Significant differences between the two 

eigenvalue spectra were considered to be “signal” and indicative for spatial anisotropies and inhomogeneities, 

“inhomogeneous processes”, combined space and time correlation, or (secular) trends.  

However, DD is not restricted to the isotropic case (see “directional functions” in Buell (1975)). An anisotropic example for 785 

our three basic domains is given in the supplements. Compared with the "default" isotropic case, the DD patterns are 

distorted according to the direction and the ratio between longest and shortest spatial correlation length of the anisotropy 

(Figure S9Figure S5 vs Figure 8Figure 5). The spatial PC patterns tend to stabilize for shorter time series length (Figure 

S10Figure S6 vs. Figure 7Figure 4) and the PCs which form degenerated pairs are better separated (see the bigger 

differences between the fractions of assigned variance and the smaller magnitudes of the standard deviation patterns in 790 

Figure S11Figure S7 vs. Figure S2Figure 7). Both aspects reflect that the anisotropy gives a less ambiguous orientation for 

the DD sequence.  

Elaborating on the DD of PC patterns from data sets with homogeneous autocorrelation in space and time is beyond the 

introductory scope here. However, spatially inhomogeneous temporal trends are indicative for distinct processes, modes or 

alike. They are likely to spread over more than one PC (Hannachi et al., 2007; Hannachi, 2007) and to affect the variance 795 

distribution among the PCs (Vejmelka et al., 2015). Thus, if the goal is not DD assessment but to construct reference patterns 

for the identification of distinct features, they should be considered. 

DD reference patterns are rather well behaved. The main decisions for their construction are the choice between an isotropic 

or an anisotropic model, and the selection of the correlation length. The first primarily defines the typical patterns that appear 

(e.g., Figure 8 versus Figure S9), the second the variance distribution (Figure 13, Section 4.3). In comparison, the effects of 800 

different spatial covariance model types like exponential, gaussian or spherical are less important. For practical applications, 

the comparison with the spatial patterns is the main point rather than the exact reproduction of the variance distribution. A 

perfect fit is not required. The spatial patterns are very similar for a wide range of correlation lengths. This holds in 

particular for those of the leading PCs which are commonly used in practical applications. 

 805 

 Precip PC 1 2 3 4 5 6 7 8 9 10 

Square aCC 1 0.95 \3 0.95 \2 0.95 0.94 0.94 0.81 0.84 0.74 \10 0.54 \9 

R2 0.77 0.91 \3 0.90 \2 0.90 0.88 0.88 0.65 0.71 0.54 \10 0.29 \9 

Rectangle DDref PC 1 0.99 0.98 0.94 0.91 0.85 0.67 0.77 0.44 \7 0.35 \9 

R2 0.73 0.98 0.96 0.88 0.83 0.72 0.45 0.59 0.19 \7 0.12 \9 

Triangle DDref PC 1 0.95 0.93 0.96 0.91 0.86 \7 0.89 \6 0.69 \9 0.77 \8 0.69 

R2 0.76 0.90 0.86 0.93 0.82 0.74 \7 0.80 \6 0.47 \9 0.59 \8 0.48 

Table 4 As in Table 1 but for the comparison of the spatial PC patterns from the precipitation data (Figure 16) and the 

corresponding DD reference patterns (Figure S7). 
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5.2. Approaches to dDiminishing DD 

5.2.1. Subsampling of domains 810 

Analysing a subsampled data set with enlarged minimal distance between the locations can be used to diminish the DD of 

the PCA results. Reducing the symmetry of the domain can remove effective multiplets. Both It can help to carve out 

features other than DD. On the other hand, informative local details might be filtered out together with the excluded 

locations. If there is still DD, the new DD patterns of the subsampled data set might be harder to recognize visually because 

of the smaller number of locations per area. The selected minimal distance, respectively the selection of locations, The 815 

choice of the threshold is critical for the analysis. Depending on the selected minimal distancechoice, different features in the 

results might stick out, get diminished or even disappear. In any case, the spatial resolution of the analysed data set has to be 

considered in the interpretation of the results. Also, only stable PC patterns should be used to draw conclusions on the 

analysed system. The stable PC patterns are those which are rather insensitive to the specific selection of analysed locations. 

