Dear editor, Dear referees,

thank you very much for your work and contributions. Based on your detailed comments we
substantially revised the manuscript. We took great care to reply to all raised aspects and we
included most of your suggestions in the revised manuscript.

Following the suggestion of the editor, we included also three main aspects we refrained from
in our primary replies and suggestions to your comments. In particular, we added

@) the congruence coefficient as matching coefficient in addition to Pearson
correlation,

2 an application example with precipitation raster data (real-world data case), and

3) a rotation analysis with the precipitation data.

Please find below our updated replies to all referee comments.
Best regards

Christian Lehr and Tobias Hohenbrink



Reply to referee 1
Comments of referee 1 are in black.

Replies of the authors (AR) are in blue.

The update of the AR for the major revision of the manuscript are marked with red. The initial
replies were only altered when there were substantial changes. Thus, we did not change the
tense in every reply and we did not include every minor change in spelling or phrasing.

Comments of referee 1
https://hess.copernicus.org/preprints/hess-2024-172#RC1

Review of Technical Note: An illustrative introduction to the domain dependence of spatial
Principal Component patterns by Lehr and Hohenbrink.

Major comments

This manuscript attempts to extend the study of how analyzing data on various shaped spatial
domains affects the principal component loading patterns. The extension is both in content, as
new material is added to the existing literature and the authors hope to gain the audience of
hydrologists who, by and large, have not been exposed to such a concept. The importance of
the work lies in several areas (expanded on below) but the key one is that if the PC loading
patterns match those that are expected to arise from the shape of the domain, rather than the
covariance fields, the recommendation should be a full stop on continuing. Therefore,
understanding domain dependence is a necessary, but not sufficient condition, for physical
interpretation of PC loadings.

Let me add that I like this paper and believe it can be a useful addition to the literature, helping
analysts to interpret their eigenanalyses. Therefore, I hope the authors view my extensive
comments with that in mind. If I come across as opinionated it is because of my lengthy work
in this area and if it seems direct, that is my nature. Regardless, I like this manuscript and hope
it gets published after further revisions.

AR: Thank you a lot for your comments and the appreciation of our work. Your comments are
really helpful and the literature you suggested as well. Thank you also for the kind and
respectful personal comment directly above, putting the degree of detail and accuracy in your
comments into context.

We like to take the opportunity to put our replies to your comments into context as well. You
spend a lot of effort to examine our work in detail and you offer us a lot of additional
information in a high degree of detail. We highly appreciate that. If we refrain from some of
your suggestions it is sometimes simply because it goes beyond the scope of what we want to
offer here in the journal HESS. Our work is meant as an illustrative introduction for PCA users
in the field of hydrology who probably never heard of domain dependence and its effects on
the explained variance distribution, contrasts of the spatial PC patterns, degenerated multiplets,
etc. - not to mention different scalings of PCA eigenvectors or scores, the congruence
coefficient, etc.
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To our feeling, the manuscript is already quite full with all the aspects we included. In fact,
during the writing process we were even discussing to omit the whole multiplet aspect. Thus,
we prefer not to extend it further with new aspects. Furthermore, we want to find a balance with
referee 2 who advocated mainly for restructuring the current manuscript instead of extending it
further.

Now for the general comments. The paper builds upon the pioneering work of C. Eugene
Buell. Those papers are cited. Buell (1979) left the reader with this final thought on the subject
of domain dependence in the last line of his conclusions, stating that unless domain dependence
was accounted for, on interpreting EOFs, "Otherwise, such interpretations may well be on a
scientific level with the observations of children who see castles in the clouds". That is a pretty
direct and strong statement. Digging deeper into why that can occur, the manner in which
individual EOFs were being analyzed in the 1970s,...,2020s is by inferring physics by visual
inspection of the magnitudes and gradients of the EOFs when plotted on maps. There was no
external or internal validation of the patterns, only conjecture. With over 50 years of this
practice, little attention was paid to whether this was a wise idea and thousands of such EOF
studies emerged, with claims of the importance of the magnitudes and shapes of the patterns,
many of which looked suspiciously like those patterns Buell generate. However, we should be
wiser today and the authors are telling the investigator that if the covariance fields vary across
a given domain shape but the same basic Buell patterns emerge, perhaps it is castles in the
clouds rather than physics. However, there may be something more than a chimera, a mixture
of signal and domain dependence. We come to learn later in the manuscript that a third
confounding factor, namely the degeneracy of PC loading patterns with closely spaced
eigenvalues, playing a role. It is good to see these factors considered.

Next, let's discuss PCA as a technique. According to those who understand the method, there is
general agreement that PCA is useful for data reduction. In other words, in the type of analysis
in the manuscript, the time series at n gridpoints or locations can have their covariances
explained in k PCs where k<

1. Given the above prologue, the authors on lines 408-409 discuss "heavy constraints" of PCA
that inhibit physical interpretation. To that good list, I'll add that it has been shown the leading
PC, by virtue of the constraint of maximal variance can pull multiple unrelated sources of
variation onto that leading PC, confounding physical interpretation. This should be added. The
Karl and Koscielny citation (in your reference list already) shows this in their Appendix. Further
details are given in the annotated manuscript (attached).

AR: Thank you very much. We will add it.

2. There is a general lack of agreement on terminology for eigenmodels, that leads to massive
confusion among users of these techniques. At first when reading this manuscript, I thought the
authors were applying EAOFs, only to change my opinion later in the manuscript that they were
applying the PCA model. The original paper where EOFs were named EOFs, is generally
attributed to Lorenz (1956). However, in that report, Lorenz refers to the displays as EOFs of
space, and EOFs of time, to define what have now mutated somewhat into what are called
"EOFs", and "Principal Components", respectively. Assuming a spatial analysis, those EOFs
of space are unit length (sum of the squares of each EOF's coefficients = 1), whereas the EOFs
of time are orthogonal vectors, each with a mean of zero and variance equal to the associated
eigenvalue. In contrast, the PCA model, generally attributed to both Pearson (1901) and more
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fully to Hoteling (1933). weights (postmultiplies) the unit length eigenvectors (EOFs) by the
square root of the corresponding eigenvalue to give "PC loadings". That seemingly minor
change in the spatial patterns (keeping with the definition of space and time given for EOFs)
results in the time series calculation and properties being different. Those time series in the
PCA model are called "PC scores" and have mean 0 and variance 1. They are also orthogonal.
Flip the space and time definitions of these displays if the analysis is temporal. Because the two
models result in different space and time patterns, they cannot be compared directly and the
precise equations used are necessary to attempt to reproduce the findings of others. I urge the
authors to state clearly what model they are using immediately after the introduction and
show the equation. The situation becomes more complicated as users of these techniques tend
to grab EOF/PCA code off of various statistical packages or Python code libraries, that often
mislabel the results, never checking the specifics, thereby perpetuating the confusion. For the
current paper, one must know if the analyses are applied to EOFs (unit length eigenvectors) or
PC loadings (unit length eigenvectors postmultiplied by the square root of the corresponding
eigenvalues). Further, it would be helpful to know if any of the results for domain dependence
change as a function of the specific model invoked. There is considerable confusion about
this topic when reading this paper. It is important the model being used herein is stated
unambiguously at the outset of this paper and the equation added in the methods section
to avoid such confusion. Further adopt the correct terminology for that model and don't
list any alternative terminology that might confuse the reader.

AR: We agree, there is a lack of agreement in the literature regarding the terminology. For
example, the distinction in PCA and EOF model you are suggesting, is only one option that can
be also critizised (Jolliffe, 2002). Most often, we found the information that PCA and EOF have
different roots but are interchangeable and that the related terms are used interchangeably (e.g.
Hannachi et al., 2007; Wilks, 2006). It also appears in a paper that you are highlighting (Huth
and Beranova, 2021). Thus, to our understanding it is not the main point here to decide between
the models you are suggesting, but to clearly define the applied terms and to use them
consistently throughout the manuscript. Here, we certainly agree and thank you for pointing out
inconsistencies.

The PCA performed with function "prcomp" in R gives unit length eigenvectors (what you call
EOFs). These are termed "loadings" in the documentation of the function in R. To our
knowledge, this is also the way it is commonly used among PCA users in hydrology. These are
the coefficients used to calculate the PCs. The PC scores have mean zero and the variance
equals the associated eigenvalue (what you call PCs). Thus, prcomp applies what you call the
EOF model.

As postprocessing step, we multiply the unit length eigenvectors with the square root of the
corresponding eigenvalues (what you call PC loadings). Thus, the sum of the squared
correlation loadings of a PC equals its eigenvalue. They are equivalent to the Pearson
correlation of the PCs and the analysed variables, since we apply correlation matrix PCA. To
emphasize this, we call them "correlation loadings".

We are aware that the term "correlation loadings" is is not commonly used. However, given the
lack of agreement regarding the terminology, we prefer that the reader might stumble upon
"correlation loadings" and is forced to check our definition rather than using the term "loadings"
where the reader might think of either unit length eigenvectors or the scaled version.

We use correlation loadings here for several reasons. They provide the Pearson correlation
range from —1 to 1 which is for most users easy to grasp. The common range also enables to
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directly compare the contrasts of the spatial PC patters from different PCs or PCAs (L167).
Finally, it is prerequisite for the calculation of the stochastic DD reference patterns (L208).

In our set up here, the correlation loadings define the spatial PC patterns, the eigenvectors the
unscaled spatial PC patterns and the PCs the temporal PC patterns. Note however, that the focus
in our work is on the spatial PC patterns. The analysed time series are all z-scaled white noise
series, resulting in the temporal PC patterns being white noise as well. Furthermore, the mean
correlation loadings from the stochastic method, cannot be used to calculate scores, like with
the classical loadings (L211).

