
Dear editor, Dear referees,  

thank you very much for your work and contributions. Based on your detailed comments we 

substantially revised the manuscript. We took great care to reply to all raised aspects and we 

included most of your suggestions in the revised manuscript.  

Following the suggestion of the editor, we included also three main aspects we refrained from 

in our primary replies and suggestions to your comments. In particular, we added 

(1) the congruence coefficient as matching coefficient in addition to Pearson 

correlation,  

(2) an application example with precipitation raster data (real-world data case), and  

(3) a rotation analysis with the precipitation data. 

Please find below our updated replies to all referee comments. 

Best regards 

Christian Lehr and Tobias Hohenbrink 
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Reply to referee 1 

Comments of referee 1 are in black. 

Replies of the authors (AR) are in blue. 

The update of the AR for the major revision of the manuscript are marked with red. The initial 

replies were only altered when there were substantial changes. Thus, we did not change the 

tense in every reply and we did not include every minor change in spelling or phrasing. 

------------------- 

Comments of referee 1 

https://hess.copernicus.org/preprints/hess-2024-172#RC1 

Review of Technical Note: An illustrative introduction to the domain dependence of spatial 

Principal Component patterns by Lehr and Hohenbrink. 

Major comments 

This manuscript attempts to extend the study of how analyzing data on various shaped spatial 

domains affects the principal component loading patterns.  The extension is both in content, as 

new material is added to the existing literature and the authors hope to gain the audience of 

hydrologists who, by and large, have not been exposed to such a concept.  The importance of 

the work lies in several areas (expanded on below) but the key one is that if the PC loading 

patterns match those that are expected to arise from the shape of the domain, rather than the 

covariance fields, the recommendation should be a full stop on continuing.  Therefore, 

understanding domain dependence is a necessary, but not sufficient condition, for physical 

interpretation of PC loadings.   

Let me add that I like this paper and believe it can be a useful addition to the literature, helping 

analysts to interpret their eigenanalyses.  Therefore, I hope the authors view my extensive 

comments with that in mind.  If I come across as opinionated it is because of my lengthy work 

in this area and if it seems direct, that is my nature.  Regardless, I like this manuscript and hope 

it gets published after further revisions. 

AR: Thank you a lot for your comments and the appreciation of our work. Your comments are 

really helpful and the literature you suggested as well. Thank you also for the kind and 

respectful personal comment directly above, putting the degree of detail and accuracy in your 

comments into context.   

We like to take the opportunity to put our replies to your comments into context as well. You 

spend a lot of effort to examine our work in detail and you offer us a lot of additional 

information in a high degree of detail. We highly appreciate that. If we refrain from some of 

your suggestions it is sometimes simply because it goes beyond the scope of what we want to 

offer here in the journal HESS. Our work is meant as an illustrative introduction for PCA users 

in the field of hydrology who probably never heard of domain dependence and its effects on 

the explained variance distribution, contrasts of the spatial PC patterns, degenerated multiplets, 

etc. - not to mention different scalings of PCA eigenvectors or scores, the congruence 

coefficient, etc.  
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To our feeling, the manuscript is already quite full with all the aspects we included. In fact, 

during the writing process we were even discussing to omit the whole multiplet aspect. Thus, 

we prefer not to extend it further with new aspects. Furthermore, we want to find a balance with 

referee 2 who advocated mainly for restructuring the current manuscript instead of extending it 

further. 

Now for the general comments.  The paper builds upon the pioneering work of C. Eugene 

Buell.  Those papers are cited. Buell (1979) left the reader with this final thought on the subject 

of domain dependence in the last line of his conclusions, stating that unless domain dependence 

was accounted for, on interpreting EOFs, "Otherwise, such interpretations may well be on a 

scientific level with the observations of children who see castles in the clouds".  That is a pretty 

direct and strong statement. Digging deeper into why that can occur, the manner in which 

individual EOFs were being analyzed in the 1970s,...,2020s is by inferring physics by visual 

inspection of the magnitudes and gradients of the EOFs when plotted on maps. There was no 

external or internal validation of the patterns, only conjecture.  With over 50 years of this 

practice, little attention was paid to whether this was a wise idea and thousands of such EOF 

studies emerged, with claims of the importance of the magnitudes and shapes of the patterns, 

many of which looked suspiciously like those patterns Buell generate.  However, we should be 

wiser today and the authors are telling the investigator that if the covariance fields vary across 

a given domain shape but the same basic Buell patterns emerge, perhaps it is castles in the 

clouds rather than physics.  However, there may be something more than a chimera, a mixture 

of signal and domain dependence. We come to learn later in the manuscript that a third 

confounding factor, namely the degeneracy of PC loading patterns with closely spaced 

eigenvalues, playing a role.  It is good to see these factors considered.  

Next, let's discuss PCA as a technique. According to those who understand the method, there is 

general agreement that PCA is useful for data reduction.  In other words, in the type of analysis 

in the manuscript, the time series at n gridpoints or locations can have their covariances 

explained in k PCs where k< 

 

1. Given the above prologue, the authors on lines 408-409 discuss "heavy constraints" of PCA 

that inhibit physical interpretation.  To that good list, I'll add that it has been shown the leading 

PC, by virtue of the constraint of maximal variance can pull multiple unrelated sources of 

variation onto that leading PC, confounding physical interpretation. This should be added. The 

Karl and Koscielny citation (in your reference list already) shows this in their Appendix. Further 

details are given in the annotated manuscript (attached). 

AR: Thank you very much. We will add it. 

2. There is a general lack of agreement on terminology for eigenmodels, that leads to massive 

confusion among users of these techniques. At first when reading this manuscript, I thought the 

authors were applying EAOFs, only to change my opinion later in the manuscript that they were 

applying the PCA model.  The original paper where EOFs were named EOFs, is generally 

attributed to Lorenz (1956).  However, in that report, Lorenz refers to the displays as EOFs of 

space, and EOFs of time, to define what have now mutated somewhat into what are called 

"EOFs", and "Principal Components", respectively.  Assuming a spatial analysis, those EOFs 

of space are unit length (sum of the squares of each EOF's coefficients = 1), whereas the EOFs 

of time are orthogonal vectors, each with a mean of zero and variance equal to the associated 

eigenvalue. In contrast, the PCA model, generally attributed to both Pearson (1901) and more 
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fully to Hoteling (1933). weights (postmultiplies) the unit length eigenvectors (EOFs) by the 

square root of the corresponding eigenvalue to give "PC loadings". That seemingly minor 

change in the spatial patterns (keeping with the definition of space and time given for EOFs) 

results in the time series calculation and properties being different. Those time series in the 

PCA model are called "PC scores" and have mean 0 and variance 1. They are also orthogonal. 

Flip the space and time definitions of these displays if the analysis is temporal. Because the two 

models result in different space and time patterns, they cannot be compared directly and the 

precise equations used are necessary to attempt to reproduce the findings of others. I urge the 

authors to state clearly what model they are using immediately after the introduction and 

show the equation. The situation becomes more complicated as users of these techniques tend 

to grab EOF/PCA code off of various statistical packages or Python code libraries,  that often 

mislabel the results, never checking the specifics, thereby perpetuating the confusion. For the 

current paper, one must know if the analyses are applied to EOFs (unit length eigenvectors) or 

PC loadings (unit length eigenvectors postmultiplied by the square root of the corresponding 

eigenvalues). Further, it would be helpful to know if any of the results for domain dependence 

change as a function of the specific model invoked.  There is considerable confusion about 

this topic when reading this paper. It is important the model being used herein is stated 

unambiguously at the outset of this paper and the equation added in the methods section 

to avoid such confusion. Further adopt the correct terminology for that model and don't 

list any alternative terminology that might confuse the reader. 

AR: We agree, there is a lack of agreement in the literature regarding the terminology. For 

example, the distinction in PCA and EOF model you are suggesting, is only one option that can 

be also critizised (Jolliffe, 2002). Most often, we found the information that PCA and EOF have 

different roots but are interchangeable and that the related terms are used interchangeably (e.g. 

Hannachi et al., 2007; Wilks, 2006). It also appears in a paper that you are highlighting (Huth 

and Beranova, 2021). Thus, to our understanding it is not the main point here to decide between 

the models you are suggesting, but to clearly define the applied terms and to use them 

consistently throughout the manuscript. Here, we certainly agree and thank you for pointing out 

inconsistencies. 

The PCA performed with function "prcomp" in R gives unit length eigenvectors (what you call 

EOFs). These are termed "loadings" in the documentation of the function in R. To our 

knowledge, this is also the way it is commonly used among PCA users in hydrology. These are 

the coefficients used to calculate the PCs. The PC scores have mean zero and the variance 

equals the associated eigenvalue (what you call PCs). Thus, prcomp applies what you call the 

EOF model.  

As postprocessing step, we multiply the unit length eigenvectors with the square root of the 

corresponding eigenvalues (what you call PC loadings). Thus, the sum of the squared 

correlation loadings of a PC equals its eigenvalue. They are equivalent to the Pearson 

correlation of the PCs and the analysed variables, since we apply correlation matrix PCA. To 

emphasize this, we call them "correlation loadings".  

We are aware that the term "correlation loadings" is is not commonly used. However, given the 

lack of agreement regarding the terminology, we prefer that the reader might stumble upon 

"correlation loadings" and is forced to check our definition rather than using the term "loadings" 

where the reader might think of either unit length eigenvectors or the scaled version. 

We use correlation loadings here for several reasons. They provide the Pearson correlation 

range from –1 to 1 which is for most users easy to grasp. The common range also enables to 
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directly compare the contrasts of the spatial PC patters from different PCs or PCAs (L167). 

Finally, it is prerequisite for the calculation of the stochastic DD reference patterns (L208). 

In our set up here, the correlation loadings define the spatial PC patterns, the eigenvectors the 

unscaled spatial PC patterns and the PCs the temporal PC patterns. Note however, that the focus 

in our work is on the spatial PC patterns. The analysed time series are all z-scaled white noise 

series, resulting in the temporal PC patterns being white noise as well. Furthermore, the mean 

correlation loadings from the stochastic method, cannot be used to calculate scores, like with 

the classical loadings (L211). 

For clarification, we will add the equations for the PCA in section 2.1 and for the correlation 

loadings in section 2.1.2 and rephrase the second paragraph of section 2.1.2 to: 

"In correlation matrix based PCA, normalizing the unit length loadings from the the unit length 

eigenvector 𝑎𝑗 of a PC j by multiplying it with the square root of its eigenvalue 𝜆𝑗 is equivalent 

to the Pearson correlation between the scores of that PC 𝑝𝑐𝑗 and the analysed variables 𝑋.  