They can be identified by comparing the PCA results from different subsamples (Smirnov, 1973; Lins, 1985a; Lehr and 820 

Lischeid, 2020). 

 

5.2.2. Rotation of PCsPC eigenvectors 

Another option to diminish DD is to rotate the PCs of interest (Richman, 1986; Dommenget, 2007). Different rotation 

methods are available, e.g. varimax. The side effect is that the rotation changes the properties of the PCs. Depending on the 825 

applied method either the orthogonality of the eigenvectors, the uncorrelatedness of the PCs or both get lost (Jolliffe, 2002). 

In addition, the variance among the rotated PCs is redistributed more evenly, potentially affecting which PCs are rated 

dominant (Jolliffe, 2002). Besides the selection of the rotation method, it has to be decided which PCs to rotate. Both choices 

influence the results and have to be considered in their interpretation. Another option that can diminish DD is to rotate the 

eigenvectors from the PCs of interest (Richman, 1986; Dommenget, 2007; Compagnucci and Richman, 2008). Often 830 

unrotated PCA results exhibit DD patterns, while rotated PCA seem to be less affected (Richman, 1986; Huth and Beranova, 

2021). This finding is supported by experiments using synthetic data. Compagnucci and Richman (2008) analyzed different 

synthetic sequences of basic sea level pressure flow patterns ("plasmodes"). The unrotated S-mode patterns were 

systematically affected by DD. In the rotated variants the DD patterns vanished. 

Exemplarily, we varimax rotated the leading spatial PC patterns of the precipitation PCAs (Figure 16) in three variants, using 835 

the first two PCs (2rPCs), the first three PCs (3rPCs) and the first four PCs (4rPCs) (Figure 17). The first four precipitation 

PCs were clearly separated in all three domains (Figure S7), thus, no multiplets were split by the rotations (Section 4.4). As 

expected, the variance distribution among the rotated PCs (Table 5) was much more even compared to the unrotated PCs 

(Table 3). Note, that the newly assigned fractions of variance do not any longer decrease continuously with the PC ranks in 

all cases. Note also, that the fractions of variance that are assigned to distinct patterns, for example to the diagonal gradient 840 

of the triangular domain, depend on the number of PCs that are rotated (Table 5). The magnitude of the pattern contrasts was 

more evenly distributed among the rotated PCs (Table S2) than among the unrotated PCs (Table S3). Most of the rotated 

patterns exhibited only positive or only negative loadings (Table S2), indicating a more "simple structure" (Section 3.5; 

Richman, 1986) than the unrotated patterns (Table S3).  

In all three rotation variants, the patterns were clearly dependent on the domain geometries (Figure 17). For example, the 845 

patterns of the 2rPCs variant showed gradients from southwest to northeast in the square domain, from west to east in the 

rectangular domain and from north-west to south-east in the triangular domain. Thus, in our case here, varimax rotation was 

not successful in resolving DD. Instead, the patterns of the rotated PCs seemed to be the varimax way of displaying DD. The 
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dominant PC 1 monopole of the unrotated PCA disappeared and the new dominant patterns are gradients reflecting the 

domain shape. For example, the gradients of the square domain from the 4rPCs variant reflect the rotational symmetry of the 850 

square (Figure 17a, right panel), or the gradients of the rectangular and triangular domain associated with the major fractions 

of variance (Table 5) depict in all three rotation variants the longest extent of the domain (Figure 17bc). The examples 

demonstrate that while rotated eigenvectors are generally considered to be less prone to DD (Richman, 1986; Wilks, 2006), 

there is no guarantee that rotation will remove or even diminish DD (NCAR, 2013). 