For clarification, we will add the equations for the PCA in section 2.1 and for the correlation
loadings in section 2.1.2 and rephrase the second paragraph of section 2.1.2 to:

"In correlation matrix based PCA, normalizing theunitlength-loadings from the the unit length
eigenvector a; of a PC j by multiplying it with the square root of its eigenvalue 4; is equivalent

to the Pearson correlation between the scores of that PC pc;_and the analysed variables_X.

¢ = aj\/l—j = cor(pc;, X) (2)

Thus, the loadings are normalized to the commonly well-known Pearson correlation range from
-1 to 1 which simplifies reading and interpretation of the PCA results. Here, we use the term

“correlation loadings” for these normalized loadings cj. We do so to prevent confusion with the
coefficients that are used in the linear combination to calculate the PCs, which are not

normalized to a common range (Equation 1). The sum of the squared correlation loadings c; of

a PC J equals its eigenvalue_A;. Thus, they can be used to calculate the fractions of variance

with correlation

normalizedloadings-—In the following, the spatial PC patterns are described
loadings e-only.

For S-mode PCA, the normalization enables direct comparison of the contrasts of spatial
patterns from different PCs or PCAs. Here, we define the contrast of a spatial PC pattern as the
range between the minimum and maximum of the correlation loading values of that PC. Thus,
the maximum contrast possible would be 2."

Hannachi, A., Jolliffe, I. T. and Stephenson, D. B.: Empirical orthogonal functions and related
techniques in atmospheric science: A review, International Journal of Climatology, 27, 1119-
1152, https://doi.org/10.1002/joc.1499, 2007.

Jolliffe, I. T.: Principal Component Analysis, 2nd ed., New York, Springer, 2002.
Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, 2nd ed., Elsevier, 2006.

3. The treatment of eigenvalue degeneracy is generally well addressed with one exception that
potentially plagues nearly every applied eigenanalysis: eigenvalue degeneracy at the truncation
point (k). If those PCs associated with closely spaced eigenvalues between k and k+1 have
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information that is intermixed, problems arise and data is intermixed with noise on the kth
retained PC loading vector. Your paper presents 10 PCs, therefore, the spacing between the
10th and 11th eigenvalues should exceed the North et al. criterion. Does it? Let the reader
know.

Further, this needs to be mentioned because it can cause the loss of a domain dependence pattern
simply because the way eigenvalues are ordered in descending order makes them more likely
to be closely spaced as the smallest eigenvalues head toward the tail (presumably noise) where
the analyst would normally truncate the analysis to discard the k+1,...,nth eigenvalues, perhaps
using some other criterion (e.g., based on percent variance extracted, eigenvalue magnitude).

Related to this, I wonder why eigenvalue degeneracy is not addressed earlier in the paper as it
seems to affect domain dependence. If that is the case, then consider moving it earlier in the
paper as those PC loadings arising from degenerate multiplets should not be expected to exhibit
the domain dependent patterns but the multiplet may be dominated by the domain dependent
patterns and those are intermixed into new patterns that don;t seem to be domain dependent
patterns.

AR: Thank you. We will include the aspect of eigenvalue degeneracy at the truncation point.
Therefore, we will expand the warning to split multiplets in L425 with an explicit statement
about the truncation point:

"In particular, special care has to be taken that the truncation point of a PCA does not split a
multiplet (North et al., 1982)."

Here, we show the first ten PC patterns merely for illustration. We found it to be a good balance
between showing the DD pattern sequences and some degree of detail, but not too much detail
that it is still visually easy to grasp. Also, to our experience most S-mode PCA applications in
hydrology use substantially less than ten PCs, our casual guess would be around four. To clarify
this, we will add an explanation to the truncation point used in our study in L260:

"Note, that here and in the following we show the results for the first ten leading PCs. The
decision was taken merely for the illustrative purpose. We found it to be a good balance between
showing the DD pattern sequences and some degree of detail, but not too much detail that it is
still visually easy to grasp. There was no other specific truncation criterion, e.g. based on
eigenvalue magnitude or percent variance extracted, applied."

We did not check for degenerated multiplets formed by PC 10 + PC x, because we did not
analyze the PC 10 patterns further and used them only as examples for illustration. We will
state this explicitly in L473, including your hint on intermixing of signal and noise:

"Note also, that intermixing might be easier overlooked for the smaller eigenvalues that are
more closely spaced. If the analysist selects PCs to separate noise from signal, this could
possibly result in truncation within a multiplet and consequently intermixing of noise and signal
in the last considered PCs. Here, we selected the first ten PC merely for the illustrative purpose
(Ssection 4.1). If the goal would be to further analysze PC 10, it would be necessary to check
its patterns for intermixing - also with the subsequent PCs, in particular PC 11. Indications for
intermixing in the PC 10 pattern can be seen in the stability plots of Figures 4a, 10c, Sla+c. In
case of Figure 10c, PC 9 does not show sign of intermixing, thus, in this case the intermixing
is probably with PC 11."
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Thank you also for your hint that intermixing might mask (expected) DD patterns. We will add
a short paragraph on that in L453:

"Note, however that degeneracy might cause domain dependent patterns that don’t seem to be
DD patterns because they are intermixed into new patterns. For example, in Figure 13 the
patterns of the multiplet pairs of simulations 1, 4 and 5 exhibit different patterns than those of
simulations 2 and 3."

Regarding the order of our sections, we like to point out again that the motivation of our work
is to provide an illustrative introduction for PCA users in hydrology. We come back to this
because it relates a lot to what we are presenting in which order. We start with simple examples
to introduce the general phenomenon. Then, we get more specific and complex. Step by step,
we focus on different aspects of DD and link it to PCA features we assume to be of interest for
the PCA practitioners in hydrology and regularly used.

In section 4.1, we use the Buell patterns to introduce the general phenomenon, the concept of
stability of the PC patterns and the use of the scripts. In section 4.2, we continue with the domain
shape aspects, including irregular distribution of the locations. In section 4.3, the ratio of
domain size versus spatial correlation length and its effects on the explained variances and the
contrasts of the DD patterns comes into play. Thus, in each subsection of section 4, we introduce
new aspects, building on the earlier ones.

We assume that the effectively degenerated multiplets will be the most abstract and difficult to
grasp part for most of our readers, and probably also the furthest away from what they are used
to. That is why the degenerated multiplets come in their own section as the last of the
phenomena we want to introduce.

4. Comparison of PC loading patterns is accomplished with correlations. S-mode PC loading
(and that of EOFs) interpretation depends on the magnitude of the PC loadings plotted on a map
(and in general, the magnitude of the PC loadings/EOFs is important in any mode). Therefore,
correlations subtract each PC loading/EOF vector mean (pattern mean), so two patterns with
different means can have their large correlations, yet their magnitude patterns will be much
different and the grid boxes (I think what you refer to as cells) with the maximum PC loadings
will be in different geographical (or topological) locations in your domains. If that is the case,
the the correlation is suboptimal for such comparisons. Find a better metric that includes
magnitude in terms of comparison. I suggest the congruence coefficient, though others exist
that preserve the vector magnitudes.

AR: In the revised manuscript, we provided both, congruence coefficient and Pearson

correlation, to quantify the matching of the spatial patterns from different PCs. The congruence
coefficient provides the benefits you are pointing out. The major benefit of Pearson correlation

is that it is well known and the results in terms of r or R? can easily be contextualized by the
reader. We added a new method section 3.3. where the congruence coefficient is introduced

and put into context with Pearson correlation.

The stability analysis of the stochastic approach (step 2, new Section 3.2.1.) was performed
with Pearson correlation only, because all compared PC patterns (i) were of identical rank and
(ii) were based on synthetic data sets simulated with identical spatial correlation properties and
identical domains. For this setting, we considered the effect of the pattern mean subtraction by

Pearson correlation as negligible. This exception is explicitly stated in the new method section
3.3.
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5. It seems odd that after the paper establishes the details and importance of domain dependence,
it has no results on how rotating those PCs affects such dependence. There is only a scant
mention of the possibility of this near the end of the paper, mostly in the context of rotating
degenerate multiplets. However, rotation can be applied to PC loadings associated with non-
degenerate eigenvalues and it will affect domain dependence patterns. Please consider adding
a section on rotation and show those patterns to comment about how domain dependence is
addressed by post processing the PC loadings with a rotation.

AR: In our study here, there are no physical structures, hydrological signals, modes or processes
integrated in the simulated data sets. Thus, there are no signals to detect. The idea of our work
was to demonstrate to PCA users who are not aware of DD and the related discussion that even
without any physical structures, processes or modes, suggestive patterns can emerge. The
numerical experiments are designed for that. Adding new numerical experiments to evaluate
the performance of unrotated versus rotated PCs in identifying (hydrological) signals is beyond
our introductory scope here.

This is a basic difference to the extensive study of Compagnucci and Richman (2008) who
simulated data sets with a series of typical atmospheric flow patterns (plasmodes) to test the
performance of unrotated versus rotated PCs, both from S- and T-mode PCA, in recovering the
plasmodes. We agree that it would be very interesting and valuable to perform a similar study
with typical hydrological signals instead of the atmospheric plasmodes. However, we think that
this is material for another standalone study. We included a paragraph with such suggestion at
the end of the rotation section.

Instead of further systematic experiments with synthetic data, we exemplarily rotated
eigenvectors from a real-world precipitation data set, combining your suggestion to expand on
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the rotation aspect with the suggestion of referee 2 to include a real hydrological data case. We
performed varimax rotation in three variants, using the first two PCs (2rPCs), the first three PCs
(3rPCs) and the first four PCs (4rPCs). The results, Here, we will extend the section-5-2.2 on
rotation-and-include-your literature recommendations and some of your thoughts and hints were
used to substantially expand the rotation section 5.2.2.. See also our reply to your specific
comments to 1.341, 557, 558, 573, 574.