𝑐𝑗 = 𝑎𝑗√𝜆𝑗 = 𝑐𝑜𝑟(𝑝𝑐𝑗, 𝑋)      (2) 

Thus, the loadings are normalized to the commonly well-known Pearson correlation range from 

-1 to 1 which simplifies reading and interpretation of the PCA results. Here, we use the term 

“correlation loadings” for these normalized loadings 𝑐𝑗. We do so to prevent confusion with the 

coefficients that are used in the linear combination to calculate the PCs, which are not 

normalized to a common range (Equation 1). The sum of the squared correlation loadings 𝑐𝑗 of 

a PC j equals its eigenvalue 𝜆𝑗. Thus, they can be used to calculate the fractions of variance 

associated with the PCs. Note that these normalized loadings are different from the “classical 

loadings”, used in the linear combination to calculate the PC scores, which are not normalized 

to a common range. To prevent confusion, we use the term “correlation loadings” for the 

normalized loadings. In the following, the spatial PC patterns are described with correlation 

loadings c only.  

𝑐𝑗 = 𝑎𝑗 ∗ √𝜆𝑗  

For S-mode PCA, the normalization enables direct comparison of the contrasts of spatial 

patterns from different PCs or PCAs. Here, we define the contrast of a spatial PC pattern as the 

range between the minimum and maximum of the correlation loading values of that PC. Thus, 

the maximum contrast possible would be 2." 

 

Hannachi, A., Jolliffe, I. T. and Stephenson, D. B.: Empirical orthogonal functions and related 

techniques in atmospheric science: A review, International Journal of Climatology, 27, 1119-

1152, https://doi.org/10.1002/joc.1499, 2007. 

Jolliffe, I. T.: Principal Component Analysis, 2nd ed., New York, Springer, 2002. 

Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, 2nd ed., Elsevier, 2006. 

3. The treatment of eigenvalue degeneracy is generally well addressed with one exception that 

potentially plagues nearly every applied eigenanalysis: eigenvalue degeneracy at the truncation 

point (k). If those PCs associated with closely spaced eigenvalues between k and k+1 have 
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information that is intermixed, problems arise and data is intermixed with noise on the kth 

retained PC loading vector. Your paper presents 10 PCs, therefore, the spacing between the 

10th and 11th eigenvalues should exceed the North et al. criterion. Does it?  Let the reader 

know.  

Further, this needs to be mentioned because it can cause the loss of a domain dependence pattern 

simply because the way eigenvalues are ordered in descending order makes them more likely 

to be closely spaced as the smallest eigenvalues head toward the tail (presumably noise) where 

the analyst would normally truncate the analysis to discard the k+1,...,nth eigenvalues, perhaps 

using some other criterion (e.g., based on percent variance extracted, eigenvalue magnitude). 

Related to this, I wonder why eigenvalue degeneracy is not addressed earlier in the paper as it 

seems to affect domain dependence. If that is the case, then consider moving it earlier in the 

paper as those PC loadings arising from degenerate multiplets should not be expected to exhibit 

the domain dependent patterns but the multiplet may be dominated by the domain dependent 

patterns and those are intermixed into new patterns that don;t seem to be domain dependent 

patterns. 

AR: Thank you. We will include the aspect of eigenvalue degeneracy at the truncation point. 

Therefore, we will expand the warning to split multiplets in L425 with an explicit statement 

about the truncation point:  

"In particular, special care has to be taken that the truncation point of a PCA does not split a 

multiplet (North et al., 1982)."  

Here, we show the first ten PC patterns merely for illustration. We found it to be a good balance 

between showing the DD pattern sequences and some degree of detail, but not too much detail 

that it is still visually easy to grasp. Also, to our experience most S-mode PCA applications in 

hydrology use substantially less than ten PCs, our casual guess would be around four. To clarify 

this, we will add an explanation to the truncation point used in our study in L260: 

"Note, that here and in the following we show the results for the first ten leading PCs. The 

decision was taken merely for the illustrative purpose. We found it to be a good balance between 

showing the DD pattern sequences and some degree of detail, but not too much detail that it is 

still visually easy to grasp. There was no other specific truncation criterion, e.g. based on 

eigenvalue magnitude or percent variance extracted, applied." 

We did not check for degenerated multiplets formed by PC 10 + PC x, because we did not 

analyze the PC 10 patterns further and used them only as examples for illustration. We will 

state this explicitly in L473, including your hint on intermixing of signal and noise: 

"Note also, that intermixing might be easier overlooked for the smaller eigenvalues that are 

more closely spaced. If the analysist selects PCs to separate noise from signal, this could 

possibly result in truncation within a multiplet and consequently intermixing of noise and signal 

in the last considered PCs. Here, we selected the first ten PC merely for the illustrative purpose 

(Ssection 4.1). If the goal would be to further analysze PC 10, it would be necessary to check 

its patterns for intermixing - also with the subsequent PCs, in particular PC 11. Indications for 

intermixing in the PC 10 pattern can be seen in the stability plots of Figures 4a, 10c, S1a+c. In 

case of Figure 10c, PC 9 does not show sign of intermixing, thus, in this case the intermixing 

is probably with PC 11."  
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Thank you also for your hint that intermixing might mask (expected) DD patterns. We will add 

a short paragraph on that in L453:  

"Note, however that degeneracy might cause domain dependent patterns that don´t seem to be 

DD patterns because they are intermixed into new patterns. For example, in Figure 13 the 

patterns of the multiplet pairs of simulations 1, 4 and 5 exhibit different patterns than those of 

simulations 2 and 3." 

Regarding the order of our sections, we like to point out again that the motivation of our work 

is to provide an illustrative introduction for PCA users in hydrology. We come back to this 

because it relates a lot to what we are presenting in which order. We start with simple examples 

to introduce the general phenomenon. Then, we get more specific and complex. Step by step, 

we focus on different aspects of DD and link it to PCA features we assume to be of interest for 

the PCA practitioners in hydrology and regularly used.  

In section 4.1, we use the Buell patterns to introduce the general phenomenon, the concept of 

stability of the PC patterns and the use of the scripts. In section 4.2, we continue with the domain 

shape aspects, including irregular distribution of the locations. In section 4.3, the ratio of 

domain size versus spatial correlation length and its effects on the explained variances and the 

contrasts of the DD patterns comes into play. Thus, in each subsection of section 4, we introduce 

new aspects, building on the earlier ones.  

We assume that the effectively degenerated multiplets will be the most abstract and difficult to 

grasp part for most of our readers, and probably also the furthest away from what they are used 

to. That is why the degenerated multiplets come in their own section as the last of the 

phenomena we want to introduce.  

4.  Comparison of PC loading patterns is accomplished with correlations.  S-mode PC loading 

(and that of EOFs) interpretation depends on the magnitude of the PC loadings plotted on a map 

(and in general, the magnitude of the PC loadings/EOFs is important in any mode). Therefore, 

correlations subtract each PC loading/EOF vector mean (pattern mean), so two patterns with 

different means can have their large correlations, yet their magnitude patterns will be much 

different and the grid boxes (I think what you refer to as cells) with the maximum PC loadings 

will be in different geographical (or topological) locations in your domains.  If that is the case, 

the the correlation is suboptimal for such comparisons. Find a better metric that includes 

magnitude in terms of comparison. I suggest the congruence coefficient, though others exist 

that preserve the vector magnitudes. 

AR: In the revised manuscript, we provided both, congruence coefficient and Pearson 

correlation, to quantify the matching of the spatial patterns from different PCs. The congruence 

coefficient provides the benefits you are pointing out. The major benefit of Pearson correlation 

is that it is well known and the results in terms of r or R2 can easily be contextualized by the 

reader. We added a new method section 3.3. where the congruence coefficient is introduced 

and put into context with Pearson correlation.   

The stability analysis of the stochastic approach (step 2, new Section 3.2.1.) was performed 

with Pearson correlation only, because all compared PC patterns (i) were of identical rank and 

(ii) were based on synthetic data sets simulated with identical spatial correlation properties and 

identical domains. For this setting, we considered the effect of the pattern mean subtraction by 

Pearson correlation as negligible. This exception is explicitly stated in the new method section 

3.3. 
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One of the major benefits of Pearson correlation is that it is well known and the results in terms 

of r or R2 can easily be contextualized by the reader. We assume that most, if not all, readers of 

the manuscript will know it from their own work. This includes the well-known sensitivity to 

outliers (see your comment on L175). To our experience Pearson correlation is regularly used 

in hydrology for the comparison of spatial patterns from PCs and potential explanatory 

variables or other patterns of interest. 

Note also that all PC patterns in our study here are (1) from correlation matrix based PCA, thus, 

all analyzed variables are z-scaled, and (2) correlation loadings, thus, scaled to the common 

range [-1, 1]. Furthermore, all PC patterns that are compared with Pearson correlation are based 

on data sets simulated with either (a) identical spatial correlation properties and identical 

domain (step 2 of the stochastic approach) or (b) identical spatial correlation properties (the 

correlation exercise with the all cells variant and the spatially homogeneous and heterogeneous 

subsampling variants in section 4.2.).  

We assume that for our examples here, neither differences in magnitude of the patterns nor the 

effect of the pattern mean subtraction by the correlation analysis versus deviations from zero 

by the congruence coefficient (see your comments on L192 and 336) are much of an issue. 

Thus, for our analysis and the introductory purpose here, we think simple Pearson correlation 

is sufficient. 

Therefore, we prefer to keep it simple and stay with Pearson correlation for the presented 

analysis and results and include a discussion on the limitations of using Pearson correlation and 

the benefits of the congruence coefficient in section 5.1.2.. 

5. It seems odd that after the paper establishes the details and importance of domain dependence, 

it has no results on how rotating those PCs affects such dependence. There is only a scant 

mention of the possibility of this near the end of the paper, mostly in the context of rotating 

degenerate multiplets. However, rotation can be applied to PC loadings associated with non-

degenerate eigenvalues and it will affect domain dependence patterns. Please consider adding 

a section on rotation and show those patterns to comment about how domain dependence is 

addressed by post processing the PC loadings with a rotation.  

AR: In our study here, there are no physical structures, hydrological signals, modes or processes 

integrated in the simulated data sets. Thus, there are no signals to detect. The idea of our work 

was to demonstrate to PCA users who are not aware of DD and the related discussion that even 

without any physical structures, processes or modes, suggestive patterns can emerge. The 

numerical experiments are designed for that. Adding new numerical experiments to evaluate 

the performance of unrotated versus rotated PCs in identifying (hydrological) signals is beyond 

our introductory scope here.  

This is a basic difference to the extensive study of Compagnucci and Richman (2008) who 

simulated data sets with a series of typical atmospheric flow patterns (plasmodes) to test the 

performance of unrotated versus rotated PCs, both from S- and T-mode PCA, in recovering the 

plasmodes. We agree that it would be very interesting and valuable to perform a similar study 

with typical hydrological signals instead of the atmospheric plasmodes. However, we think that 

this is material for another standalone study. We included a paragraph with such suggestion at 

the end of the rotation section.  