Except from being less prone to DD, rotated PCA results were found to be more robust against spatial (Richman, 1986) and 855 

temporal (Cheng et al., 1995) subsampling and less sensitive to degeneracy (Richman, 1986). Rotation can support the 

interpretation of effective multiplets if the resulting PCA patterns are of more simple structure (Jolliffe, 1987; 1989). 

Rotating only multiplet members limits thereby the drawbacks of rotation (Section 3.5) to the multiplet (Jolliffe, 1989). 

Rotated PCA results were also found to be easier to interpret physically (Richman, 1986). Rotation can be used to 

systematically relax distinct PCA constraints that hamper physical interpretation (Hannachi et al., 2007; Monahan et al., 860 

2009) by choosing between orthogonal and oblique rotation and selecting a simplicity criterion that suits best to the analysed 

system. In the aforementioned analysis of synthetic sea level pressure flow patterns, Compagnucci and Richman (2008) 

found the rotated PC patterns to be superior in depicting the "true" flow patterns. In a study using atmospheric reanalysis 

data, Huth and Beranova (2021) compared the spatial patterns from four PCA derived modes of climatic variability with 

autocorrelation maps of the analysed data to identify the true modes of climatic variability. Only the one mode based on 865 

rotated PC patterns (North Atlantic Oscillation) corresponded well to underlying autocorrelation patterns, the modes based 

on unrotated PCA did not. However, these studies indicating that rotated PC patterns are more suitable for physical 

interpretation focused primarily on atmospheric mode detection.  

For future work, we suggest to perform a study similar to Compagnucci and Richman (2006), but with a hydrological focus. 

Synthetic data from a hydrological simulation model could be analyzed, to test which hydrological features of the model can 870 

be uncovered by the patterns of the PCs. The test data could be, for example, spatially distributed groundwater level series 

simulated with a groundwater model. The experiments could be used to compare the performance in hydrological feature 

identification of unrotated versus rotated PCA and orthogonal versus oblique rotation, but also of S-mode versus T-mode 

PCA (Richman, 1986; Compagnucci and Richman, 2006; Isaak, et al., 2018) and different scaling of the eigenvectors 

(Jolliffe, 1995; Wilks, 2006).  875 

 

 

Figure 17 Leading varimax rotated spatial PC patterns from the PCAs of the precipitation data with the square, rectangular and 

triangular domain (Figure 16). The rotation was performed with the first two PCs (2rPCs), the first three PCs (3rPCs) or the first 

four PCs (4rPCs). 880 
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2rPCs 3rPCs 4rPCs 

rPC 1 rPC 2 rPC 1 rPC 2 rPC 3 rPC 1 rPC 2 rPC 3 rPC 4 

Square 44.84 40.05 32.95 30.92 24.71 27.77 24.44 20.92 17.03 

Rectangle 44.00 44.28 18.36 37.43 34.97 19.28 36.85 33.16 2.78 

Triangle 46.69 41.14 26.61 34.26 29.96 4.78 32.93 26.36 28.11 

Table 5 Fractions of assigned variances in percent from the varimax rotated spatial PC patterns from the precipitation PCAs 

(Figure 17). 

 

6 Conclusion 885 

Spatial patterns from S-mode PCA are regularly used for hydrological interpretations. In such analysis, homogeneous spatial 

correlation between the data sets` time series results in spatial PC patterns that are determined by the size and shape of the 

analysed spatial domain (domain dependence: DD). DD patterns are distinct, with strong gradients and contrasts. We showed 

that DD can come together with substantial accumulation of explained variance in the leading PCs. Thus, in contrast to what 

one might expect, neither distinct spatial PC patterns nor large fractions of explained variance in the leading PCs do 890 

necessarily indicate dominant hydrological processes or hydrologically meaningful properties. In addition, DD can induce 

effectively degenerated multiplets (effective multiplets). Without knowledge about DD, the multiplets can be misinterpreted 

as indication for complex spatio-temporal features. Without knowledge about multiplets, the multiplet members can be 