6. The manuscript discusses accounting for domain dependence prior to attempting physical
interpretation. Both the abstract and the introductions discuss how ignorance about domain
dependence can easily lead to the wrong interpretations of PCA results (e.g., "Ignorance about
DD can easily lead to the wrong interpretations of PCA results. DD patterns are distinct, with
strong gradients and contrasts, and therefore highly suggestive to indicate physically
meaningful drivers or properties of the analyses system". I agree with this statement and,
assuming it is valid, the reader will want to know abut the right interpretations of PCA results.
The manuscript further states (correctly) that the analyses proceed from data that are formed
into a correlation (or covariance) matrix, either explicitly and implicitly and that matrix (or the
standardized data in the case of SVD) are decomposed into eigenvectors that should be capable
of summarizing the correlations/covariances of the data (after ensuring they do not represent
domain dependence patterns). Therefore, some additional discussion of how to interpret those
eigenvector (in the case of the present manuscript, PC loadings and PC scores), after passing a
domain dependence assessment, must be added. It seems the majority of patterns shown in the
paper suffer from domain dependence or from the effects of eigenvalue degeneracy combined
with domain dependence. Would that be the null hypothesis for other investigators?

The main recommendation to assess such a hypothesis of domain dependent patterns (according
to the manuscript) seems to be to visually assess the similarity but it leaves the reader asking,
"then what do I do?". Presently, there is a suggestion to visually assess the analyzed patterns
and compare to the domain dependent patterns for a similarly shaped domain. Two issues with
visual assessment are (a) the reliability of the same pattern under the eyes of different analysts
may well have one analyst believing there is a strong resemblance, and the pattern should not
be further interpreted, yet a second analyst may think it has some resemblance but not that much
to reject it as domain dependent. Further, (b) the nature of a qualitative visual assessment means
any one analyst can see some resemblance to domain dependent patterns in their visual
assessment and then discount it based on personal bias. A more quantitative approach to avoid
(a) and (b) would be a direct numerical comparison using a matching coefficient (e.g.,
congruence coefficient). In that case, a recommendation could be made, such as, if the
congruence coefficient exceeds some value (e.g., > 0.8), the analysis is dominated by domain
dependence and the unrotated PC loadings/EOFs should not be analyzed physically. The
assessment of the physical interpretation gets even trickier at this point. If the PC loading pattern
based on either visual assessment or congruence coefficient value is thought not to be
sufficiently contaminated be domain dependence, it does not mean it is physically interpretable
as a meaningful mode without further investigation. Recall what the PCA does. It summarizes
the correlation/covariance structure into a set of k PC loadings and k PC scores. Do we know
if any of those structures relate well to the correlation/covariance matrix from which they were
drawn? Without such a step, physical interpretation would seem unwise (we're back to the
castles in the clouds but now from the "heavy constraints"). Because the manuscript is
motivated by finding physically important modes, a revised manuscript should address or
provide some suggestions on how to confirm if a mode is physically realistic or related to the
correlations/covariances (or not). There is some literature on this topic, ranging from never
physically analyze any PC structures (in that case domain dependence is moot because
domain don't affect the ability of PCA to extract most of the variance from a dense
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correlation/covariance matrix) to, in many cases, the PC structures can be analyzed after
confirming similarity to the correlations/covariances . I suggested examining the Compagnucci
and Richman (2008) and Huth and Beranova (2021) papers for starters. The latter asks the
specific question about what is a "true mode" whereas the former addresses the question about
if certain analysis modes can retrieve the modal patterns. Of course, there are other alternatives,
such as using a technique not rooted in eigenvectors. However, if the paper offers a path to
identifying domain dependence that undercuts physical interpretation, some remedy should be
offered.

AR: Yes, the suggestion is to use DD reference patterns as null hypothesis (see L175, 520-527,
582-589 and Appendix A). In the revised manuscript, we willinclude a-discussedionon the
limitations of the visual assessment and the use of Pearson correlation and the congruence
coefficient for numerical comparison in the introduction, sections 4.2., 5.1.1., 5.1.2._and the
conclusion. See also our reply to your major comment 4.

We agree that DD is just one of the aspects that should be checked prior physical interpretation.
It is not enough to check whether the patterns are sufficiently free from DD. Or as you stated
in the beginning of your major comment section, it is “a necessary, but not sufficient condition
for physical interpretation” (see also your comment on L.575). Thank you for the references and
the different hints in your comments to the physical interpretation of the PC patterns in L23,
72, 81, 408, 428, 574, 575 and your major comment 1. We will include them, expanding the
discussion on physical interpretation of the PC patterns in Lines 406-409 and move the whole
discussion to a new paragraph after .73 in the introduction.

Regarding the identification of physically realistic modes, we will include references to the
work of Compagnucci and Richman (2008) and Huth and Beranova (2021) in the extension of
section 5.2.2. (see our reply to your major comment 5).

In hydrology, spatial PC patterns have been also used to describe the spatial variability of
distinct hydrological signals, processes or physical properties (L78-80). Building on the idea
with the plasmodes (see our reply to your major comment 5), we think it would be very
interesting to conduct more numerical experiments with hydrological simulation models to test
whether any of the implemented hydrological features of the model can be uncovered with the
patterns of the PCs. The test data could be, for example, spatially distributed groundwater level
series simulated with a groundwater model. Again, this could include the comparison of the
performance of unrotated versus rotated and / or S- versus T-mode PCA. In the revised
manuscript we liketo-included these ideas as an outlook to future research at the end of the
extended rotation section and at the end of the conclusion (see also our reply to your comment
on L573).

Specific comments
Numerous specific comments are listed in the annotated manuscript (attached).

Citation: https://doi.org/10.5194/hess-2024-172-RC1

L23:
What is the proper "interpretation" for PCA? At one end of the spectrum, some might claim
PCA is simply a data compression technique with little or no possibility of physical
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interpretation. At the other end, some may claim that the individual PCs can be interpreted as
physically meaningful entities. Some discussion of this might be in order prior to the discussion
of domain dependence, particularly as Buell (1979), in the final sentence of his conclusions,
states, "Otherwise, such interpretations may well be on a scientific level with the observations
of children who see castles in the clouds."

AR: We will elaborate on that in a new paragraph after L73 in the introduction. See also our
reply to major comment 6.

L36:
This may be the situation; however, there is a general lack of agreement on these models, that
leads to massive confusion among users of these techniques.

The original paper where EOFs were named "EOFs", is generally attributed to Lorenz (1956).
However, in that report, Lorenz refers to the displays as EOFs of space, and EOFs of time, to
define what have now mutated somewhat into what are called "EOFs", and "Principal
Components", respectively. Assuming a spatial analysis, those EOFs of space are unit length
(sum of the squares of each EOF's coefficients = 1), whereas the EOFs of time are orthogonal
vectors, each with a mean of zero and variance equal to the associated eigenvalue.

In contrast, the PCA model, generally attributed in idea to Pearson (1901) and more fully to
Hoteling (1933). The PC loadings in that PC model weights (postmultiplies) the unit length
eigenvectors (EOFs) by the square root of the corresponding eigenvalue to give "PC loadings".
That seemingly minor change in the spatial patterns (keeping with the definition of space and
time given for EOFs) results in the time series calculation and properties being different to close
the PC model. Those time series in the PCA model are called "PC scores" and have mean 0 and
variance 1. They are also orthogonal.

Flip the space and time definitions of these displays if the analysis is temporal.

Because the two models result in different space and time patterns, they cannot be compared
directly and the precise equations used are necessary to attempt to reproduce the findings of
others.

The situation becomes more complicated as users of these techniques tend to pull EOF/PCA
code off of various statistical packages or Python code libraries, that often mislabel the results,
never checking the specifics, thereby perpetuating the confusion.

For the current paper, one must know if the analyses are applied to EOFs (unit length
eigenvectors) or PC loadings (unit length eigenvectors postmultiplied by the square root of the
corresponding eigenvalues). Further, it would be helpful to know if any of the results for domain
dependence change as a function of the specific model invoked. There is considerable
confusion about this topic when reading this paper. It is important the model being used
herein is stated unambiguously at the outset of this paper and the equation added in the
methods section to avoid such confusion. Further adopt the correct terminology for that
model and don't list any alternative terminology that might confuse the reader.

Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction.
Statistical Forecasting Project Rep. 1, MIT Department of Meteorology, 49 pp.
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Pearson K. On lines and planes of closest fit to systems of points in space. Philosophy
Magazine. 1901;2(6):559-72.

Hotelling, H. (1933) Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology, 24, 417-441. http://dx.doi.org/10.1037/h0071325

AR: We addressed this comment in our reply to major comment 3.

L72:

Although I agree with this sentiment, showing that it is reasonable to expect any physical
conclusions to be drawn from PCA should be discussed first. Assuming the basic covariance
structure carries important information about the physical processes, do the PC loading patterns
(or EOFs) relate well to the underlying covariance structures? The investigator must confirm
this prior to expectation of the patterns being related to physical processes. Add a few sentences
on that.

AR: We will do so in a new paragraph after L.73. See also our reply to major comment 1 and 6.

L81:
True, but domain dependence is one of several factors that hampers physical interpretation of
the system. Others include:

(1) Data are related either explicitly or implicitly (by expressing them in anomaly or
standardized anomaly form) via covariances or correlations. Such matrices express only the
linear relations in the data. Further, subtracting a mean in either covariances or correlations
assumes stationarity of the mean and variance, often violated by processes such as climate
change and hydrology affected by climate change.

(2) The eigenanalysis technique is limited to only linear relationships between the covariances
or correlations and the EOFs/PC loadings.

(3) The first eigenvector extracts maximal variance and often pulls in different sources of
variability onto the leading vector, mixing the different sources. This is shown clearly in Karl
and Koscielny (1982) in their Appendix Fig. 14A (top panel), where their data vectors X1, X2
and X3 are highly related as group 1 and where their vectors X4, X5 and X6 are also highly
related as group 2, but groups 1 and 2 are nearly orthogonal. However, as they show, the first
PC lies directly between groups 1 and 2, thereby describing neither accurately and introducing
distortion by merging them so that their projections (PC loadings) would all be positive of
nearly equal magnitude on PC loading 1, suggesting to the investigator that there is only one

grouping.