Instead of further systematic experiments with synthetic data, we exemplarily rotated 

eigenvectors from a real-world precipitation data set, combining your suggestion to expand on 
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the rotation aspect with the suggestion of referee 2 to include a real hydrological data case. We 

performed varimax rotation in three variants, using the first two PCs (2rPCs), the first three PCs 

(3rPCs) and the first four PCs (4rPCs). The results, Here, we will extend the section 5.2.2 on 

rotation and include your literature recommendations and some of your thoughts and hints were 

used to substantially expand the rotation section 5.2.2.. See also our reply to your specific 

comments to L341, 557, 558, 573, 574. 

6. The manuscript discusses accounting for domain dependence prior to attempting physical 

interpretation. Both the abstract and the introductions discuss how ignorance about domain 

dependence can easily lead to the wrong interpretations of PCA results (e.g., "Ignorance about 

DD can easily lead to the wrong interpretations of PCA results. DD patterns are distinct, with 

strong gradients and contrasts, and therefore highly suggestive to indicate physically 

meaningful drivers or properties of the analyses system". I agree with this statement and, 

assuming it is valid, the reader will want to know abut the right interpretations of PCA results. 

The manuscript further states (correctly) that the analyses proceed from data that are formed 

into a correlation (or covariance) matrix, either explicitly and implicitly and that matrix (or the 

standardized data in the case of SVD) are decomposed into eigenvectors that should be capable 

of summarizing the correlations/covariances of the data (after ensuring they do not represent 

domain dependence patterns). Therefore, some additional discussion of how to interpret those 

eigenvector (in the case of the present manuscript, PC loadings and PC scores), after passing a 

domain dependence assessment, must be added. It seems the majority of patterns shown in the 

paper suffer from domain dependence or from the effects of eigenvalue degeneracy combined 

with domain dependence.  Would that be the null hypothesis for other investigators? 

The main recommendation to assess such a hypothesis of domain dependent patterns (according 

to the manuscript) seems to be to visually assess the similarity but it leaves the reader asking, 

"then what do I do?". Presently, there is a suggestion to visually assess the analyzed patterns 

and compare to the domain dependent patterns for a similarly shaped domain.  Two issues with 

visual assessment are (a) the reliability of the same pattern under the eyes of different analysts 

may well have one analyst believing there is a strong resemblance, and the pattern should not 

be further interpreted, yet a second analyst may think it has some resemblance but not that much 

to reject it as domain dependent. Further, (b) the nature of a qualitative visual assessment means 

any one analyst can see some resemblance to domain dependent patterns in their visual 

assessment and then discount it based on personal bias. A more quantitative approach to avoid 

(a) and (b) would be a direct numerical comparison using a matching coefficient (e.g., 

congruence coefficient). In that case, a recommendation could be made, such as, if the 

congruence coefficient exceeds some value (e.g., > 0.8), the analysis is dominated by domain 

dependence and the unrotated PC loadings/EOFs should not be analyzed physically.  The 

assessment of the physical interpretation gets even trickier at this point. If the PC loading pattern 

based on either visual assessment or congruence coefficient value is thought not to be 

sufficiently contaminated be domain dependence, it does not mean it is physically interpretable 

as a meaningful mode without further investigation.  Recall what the PCA does. It summarizes 

the correlation/covariance structure into a set of k PC loadings and k PC scores. Do we know 

if any of those structures relate well to the correlation/covariance matrix from which they were 

drawn?  Without such a step, physical interpretation would seem unwise (we're back to the 

castles in the clouds but now from the "heavy constraints"). Because the manuscript is 

motivated by finding physically important modes, a revised manuscript should address or 

provide some suggestions on how to confirm if a mode is physically realistic or related to the 

correlations/covariances (or not). There is some literature on this topic, ranging from never 

physically analyze any PC structures (in that case domain dependence is moot because 

domain  don't affect the ability of PCA to extract most of the variance from a dense 
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correlation/covariance matrix) to, in many cases, the PC structures can be analyzed after 

confirming similarity to the correlations/covariances .  I suggested examining the Compagnucci 

and Richman (2008) and Huth and Beranova (2021) papers for starters.  The latter asks the 

specific question about what is a "true mode" whereas the former addresses the question about 

if certain analysis modes can retrieve the modal patterns. Of course, there are other alternatives, 

such as using a technique not rooted in eigenvectors. However, if the paper offers a path to 

identifying domain dependence that undercuts physical interpretation, some remedy should be 

offered.   

AR: Yes, the suggestion is to use DD reference patterns as null hypothesis (see L175, 520-527, 

582-589 and Appendix A). In the revised manuscript, we will include a discussedion on the 

limitations of the visual assessment and the use of Pearson correlation and the congruence 

coefficient for numerical comparison in the introduction, sections 4.2., 5.1.1., 5.1.2. and the 

conclusion. See also our reply to your major comment 4.  

We agree that DD is just one of the aspects that should be checked prior physical interpretation. 

It is not enough to check whether the patterns are sufficiently free from DD. Or as you stated 

in the beginning of your major comment section, it is “a necessary, but not sufficient condition 

for physical interpretation" (see also your comment on L575). Thank you for the references and 

the different hints in your comments to the physical interpretation of the PC patterns in L23, 

72, 81, 408, 428, 574, 575 and your major comment 1. We will include them, expanding the 

discussion on physical interpretation of the PC patterns in Lines 406-409 and move the whole 

discussion to a new paragraph after L73 in the introduction.  

Regarding the identification of physically realistic modes, we will include references to the 

work of Compagnucci and Richman (2008) and Huth and Beranova (2021) in the extension of 

section 5.2.2. (see our reply to your major comment 5).  

In hydrology, spatial PC patterns have been also used to describe the spatial variability of 

distinct hydrological signals, processes or physical properties (L78-80). Building on the idea 

with the plasmodes (see our reply to your major comment 5), we think it would be very 

interesting to conduct more numerical experiments with hydrological simulation models to test 

whether any of the implemented hydrological features of the model can be uncovered with the 

patterns of the PCs. The test data could be, for example, spatially distributed groundwater level 

series simulated with a groundwater model. Again, this could include the comparison of the 

performance of unrotated versus rotated and / or S- versus T-mode PCA. In the revised 

manuscript we like to included these ideas as an outlook to future research at the end of the 

extended rotation section and at the end of the conclusion (see also our reply to your comment 

on L573).  

------------------- 

Specific comments 

Numerous specific comments are listed in the annotated manuscript (attached). 

Citation: https://doi.org/10.5194/hess-2024-172-RC1 

 

L23: 

What is the proper "interpretation" for PCA? At one end of the spectrum, some might claim 

PCA is simply a data compression technique with little or no possibility of physical 
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interpretation. At the other end, some may claim that the individual PCs can be interpreted as 

physically meaningful entities. Some discussion of this might be in order prior to the discussion 

of domain dependence, particularly as Buell (1979), in the final sentence of his conclusions, 

states, "Otherwise, such interpretations may well be on a scientific level with the observations 

of children who see castles in the clouds." 

AR: We will elaborate on that in a new paragraph after L73 in the introduction. See also our 

reply to major comment 6.  

L36: 

This may be the situation; however, there is a general lack of agreement on these models, that 

leads to massive confusion among users of these techniques.  

The original paper where EOFs were named "EOFs", is generally attributed to Lorenz (1956).  

However, in that report, Lorenz refers to the displays as EOFs of space, and EOFs of time, to 

define what have now mutated somewhat into what are called "EOFs", and "Principal 

Components", respectively.  Assuming a spatial analysis, those EOFs of space are unit length 

(sum of the squares of each EOF's coefficients = 1), whereas the EOFs of time are orthogonal 

vectors, each with a mean of zero and variance equal to the associated eigenvalue.  

In contrast, the PCA model, generally attributed in idea to Pearson (1901) and more fully to 

Hoteling (1933). The PC loadings in that PC model weights (postmultiplies) the unit length 

eigenvectors (EOFs) by the square root of the corresponding eigenvalue to give "PC loadings". 

That seemingly minor change in the spatial patterns (keeping with the definition of space and 

time given for EOFs) results in the time series calculation and properties being different to close 

the PC model. Those time series in the PCA model are called "PC scores" and have mean 0 and 

variance 1. They are also orthogonal. 

Flip the space and time definitions of these displays if the analysis is temporal. 

Because the two models result in different space and time patterns, they cannot be compared 

directly and the precise equations used are necessary to attempt to reproduce the findings of 

others. 

The situation becomes more complicated as users of these techniques tend to pull EOF/PCA 

code off of various statistical packages or Python code libraries,  that often mislabel the results, 

never checking the specifics, thereby perpetuating the confusion. 

For the current paper, one must know if the analyses are applied to EOFs (unit length 

eigenvectors) or PC loadings (unit length eigenvectors postmultiplied by the square root of the 

corresponding eigenvalues). Further, it would be helpful to know if any of the results for domain 

dependence change as a function of the specific model invoked.  There is considerable 

confusion about this topic when reading this paper. It is important the model being used 

herein is stated unambiguously at the outset of this paper and the equation added in the 

methods section to avoid such confusion. Further adopt the correct terminology for that 

model and don't list any alternative terminology that might confuse the reader. 

Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. 

Statistical Forecasting Project Rep. 1, MIT Department of Meteorology, 49 pp. 
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Pearson K. On lines and planes of closest fit to systems of points in space. Philosophy 

Magazine. 1901;2(6):559-72. 

Hotelling, H. (1933) Analysis of a complex of statistical variables into principal components. 

Journal of Educational Psychology, 24, 417-441. http://dx.doi.org/10.1037/h0071325 

AR: We addressed this comment in our reply to major comment 3. 

L72: 

Although I agree with this sentiment, showing that it is reasonable to expect any physical 

conclusions to be drawn from PCA should be discussed first.  Assuming the basic covariance 

structure carries important information about the physical processes, do the PC loading patterns 

(or EOFs) relate well to the underlying covariance structures?  The investigator must confirm 

this prior to expectation of the patterns being related to physical processes. Add a few sentences 

on that. 

AR: We will do so in a new paragraph after L73. See also our reply to major comment 1 and 6. 

L81: 

True, but domain dependence is one of several factors that hampers physical interpretation of 

the system. Others include: 

(1) Data are related either explicitly or implicitly (by expressing them in anomaly or 

standardized anomaly form) via covariances or correlations. Such matrices express only the 

linear relations in the data. Further, subtracting a mean in either covariances or correlations 

assumes stationarity of the mean and variance, often violated by processes such as climate 

change and hydrology affected by climate change. 

(2) The eigenanalysis technique is limited to only linear relationships between the covariances 

or correlations and the EOFs/PC loadings. 

(3) The first eigenvector extracts maximal variance and often pulls in different sources of 

variability onto the leading vector, mixing the different sources. This is shown clearly in Karl 

and Koscielny (1982) in their Appendix Fig. 14A (top panel), where their data vectors X1, X2 

and X3 are highly related as group 1 and where their vectors X4, X5 and X6 are also highly 

related as group 2, but groups 1 and 2 are nearly orthogonal. However, as they show, the first 

PC lies directly between groups 1 and 2, thereby describing neither accurately and introducing 

distortion by merging them so that their projections (PC loadings) would all be positive of 

nearly equal magnitude on PC loading 1, suggesting to the investigator that there is only one 

grouping. 

