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Abstract. Deep learning models are increasingly being applied to streamflow forecasting problems. Their success is in part

attributed to the large and hydrologically diverse datasets on which they are trained. However, common data selection methods

fail to explicitly account for hydrological diversity contained within training data. In this research, clustering is used to char-

acterise temporal and spatial diversity, in order to better understand the importance of hydrological diversity within regional

training datasets. This study presents a novel, diversity-based resampling approach to creating hydrologically diverse datasets.5

First, the undersampling procedure is used to undersample temporal data, and is used to show how the amount of temporal data

needed to train models can be halved without any loss in performance. Next, it is applied to reduce the number of basins in the

training dataset. While basins cannot be omitted from training without some loss in performance, we show how hydrologically

dissimilar basins are highly beneficial to model performance. This is shown empirically for Canadian basins; models trained to

sets of basins separated by thousands of kilometres outperform models trained to localised clusters. We strongly recommend10

an approach to training data selection that encourages a broad representation of diverse hydrological processes.

1 Introduction

Floods constitute a major threat to populations and infrastructure and are projected to increase in severity due to climate change

and urbanisation. Flood early warning systems (FEWS), which rely on models that predict streamflow, provide advanced notice

of flood risk and are considered amongst the best ways to mitigate flood damage. Many Canadian communities lack any sort of15

FEWS, making them vulnerable to flood damage. Over the past 3 decades, machine learning (ML) models have been increas-

ingly applied for streamflow prediction and represent significant potential for improving the accuracy and coverage of FEWS

in flood prone regions. Recently, several large sample studies have shown that ML models can consistently outperform tradi-

tional, physics-based hydrological models (Mai et al., 2022; Arsenault et al., 2023a; Kratzert et al., 2019), which underscores

their proficiency for FEWS.20

ML model development has typically followed the same format as physics-based models, in that a single model is parame-

terised and calibrated on an individual basin, which is referred to as a locally trained model. The work by Kratzert et al. (2019)

demonstrated that the accuracy of ML models can be improved by training a model to a set of basins, rather than an individual

basin, which is referred to as a regionally trained model. Regional training relies on deep learning architectures such as long-

short term memory networks (LSTMs), which have recently surged in popularity for streamflow forecasting applications and25

are considered to be state-of-the-art (Fang et al., 2022). Recent advances in regional learning have focused on improvements to

model architectures (Nevo et al., 2022; Girihagama et al., 2022), and benchmarking against traditional physics-based models

(Lees et al., 2021; Arsenault et al., 2023a).

Broadly speaking, physics-based and ML hydrological models benefit from diverse training data, which improves their

performance on future, unseen conditions. Locally trained models are only provided with temporally diverse data at a single30

point in space. In contrast, regionally trained models have been empirically shown to outperform locally trained models in

several works (Kratzert et al., 2019; Zhang et al., 2022), and their success is in part attributable to the spatial and temporal

hydrological diversity contained in the multi-basin datasets on which they are trained (Kratzert et al., 2019).
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However, there is currently little guidance on optimum basin (spatial) selection of training data for these models. Often times,

models are trained to complete large-sample datasets (e.g., CAMELS US). However, with increasingly large, global hydrolog-35

ical datasets, it is not always practical or feasible to train to all available data, especially when conducting computationally

expensive tasks such as hyperparameter selection, which is required to achieve optimum model performance, or creating multi-

model ensembles. Therefore, there is a need for improved guidance on efficient methods for training data selection, to maximise

model performance and generalisation. Many of the deep learning advances in hydrology have utilised well-established large-

sample basins (e.g., CAMELS-US, CAMELS-AUS). Canada is a country with a diverse hydrological landscape, characterised40

by coastal regions, mountain, urban, and exposed rock in the form of the Canadian shield. The effectiveness of regionally

trained models has not yet been well established on highly diverse Canadian basins.

When training a model to predict streamflows in some region of interest, the goal is to select the most relevant spatial

and temporal data, while avoiding data that has either no impact or a negative impact on model performance. Unsupervised

clustering has been used in previous studies as a data-driven approach to identify spatial and temporal diversity within a45

training dataset (Toth, 2009; Kratzert et al., 2024). The application of clustering as a means to identify spatial and temporal

diversity is in itself nothing new. Many studies have applied clustering to spatial and temporal data as a means to quantify

hydrological diversity. However, the treatment of hydrological diversity generally follows one of two approaches: either, it is

used to generate hydrologically diverse datasets, or datasets with homogeneous hydrological conditions. The former, aims to

generalise models to a wide range of conditions, promoting balanced performance and good generalisation, while the latter aims50

to simplify the learning problem, improving performance in similar conditions. Both approaches have been used successfully

for temporal streamflow clustering. Anctil and Lauzon (2004) apply an SOM to streamflow data in a single basin to create a

training dataset with a balanced representation of diverse hydrological states. In contrast, Toth (2009) use an SOM to classify

streamflow into homogeneous subsets, on which individual models are trained and combined in a modular format. Their

approach is found to improve overall prediction accuracy, which can be attributed to the error diversity of the collection55

of trained models. (Snieder et al., 2021) partition streamflows into typical streamflows and high streamflows, in order to

undersample typical streamflows and oversample high streamflows, which is found to improve performance on the latter,

which is desirable for FEWS applications. The same motivation has led to numerous applications of clustering on basins,

particularly in regional training schemes. For example, Gauch et al. (2021) showed that implicitly increasing hydrological

diversity of regional training datasets, by iteratively increasing the number of basins, as well as the amount of data in each60

basin, improves model generalisation. However, the study does not explicitly quantify hydrological diversity, in part due to

the absence of a widely agreed upon metric for hydrological similarity (Oudin et al., 2010). However, other studies have used

clustering to estimate hydrological diversity, such that basin selection can explicitly account for hydrological diversity. These

cases tend to use some form of clustering (either supervised or unsupervised) to quantify hydrological diversity within training

data and the effects it has on model generalisation. Zhang et al. (2022) clustered a set of 35 mountainous basins in China65

based on hydroclimatic attributes, finding that a model trained to all available basin typically outperformed those trained to

individual clusters. Hashemi et al. (2022) applied a similar approach by clustering basins into hydrological regions based on

the ranges of indices derived from streamflow, precipitation, and temperature. As done in Zhang et al. (2022), their study
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compared locally and globally trained models, finding only minor differences in the performance between the two. A common

problem in comparing global and locally trained models is that these comparisons typically do not control for sample size.70