(4) All eigenvectors, beyond the first, are orthogonal to all the previous eigenvectors, and the
hydrological processes are rarely if ever orthogonal.

AR: We will include these aspects in a new paragraph after L.73. See also our reply to major
comment 1 and 6.

L:!i-

This would include the degree of linear association and the scale of the spatial correlation or
covariance field with respect the the domain size. One might hypothesize that processes that
are either weakly linear or mostly nonlinear and the linear part is relatively small, that domain
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dependence might dominate. Similarly, if the size of the spatial covariance/correlation data
function is nearly the same size as the spatial domain used, the domain dependence might be
different than for small scale processes, of perhaps 1/3rd of the domain size.

AR: We demonstrated this and analyzed the effect of domain size and spatial correlation length
in section 4.3. The analysis of non-linearity is beyond our introductory scope here.

L96:
I'm not sure other papers have examined this. If that is true, add it as a unique aspect of this
research.

AR: We are also not aware of other papers in which the effect of measurement errors was
explicitly examined. North et al. (1982) mentioned that they intended to do so in future work.
Cahalan et al. (1996) summarized measurement errors and the natural variability of the field in
the noise of their models, assuming that most of the noise " is likely due to natural variability".
However, we do not examine this here either. Our statement is based on theoretical
considerations. We assume that measurement errors can affect the DD patterns in two ways.

(1) If the measurement errors are distributed spatially homogeneously, longer time series might
be required to reach stable spatial PC patterns.

(2) If they are systematically biased among the locations they can alter the actual spatial PC
patterns.

Both can be simulated with the stochastic method by adding noise (spatially homogeneous or
irregular) to the realizations of the random field (Figure 2). We will include a statement on this
at the very end of section 4.1.

Define "low ranked PCs". I'm assuming these are PCs associated with smaller eigenvalues. If
so, state that. If not, define it explicitly. If it is for the eigenvectors associated with small
eigenvalues, the work of North et al. (1982) [cited extensively in your manuscript] and
Quadrelli et al. (1989) on degenerate multiplets claim intermixing of the variance structures
when he eigenvalues between adjacent eigenvectors are close in magnitude. That may be what
you are seeing here.

Quadrelli, Roberta, Christopher S. Bretherton, and John M. Wallace. "On Sampling Errors in
Empirical Orthogonal Functions." Journal of Climate 18, no. 17 (September 1, 2005): 3704—
10. http://dx.doi.org/10.1175/jcli3500.1.

AR: Yes, your assumption is right. We will define it there and include a few sentences to the
intermixing and rotation together with the references you provided:

"This gets less clear for those of the PCs with smaller eigenvalues (low ranked PCs). They are
more finely detailed and less robust against deviations from Buells settings. Furthermore, there
might be intermixing of the variance structures when the eigenvalues from successive
eigenvectors are of very similar size (North et al., 1982; Quadrelli et al., 2005). These PCs
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which are not well separated with the PCA are called effectively degenerated multiplets (North
et al., 1982). For their separation, additional post-processing is required, e.g. rotation of
eigenvectors (Richman, 1986; Jolliffe, 1989)."

L99:

becomes

AR: We will change according to your suggestion.

L101:

Yes but that could be the aforementioned intermixing of the variances. In fact, it is possible that
even Buell patterns for large sample sizes may intermix if the eigenvalues between successive
eigenvectors are very close in magnitude.

AR: We agree. This is addressed in our response to your first comment on L99 above.

L116:

Here you mean "PCs which are not separable without additional post-processing (e.g., rotation
of the PC loadings to separate the sources of variability for all eignvectors or for those
eigenvectors with closely spaced eigenvalues)." Richman (1986) and Jolliffe (1989). You cite
both these papers presently but the logical conclusion is missing.

AR: Yes. We will include your specification on the post-processing / rotation in the newly
added lines where we introduce the effectively degenerate multiplets (see our reply to your
comment on L.99) and reduce the sentence here to "... and c) effectively degenerate multiplets."

L135:

See my earlier comment. It is more serious than terminology. The original models of EOF
versus PCA have specific terminology and give different results. Those model display names
have mutated over time and the terminology has been intermixed. Unless one state the
mathematics of the model invoked, the reader has little idea what model is invoked. That also
means that any conclusions for the EOF model need to be verified for the PCA model as the
EOFs vs. PC loadings have different magnitudes and properties and the PCs vs. PC scores have
different magnitudes and properties.

AR: Please see our reply to major comment 2.

L138:

It appears this is the EOF model. If so, despite Jolliffe's terminology, the majority of the
literature envoking EOFs will call the displays EOFs and PCs (for space and time displays,
respectively). Wilks textbook has a reasonable section on the varied terminology of EOF/PCA,
although even that excellent book it is not exhaustive in this regard. You might try to simplify
the sentence here where eigenvalue, scores, eigenvectors are mentioned. Alternatively (and
perhaps the superior solution) would be to show the compact equation(s) in this manuscript for
the model being invoked and that would clarify any confusion by the readers.

Addendum...After reading further, it seems you may have used actual PC loadings and PC
scores. If so, ignore my comments about not using PC scores but, in that case, drop the
discussion of EOF beyond the beginning of the introduction, as it serves only to confuse the
readers. Further, clearly state what model you are using in section 2.1 with the equation for that
model.
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AR: Please see our reply to major comment 2.

L140:

See earlier comment. Please refrain from using the term "PC scores" if you are using an EOF
model. PC scores are defined only for the PC model that weights the unit length eigenvectors
by the square root of the corresponding eigenvalues. For the present manuscript, if you are using
EOFs, then you can call them PCs and drop the "i.e., the PC scores". However, if you are using
the PCA model, then use the terminology PC loadings and PC scores but drop other terms that
will serve to confuse.

Addendum...See comment above. There is a need to clearly define the model used, define the
appropriate terminology of the model displays and use on those terms throughout.

AR: Please see our reply to major comment 2.

L143:

This sentence seems to be awkward or a fragment at a minimum. Please clarify.

AR: "The eigenvectors of all PCs define the orthogonal basis of the new ordination system into
which the analysed data is projected (orthogonality constraint)".

L143:

"mapped to" what? This sentence seems incomplete.

AR: Please see our reply to your comment on [.143 above.

L147:

Yes, see earlier comment. Often the process of maximal variance extraction runs counter to
interpretation of the sources of variability in physical systems (unless there is a single physical
mode that encompasses the full extent of the domain where PC 1 can explain it -- rarely the
situation). I mentioned this earlier and pointed to the Appendix of Karl and Koscielny (that you
cite in this manuscript).

AR: Please see our reply to your comment on L81.

L154:

This is vague as "PC series" is undefined.
In the EOF model:

(1) the EOFs are not uncorrelated because their mean is not zero. However, they are orthogonal
(if fact, orthonormal) by either column or by row as V'V and VV' = L.

(2) The PCs are uncorrelated as their means are zero. Additionally, their variance is the
eigenvalue. They are uncorrelated by column and therefore orthogonal by column.

In the PCA model (with eigenvectors scaled by the square root of the eigenvalue):
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(1) the PC loadings are not uncorrelated because their mean is not zero. However, they are
orthogonal by column only (their diagonal is the eigenvalue), V'V = D.

(2) the PC scores have mean = 0 and variance = 1. They are uncorrelated by column. Because
they're uncorrelated, they're orthogonal by column with the diagonal equal to the degrees-of-
freedom (normally, that would be n-1 if the correlation/covariance matrix is not singular).

Given these differences, hopefully you can appreciate the importance of stating unequivocally
the specific model invoked. Specifically, where you say: All PC series are linearly uncorrelated
with each other" is incorrect for both the EOF and for the PCA model. for the EOFS or for the
PC loadings, as neither has zero mean column vectors.

Therefore rephrase "PC series" in this sentence and be precise to specify uncorrelated by
row or by column.

AR: The term "PC series" means here the temporal PC patterns. It evolved somehow informal
among colleagues as a short form for the PC scores which in the S-mode PCA case are time
series of the same length as the analysed time series. Thank you for pointing out that it causes
confusion without this background. We will replace it the two times it appears in L154:

"All temporal PC patterns are linearly uncorrelated with each other, each temporal PC pattern
is associated with a spatial pattern and all spatial PC patterns are orthogonal to each other."

Please see also our reply to your major comment 2 about the PCA terminology.

L155:

Two comments:

1. The discussion prior to this section seemed ambiguous as to which eigenmodel was being
invoked. Please fix that.

2. Does this imply that other modes of PCA do not suffer from domain dependence? For
example, Q-mode is a field x station data matrix, giving a station x station covariance matrix.

AR:
To 1.: Please see our reply to your major comment 2.

To 2.: We did not investigate that and it is beyond the scope of our work here. However, we
would hypothesize that in case of a homogeneous correlation structure, it can be an issue there
as well.

L163:

Earlier, it seems that you were using EOF, here is suggests you are using PCA. State clearly
from the outset which model is being used and stick with that terminology. If it is the PC model,
them PC loadings and PC scores.

AR: Please see our reply to your major comment 2.

L167:

Two comments:
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1. The desire to have PC loadings within the same range would fit the idea of EOFs better as
those are all unit length eigenvectors. It may explain why Buell used EOFs, rather than PCs, to
describe domain dependence. That said, there is nothing preventing any arbitrary scaling of the
eigenvectors, as long as point (2) is noted.

2. The loadings normalized to anything other than the square root of the corresponding
eigenvalue will no longer close the PC model using the standard formulation. I think that is
what you are attempting to say in the last sentence, but it could be clarified.

AR: Please see our reply to your major comment 2.