(4) All eigenvectors, beyond the first, are orthogonal to all the previous eigenvectors, and the 

hydrological processes are rarely if ever orthogonal. 

AR: We will include these aspects in a new paragraph after L73. See also our reply to major 

comment 1 and 6. 

L93: 

This would include the degree of linear association and the scale of the spatial correlation or 

covariance field with respect the the domain size.  One might hypothesize that processes that 

are either weakly linear or mostly nonlinear and the linear part is relatively small, that domain 
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dependence might dominate.  Similarly, if the size of the spatial covariance/correlation data 

function is nearly the same size as the spatial domain used, the domain dependence might be 

different than for small scale processes, of perhaps 1/3rd of the domain size. 

AR: We demonstrated this and analyzed the effect of domain size and spatial correlation length 

in section 4.3. The analysis of non-linearity is beyond our introductory scope here. 

L96: 

I'm not sure other papers have examined this. If that is true, add it as a unique aspect of this 

research. 

AR: We are also not aware of other papers in which the effect of measurement errors was 

explicitly examined. North et al. (1982) mentioned that they intended to do so in future work. 

Cahalan et al. (1996) summarized measurement errors and the natural variability of the field in 

the noise of their models, assuming that most of the noise " is likely due to natural variability".          

However, we do not examine this here either. Our statement is based on theoretical 

considerations. We assume that measurement errors can affect the DD patterns in two ways.  

(1) If the measurement errors are distributed spatially homogeneously, longer time series might 

be required to reach stable spatial PC patterns.  

(2) If they are systematically biased among the locations they can alter the actual spatial PC 

patterns.  

Both can be simulated with the stochastic method by adding noise (spatially homogeneous or 

irregular) to the realizations of the random field (Figure 2). We will include a statement on this 

at the very end of section 4.1. 

We do not examine this here. However, the blurring effect of measurement errors can be 

simulated with the stochastic method, using relatively short time series with rather unstable 

spatial PC patterns. We will include a statement on this in L284. 

L99: 

Define "low ranked PCs". I'm assuming these are PCs associated with smaller eigenvalues. If 

so, state that. If not, define it explicitly. If it is for the eigenvectors associated with small 

eigenvalues,  the work of North et al. (1982) [cited extensively in your manuscript] and 

Quadrelli et al. (1989) on degenerate multiplets claim intermixing of the variance structures 

when he eigenvalues between adjacent eigenvectors are close in magnitude. That may be what 

you are seeing here.  

Quadrelli, Roberta, Christopher S. Bretherton, and John M. Wallace. "On Sampling Errors in 

Empirical Orthogonal Functions." Journal of Climate 18, no. 17 (September 1, 2005): 3704–

10. http://dx.doi.org/10.1175/jcli3500.1. 

AR: Yes, your assumption is right. We will define it there and include a few sentences to the 

intermixing and rotation together with the references you provided: 

"This gets less clear for those of the PCs with smaller eigenvalues (low ranked PCs). They are 

more finely detailed and less robust against deviations from Buell´s settings. Furthermore, there 

might be intermixing of the variance structures when the eigenvalues from successive 

eigenvectors are of very similar size (North et al., 1982; Quadrelli et al., 2005). These PCs 
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which are not well separated with the PCA are called effectively degenerated multiplets (North 

et al., 1982). For their separation, additional post-processing is required, e.g. rotation of 

eigenvectors (Richman, 1986; Jolliffe, 1989)."  

L99: 

becomes 

AR: We will change according to your suggestion. 

L101: 

Yes but that could be the aforementioned intermixing of the variances. In fact, it is possible that 

even Buell patterns for large sample sizes may intermix if the eigenvalues between successive 

eigenvectors are very close in magnitude. 

AR: We agree. This is addressed in our response to your first comment on L99 above. 

L116: 

Here you mean "PCs which are not separable without additional post-processing (e.g., rotation 

of the PC loadings to separate the sources of variability for all eignvectors or for those 

eigenvectors with closely spaced eigenvalues)." Richman (1986) and Jolliffe (1989). You cite 

both these papers presently but the logical conclusion is missing. 

AR: Yes. We will include your specification on the post-processing / rotation in the newly 

added lines where we introduce the effectively degenerate multiplets (see our reply to your 

comment on L99) and reduce the sentence here to "... and c) effectively degenerate multiplets." 

L135: 

See my earlier comment. It is more serious than terminology. The original models of EOF 

versus PCA have specific terminology  and give different results. Those model display names 

have mutated over time and the terminology has been intermixed. Unless one state the 

mathematics of the model invoked, the reader has little idea what model is invoked. That also 

means that any conclusions for the EOF model need to be verified for the PCA model as the 

EOFs vs. PC loadings have different magnitudes and properties and the PCs vs. PC scores have 

different magnitudes and properties. 

AR: Please see our reply to major comment 2. 

L138: 

It appears this is the EOF model. If so, despite Jolliffe's terminology, the majority of the 

literature envoking EOFs will call the displays EOFs and PCs (for space and time displays, 

respectively). Wilks textbook has a reasonable section on the varied terminology of EOF/PCA, 

although even that excellent book it is not exhaustive in this regard. You might try to simplify 

the sentence here where eigenvalue, scores, eigenvectors are mentioned. Alternatively (and 

perhaps the superior solution) would be to show the compact equation(s) in this manuscript for 

the model being invoked and that would clarify any confusion by the readers. 

Addendum...After reading further, it seems you may have used actual PC loadings and PC 

scores. If so, ignore my comments about not using PC scores but, in that case, drop the 

discussion of EOF beyond the beginning of the introduction, as it serves only to confuse the 

readers. Further, clearly state what model you are using in section 2.1 with the equation for that 

model. 
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AR: Please see our reply to major comment 2. 

L140: 

See earlier comment. Please refrain from using the term "PC scores" if you are using  an EOF 

model. PC scores are defined only for the PC model that weights the unit length eigenvectors 

by the square root of the corresponding eigenvalues. For the present manuscript, if you are using 

EOFs, then you can call them PCs and drop the "i.e., the PC scores".  However, if you are using 

the PCA model, then use the terminology PC loadings and PC scores but drop other terms that 

will serve to confuse. 

Addendum...See comment above. There is a need to clearly define the model used, define the 

appropriate terminology of the model displays and use on those terms throughout. 

AR: Please see our reply to major comment 2. 

L143: 

This sentence seems to be awkward or a fragment at a minimum.  Please clarify. 

AR: "The eigenvectors of all PCs define the orthogonal basis of the new ordination system into 

which the analysed data is projected (orthogonality constraint)". 

L143: 

"mapped to" what?  This sentence seems incomplete. 

AR: Please see our reply to your comment on L143 above. 

L147: 

Yes, see earlier comment.  Often the process of maximal variance extraction runs counter to 

interpretation of the sources of variability in physical systems (unless there is a single  physical 

mode that encompasses the full extent of the domain where PC 1 can explain it -- rarely the 

situation). I mentioned this earlier and pointed to the Appendix of Karl and Koscielny (that you 

cite in this manuscript). 

AR: Please see our reply to your comment on L81. 

L154: 

This is vague as "PC series" is undefined.   

In the EOF model: 

(1) the EOFs are not uncorrelated because their mean is not zero.  However, they are orthogonal 

(if fact, orthonormal) by either column or by row as V'V and VV' = I. 

(2) The PCs are uncorrelated as their means are zero. Additionally, their variance is the 

eigenvalue. They are uncorrelated by column and therefore orthogonal by column. 

========== 

In the PCA model (with eigenvectors scaled by the square root of the eigenvalue): 
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(1) the PC loadings are not uncorrelated because their mean is not zero.  However, they are 

orthogonal by column only (their diagonal is the eigenvalue), V'V = D. 

(2) the PC scores have mean = 0 and variance = 1. They are uncorrelated by column.  Because 

they're uncorrelated, they're orthogonal by column with the diagonal equal to the degrees-of-

freedom (normally, that would be n-1 if the correlation/covariance matrix is not singular). 

Given these differences, hopefully you can appreciate the importance of stating unequivocally 

the specific model invoked. Specifically, where you say: All PC series are linearly uncorrelated 

with each other" is incorrect for both the EOF and for the PCA model. for the EOFS or for the 

PC loadings, as neither has zero mean column vectors.   

Therefore rephrase "PC series" in this sentence and be precise to specify uncorrelated by 

row or by column. 

AR: The term "PC series" means here the temporal PC patterns. It evolved somehow informal 

among colleagues as a short form for the PC scores which in the S-mode PCA case are time 

series of the same length as the analysed time series. Thank you for pointing out that it causes 

confusion without this background. We will replace it the two times it appears in L154: 

"All temporal PC patterns are linearly uncorrelated with each other, each temporal PC pattern 

is associated with a spatial pattern and all spatial PC patterns are orthogonal to each other." 

Please see also our reply to your major comment 2 about the PCA terminology. 

L155: 

Two comments: 

1. The discussion prior to this section seemed ambiguous as to which eigenmodel was being 

invoked. Please fix that. 

2. Does this imply that other modes of PCA do not suffer from domain dependence? For 

example, Q-mode is a field x station data matrix, giving a station x station covariance matrix. 

AR:  

To 1.: Please see our reply to your major comment 2. 

To 2.: We did not investigate that and it is beyond the scope of our work here. However, we 

would hypothesize that in case of a homogeneous correlation structure, it can be an issue there 

as well. 

L163: 

Earlier, it seems that you were using EOF, here is suggests you are using PCA.  State clearly 

from the outset which model is being used and stick with that terminology. If it is the PC model, 

them PC loadings and PC scores. 

AR: Please see our reply to your major comment 2. 

L167: 

Two comments: 
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1. The desire to have PC loadings within the same range would fit the idea of EOFs better as 

those are all unit length eigenvectors. It may explain why Buell used EOFs, rather than PCs, to 

describe domain dependence.  That said, there is nothing preventing any arbitrary scaling of the 

eigenvectors, as long as point (2) is noted. 

2. The loadings normalized to anything other than the square root of the corresponding 

eigenvalue will no longer close the PC model using the standard formulation.  I think that is 

what you are attempting to say in the last sentence, but it could be clarified. 

AR: Please see our reply to your major comment 2. 

L175: 

Two comments: 

1. Pearson correlation is leveraged by outliers.  If two maps are being compared with relatively 

few common points on both maps extreme in the same direction, but the remainder of the 

gridpoints not in agreement, the correlation may be large.and exceed some t-test at alpha = 0.05.  

Because of that, field significance should be examined for difference fields of the maps, the 

pairwise comparison of spatial patterns of the combinations of PCs, or use a resistant statistic. 