mistaken as effects of independent hydrological processes. Without knowledge about the effects of multiplets, DD can be 

overlooked because the degeneracy can mask the expected DD patterns. 895 

In summary, if DD is predominant, the spatial PC patterns do not reflect the hydrological functioning of the analysed system 

but rather the functioning of the PCA within the context of the data set´s spatial domain. Ignoring DD and effective 

multiplets easily leads to wrong hydrological interpretations. Consequently, DD should be considered for any application in 

which the PCs are used to draw conclusions about spatially distinct properties of the analysed system. In other words, it 

should be checked whether the spatial PC patterns differ significantly from patterns that result from the trivial case of nearby 900 

locations being homogeneously more related than those further apart. 

Classical Buell patterns (PC 1: "mean behaviour", PC 2: gradient along the longest extent of the domain, lower ranking PCs: 

regular multipoles) and leading PCs with remarkably similar eigenvalues (effective multiplets) are an alert for DD. However, 

deviating patterns or clearly separated PCs are no contra-indication. DD patterns are original for every combination of spatial 

domain and spatial correlation properties. Thus, visual detection of DD is rather limited. Still, vVisual comparison of the 905 

spatial PC patterns from subdomains with markedly different shapes and / or sizes is practical merely as quick qualitative 

check.  

To test whether spatial PC patterns differ significantly from DD patterns, reference patterns can be used as null hypothesis. 

For most practical applications checking the first few leading PC patterns should be sufficient. We presented two methods to 

produce DD reference patterns. For the introductory purpose, we focussed on the stochastic method. The comparison of data 910 

sets simulated with identical spatial domain and spatial correlation properties showed directly the ambiguity of the PC 

ranking within DD induced multiplets, including the variations of the predominant patterns. FurthermoreAlso, the working 

with simulated data is less abstract than the working with the analytic covariance matrix. For practical applications the 

analytic method is preferable. Its short computation time is a big advantage, especially when producing DD reference 

patterns for data sets with many locations.  915 

Passing the check for DD and accounting for effective multiplets in the selection of the PCs are necessary but not sufficient 

conditions to assure physical meaningfulness. When single PCs, or combinations of PCs, are assigned to distinct 
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hydrological features, it should be carefully considered whether the S-mode PCA constraints (i) successive maximization of 

variance on the PCs, (ii) orthogonality of spatial PC patterns and (iii) linear uncorrelatedness of temporal PC patterns support 

such interpretation. The spatio-temporal PC patterns should not only be checked for resemblance with the postulated 920 

features, but also the invariance of the spatial and temporal PC patterns against subsampling should be approved. Building 

on this study, a next research task could be to conduct systematic experiments with synthetic test data derived from 

hydrological simulation models to evaluate which PCA modes, rotation methods and scaling of the eigenvectors work best 

for hydrological feature identification. 

  925 
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Appendix A – PCA reference patterns based on the analytic covariance matrix 

Deriving reference patterns with the analytic covariance matrix to evaluate PCA results was applied earlier by Cahalan et al. 

(1996) and Dommenget (2007). They modelled the evolution of a continuous meteorological field as stochastic spatially 

isotropic diffusion process, i.e. a spatial first order auto regressive (AR(1)) or "spatial red noise" process, and used the spatial 

PC patterns derived from the analytic covariance matrix of the model as null hypothesis for the spatial structure of climate 930 

variability.  

Dommenget (2007) presented two adaptations of the analytic covariance matrix. In the first, for each pair of locations, the 

product of the standard deviations from the time series of the two locations is multiplied with their covariance calculated 

with the covariance function. The resulting spatial PC patterns provide the clean structuresmooth pattern of the globally 

fitted covariance function weighted with the data set´s spatial distribution of covariance magnitude. In the second, the 935 

analytic covariance matrix is adapted to simulate the effect of areas with increased stochastic forcing. Areas with larger 

variance than the surrounding are defined and used for the weighting of the covariance matrix. In numerical experiments the 

effect of monopole, dipole or multipole structures in the data on the spatial PC patterns can be tested. Note that both variants 

are adaptations of the covariance matrix. Thus, other than in this study, the data must not be z-scaled prior PCA. 