L175;

Two comments:

1. Pearson correlation is leveraged by outliers. If two maps are being compared with relatively
few common points on both maps extreme in the same direction, but the remainder of the
gridpoints not in agreement, the correlation may be large.and exceed some t-test at alpha = 0.05.
Because of that, field significance should be examined for difference fields of the maps, the
pairwise comparison of spatial patterns of the combinations of PCs, or use a resistant statistic.
For the field significance, here is an excellent test:

On “Field Significance” and the False Discovery Rate: By D.S. Wilks, Journal of Applied
Meteorology and Climatology, Volume 45, Issue 9, 2006, pages 1181-1189.

2. t-tests assume Gaussian distributions. Correlation distributions are not Gaussian, particularly
in the tails (where most of the matches would occur) because its range is limited to -1 to +1.
You could Fischer z-transform the correlations first to partly mitigate this or, better yet, apply
a permutation test to the maps, as the permutation test is distribution free.

AR: We think for our purpose here, simple Pearson correlation and the t-test are sufficient. This
combination was also used in the study by Huth and Beranova (2021) you recommended. In

the revised manuscript, we complemented the assessment of the matching of spatial PC patterns

with the congruence coefficient, following your suggestions in your major comment 4 and your
comments to 1.192, 336, 364, 449.

major comment 4.

Please see also our reply to your

L192:

Because the mean of the PC patterns (i.e., the mean of each vector of PC loadings) is not zero,
and the interpretation of the PCs is a function of the magnitude of the PC loadings, the
correlation of PC loading vectors by subtracting out the mean, is an inferior metric for PC
loading comparison. Lorenzo-Seva and ten Berge (2006) make a good case for the congruence
coefficient, which does not remove the mean prior to the comparison. This metric has been
used in the geosciences literature for such comparison.

Lorenzo-Seva, U., & ten Berge, J. M. F. (2006). Tucker's congruence coefficient as a

meaningful index of factor similarity. Methodology: European Journal of Research Methods
for the Behavioral and Social Sciences, 2(2), 57—64. https://doi.org/10.1027/1614-2241.2.2.57
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AR: Thank you for the literature recommendation. For our reply, please see our reply to major
comment 4.

L193:

Explain why the ranks are substituted for the values.

AR: We are not sure what you mean here. Assuming that you are asking why the analysis is
performed separately for each PC rank, this is why we want to identify the stability of the spatial
patterns and of their ranking prior calculating the mean spatial PC patterns.

L194:
Given the earlier comment about congruence coefficient and the use of correlations here, using
the word "congruence" here is not good form.

AR: We will replace it with "similarity".

L199:

Similar comment about the distributions of the variability. Do you test for symmetry to
determine the variance in each tail is approximately similar (and hence a single standard
deviation holds)? One way to test that is to calculate the skewness of each of these patterns to
decide if the skewness magnitude exceeds 0.5 and therefore would not be sufficiently
symmetric to assume symmetry.

AR: No, we did not test that. We assume that in our case here, in which the compared PC
patterns stem from data sets simulated with an identical parametrisation, it is negligible,
especially for the mean spatial PC patterns which are calculated based on a large number of
simulated data sets (100) with rather long time series length (10 000).

L225:;
Great. That was my earlier suggestion. Extend the commentary to the instability resulting from
degeneracy arising from closely spaced eigenvalues.

AR: Thank you. Assuming you are referring to your comments in .99-116, please see our reply
there. To improve the structure of the method section, we will move 1.222-228 "Confidence
limits ... both eigenvalues." in to a new section 2.3 "North’s rule of thumb".

L.242;

Does "prcomp” give unit length eigenvalues or PC loadings? I suggest checking this manually
as some of the R codes I have investigated say the output is one thing but really supply
something else or simply wrong.

AR: "prcomp" gives unit length eigenvectors. See also our reply to your major comment 2.
L250:

Define "cell". It appears in two previous Figure captions too. I assume cell means grid box but
a formal definition is required.

AR: Yes, you are right. We will add the following definition in 1.182:

"The grid cells (cells) of the random field represent the locations of a data set."
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L255:

Two comments:

(1) The x-axis on Figure 4 presents some challenges because the behavior normally asymptotes
after about 2000 observations for the first few PCs. However, by showing 10,000, the reader
cannot pick out the number of observations required to find sufficient stability in those leading
few PCs.

(2) By the time an analyst extracts PCs beyond the first few, one wonders how many degenerate
multiplets emerge. The problem with not knowing that is if the adjacent eigenvalues are
separated sufficiently to exceed the North et al. criterion, then fewer observations than Figure
3 suggest are required to provide stability.

Conversely, if the leading eigenvalues in PCs 1-3 are separated by less than the North et al.
criterion, the results shown in Figure 3 may be too optimistic compared to such cases with
degenerate multiplets in the first few PCs.

Some comment on the eigenvalues and their separation in these examples is critical to
interpret Figure 3 and the unravel the effects of degeneracy arising from multiplets from
that of domain dependence. Ideally this would precede the discussion of domain
dependence as that effect seems to affect domain dependent patterns.

AR: Figure 4 is meant as an overview figure. Section 4.1. is meant as starting point from which
we introduce step by step new aspects in the following sections. Thus, at this point in the
manuscript we do not want to get more detailed. We also do not want to open the topic with the
degenerate multiplets at this early stage. We explain the logic of the order of the sections and
why the degenerate multiplets come last in our reply to your major comment 3. Please see there.

L.260:

Useful information but for applied research rarely are there 10,000 observations, much less
10,000 independent observations. Is there advice for the analyst using 100 to 1000 observations
(more in the typical range)?

AR: We would advise the analyst to fit a spatial covariance function to the data and calculate
stochastic DD reference patterns with that function for the spatial domain of interest. If the time
series of the observed data are shorter than the time series length that is required to reach stable
DD patterns, the PCA results would "have to be interpreted with the reservation that the DD
might be stronger than the comparison with the reference suggests." (L514-518). We provide
this information in section 5.1.2.. Here in section 4.1, we do not want to open this topic already.
We explain the logic of the order of the sections in our reply to your major comment 3. Please
see there and our reply to your comment on L.255.

L.265:

If I'm interpreting the variance percentages correctly, it seems the patterns for PC2 and PC3
may have very closely spaced eigenvalues, not separated sufficiently according to the North et
al. criterion. There are a few others too that seems degenerate.

AR: You are right. But we do not want to open this topic in this section already. Please, see our
reply to your comment on L.255 and your major comment 3.
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L273:

That may be part of it but the degeneracy of the adjacent eigenvalues may be a major contributor
and therefore it needs to be factored into the explanation. Perhaps that would make it more
intuitive?

AR: Please, see our reply to your comment on L.255 and your major comment 3.

L283:

Good but without doing that, the conclusions drawn in this section are subject to unnecessary
uncertainty. Perhaps remove the conclusions from the paragraphs above and save them until
after the degeneracy analysis. Alternately, run the degeneracy analysis first to clarify the
instability in these results.

AR: Please, see our reply to your comment on L255 and your major comment 3.

L285:

production of
AR: We will change that.

L302:
Are these "PC patterns" the PC loadings? Please define the terminology, then use that same
terminology throughout the paper, including figures and tables.

AR: These are the stochastic DD reference patterns calculated as mean correlation loadings.
Please see our reply to your major comment 2.

L318:

deleted “and kind of intuitive”
AR: We will change that.

1.319:

predictable, a priori,
AR: We will change that.

1.319:

more
AR: We will change that.

L321:

deleted space in front of %
AR: In accordance with the HESS guidelines, we will keep the space in front of the %.

L323:

Two comments:
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(1) You use heterogenous here (check for a typo, as I think you really want to use
heterogeneous) and inhomogeneous in other locations below. If those are the same thing, stick
with the exact same word throughout.

AR: Thanks for the typo hint. Yes, we meant that and will change the phrasing consistently to
heterogeneous.

(2) Motivate why homogeneous versus heterogeneous are both used. The former would apply
to those analyses using gridded datasets with a regularly spaced grid, whereas the latter might
apply to those analysts using actual irregularly spaced station data.

AR: Thanks for the hint. We will add a sentence for motivation in L.L319:

"...visual recognition is limited. This holds in particular for spatially irregular distributed
locations which is the common case in hydrology."

L328:
predictable.

AR: We are predicting the DD patterns with the DD reference patterns. To be more precise, we
included this information at the end of the sentence. It reads now:

"The patterns of all other PCs are not predictable without calculating DD reference patterns."
We will change that
L331:

ds

AR: We will change that.

L332:

whereas
AR: We will change that.

L334:

I follow the thought but these sentences read awkwardly. Please reword more succinctly.
AR: We will rephrase it to:

"The similarity of patterns formed by congruent selections of cells from the different variants
is of particular interest. It addresses the question whether the spatial PC patterns calculated from
two different domains result in different relations between the values at locations with
coincident coordinates. This is visually only poorly assessible. Therefore, we correlated the
patterns of the subsampling variants with the patterns formed by ..."

L336:

Important. As stated earlier, PC loading (and that of EOFs) interpretation depends on the
magnitude of the PC loadings. Correlations subtract each vector mean (pattern mean), So two
patterns with different means can have their large correlations, yet their magnitude patterns will
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be much different and the grid boxes (I think what you refer to as cells) with the maximum PC
loadings will be in different geographical (or topological) locations in your domains. If that is
the case, the the correlation is suboptimal for such comparisons. Find a better metric. I
suggested the congruence coefficient, though others exist that preserve the vector magnitudes.

AR: Please see our reply to your major comment 4.

L341:

Three comments:

(1) Perhaps, but if those "lower ranked" PCs are associated with closely spaced eigenvalues,
we have no idea if the lower correlations arise from less DD or more degenerate patterns.

(2) If the results arise from PC loadings associated with closely spaced eigenvalues, Richman
(1986) and Jolliffe (1989) have shown that those can be rotated to remove the degeneracy, and
then the DD measured. This is mentioned near the end of the paper but it should be mentioned
here too.