For the field significance, here is an excellent test: 

On “Field Significance” and the False Discovery Rate: By D.S. Wilks, Journal of Applied 

Meteorology and Climatology, Volume 45, Issue 9, 2006, pages 1181–1189. 

2. t-tests assume Gaussian distributions. Correlation distributions are not Gaussian, particularly 

in the tails (where most of the matches would occur) because its range is limited to -1 to +1.  

You could Fischer z-transform the correlations first to partly mitigate this or, better yet, apply 

a permutation test to the maps, as the permutation test is distribution free. 

AR: We think for our purpose here, simple Pearson correlation and the t-test are sufficient. This 

combination was also used in the study by Huth and Beranova (2021) you recommended. In 

the revised manuscript, we complemented the assessment of the matching of spatial PC patterns 

with the congruence coefficient, following your suggestions in your major comment 4 and your 

comments to L192, 336, 364, 449. 

For a general comment on why we use Pearson correlation, pPlease see also our reply to your 

major comment 4.  

L192: 

Because the mean of the PC patterns (i.e., the mean of each vector of PC loadings) is not zero, 

and the interpretation of the PCs is a function of the magnitude of the PC loadings, the 

correlation of PC loading vectors by subtracting out the mean, is an inferior metric for PC 

loading comparison.  Lorenzo-Seva and ten Berge (2006) make a good case for the congruence 

coefficient, which does not remove the mean prior to the comparison.  This metric has been 

used in the geosciences literature for such comparison. 

Lorenzo-Seva, U., & ten Berge, J. M. F. (2006). Tucker's congruence coefficient as a 

meaningful index of factor similarity. Methodology: European Journal of Research Methods 

for the Behavioral and Social Sciences, 2(2), 57–64. https://doi.org/10.1027/1614-2241.2.2.57 
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AR: Thank you for the literature recommendation. For our reply, please see our reply to major 

comment 4. 

L193: 

Explain why the ranks are substituted for the values. 

AR: We are not sure what you mean here. Assuming that you are asking why the analysis is 

performed separately for each PC rank, this is why we want to identify the stability of the spatial 

patterns and of their ranking prior calculating the mean spatial PC patterns. 

L194: 

Given the earlier comment about congruence coefficient and the use of correlations here, using 

the word "congruence" here is not good form. 

AR: We will replace it with "similarity".  

L199: 

Similar comment about the distributions of the variability. Do you test for symmetry to 

determine the variance in each tail is approximately similar (and hence a single standard 

deviation holds)?  One way to test that is to calculate the skewness of  each of these patterns to 

decide if the skewness magnitude exceeds 0.5 and therefore would not be sufficiently 

symmetric to assume symmetry. 

AR: No, we did not test that. We assume that in our case here, in which the compared PC 

patterns stem from data sets simulated with an identical parametrisation, it is negligible, 

especially for the mean spatial PC patterns which are calculated based on a large number of 

simulated data sets (100) with rather long time series length (10 000). 

L225: 

Great. That was my earlier suggestion. Extend the commentary to the instability resulting from 

degeneracy arising from closely spaced eigenvalues. 

AR: Thank you. Assuming you are referring to your comments in L99-116, please see our reply 

there. To improve the structure of the method section, we will move L222-228 "Confidence 

limits ... both eigenvalues." in to a new section 2.3 "North´s rule of thumb". 

L242: 

Does "prcomp" give unit length eigenvalues or PC loadings? I suggest checking this manually 

as some of the R codes I have investigated say the output is one thing but really supply 

something else or simply wrong. 

AR: "prcomp" gives unit length eigenvectors. See also our reply to your major comment 2. 

L250: 

Define "cell". It appears in two previous Figure captions too.  I assume cell means grid box but 

a formal definition is required. 

AR: Yes, you are right. We will add the following definition in L182: 

"The grid cells (cells) of the random field represent the locations of a data set." 
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L255: 

Two comments: 

(1) The x-axis on Figure 4 presents some challenges because the behavior normally asymptotes 

after about 2000 observations for the first few PCs. However, by showing 10,000, the reader 

cannot pick out the number of observations required to find sufficient stability in those leading 

few PCs. 

(2) By the time an analyst extracts PCs beyond the first few, one wonders how many degenerate 

multiplets emerge.  The problem with not knowing that is if the adjacent eigenvalues are 

separated sufficiently to exceed the North et al. criterion, then fewer observations than Figure 

3 suggest are required to provide stability.  

Conversely, if the leading eigenvalues in PCs 1-3 are separated by less than the North et al. 

criterion, the results shown in Figure 3 may be too optimistic compared to such cases with 

degenerate multiplets in the first few PCs. 

Some comment on the eigenvalues and their separation in these examples is critical to 

interpret Figure 3 and the unravel the effects of degeneracy arising from multiplets from 

that of domain dependence. Ideally this would precede the discussion of domain 

dependence as that effect seems to affect domain dependent patterns. 

AR: Figure 4 is meant as an overview figure. Section 4.1. is meant as starting point from which 

we introduce step by step new aspects in the following sections. Thus, at this point in the 

manuscript we do not want to get more detailed. We also do not want to open the topic with the 

degenerate multiplets at this early stage. We explain the logic of the order of the sections and 

why the degenerate multiplets come last in our reply to your major comment 3. Please see there. 

L260: 

Useful information but for applied research rarely are there 10,000 observations, much less 

10,000 independent observations. Is there advice for the analyst using 100 to 1000 observations 

(more in the typical range)? 

AR: We would advise the analyst to fit a spatial covariance function to the data and calculate 

stochastic DD reference patterns with that function for the spatial domain of interest. If the time 

series of the observed data are shorter than the time series length that is required to reach stable 

DD patterns, the PCA results would "have to be interpreted with the reservation that the DD 

might be stronger than the comparison with the reference suggests." (L514–518). We provide 

this information in section 5.1.2.. Here in section 4.1, we do not want to open this topic already. 

We explain the logic of the order of the sections in our reply to your major comment 3. Please 

see there and our reply to your comment on L255. 

L265: 

If I'm interpreting the variance percentages correctly, it seems the patterns for PC2 and PC3 

may have very closely spaced eigenvalues, not separated sufficiently according to the North et 

al. criterion. There are a few others too that seems degenerate. 

AR: You are right. But we do not want to open this topic in this section already. Please, see our 

reply to your comment on L255 and your major comment 3. 
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L273: 

That may be part of it but the degeneracy of the adjacent eigenvalues may be a major contributor 

and therefore it needs to be factored into the explanation. Perhaps that would make it more 

intuitive? 

AR: Please, see our reply to your comment on L255 and your major comment 3. 

L283: 

Good but without doing that, the conclusions drawn in this section are subject to unnecessary 

uncertainty.  Perhaps remove the conclusions from the paragraphs above and save them until 

after the degeneracy analysis. Alternately, run the degeneracy analysis first to clarify the 

instability in these results. 

AR: Please, see our reply to your comment on L255 and your major comment 3. 

L285: 

production of 

AR: We will change that. 

L302: 

Are these "PC patterns" the PC loadings?  Please define the terminology, then use that same 

terminology throughout the paper, including figures and tables. 

AR: These are the stochastic DD reference patterns calculated as mean correlation loadings. 

Please see our reply to your major comment 2. 

L318: 

deleted “and kind of intuitive” 

AR: We will change that.    

L319: 

predictable, a priori, 

AR: We will change that. 

L319: 

more 

AR: We will change that. 

L321: 

deleted space in front of %  

AR: In accordance with the HESS guidelines, we will keep the space in front of the %. 

L323: 

Two comments: 
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(1) You use heterogenous here (check for a typo, as I think you really want to use 

heterogeneous) and inhomogeneous in other locations below. If those are the same thing, stick 

with the exact same word throughout. 

AR: Thanks for the typo hint. Yes, we meant that and will change the phrasing consistently to 

heterogeneous.   

(2) Motivate why homogeneous versus heterogeneous are both used.  The former would apply 

to those analyses using gridded datasets with a regularly spaced grid, whereas the latter might 

apply to those analysts using actual irregularly spaced station data. 

AR: Thanks for the hint. We will add a sentence for motivation in L319: 

"...visual recognition is limited. This holds in particular for spatially irregular distributed 

locations which is the common case in hydrology." 

L328: 

predictable. 

AR: We are predicting the DD patterns with the DD reference patterns. To be more precise, we 

included this information at the end of the sentence. It reads now:  

"The patterns of all other PCs are not predictable without calculating DD reference patterns." 

We will change that. 

L331: 

as 

AR: We will change that. 

L332: 

whereas 

AR: We will change that. 

L334: 

I follow the thought but these sentences read awkwardly. Please reword more succinctly. 

AR: We will rephrase it to: 

"The similarity of patterns formed by congruent selections of cells from the different variants 

is of particular interest. It addresses the question whether the spatial PC patterns calculated from 

two different domains result in different relations between the values at locations with 

coincident coordinates. This is visually only poorly assessible. Therefore, we correlated the 

patterns of the subsampling variants with the patterns formed by ..." 

L336: 

Important. As stated earlier, PC loading (and that of EOFs) interpretation depends on the 

magnitude of the PC loadings. Correlations subtract each vector mean (pattern mean), so two 

patterns with different means can have their large correlations, yet their magnitude patterns will 
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be much different and the grid boxes (I think what you refer to as cells) with the maximum PC 

loadings will be in different geographical (or topological) locations in your domains.  If that is 

the case, the the correlation is suboptimal for such comparisons. Find a better metric. I 

suggested the congruence coefficient, though others exist that preserve the vector magnitudes. 

AR: Please see our reply to your major comment 4. 

L341: 

Three comments: 

(1) Perhaps, but if those "lower ranked" PCs are associated with closely spaced eigenvalues, 

we have no idea if the lower correlations arise from less DD or more degenerate patterns.  

(2) If the results arise from PC loadings associated with closely spaced eigenvalues, Richman 

(1986) and Jolliffe (1989) have shown that those can be rotated to remove the degeneracy, and 

then the DD measured. This is mentioned near the end of the paper but it should be mentioned 

here too. 

(3) In fact all the PC loadings could be rotated and then the DDs assessed as rotation has been 

shown to remove DD (at least beyond how the domain shape affects the correlation structure 

itself). Most people who interpret the PC loadings first rotated their PCs, so the lack of inclusion 

of rotated PCs is a shortcoming of the present manuscript. 

AR: To (1): We agree.  

To (2): At this point in the manuscript, we prefer to stay with unrotated PCs and discuss rotation 

later in its own subsection as part of the section how to consider DD. Regarding the order of 

our sections see also our reply to your major comment 3. 

To (3): In the revised manuscript, we added exemplarily the rotation of eigenvectors from a 

real-world precipitation data set in section 5.2.2.. See also our reply to your major comment 5. 