In addition, Dommenget (2007) suggested using the spatial PC patterns from an analytic covariance matrix as null 940 

hypothesis to find spatial PC patterns “that are most distinguished from those of the null hypothesis”. These so called 

Distinct Empirical Orthogonal Functions (DEOFs) are derived by rotating the eigenvectors of the observed data to maximum 

difference in explained variance between the EOFs of observed data and those of the analytic covariance matrix. A Matlab 

script to perform DEOF analysis is available as supplementary material to Dommenget (2007). The DEOFs were suggested 

as starting point to identify teleconnections patterns or physical processes. Even though not in focus, DD patterns of the null 945 

hypothesis were observed and described as hierarchy of multipoles, “starting with a monopole as EOF-1, followed by a 

dipole, and then by higher order multi poles”. In analogy to the spectrum of time series the DD sequence was interpreted as 

reflection of different spatial scales. The DEOF approach can be also used to compare the spatial variability modes from 

different data sets (Bayr and Dommenget, 2013). For data sets exhibiting temporal trends detrending prior applying DEOF is 

recommended (Hannachi and Dommenget, 2009). 950 

 

Appendix B – Effectively degenerated multiplets 

An eigenvalue is called degenerate if it is associated with more than one linearly independent eigenvector. That is, the 

eigenvalue is repeated (non-distinct), its multiplicity is larger than one. In the PCA case, the algebraic multiplicity of an 

eigenvalue (the multiplicity of the eigenvalue as a root of the characteristic polynomial) equals always its geometric 955 

multiplicity (the dimension of its eigenspace) (Hefferon, 2020; Meyer, 2000) because PCA performs an eigenvalue 

decomposition of a symmetric matrix (see “spectral theorem for symmetric matrices”, e.g. in Lay (2016) or "real spectral 

theorem" e.g. in Larson and Falvo (2009)). A degenerate eigenvalue together with its eigenvectors is called degenerate 

multiplet. The eigenvectors span the subspace of the degenerate multiplet. Within this subspace their orientation is not 

uniquely defined and they can be arbitrarily rotated (von Storch and Zwiers, 2003). Any linear combination of the 960 

eigenvectors from the multiplet is as well an eigenvector of the eigenvalue (North et al., 1982; Hefferon, 2020).  

In real-world data sets, perfectly symmetric distribution of variance such that degeneracy in the strict sense appears is 

unlikely to happen. However, if the eigenvalues of the “true population” are of very similar size, the sampling variability and 

errors can lead to “effective degeneracy” (North et al., 1982) with eigenvalues that are “indistinguishable within their 

uncertainties” (Hannachi et al., 2007) and eigenvectors that are random mixtures of the true population´s eigenvectors (North 965 

et al., 1982). 
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This shall be illustrated with a slightly extended variation of an illustration given by Wilks (2006). We start with degenerated 

multiplets in the strict sense, i.e. an eigenvalue with more than one eigenvector. Consider a 3D point cloud with perfectly 

spheroid shape (idealized rugby ball). It has one long axis and two short axes of identical size. The cloud´s first eigenvector 

is aligned with the long axis and its eigenvalue depicts the variance of the cloud in this direction. The second and the third 970 

eigenvector can be any pair of orthogonal vectors that are orthogonal to the long axis. They share a common eigenvalue. 