(3) In fact all the PC loadings could be rotated and then the DDs assessed as rotation has been
shown to remove DD (at least beyond how the domain shape affects the correlation structure
itself). Most people who interpret the PC loadings first rotated their PCs, so the lack of inclusion
of rotated PCs is a shortcoming of the present manuscript.

AR: To (1): We agree.

To (2): At this point in the manuscript, we prefer to stay with unrotated PCs and discuss rotation
later in its own subsection as part of the section how to consider DD. Regarding the order of

our sections see also our reply to your major comment 3.

To (3): In_the revised manuscript, we added exemplarily the rotation of eigenvectors from a
real-world precipitation data set in section 5.2.2.. See also our reply to your major comment 5.
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L348:
Will this be a footnote?

AR: A footnote would be linked to Figure 10. We are not sure whether this would work well.
So, we like to leave it as it is.

L364:
Replace correlations with some metric that incorporates magnitude (e.g., congruence
coefficient).

AR: Please see our reply to your major comment 4.

L383:

delete "it is simple"
AR: We will change that.

L402:

This makes sense because you are using unrotated PCs. Unless the autocorrelation is
constructed to coincide with one of those PCs, there is little hope of isolating noise on any one
PC. The situation may be less problematic if the PCs are rotated. That is one solution to the
problem highlighted in this work.

AR: We will address that in section 5.2.2.

L403:

be salient against

AR: We will change that.

1.408:

Two comments:

(1) This question of retrieval of the correct features of interest has been addressed in at least
two published articles: Compagnucci and Richman (2008) and Huth and Beranova (2021).

Compagnucci, R. H., and M. B. Richman, 2008: Can principal component analysis provide
atmospheric circulation or teleconnection patterns? Int. J. Climatol.,, 28, 703-726,
https://doi.org/10.1002/joc.1574.

Huth, R. & Beranova, R. (2021). How to recognize a true mode of atmospheric circulation
variability. Earth and Space Science, 8, e2020EA001275.
https://doi.org/10.1029/2020EA001275

(2) You can add "maximal variance" to this list. It is clear that the first PC (associated with the
largest eigenvalue) often merges several unique sources of variability when the spatial scale of
the variability is smaller than the domain scale. This was mentioned in a previous comment in
the work of Karl and Koscielny (in their Appendix), a citation in your list.

AR: Thank you for your comment and the literature. We will include both. Please see our reply
to your major comment 1 and 6 and your comment on [.81.
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L419:

This section might be more logical to move this section to closer to the beginning of the paper
because the intermixing of the unrotated PC loading signals needs to be addressed/accounted
for before one can assess domain dependence.

Personally, I think both are issues but if the paper might apportion the percent of distortion
associated with each of degeneracy and domain dependence (in percentage of distortion for
example), the utility of this work would be enhanced.

AR: Regarding the order of the sections, please see our reply to your comments on L.255-283
and to your major comment 3.

Regarding the apportion of the percent of distortion associated with degeneracy and domain
dependence, we agree that this would be interesting for future work. Here, it is beyond the scope
of our manuscript.

L420:

If it is not well separated by the "consecutive eigenvalues" in PCA.

AR: We are not sure what you mean here. Do you want some rephrasing?

L428:

It is surprising you say this given in the last paragraph you said, "For example, for physical
processes or modes of geosystems, the S-mode PC properties orthogonality of spatial patterns
and linear uncorrelatedness of temporal patterns are heavy constraints (Buell, 1979; Jolliffe,
2002; von Storch and Zwiers, 2003; Hannachi et al., 2007; Monahan et al., 2009)."

That said, it is possible but requires that the PC pattern modes must be assessed for their veracity
(validity) by determining if those modes are similar to the patterns embedded in the
correlation/covariance matrix from which the PCs were drawn.

AR: We will move the paragraph you mention to a new paragraph after L.73 in the introduction
where we will include your other comments regarding the physical interpretation of the PCs.
Your second comment here will be addressed in the extension of section 5.2.2..

See also our reply to your major comment 6.

L435:

In situations where (1) domain dependence exceeds the physical signal and (2) the leading
modes have closely spaced eigenvalues, the situation becomes intermixed. It would be ideal to
unmix those sources in this work. At the least, issue a caveat.

AR: We are not working with physical signals here. The simulated data sets are designed to
produce DD patterns and multiplets for demonstration. Adding new numerical experiments to
perform hydrological signal identification is beyond our introductory scope. In the revised

manuscript, we included a suggestion to conduct systematic experiments with synthetic test
data derived from hydrological simulation models to evaluate which PCA modes, rotation

methods and scaling of the eigenvectors work best for hydrological feature identification, at the
end of the rotation section and at the very end of the conclusion.
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Please see also our reply to your major comment 5 and 6.

L439:;

small variations of what?

AR: "small variations in the analysed data"

L440:;

delete "d" in "degenerated pair"
AR: We will keep "degenerated pair" instead of the suggested "degenerate pair".

L449:

Please note here and below my previous criticisms of using correlations to compare PC loading
vectors. Often correlating two PC loading vectors results in high correlation for magnitude
configurations that don't match well. This occurs because correlations measure only the
gradients and ignore the magnitudes, yet the interpretation of the PC loading vectors depends
heavily on the locations of the maximum magnitude loadings.

AR: Please see our reply to your major comment 4.

L456:

How many patterns represent signal in applied research? There is a point in the eigenvalue
spectrum where the associated eigenvectors represent either noise or signal with less variance
than noise variance, and such eigenvectors would never be analyzed. This is why analysts nearly
always truncate their n eigenvectors at k<<n.

AR: We agree. We show the 10 PC patterns for the introductory purpose of our work here,
because we aim to demonstrate the DD phenomenon and its side effects. Please see also our
reply to your major comment 3.

L.465:
Weigh this finding against the average length of data analyzed in applied geophysical research.
What is the advice to that analyst with say 100 or 500 independent observations?

AR: We would advise the analyst to consider subsampling a less symmetric domain (L459—
462). We will add this suggestion in section 5.2.1. and rewrite 1.543—-548:

"Analysing a subsampled data set with enlarged minimal distance between the locations can be
used to diminish the DD of the PCA results. Reducing the symmetry of the domain can remove
effective multiplets. Both can help to carve out features other than DD. On the other hand,
informative local details might be filtered out together with the excluded locations. If there is
still DD, the new DD patterns of the subsampled data set might be harder to recognize visually
because of the smaller number of locations per area. The selected minimal distance, respectively
the selection of locations, is critical for the analysis. Depending on the choice, different features
in the results might stick out, get diminished or even disappear."
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L465:

If the eigenvalues are exceedingly close on two adjacent eigenvectors, no sample size is
sufficient for those eigenvectors to resolve the degeneracy - something that should be
mentioned (e.g., see Richman, 1986, his Table II, where 10,000 observations were insufficient
to resolve the true patterns once intermixed by degeneracy).

AR: We will include a sentence on that aspect at the end of L465 and add a paragraph break
after the new sentence:

"However, for very symmetric domains no sample size might be sufficient to resolve the
degeneracy (e.g., see Richman; 1986 and PC 2+3 and 5-10 of the square domain in Figure 4a
or Table IT in Richman, 1986)."

L482:
This seems to be part of the conclusions. If so, fold it into a larger conclusions and suggestions
section.

AR: It is the suggestion section. Based on a suggestion of referee 2, it will be renamed to
"Approaches to consider DD".

L484:

See previous comment on Q-mode, where the PC loadings are mapped spatially.

AR: We did not investigate that and will restrict us here to S-mode. See also our reply to your
comment on L155.

L490:

This is a strange section. Yes, T-mode PCA is possible and even used by some (e.g., see
previous citation to Huth and Beranova, 2021) but the idea of applying T-mode is made and
never examined in the paper to determine if there is domain dependence in T-mode or how that
would manifest. If you say this, then provide evidence that domain dependence may or may not
be an issue in T-mode (or other modes). Assuming this is not added to a revision, at best much
of this section can be reduced and placed into the conclusions under a paragraph on future
research ideas.

AR: We see your point. In the revised version we_removed almost the whole section-planto

shorten it substantially.

L.496:
rarely applied

AR: We will change that.

To

AR: We will keep our phrasing.

L500:

deleted "is to"
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AR: We will keep our phrasing.

L501:

Such a comparison
AR: We will change that.

L502:

deleted "to perform"
AR: We will change that.

L554:
; Huth and Beranova, 2021

AR: We will add this.

L556:

This is more complicated than stated here. In the EOF model, the eigenvectors (EOFs) are
orthogonal by column and by row. Under the PC model, the PC loadings are only orthogonal
by column (not by row). Once rotated, both EOFs and PC loadings are no longer orthogonal by
column. However, in the EOF model, the PCs are uncorrelated. Under the PC model, the PC
scores are uncorrelated. Under orthogonal rotation, the PC scores are uncorrelated (and hence
orthogonal by column). Under oblique rotation, the PC scores are correlated by column (and
hence not orthogonal by column). This is all interesting mathematically, but neither the
atmosphere or the hydrologic system follow anything remotely close to orthogonality.
Therefore, this is a validity issue. If the PC patterns are not valid to represent the physical
processes, all the mathematical niceties are meaningless if the PC loadings are to be analyzed
individually. PCA is simply the incorrect model to represent the physics on each vector. If you
are willing to forego physical analysis of each PC loading vector, then the PCA is an efficient
linear representation of the total space but, in that case, domain dependence is not important.
Once an analyst wants to add physical interpretation of each PC loading vector, all those
maximal variance, and orthogonality features become useless in most cases, but now accounting
for patterns with domain dependence becomes important. Again this topics of extracting the
known sources of variability and of true modes are addressed in Compagnucci and Richman
(2008) and Huth and Beranova (2021), among others.

AR: Thank you for your elaboration. In the revised manuscript we (i) added an example with

rotated spatial PC patterns, (ii) substantially extended the rotation section 5.2.2. and (iii) added
the new method section 3.5. "Varimax rotation" in which we introduced rotation in more detail.