We understand that you like to highlight the possibility of rotation. However, our focus here is 

to provide an introduction to DD and its side effects for PCA users in hydrology. For this, we 

believe that it makes sense to focus on unrotated PCs. Because, to our knowledge, many of the 

EOF / PCA techniques, and their characteristics and issues, are much less common in the 

hydrological literature than in the atmospheric sciences literature. We argue that your claim 

"most people who interpret the PC loadings first rotated their PCs" holds maybe in the 

atmospheric sciences literature, but not in the hydrological literature. For example, all the 

hydrological case studies we listed in our introduction were performed with unrotated PCs. We 

ourselves don´t have noteworthy practical experience with performing and interpreting 

rotational PCA. In fact, we debated whether to mention PC rotation at all during manuscript 

preparation, because we felt that the manuscript developed further away from the background 

and practical experience of the audience we like to address. However, we are aware that the 

atmospheric sciences literature is rich in this regard and that there is a lot to discover. Therefore, 

we came up with the compromise to restrict the examples in our introduction to unrotated PCs, 

but mention rotation as one possibility to continue from there on (section 5.2.2). We will gladly 

expand the section on rotation with your literature recommendations and some of your thoughts 

and hints.  

We addressed this also in our reply to your major comments 3 and 5. 
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L348: 

Will this be a footnote? 

AR: A footnote would be linked to Figure 10. We are not sure whether this would work well. 

So, we like to leave it as it is. 

L364: 

Replace correlations with some metric that incorporates magnitude (e.g., congruence 

coefficient). 

AR: Please see our reply to your major comment 4. 

L383: 

delete "it is simple" 

AR: We will change that. 

L402: 

This makes sense because you are using unrotated PCs. Unless the autocorrelation is 

constructed to coincide with one of those PCs, there is little hope of isolating noise on any one 

PC. The situation may be less problematic if the PCs are rotated. That is one solution to the 

problem highlighted in this work. 

AR: We will address that in section 5.2.2. 

L403: 

be salient against 

AR: We will change that. 

L408: 

Two comments: 

(1) This question of retrieval of the correct features of interest has been addressed in at least 

two published articles: Compagnucci and Richman (2008) and Huth and Beranova (2021). 

Compagnucci, R. H., and M. B. Richman, 2008: Can principal component analysis provide 

atmospheric circulation or teleconnection patterns? Int. J. Climatol., 28, 703–726, 

https://doi.org/10.1002/joc.1574. 

Huth, R. & Beranová, R. (2021). How to recognize a true mode of atmospheric circulation 

variability. Earth and Space Science, 8, e2020EA001275. 

https://doi.org/10.1029/2020EA001275 

(2) You can add "maximal variance" to this list. It is clear that the first PC (associated with the 

largest eigenvalue) often merges several unique sources of variability when the spatial scale of 

the variability is smaller than the domain scale. This was mentioned in a previous comment in 

the work of Karl and Koscielny (in their Appendix), a citation in your list. 

AR: Thank you for your comment and the literature. We will include both. Please see our reply 

to your major comment 1 and 6 and your comment on L81. 
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L419: 

This section might be more logical to move this section to closer to the beginning of the paper 

because the intermixing of the unrotated PC loading signals needs to be addressed/accounted 

for before one can assess domain dependence. 

Personally, I think both are issues but if the paper might apportion the percent of distortion 

associated with each of degeneracy and domain dependence (in percentage of distortion for 

example), the utility of this work would be enhanced. 

AR: Regarding the order of the sections, please see our reply to your comments on L255-283 

and to your major comment 3.  

Regarding the apportion of the percent of distortion associated with degeneracy and domain 

dependence, we agree that this would be interesting for future work. Here, it is beyond the scope 

of our manuscript. 

L420: 

If it is not well separated by the "consecutive eigenvalues" in PCA. 

AR: We are not sure what you mean here. Do you want some rephrasing? 

L428: 

It is surprising you say this given in the last paragraph you said, "For example, for physical 

processes or modes of geosystems, the S-mode PC properties orthogonality of spatial patterns 

and linear uncorrelatedness of temporal patterns are heavy constraints (Buell, 1979; Jolliffe, 

2002; von Storch and Zwiers, 2003; Hannachi et al., 2007; Monahan et al., 2009)."  

That said, it is possible but requires that the PC pattern modes must be assessed for their veracity 

(validity) by determining if those modes are similar to the patterns embedded in the 

correlation/covariance matrix from which the PCs were drawn. 

AR: We will move the paragraph you mention to a new paragraph after L73 in the introduction 

where we will include your other comments regarding the physical interpretation of the PCs. 

Your second comment here will be addressed in the extension of section 5.2.2..  

See also our reply to your major comment 6. 

L435: 

In situations where (1) domain dependence exceeds the physical signal and (2) the leading 

modes have closely spaced eigenvalues, the situation becomes intermixed. It would be ideal to 

unmix those sources in this work. At the least, issue a caveat. 

AR: We are not working with physical signals here. The simulated data sets are designed to 

produce DD patterns and multiplets for demonstration. Adding new numerical experiments to 

perform hydrological signal identification is beyond our introductory scope. In the revised 

manuscript, we included a suggestion to conduct systematic experiments with synthetic test 

data derived from hydrological simulation models to evaluate which PCA modes, rotation 

methods and scaling of the eigenvectors work best for hydrological feature identification, at the 

end of the rotation section and at the very end of the conclusion.  
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In the revised manuscript, we will issue a caveat in the extended discussion on rotation and 

physical signal identification.  

Please see also our reply to your major comment 5 and 6.  

L439: 

small variations of what? 

AR: "small variations in the analysed data"   

L440: 

delete "d" in "degenerated pair" 

AR: We will keep "degenerated pair" instead of the suggested "degenerate pair". 

L449: 

Please note here and below my previous criticisms of using correlations to compare PC loading 

vectors. Often correlating two PC loading vectors results in high correlation for magnitude 

configurations that don't match well. This occurs because correlations measure only the 

gradients and ignore the magnitudes, yet the interpretation of the PC loading vectors depends 

heavily on the locations of the maximum magnitude loadings. 

AR: Please see our reply to your major comment 4.  

L456: 

How many patterns represent signal in applied research? There is a point in the eigenvalue 

spectrum where the associated eigenvectors represent either noise or signal with less variance 

than noise variance, and such eigenvectors would never be analyzed. This is why analysts nearly 

always truncate their n eigenvectors at k<<n. 

AR: We agree. We show the 10 PC patterns for the introductory purpose of our work here, 

because we aim to demonstrate the DD phenomenon and its side effects. Please see also our 

reply to your major comment 3.  

L465: 

Weigh this finding against the average length of data analyzed in applied geophysical research.  

What is the advice to that analyst with say 100 or 500 independent observations? 

AR: We would advise the analyst to consider subsampling a less symmetric domain (L459–

462). We will add this suggestion in section 5.2.1. and rewrite L543–548: 

"Analysing a subsampled data set with enlarged minimal distance between the locations can be 

used to diminish the DD of the PCA results. Reducing the symmetry of the domain can remove 

effective multiplets. Both can help to carve out features other than DD. On the other hand, 

informative local details might be filtered out together with the excluded locations. If there is 

still DD, the new DD patterns of the subsampled data set might be harder to recognize visually 

because of the smaller number of locations per area. The selected minimal distance, respectively 

the selection of locations, is critical for the analysis. Depending on the choice, different features 

in the results might stick out, get diminished or even disappear." 
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L465: 

If the eigenvalues are exceedingly close on two adjacent eigenvectors, no sample size is 

sufficient for those eigenvectors to resolve the degeneracy - something that should be 

mentioned (e.g., see Richman, 1986, his Table II, where 10,000 observations were insufficient 

to resolve the true patterns once intermixed by degeneracy). 

AR: We will include a sentence on that aspect at the end of L465 and add a paragraph break 

after the new sentence:  

"However, for very symmetric domains no sample size might be sufficient to resolve the 

degeneracy (e.g., see Richman, 1986 and PC 2+3 and 5–10 of the square domain in Figure 4a 

or Table II in Richman, 1986)." 

L482: 

This seems to be part of the conclusions. If so, fold it into a larger conclusions and suggestions 

section. 

AR: It is the suggestion section. Based on a suggestion of referee 2, it will be renamed to 

"Approaches to consider DD".  

L484: 

See previous comment on Q-mode, where the PC loadings are mapped spatially. 

AR: We did not investigate that and will restrict us here to S-mode. See also our reply to your 

comment on L155. 

L490: 

This is a strange section. Yes, T-mode PCA is possible and even used by some (e.g., see 

previous citation to Huth and Beranova, 2021) but the idea of applying T-mode is made and 

never examined in the paper to determine if there is domain dependence in T-mode or how that 

would manifest. If you say this, then provide evidence that domain dependence may or may not 

be an issue in T-mode (or other modes). Assuming this is not added to a revision, at best much 

of this section can be reduced and placed into the conclusions under a paragraph on future 

research ideas. 

AR: We see your point. In the revised version we removed almost the whole section plan to 

shorten it substantially. 

L496: 

rarely applied 

AR: We will change that.  

L500: 

To 

AR: We will keep our phrasing. 

L500: 

deleted "is to" 
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AR: We will keep our phrasing. 

L501: 

Such a comparison 

AR: We will change that.  

L502: 

deleted "to perform" 

AR: We will change that.  

L554: 

; Huth and Beranova, 2021 

AR: We will add this.  

L556: 

This is more complicated than stated here.  In the EOF model, the eigenvectors (EOFs) are 

orthogonal by column and by row.  Under the PC model, the PC loadings are only orthogonal 

by column (not by row). Once rotated, both EOFs and PC loadings are no longer orthogonal by 

column.  However, in the EOF model, the PCs are uncorrelated. Under the PC model, the PC 

scores are uncorrelated. Under orthogonal rotation, the PC scores are uncorrelated (and hence 

orthogonal by column). Under oblique rotation, the PC scores are correlated by column (and 

hence not orthogonal by column).  This is all interesting mathematically, but neither the 

atmosphere or the hydrologic system follow anything remotely close to orthogonality.  

Therefore, this is a validity issue. If the PC patterns are not valid to represent the physical 

processes, all the mathematical niceties are meaningless if the PC loadings are to be analyzed 

individually.  PCA is simply the incorrect model to represent the physics on each vector. If you 

are willing to forego physical analysis of each PC loading vector, then the PCA is an efficient 

linear representation of the total space but, in that case, domain dependence is not important. 

Once an analyst wants to add physical interpretation of each PC loading vector, all those 

maximal variance, and orthogonality features become useless in most cases, but now accounting 

for patterns with domain dependence becomes important. Again this topics of extracting the 

known sources of variability and of true modes are addressed in Compagnucci and Richman 

(2008) and Huth and Beranova (2021), among others. 

AR: Thank you for your elaboration. In the revised manuscript we (i) added an example with 

rotated spatial PC patterns, (ii) substantially extended the rotation section 5.2.2. and (iii) added 

the new method section 3.5. "Varimax rotation" in which we introduced rotation in more detail.  