Thus, the variance representation is split in equal parts in the plane orthogonal to the first eigenvector. If we compare the 

eigenvectors from random subsamples of this data set, the orientation of the first one would be very stable, while the 

orientation of the second and third would exhibit large sampling variability. This correctly reflects the ambiguous orientation 

of the second and third true population eigenvector.  975 

In the “effective degeneracy” case the eigenvalues are merely of very similar size. Consider again a spheroid shaped cloud 

but this time with the two shorter axes being of slightly different size (a slightly deflated rugby ball squeezed perpendicular 

to its long axis). Now the orientation of the second and third true population eigenvectors is distinct and both have distinct 

eigenvalues. Their share to the variance representation differs. If we compare again the eigenvectors from random 

subsamples of the data set, the question is whether the sampling is accurate enough to detect the slight difference in size of 980 

the two shorter axes and whether the detection of the difference is stable among the subsamples? If this is not the case, the 

second and third sample eigenvalues are “effectively degenerate”. Together with their eigenvectors they build an “effective 

degenerate multiplet”. Thus, again the orientation of the second and third eigenvectors exhibits large sampling variability but 

this time because of the limited sampling accuracy. Due to the ambiguity of their orientation the pair is a potentially arbitrary 

mixture of the unknown true population eigenvectors (Wilks, 2006). Within the “accuracy range” determined by the 985 

subsampling, the fraction of the cloud´s variance depicted by the plane orthogonal to the first eigenvector is approximated 

with the ratio of the sum of the multiplets´ eigenvalues to the sum of all three eigenvalues. 
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Ddemo to get into the functioning and logic of the scripts. For the Ddemo and the stochastic reference script, it is best to start 

with the pdf documentation which includes a formatted version of the script, extra annotations and sample results. All scripts 

are written in R (R Core Team, 2019). The simulations of the data sets are performed with the “RandomFields” package 
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Supplements 

 1180 

Figure S1 S-mode PCA, adapted after Fig. 9 in Richman (1986). n: number of locations, m: number of time steps. The eigenvalues 

define the explained variance, the loadings the unscaled spatial PC patterns and the scores the temporal PC patterns. 

 

 

 1185 

Figure S2 Detail plot of mean (a) and standard deviation (b) of the spatial patterns from the leading ten PCs of the data set 

ensemble with the square domain shown in Figure 8a and Figure 9a. The panel titles of (a) contain the mean (and standard 

deviation) of the fractions of variance assigned to the respective PCs from the 100 PCAs of the ensemble. 
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 1190 

Figure S31 Stability of the spatial PC patterns as in Figure 7Figure 4 but for the patterns of the heterogeneous subsampling 

variant (Figure 11Figure 9. 

 

 

Figure S42 Contrast of all DD patterns modelled with the analytic DD reference method using an isotropic exponential covariance 1195 
model, spatial correlation length of 10 cells and the domain boundaries (a) square, (b) rectangle and (c) triangle from Figure 

6Figure 3. All cells within the boundaries were used. Note that the number of PCs depends on the number of analysed series, 

which equals here the number of cells in the domains. 
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 1200 

Figure S53 Contrast of the ten leading DD patterns PCs modelled with the stochastic DD reference method using an isotropic 

exponential covariance model, nine different spatial correlation lengths and the domain boundaries (a) square, (b) rectangle and 

(c) triangle from Figure 6Figure 3. All cells within the boundaries were used. For each correlation length, the DD reference 

patterns were estimated from ensembles with 100 simulated data sets, each with time series length 10 000. 

 1205 

 

Figure S64 Variance representation of the ten leading PCs modelled with the analytic DD reference method using an isotropic 

exponential covariance model, a spatial correlation length of 10 cells and the domain boundaries (a) square, (b) rectangle and (c) 

triangle from Figure 6Figure 3. All cells within the boundaries were used. The upright bars show from left to right the 95 % 

confidence interval for an effective sample size of 100, 1 000 and 10 000 estimated with North´s rule of thumb (North et al., 1982; 1210 
Hannachi et al., 2007). For time series without temporal autocorrelation the effective sample size equals the time series length. 
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Figure S7 Overview of the ten leading DD reference patterns for the spatial PC patterns of the precipitation data sets from Figure 

16. The patterns were estimated with the analytic method with an isotropic spherical covariance model and a spatial correlation 1215 
length of 770 km. For comparison: The mean range of the spherical sample variograms from all 360 monthly 200 km × 200 km 

square precipitation raster (Figure 3) was 824 km. The sample variograms were estimated with the R package "gstat" using the 

default settings and the cut off length set to the side length of the square.  