In addition, we extended the discussion on rotation in section 5.2.2. and physical interpretation,

including the literature you suggested. See also our reply to major comment 5 and 6.

LEEﬁ-

are relaxed
AR: We will keep our phrasing.
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Lo>7:

Perhaps that "redistributed variance" is the variance of the true modes of variability? Huth and
Beranova would support such an interpretation. If that is the case, it is a more important aspect
of the physical system than the eigenvalues (or the percent variance associated with each
eigenvalue). One way to assess this is (assuming the correlations capture the physically meaning
variations in the data) to determine if the PC loadings from a solution (unrotated, rotated)
represent the underlying correlation functions. Once that is assessed, and if a PC loading pattern
is associated with a correlation/covariance patternr, the statistics associated with these patterns
are what describes the physical system.

AR: We included the literature you suggested in the extension of section 5.2.2.. And we added

a suggestion for future studies to systematically assess the performance of different PCA modes,

rotation methods and scaling of the eigenvectors in hydrological feature identification, at the
end of the rotation section and at the very end of the conclusion.

See also our reply to major comment 5 and 6.

L558:

If you examine the results in this paper, for unrotated PCA, selection of k PCs to avoid
truncation of degenerate multiplets is also critical, so the criticism of truncating PCs holds in
general (unrotated PCA, rotated PCA) for all cases where the n PCs are not retained. Normally,
k<<n PC are retained in unrotated solutions too, so selecting k is still an issue for unrotated
PCA. Your results suggest that unless k is selected at a location in the ordered eigenvalues at a
location where the eigenvalue spacing exceeds the North criterion, too little eigenvalue spacing
confounds the assessment of domain dependence.

If one rotates their PC loadings, previous research suggests that all the domain dependence
seems to disappear. If that is the case, you could rotate and check your analyses for domain
dependence and report on its reduction under rotation in this manuscript. You could also check
the amount of the correlation functions applied that emerge with both the unrotated and rotated
PC loadings and report those values and on the differences found.

AR: We agree that defining the truncation point is always an issue, be it for unrotated or rotated
PCA. We will include the aspect of eigenvalue degeneracy at the truncation point. Therefore,
we will expand the warning to split multiplets in 425 with an explicit statement about the
truncation point. Please see our reply to your major comment 3.

Regarding rotation, we will expand section 5.2.2.. Please see our reply to major comment 5.

L564:
If you claim this, then can you point to a table of results that partitions the variance into
correlation structure variance versus domain dependence variance)?

AR: We cannot point to such partition table. We refer to what we showed here, that is sequences

of pure DD patterns in which the leading PCs were associated with substantial amounts of
variance.
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L569:
Should you add the following corollary? "Without knowledge about the effects of degenerate
multiplets, DD can be misinterpreted"

AR: We assume, you are referring to the intermixing that can mask the expected DD patterns.
Thus, we would rephrase your suggestion and add it to the list:

"Without knowledge about the effects of degenerate-multiplets, DD can be overlooked because
the degeneracy can mask the expected DD patterns."

L573:

Regardless of the assessment of effective multiplets (including at the truncation point) and
DD, not analyzing how well the PCs resemble the underlying covariance or correlation
structure will often lead to the wrong hyrological interpretations.

AR: To specific comments on L573-575.

We agree and understand that this is an important point for you. We think so as well. We will
add a new paragraph at the very end of the conclusion. It seems to us, that the terminology
"underlying covariance or correlation structure” points to atmospheric mode identification. In
hydrology, mode identification is not as common as in the atmospheric sciences. Therefore, we
will phrase our statement differently.

"However, it has tobe noted that pPassing the check for DD and accounting for effective

multiplets in the selection of the PCs are necessary but not sufficient conditions to assure
physical meaningfulness. When single PCs, or combination of PCs, are assigned to distinct
hydrological features, it should be carefully consideredhecked whether the S-mode PCA
constraints_(i) successive maximization of variance on the PCs, (ii) orthogonality of spatial PC
patterns and (iii) linear uncorrelatedness of temporal_PC patterns support such interpretation.
The spatio-temporal PC patterns should not only be checked for resemblance with the
postulated features, but also the invariance of the spatial and temporal PC patterns against
subsampling should be approved. Building on this study, a next research task could be to
conduct systematic experiments with synthetic test data derived from hydrological simulation

models to evaluate which PCA modes, rotation methods and scaling of the eigenvectors work
best for hvdrological feature identification."

PCs are a fine method for data reduction or compact orthogonal description of data onto k PCs.
Once the analyst jumps from such a well-accepted interpretation to analyzing or interpreting
each individual PC, some assessment of how well each PC represents the data covariability
must be performed. Even in cases with no degenerate multiplets and small DD, that does not
guarantee (even hint at) an accurate portrayal of a physical process on an individual PC. Such
a determination must be made after the analysis. This needs to be added to the conclusions to
inform the reader that physically analyzing individual unrotated PCs is a suggested path for
enlightenment about the physical system. Recall, the cautionary statment in the conclusion of
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Buell (1979): "Otherwise, such interpretations may well be on a scientific level with the
observations of children who see castles in the clouds."

Sadly, Buell's comment holds for unrotated PCs in general, because of all those "heavy
constraints", eigenvalue degeneracy and domain dependence. Again, I urge you to examine

Compagnucci and Richman (2008) and Huth and Beranova (2021).

AR: Thank you for your elaboration and the references. We will include this. Please see our
reply to your comments to L573 and your major comments 5 and 6.

L575:;

Perhaps necessary but certain not sufficient to show physical meaningfulness.

AR: We will add this. Please see our reply to your comments to 1573 and 574 and your major
comments 5 and 6.

L598:

What does "clean structure" mean?

AR: We will rephrase it to "smooth pattern".
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Reply to referee 2
Comments of referee 2 are in black.

Replies of the authors (AR) are in blue.

The update of the AR for the major revision of the manuscript are marked with red. The initial
replies were only altered when there were substantial changes. Thus, we did not change the

tense in every reply and we did not include every minor change in spelling or phrasing.

Comments of referee 2
https://hess.copernicus.org/preprints/hess-2024-172#RC2

This paper highlights a largely overlooked issue called domain dependence (DD), where the
PCA results are influenced more by the size and shape of the spatial domain being analyzed
than by the actual hydrological processes. This effect, caused by spatial autocorrelation in
hydrological data, can lead to misleading patterns, accumulation of variance in leading PCs,
and closely related (degenerate) PCs that are difficult to distinguish. The paper emphasizes the
need to account for DD when interpreting PCA results and introduces two methods—stochastic
and analytic—for generating DD reference patterns. These methods are demonstrated using
synthetic examples, and R-scripts are provided to help users explore and address DD in their
analyses. The results presented are solid. The paper covers all the aspects that are important for
a user. However, there are redundancy and a lack of clarity in some of the sections. I suggest a
major revision that’s focused on organizing and presenting the materials. Please see my detailed
comments below.

AR: Thank you for the clear and comprehensive summary of our work. Thank you furthermore
for your helpful and motivating comments. We appreciate the work you have spent on the
review.

Major comments:

It is good to have all the relevant terms explained in Section 2. However, as a hydrologist, I
personally found the section 2 quite challenging to follow. Since the objective of this technical
note is to raise attention to the DD effects among PCA users in the hydrology community, it is
better to use terminologies and displayable items accessible/understandable to hydrologists
especially in the method section.

I suggest adding 1) equations when necessary and 2) conceptual diagrams like hypothetical
spatial and temporal PC graphs to explain PCA and S-mode PCA (they can be put in the
appendix). The authors can also add workflow diagrams in both the method and discussion
sections when they illustrate to practitioners how to consider DD, how to diminish DD, etc.
Also, consider adding a real hydrological case at the end of the paper to illustrate the DD effects
and how to deal with DD. That way, the value of the paper to hydrologists and other PCA users
can be greatly improved.
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AR: Thank you for your suggestions. In the revised manuscript, we will-provided more
equations in the main text, e.g. the equation for the calculation of the correlation loadings in

section 2.1.2,
G=a4x ﬁ

and in additional schemes. We will-added the following schemes:

(1)

e a conceptual diagram for S-mode PCA (first-draftin-Figure 1) and
e workflow diagrams in the method section for (a) the stochastic method and (b) for the
analytic method (first-drafts-in-Figure 2 and Figure 3).
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Figure 1: S-mode PCA, adapted after Fig. 9 in Richman (1986). n: number of locations, m:
number of time steps. The eigenvalues define the explained variance, the loadings the unscaled
spatial PC patterns and the scores the temporal PC patterns. Figure updated compared to initial
reply to R2.
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Step 1 - PCA ensemble
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Figure 2: Stochastic DD reference method. n: number of locations, m: number of time steps, N:
number of data sets, respectively PCAs, index j: PC rank, c: correlation loadings, a: loadings,
A: eigenvalue, S: stability, indices k, 1: running indices for PCAs from the ensemble, ¢:
harmonized correlation loadings, eVar: explained variance. Figure updated compared to initial

reply to R2.
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Figure 3: Analytic DD reference method. Figure updated compared to initial reply to R2.

Following your suggestion, we added a real hydrological case in Section 4 of the paper and

discussed it in the context of (i) comparison of spatial PC patterns from markedly different

subdomains, (ii) DD reference patterns and (iii) rotation. We see-your peint-with-adding a real

7 1O

However, tThe focus of our work is to illustrate the functioning of DD and its side effects. For
this, we believe that it is best to use synthetic examples-enly. It (1) ensures clearly defined
statistical properties, (2) clarifies that "all observed effects are solely caused by the specified
statistical properties" and (3) enables "to study the effects of specific properties, e.g. spatial
correlation length or spatial extent, on the PCA results." These points are already mentioned in
the second last paragraph of the introduction (lines 106—110). For further clarification, we want
to-added a short phrase in line 106:

" We illustrate our introduction primarily with synthetic examplesTofocus-on-the functioning
D7 1 1 A 1 aivallfa R 1 1 v v

ensures ..."
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Minor comments:

Combine data set to be one word “dataset”.