For our scope here, we like to keep the simple more general statement regarding the side effects 

of rotation and add Wilks (2006) as second source. But we will 

In addition, we extended the discussion on rotation in section 5.2.2. and physical interpretation, 

including the literature you suggested. See also our reply to major comment 5 and 6. 

L556: 

are relaxed 

AR: We will keep our phrasing.  
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L557: 

Perhaps that "redistributed variance" is the variance of the true modes of variability? Huth and 

Beranova would support such an interpretation. If that is the case, it is a more important aspect 

of the physical system than the eigenvalues (or the percent variance associated with each 

eigenvalue). One way to assess this is (assuming the correlations capture the physically meaning 

variations in the data) to determine if the PC loadings from a solution (unrotated, rotated) 

represent the underlying correlation functions.  Once that is assessed, and if a PC loading pattern 

is associated with a correlation/covariance patternr, the statistics associated with these patterns 

are what describes the physical system. 

AR: We included the literature you suggested in the extension of section 5.2.2.. And we added 

a suggestion for future studies to systematically assess the performance of different PCA modes, 

rotation methods and scaling of the eigenvectors in hydrological feature identification, at the 

end of the rotation section and at the very end of the conclusion. 

We will include these aspects in the extension of section 5.2.2..  

See also our reply to major comment 5 and 6. 

L558: 

If you examine the results in this paper, for unrotated PCA, selection of k PCs to avoid 

truncation of degenerate multiplets is also critical, so the criticism of truncating PCs holds in 

general (unrotated PCA, rotated PCA) for all cases where the n PCs are not retained. Normally, 

k<<n PC are retained in unrotated solutions too, so selecting k is still an issue for unrotated 

PCA. Your results suggest that unless k is selected at a location in the ordered eigenvalues at a 

location where the eigenvalue spacing exceeds the North criterion, too little eigenvalue spacing  

confounds the assessment of domain dependence.  

If one rotates their PC loadings, previous research suggests that all the domain dependence 

seems to disappear. If that is the case, you could rotate and check your analyses for domain 

dependence and report on its reduction under rotation in this manuscript. You could also check 

the amount of the correlation functions applied that emerge with both the unrotated and rotated 

PC loadings and report  those values and on the differences found. 

AR: We agree that defining the truncation point is always an issue, be it for unrotated or rotated 

PCA. We will include the aspect of eigenvalue degeneracy at the truncation point. Therefore, 

we will expand the warning to split multiplets in L425 with an explicit statement about the 

truncation point. Please see our reply to your major comment 3. 

Regarding rotation, we will expand section 5.2.2.. Please see our reply to major comment 5. 

L564: 

If you claim this, then can you point to a table of results that partitions the variance into 

correlation structure variance versus domain dependence variance)? 

AR: We cannot point to such partition table. We refer to what we showed here, that is sequences 

of pure DD patterns in which the leading PCs were associated with substantial amounts of 

variance.  
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L569: 

Should you add the following corollary? "Without knowledge about the effects of degenerate 

multiplets,  DD can be misinterpreted" 

AR: We assume, you are referring to the intermixing that can mask the expected DD patterns. 

Thus, we would rephrase your suggestion and add it to the list: 

"Without knowledge about the effects of degenerate multiplets, DD can be overlooked because 

the degeneracy can mask the expected DD patterns." 

L573: 

Regardless of the assessment of effective multiplets (including at the truncation point) and 

DD, not analyzing how well the PCs resemble the underlying covariance or correlation 

structure will often lead to the wrong hyrological interpretations. 

AR: To specific comments on L573–575. 

We agree and understand that this is an important point for you. We think so as well. We will 

add a new paragraph at the very end of the conclusion. It seems to us, that the terminology 

"underlying covariance or correlation structure" points to atmospheric mode identification. In 

hydrology, mode identification is not as common as in the atmospheric sciences. Therefore, we 

will phrase our statement differently. 

"However, it has to be noted that pPassing the check for DD and accounting for effective 

multiplets in the selection of the PCs are necessary but not sufficient conditions to assure 

physical meaningfulness. When single PCs, or combination of PCs, are assigned to distinct 

hydrological features, it should be carefully consideredhecked whether the S-mode PCA 

constraints (i) successive maximization of variance on the PCs, (ii) orthogonality of spatial PC 

patterns and (iii) linear uncorrelatedness of temporal PC patterns support such interpretation. 

The spatio-temporal PC patterns should not only be checked for resemblance with the 

postulated features, but also the invariance of the spatial and temporal PC patterns against 

subsampling should be approved. Building on this study, a next research task could be to 

conduct systematic experiments with synthetic test data derived from hydrological simulation 

models to evaluate which PCA modes, rotation methods and scaling of the eigenvectors work 

best for hydrological feature identification."  

Building on this study, a next research task could be a numerical experiment to evaluate which 

PCA variants (unrotated vs. rotated, S-Mode versus T-Mode) and which matching coefficients 

to compare the spatial PC patterns (Pearson correlation vs. congruence coefficient) work best 

for hydrological feature identification."  

L574: 

PCs are a fine method for data reduction or compact orthogonal description of data onto k PCs. 

Once the analyst jumps from such a well-accepted interpretation to analyzing or interpreting 

each individual PC, some assessment of how well each PC represents the data covariability 

must be performed. Even in cases with no degenerate multiplets and small DD, that does not 

guarantee (even hint at) an accurate portrayal of a physical process on an individual PC.  Such 

a determination must be made after the analysis. This needs to be added to the conclusions to 

inform the reader that physically analyzing individual unrotated PCs is a suggested path for 

enlightenment about the physical system. Recall, the cautionary statment in the conclusion of 



 

 

AR to R1 29  

Buell (1979): "Otherwise, such interpretations may well be on a scientific level with the 

observations of children who see castles in the clouds." 

Sadly, Buell's comment holds for unrotated PCs in general, because of all those "heavy 

constraints", eigenvalue degeneracy and domain dependence. Again, I urge you to examine 

Compagnucci and Richman (2008) and Huth and Beranova (2021). 

AR: Thank you for your elaboration and the references. We will include this. Please see our 

reply to your comments to L573 and your major comments 5 and 6.   

L575: 

Perhaps necessary but certain not sufficient to show physical meaningfulness. 

AR: We will add this. Please see our reply to your comments to L573 and 574 and your major 

comments 5 and 6.   

L598: 

What does "clean structure" mean? 

AR: We will rephrase it to "smooth pattern".   
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Reply to referee 2 

Comments of referee 2 are in black. 

Replies of the authors (AR) are in blue. 

The update of the AR for the major revision of the manuscript are marked with red. The initial 

replies were only altered when there were substantial changes. Thus, we did not change the 

tense in every reply and we did not include every minor change in spelling or phrasing. 

------------------- 

Comments of referee 2 

https://hess.copernicus.org/preprints/hess-2024-172#RC2 

This paper highlights a largely overlooked issue called domain dependence (DD), where the 

PCA results are influenced more by the size and shape of the spatial domain being analyzed 

than by the actual hydrological processes. This effect, caused by spatial autocorrelation in 

hydrological data, can lead to misleading patterns, accumulation of variance in leading PCs, 

and closely related (degenerate) PCs that are difficult to distinguish. The paper emphasizes the 

need to account for DD when interpreting PCA results and introduces two methods—stochastic 

and analytic—for generating DD reference patterns. These methods are demonstrated using 

synthetic examples, and R-scripts are provided to help users explore and address DD in their 

analyses. The results presented are solid. The paper covers all the aspects that are important for 

a user. However, there are redundancy and a lack of clarity in some of the sections. I suggest a 

major revision that’s focused on organizing and presenting the materials. Please see my detailed 

comments below. 

AR: Thank you for the clear and comprehensive summary of our work. Thank you furthermore 

for your helpful and motivating comments. We appreciate the work you have spent on the 

review. 

Major comments: 

It is good to have all the relevant terms explained in Section 2. However, as a hydrologist, I 

personally found the section 2 quite challenging to follow. Since the objective of this technical 

note is to raise attention to the DD effects among PCA users in the hydrology community, it is 

better to use terminologies and displayable items accessible/understandable to hydrologists 

especially in the method section. 

I suggest adding 1) equations when necessary and 2) conceptual diagrams like hypothetical 

spatial and temporal PC graphs to explain PCA and S-mode PCA (they can be put in the 

appendix). The authors can also add workflow diagrams in both the method and discussion 

sections when they illustrate to practitioners how to consider DD, how to diminish DD, etc. 

Also, consider adding a real hydrological case at the end of the paper to illustrate the DD effects 

and how to deal with DD. That way, the value of the paper to hydrologists and other PCA users 

can be greatly improved. 
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AR: Thank you for your suggestions. In the revised manuscript, we will provided more 

equations in the main text, e.g. the equation for the calculation of the correlation loadings in 

section 2.1.2,  

𝑐𝑗 = 𝑎𝑗 ∗ √𝜆𝑗  

( 1 )  

and in additional schemes. We will added the following schemes:  

• a conceptual diagram for S-mode PCA (first draft in Figure 1) and 

• workflow diagrams in the method section for (a) the stochastic method and (b) for the 

analytic method (first drafts in Figure 2 and Figure 3). 

 

Figure 1: S-mode PCA, adapted after Fig. 9 in Richman (1986). n: number of locations, m: 

number of time steps. The eigenvalues define the explained variance, the loadings the unscaled 

spatial PC patterns and the scores the temporal PC patterns. Figure updated compared to initial 

reply to R2. 
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Figure 2: Stochastic DD reference method. n: number of locations, m: number of time steps, N: 

number of data sets, respectively PCAs, index j: PC rank, c: correlation loadings, a: loadings, 

λ: eigenvalue, S: stability, indices k, l: running indices for PCAs from the ensemble, 𝒄̃: 

harmonized correlation loadings, eVar: explained variance. Figure updated compared to initial 

reply to R2. 
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Figure 3: Analytic DD reference method. Figure updated compared to initial reply to R2. 

Following your suggestion, we added a real hydrological case in Section 4 of the paper and 

discussed it in the context of (i) comparison of spatial PC patterns from markedly different 

subdomains, (ii) DD reference patterns and (iii) rotation. We see your point with adding a real 

hydrological case at the end of the paper. However, for a number of reasons we like to refrain 

from it.  

However, tThe focus of our work is to illustrate the functioning of DD and its side effects. For 

this, we believe that it is best to use synthetic examples only. It (1) ensures clearly defined 

statistical properties, (2) clarifies that "all observed effects are solely caused by the specified 

statistical properties" and (3) enables "to study the effects of specific properties, e.g. spatial 

correlation length or spatial extent, on the PCA results." These points are already mentioned in 

the second last paragraph of the introduction (lines 106–110). For further clarification, we want 

to added a short phrase in line 106: 

" We illustrate our introduction primarily with synthetic examplesTo focus on the functioning 

of DD and its side effects, we illustrate our introduction with synthetic examples only. This 

ensures ..." 
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Furthermore, the manuscript is already quite extensive and we prefer not to extend it further. 