 
 

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 

Square 80.02 5.68 5.68 1.24 0.99 0.80 0.44 0.44 0.29 0.29 

Rectangle 84.52 6.71 2.24 1.28 0.76 0.48 0.37 0.28 0.21 0.20 

Triangle 84.08 6.25 3.02 1.25 0.75 0.47 0.43 0.33 0.22 0.20 

Table S1 Fractions of assigned variances in percent from the DD reference for the precipitation PCAs (Figure S7). 1220 

 

 

Figure S8 Separation of the leading PCs from the precipitation PCAs (Table 3). The upright bars show the 95 % confidence 

interval estimated with North´s rule of thumb (North et al., 1982; Hannachi et al., 2007) and an effective sample size of 360 (the 

time series lengths of the precipitation data sets). In all three domains, the first PC is substantially larger than the other PCs and 1225 
clearly separated from them. Therefore, the range of the Y-axis is set to the magnitudes of the other PCs. 
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Figure S95 Anisotropic example: Overview of the ten leading DD reference patterns for anisotropic spatial correlation with a 

direction (angle) of 45° clockwise from North and an anisotropy ratio of 2 with the longer spatial correlation length being 10 cells, 1230 
and the domain boundaries (a) square, (b) rectangle and (c) triangle from Figure 6Figure 3. All cells within the boundaries were 

used. The patterns were estimated with the stochastic method from ensembles with 100 data sets, each with time series length 10 

000. 

  

 1235 

Figure S106 Stability of the spatial PC patterns from the anisotropic example in Figure S9Figure S5 for the domain shapes (a) 

square, (b) rectangle and (c) triangle, all for different time series length of the simulated data. For each time series length 100 data 

sets were simulated with identical parametrisation. Each simulated data set was analysed separately with PCA. Symbols depict the 

mean R2 of the correlation between the spatial patterns of all PCs with identical rank derived from the respective ensemble of all 

100 simulated data sets. The legends in (c) apply also to (a) and (b) of the respective row. 1240 
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Figure S117 Detail plot of mean (a) and standard deviation (b) of the spatial patterns from the leading ten PCs of the data set 

ensemble with the square domain shown in Figure S9Figure S5a. The mean (and standard deviation) of the fractions of variance 

assigned to the respective PCs from the 100 PCAs of the ensemble is given in the panel titles of (a). 1245 

 
 

2rPCs 3rPCs 4rPCs 

rPC 1 rPC 2 rPC 1 rPC 2 rPC 3 rPC 1 rPC 2 rPC 3 rPC 4 

Square 0.68 0.58 0.69 0.62 0.64 0.65 0.61 0.66 0.58 

Rectangle 0.56 0.5 0.59 0.57 0.54 0.64 0.55 0.51 * 0.55 

Triangle 0.53 0.55 0.59 0.63 0.53 * 0.52 0.63 0.59 0.54 

Table S2 Contrasts (differences between minimum and maximum) of the varimax rotated spatial PC patterns from the 

precipitation PCAs (Figure 17). Most rotated patterns exhibited either only negative loadings or only positive loadings. Patterns 

with both positive and negative loadings are marked with *.   

 1250 
 

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 

Square 0.24 0.82 0.70 0.53 0.51 0.46 0.36 0.30 0.30 0.42 

Rectangle 0.19 0.69 0.59 0.44 0.38 0.36 0.43 0.32 0.26 0.31 

Triangle 0.17 0.75 0.67 0.49 0.37 0.37 0.33 0.35 0.32 0.29 

Table S3 Contrasts (differences between minimum and maximum) of the unrotated spatial PC patterns from the precipitation 

PCAs (Figure 16). Except from the patterns of PC 1, all patterns exhibited positive and negative loadings.  

 