AR: Wewill do so.We checked for the spelling used by HESS and found that "data set" is used
(https://www.hvdrology-and-earth-system-sciences.net/submission.html). That is why we kept

it as it was.

Avoid using the word “system” which is too broad a term and could mean different things to
different people. Be more specific. If you are talking about a catchment, use catchment. If you
are talking about a soil column, use soil column.

AR: Here we are using the broad term "system" on purpose because we are presenting the
functioning of DD irrespective of the analysed system, be it a catchment or a soil column. We
will clarifiedy what we mean by “hydrological system” by adding the following sentence to

line 37 in the very beginning the end of the first paragraph of the introduction:

"S-mode PCAThe approach can be applied to data from very different hydrological systems
such as catchments or soil columns."

Abstract: The abstract needs reworking. Currently, the authors spend three quarters of the
abstract on describing what DD is and why it’s important to consider DD. Only 3-4 sentences
are focused on what the paper does. The abstract needs to be re-organized such that the first
quarter gives the introduction and background information about DD. The middle two quarters
focus on the methodology and results. The last few sentences focus on the implications of the
findings.

AR: We will re-organize the abstract trying to follow your suggestions. However, we must
consider that the manuscript is not a classic research paper. A central aim of this work is to
provide HESS readers an introduction to DD and effectively degenerate multiplets. We will
therefore need more space than a quarter of the abstract to introduce these concepts and warn
of the resulting pitfalls for hydrological interpretations.

Line 45-50: Could expand the list by adding references of PCA/EOF to hydro-climate research
like:

Li et al. (2023): https://link.springer.com/article/10.1007/s00382-021-06017-y

Bieri et al. (2021): https://journals.ametsoc.org/view/journals/hydr/22/3/JHM-D-20-
0116.1.xml
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AR: Thank you. We will do so.
Line 105: You’ve defined domain dependence to be DD. Use DD here.
AR: We will do so.

Line 118: ”Considering DD is discussed”. I don’t quite understand. Do the authors mean “in
practical, when and how to consider DD is discussed”? Be a bit more specific here.

AR: In this section we want to provide the reader with options how to check for DD and how
to deal with it. For clarification, we likete-changed the quoted sentence in L.118 to:

n

Finally, an application example with a precipitation raster data set is presented and different
options to detect and diminish DD are discussed.Einally;-different options-to-consider DD-are
discussed with respect to-detecting DD and diminishing DD."

Move section 3 to data and code availability statement.
AR: We will do so.
Figures 5-6: Show the colorbars for the color shadings.

Figure 7 is just a repeat of the square experiments in Figures 5 and 6. I suggest showing one
figure of square experiments, one figure of rectangle experiments, and one figure of triangle
experiments. On all the PCs, show the colorbar, the information you showed in the title of
Figure 7a.

AR: The overview plots in figures 5, 6, 8, 9 and Figure S5 in the supplement are meant for
direct visual comparison (1) with the "classical Buell patterns" shown in Figure 1, and (2)
among each other. Therefore, we always provide the same structure, with PC 1-10 as columns
and the domain boundaries (a) square, (b) rectangular, (c) triangular in the rows. The focus is
here on the spatial patterns only - not their magnitudes. Like in Buell’s original work, we
therefore don’t show the scales. This way the overview character of the figure is ensured and
the plots can be conveniently compared. In contrast to Buell, we use colour gradients - instead
of +/- schemes - to picture the spatial patterns (see caption of Figure 5). We think that this
further improves the readability of the figures, especially for the more fine structured patterns
of the PCs with small eigenvalues (lower ranked PCs).

The detail plots of Figures 7, 13 and Figure S7 in the supplement are meant as examples to
demonstrate what magnitudes of (1) contrasts in the spatial PC patterns and (2) explained
variance associated with the PCs can result from DD alone. We think that it is important and
informative to show this level of detail once in the presentation of the stochastic DD patterns
(Figure 7) and in the discussion of the effective multiplets (Fig 13). In case of the overview
plots we think this level of detail would be distracting for the readers. In this logic, Figure S7
in the Supplement is merely the anisotropic counterpart for Figure 7 in the main text, meant to
complete the anisotropic set of figures S5-7.

Note, that we moved the detail plot of the square (former Figure 7) now as well to the

supplement. We did so to keep the overview character in the main text. Also, we aimed to
balance the extension of the manuscript with new material by moving some parts to the
supplement.
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To clarify the different purposes of overview and detail plots, we liketo—separated their
introduction in section 4.1. into separate paragraphs with paragraph breaks in lines 260 and 264.

The section titles can be more informative. Like “4.1 First examples, 4.2 Domain shape, 5
Considering DD”... The authors should use short phrases instead of words for the subheaders.
This is a good opportunity to provide more information to summarize the subsections.

AR: Thanks for your suggestion. We will change the section titles of section 4 and 5 to:

4. Exploring the DD effect

4.1. Exploring Buell patterns and their stability

4.2. Effects of the domain shape

4.3. Effects of the domain size and spatial correlation length
4.4. Effectively degenerate multiplets

5 Approaches to consider DD

5.1. Detecting DD

5.1.1. Comparing spatial PC patterns from markedly different subdomains
5.1.2. Comparison with DD reference patterns

5.2 Approaches to diminish DD
5.2.1. Subsampling of domains
5.2.2. Rotation of PCs

Table 1: When the PC of the subsampled variant does not correlate the best with the all-cell PC
of the same rank, i.e., the values with “\”, the correlation is significantly lower. For example,
0.52 for PC4 in Square patter, 0.45 for PC5 in Square, 0.52 for PC6 in Rectangle. They are
significantly lower than other values in the table. Is there an explanation for that?

AR: Best correlating PCs with different ranks do not always exhibit rather low correlation.
What we can see in Table 1 are different levels of variation of the patterns from the
homogeneous subsampling variant when compared with the patterns from the all cells variant
(the classical Buell patterns). The patterns of the subsampling variant can be:

1) simply noisy variants of the all cells patterns (e.g. PC 1 and 2 from all domains),

2) simply noisy variants of the all cells patterns but with different ranking (e.g. PC 3 and
4 from the rectangular domains),

3) a mix of all cells patterns (e.g. PC 4 and 5 from the square domains?), or

4) very different from the all cells patterns (e.g. PC 10 from all domains?).

In this sequence of increasing differences between the patterns from both variants, the last
example you were addressing (PC 6 from the rectangular pattern) would be placed somewhere
in between 3) and 4). Generally, the differences increase towards the low ranked PCs with the

!In the all cells variant, PC 4 exhibits two maxima in the upper left and lower right corner and
two minima in the lower left and upper right corner, PC 5 exhibits the maximum in the center
and four minima in the four corners. In the subsampling variant, PC 4 exhibits two maxima in
the upper left and lower right corner and the minimum in the center, PC 5 exhibits basically the
same structure but rotated by 90°.

2 For PC 10, the patterns of the all cells variant are for all domains already so fine structured
that the subsampling results in quite different patterns.
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more detailed patterns. But, there are also substantial differences between the patterns from
relatively high ranked PCs possible (e.g. PC 4 and 5 from the square domains). Thus, even for
rather homogeneous subsampling, the DD patterns are not necessarily simply noisy variants of
the classical Buell patterns.

This underlines the main message of section 4.2: " For data sets with identical spatial correlation
properties and similar domain size, the DD patterns are original for every domain shape."
(L316).

We suggest to integrate the above details, including the footnotes, and extend the paragraph in
line 340-347 to:

"For the spatial patterns of the homogeneous subsampling variant and the all cells variant, the
correlation analysis confirmed the visual impression of overall similarity (Table 1). But it also
showed that there are differences. The patterns of the subsampling variant can be:

1) simply noisy variants of the all cells patterns (e.g. PC 1 and 2 from all domains),

2) simply noisy variants of the all cells patterns but with different ranking (e.g. PC 3 and
4 from the rectangular domains),

3) a mix of all cells patterns (e.g. PC 4 and 5 from the square domains?), or

4) very different from the all cells patterns (e.g. PC 10 from all domains?).

Transitions between 3) and 4) are possible (e.g. PC 6 and 7 of the rectangular domain).
Generally, the differences increase towards the low ranked PCs with the more detailed patterns.
But, there are also substantial differences between the patterns from relatively high ranked PCs
possible (e.g. PC 4 and 5 from the square domains). Thus, even for rather homogeneous
subsampling, the DD patterns are not necessarily simply noisy variants of the classical Buell
patterns. The comparison with the heterogeneous variant yielded substantially stronger
deviations (Table 2). Thus, generally, visual recognition of Buell like patterns in S-mode PCA
results is a concrete indication for DD. However, it is so in particular for the leading PC patterns
from domains with rather homogeneous spatial arrangement of locations within boundaries
similar to Buells archetypes. Even for domains of similar size and identical spatial correlation
properties, deviations from strictly regular distribution of locations alone can result in DD
patterns substantially deviating from what one might expect with the classical Buell patterns in
mind."

It is unclear to me how exactly did you calculate stability. Suggest showing equation when it is
first mentioned to illustrate.

AR: The stability S; of the spatial patterns of PC rank j is calculated as the mean R? of the
pairwise correlations of all spatial patterns with PC rank j from the PCA ensemble:

N
1 2
5 = Nx*(N—1)=* Z;Cor(cjk' le)

N is the number of PCAs which equals the number of analysed data sets, from the ensemble; k
and | are the running indices of the PCAs that are compared.
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We will add the above equation and a scheme to the description of step 2 (lines 195-197). A
first draft of the scheme is given in Figure 2. The abbreviations from the scheme will be
introduced in the main text as well.
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