An analysis of a real hydrological data case would be material for another manuscript. As a 

matter of fact, the current manuscript evolved out of the work on a manuscript with spatially 

distributed groundwater level and precipitation series. In that manuscript handling DD is just 

one aspect. Given the lack of knowledge about DD in the hydrological literature, we tried first 

to include an introduction to DD on top of the other analysis. We realized very quickly that both 

together is too much and that we have material for two standalone manuscripts. We decided to 

provide first an introduction to DD for the hydrological community - including all the different 

aspects that we consider important and that we discussed in the presented manuscript here - 

before presenting the application to real hydrological data cases. 

Minor comments: 

Combine data set to be one word “dataset”. 

AR: We will do so.We checked for the spelling used by HESS and found that "data set" is used 

(https://www.hydrology-and-earth-system-sciences.net/submission.html). That is why we kept 

it as it was.  

Avoid using the word “system” which is too broad a term and could mean different things to 

different people. Be more specific. If you are talking about a catchment, use catchment. If you 

are talking about a soil column, use soil column. 

AR: Here we are using the broad term "system" on purpose because we are presenting the 

functioning of DD irrespective of the analysed system, be it a catchment or a soil column. We 

will clarifiedy what we mean by “hydrological system” by adding the following sentence to 

line 37 in the very beginning the end of the first paragraph of the introduction: 

"S-mode PCAThe approach can be applied to data from very different hydrological systems 

such as catchments or soil columns." 

Abstract: The abstract needs reworking. Currently, the authors spend three quarters of the 

abstract on describing what DD is and why it’s important to consider DD. Only 3-4 sentences 

are focused on what the paper does. The abstract needs to be re-organized such that the first 

quarter gives the introduction and background information about DD. The middle two quarters 

focus on the methodology and results. The last few sentences focus on the implications of the 

findings. 

AR: We will re-organize the abstract trying to follow your suggestions. However, we must 

consider that the manuscript is not a classic research paper. A central aim of this work is to 

provide HESS readers an introduction to DD and effectively degenerate multiplets. We will 

therefore need more space than a quarter of the abstract to introduce these concepts and warn 

of the resulting pitfalls for hydrological interpretations.  

Line 45-50: Could expand the list by adding references of PCA/EOF to hydro-climate research 

like: 

Li et al. (2023): https://link.springer.com/article/10.1007/s00382-021-06017-y 

Bieri et al. (2021): https://journals.ametsoc.org/view/journals/hydr/22/3/JHM-D-20-

0116.1.xml 
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AR: Thank you. We will do so. 

Line 105: You’ve defined domain dependence to be DD. Use DD here. 

AR: We will do so. 

Line 118: ”Considering DD is discussed”. I don’t quite understand. Do the authors mean “in 

practical, when and how to consider DD is discussed”? Be a bit more specific here. 

AR: In this section we want to provide the reader with options how to check for DD and how 

to deal with it. For clarification, we like to changed the quoted sentence in L118 to: 

"Finally, an application example with a precipitation raster data set is presented and different 

options to detect and diminish DD are discussed.Finally, different options to consider DD are 

discussed with respect to detecting DD and diminishing DD." 

Move section 3 to data and code availability statement. 

AR: We will do so. 

Figures 5-6: Show the colorbars for the color shadings. 

Figure 7 is just a repeat of the square experiments in Figures 5 and 6. I suggest showing one 

figure of square experiments, one figure of rectangle experiments, and one figure of triangle 

experiments. On all the PCs, show the colorbar, the information you showed in the title of 

Figure 7a. 

AR: The overview plots in figures 5, 6, 8, 9 and Figure S5 in the supplement are meant for 

direct visual comparison (1) with the "classical Buell patterns" shown in Figure 1, and (2) 

among each other. Therefore, we always provide the same structure, with PC 1–10 as columns 

and the domain boundaries (a) square, (b) rectangular, (c) triangular in the rows. The focus is 

here on the spatial patterns only - not their magnitudes. Like in Buell´s original work, we 

therefore don´t show the scales.  This way the overview character of the figure is ensured and 

the plots can be conveniently compared. In contrast to Buell, we use colour gradients - instead 

of +/- schemes - to picture the spatial patterns (see caption of Figure 5). We think that this 

further improves the readability of the figures, especially for the more fine structured patterns 

of the PCs with small eigenvalues (lower ranked PCs). 

The detail plots of Figures 7, 13 and Figure S7 in the supplement are meant as examples to 

demonstrate what magnitudes of (1) contrasts in the spatial PC patterns and (2) explained 

variance associated with the PCs can result from DD alone. We think that it is important and 

informative to show this level of detail once in the presentation of the stochastic DD patterns 

(Figure 7) and in the discussion of the effective multiplets (Fig 13). In case of the overview 

plots we think this level of detail would be distracting for the readers. In this logic, Figure S7 

in the Supplement is merely the anisotropic counterpart for Figure 7 in the main text, meant to 

complete the anisotropic set of figures S5–7.   

Note, that we moved the detail plot of the square (former Figure 7) now as well to the 

supplement. We did so to keep the overview character in the main text. Also, we aimed to 

balance the extension of the manuscript with new material by moving some parts to the 

supplement.  
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To clarify the different purposes of overview and detail plots, we like to separated their 

introduction in section 4.1. into separate paragraphs with paragraph breaks in lines 260 and 264. 

The section titles can be more informative. Like “4.1 First examples, 4.2 Domain shape, 5 

Considering DD”… The authors should use short phrases instead of words for the subheaders. 

This is a good opportunity to provide more information to summarize the subsections. 

AR: Thanks for your suggestion. We will change the section titles of section 4 and 5 to: 

4. Exploring the DD effect 

4.1. Exploring Buell patterns and their stability 

4.2. Effects of the domain shape 

4.3. Effects of the domain size and spatial correlation length 

4.4. Effectively degenerate multiplets 

 

5 Approaches to consider DD 

5.1. Detecting DD 

5.1.1. Comparing spatial PC patterns from markedly different subdomains 

5.1.2. Comparison with DD reference patterns 

 

5.2 Approaches to diminish DD 

5.2.1. Subsampling of domains 

5.2.2. Rotation of PCs 

Table 1: When the PC of the subsampled variant does not correlate the best with the all-cell PC 

of the same rank, i.e., the values with “\”, the correlation is significantly lower. For example, 

0.52 for PC4 in Square patter, 0.45 for PC5 in Square, 0.52 for PC6 in Rectangle. They are 

significantly lower than other values in the table. Is there an explanation for that? 

AR: Best correlating PCs with different ranks do not always exhibit rather low correlation. 

What we can see in Table 1 are different levels of variation of the patterns from the 

homogeneous subsampling variant when compared with the patterns from the all cells variant 

(the classical Buell patterns). The patterns of the subsampling variant can be:  

1) simply noisy variants of the all cells patterns (e.g. PC 1 and 2 from all domains), 

2) simply noisy variants of the all cells patterns but with different ranking (e.g. PC 3 and 

4 from the rectangular domains), 

3) a mix of all cells patterns (e.g. PC 4 and 5 from the square domains1), or 

4) very different from the all cells patterns (e.g. PC 10 from all domains2). 

In this sequence of increasing differences between the patterns from both variants, the last 

example you were addressing (PC 6 from the rectangular pattern) would be placed somewhere 

in between 3) and 4). Generally, the differences increase towards the low ranked PCs with the 

                                                           
1 In the all cells variant, PC 4 exhibits two maxima in the upper left and lower right corner and 

two minima in the lower left and upper right corner, PC 5 exhibits the maximum in the center 

and four minima in the four corners. In the subsampling variant, PC 4 exhibits two maxima in 

the upper left and lower right corner and the minimum in the center, PC 5 exhibits basically the 

same structure but rotated by 90°. 
2 For PC 10, the patterns of the all cells variant are for all domains already so fine structured 

that the subsampling results in quite different patterns.  
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more detailed patterns. But, there are also substantial differences between the patterns from 

relatively high ranked PCs possible (e.g. PC 4 and 5 from the square domains). Thus, even for 

rather homogeneous subsampling, the DD patterns are not necessarily simply noisy variants of 

the classical Buell patterns. 

This underlines the main message of section 4.2: " For data sets with identical spatial correlation 

properties and similar domain size, the DD patterns are original for every domain shape." 

(L316). 

We suggest to integrate the above details, including the footnotes, and extend the paragraph in 

line 340-347 to: 

"For the spatial patterns of the homogeneous subsampling variant and the all cells variant, the 

correlation analysis confirmed the visual impression of overall similarity (Table 1). But it also 

showed that there are differences. The patterns of the subsampling variant can be:  

1) simply noisy variants of the all cells patterns (e.g. PC 1 and 2 from all domains), 

2) simply noisy variants of the all cells patterns but with different ranking (e.g. PC 3 and 

4 from the rectangular domains), 

3) a mix of all cells patterns (e.g. PC 4 and 5 from the square domains1), or 

4) very different from the all cells patterns (e.g. PC 10 from all domains2). 

Transitions between 3) and 4) are possible (e.g. PC 6 and 7 of the rectangular domain). 

Generally, the differences increase towards the low ranked PCs with the more detailed patterns. 

But, there are also substantial differences between the patterns from relatively high ranked PCs 

possible (e.g. PC 4 and 5 from the square domains). Thus, even for rather homogeneous 

subsampling, the DD patterns are not necessarily simply noisy variants of the classical Buell 

patterns. The comparison with the heterogeneous variant yielded substantially stronger 

deviations (Table 2). Thus, generally, visual recognition of Buell like patterns in S-mode PCA 

results is a concrete indication for DD. However, it is so in particular for the leading PC patterns 

from domains with rather homogeneous spatial arrangement of locations within boundaries 

similar to Buell´s archetypes. Even for domains of similar size and identical spatial correlation 

properties, deviations from strictly regular distribution of locations alone can result in DD 

patterns substantially deviating from what one might expect with the classical Buell patterns in 

mind." 

It is unclear to me how exactly did you calculate stability. Suggest showing equation when it is 

first mentioned to illustrate. 

AR: The stability Sj of the spatial patterns of PC rank j is calculated as the mean R2 of the 

pairwise correlations of all spatial patterns with PC rank j from the PCA ensemble:  

𝑆𝑗 =
1

𝑁 ∗ (𝑁 − 1) ∗ 2
∑𝑐𝑜𝑟(𝑐𝑗𝑘,  𝑐𝑗𝑙)

2
𝑁

𝑘<𝑙

 

N is the number of PCAs which equals the number of analysed data sets, from the ensemble; k 

and l are the running indices of the PCAs that are compared.   
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We will add the above equation and a scheme to the description of step 2 (lines 195–197). A 

first draft of the scheme is given in Figure 2. The abbreviations from the scheme will be 

introduced in the main text as well. 

 