As a result, the improved performance of the global model can be impacted by the regularisation effect on the sample size.

In other words, deep learning models trained to small datasets may be overfitted and thus, poorly generalised. Fang et al.

(2022) accounts for this potential issue. Their study groups basins based on ‘ecoregions’, and evaluates the effects of additional

training basins at three similarity intervals. Their study showed that counterintuitively, ‘far’ or ‘dissimilar’ basins amongst the

training dataset often produced greater improvements in model performance when compared to the inclusion of ‘close’ basins.75

They speculate that distant basins provide a regularisation effect. Fang et al. (2022) call for further investigation into the effect

that hydrological diversity has on model generalisation and underline the need for a systematic approach. Kratzert et al. (2024)

characterise hydrological diversity by applying K-Means clustering to basin attributes, finding that models trained to basins

with similar hydrological characteristics outperform randomly sampled basin sets of the same sizes. However, in every case,

they show that LSTMs trained to hundreds of basins outperform those trained to smaller subsets. They also demonstrate how80

regional learning improves performance on extreme events, thus for FEWS, as the training datasets contain a higher number of

extreme events, spread across all basins. Many of these studies assume that similar basins are most useful to one another in the

context of regional learning. We challenge this assumption, and seek to determine to what extent hydrologically similar data is

beneficial for training.

The objective of this study is to study the effect that the formation of hydrologically diverse training datasets has on model85

performance and generalisation. Hydrological diversity is quantified using clustering, which is applied separately to streamflow

(temporal) and basins (spatial). This topic is analysed throughout two experiments. In the first experiment, we evaluate the ef-

fects of removing non-diverse streamflow data from regional training datasets. The latter test is repeated, but by undersampling

non-diverse basins, instead of streamflow values, from a larger subset. In the second experiment, we compare the effects of

adding ‘similar’ and ‘dissimilar’ basins to a training dataset for some region of interest. The purpose of this second experiment90

is to compare the contribution of additional basins to model generalisation, with respect to their hydrological similarity to the

evaluation set.

While numerous studies have applied clustering to streamflow and basins, to the extent of the knowledge of the authors, the

use of clustering to explicitly create spatial and temporally diverse training datasets is a novel approach. The outcome of these

experiments has the potential to improve methods for the creating of training datasets for regionally trained models. This topic95

is investigated on sequence-to-sequence (Seq2Seq) LSTMs for daily streamflow forecasts of 1–3 days in Canadian basins.

Basins are sampled from across Canada and models are trained using historic hydrometeorological data from the past 36 years.

2 Methods and Data

2.1 Input and target variables

This study uses data retrieved from the HYSETS dataset, which contains hydrometeorological data for over 14,000 basins100

across North America (Arsenault et al., 2020). The target variable, the future state of streamflow, is predicted using dynamic
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and static input features. The models in this study are autoregressive (AR), meaning past streamflow at the target gauge is

used as one of the input features (Nearing et al., 2022). Additional dynamic features include daily basin-averaged minimum

temperature, maximum temperature, precipitation, and snow water equivalent (SWE). The static basin attributes, which are

summarised in Table 1 in the appendix, allow the model to transfer learned information between basins. Some of the static105

attributes are included in the HYSETS database, while additional attributes are calculated based on the dynamic timeseries,

which generally follow those included in the CAMELS dataset (Addor et al., 2017). The additional attributes are calculated

based on the timeseries’ data already contained within HYSETS and do not rely on any external databases. Finally, the input

feature set also contains one-hot encoded basin labels (Lees et al., 2022), which enables the model to distinguish between

streamflows in different basins. Static basin attributes are used both as input features for the streamflow forecasting model and110

in the basin clustering method, which are described in Sections 2.3 and 2.3, respectively.

2.2 Basin selection

This study only considers Canadian basins from the HYSETS database. Basin are removed if they have less than 80% data

availability within any of the training, validation, and testing periods, which span a total of 36 years from Oct. to Sep. of 1982-

1994, 1994-2006 and 2006-2018, respectively. The training partition is used to train the models, validation for fine-tuning115

LSTM hyperparameters, and the test partition is used to calculate model performance. While records in some basins exist prior

to 1982, it is imperative that the data used to train and evaluate basins be from the same time period and be of a similar size.

Including records from before 1982 results in fewer basins to choose from, which tends to reduce the hydrological variability

of the basin set. Next, some basins are removed, due to missing static attributes. These criteria produce a set of approximately

2000 basins, with highly variable attributes, according to Table 1.120

2.3 Sequence-to-sequence LSTM models

LSTM models, with a Seq2Seq architecture (Cho et al., 2014), are used to generate forecasts at a daily resolution, at multiple

lead times. Seq2Seq models are composed of an encoder and decoder; the encoder transforms an input sequence into a fixed

length context vector, which is provided to the decoder, which outputs predictions. Recently, several studies have demonstrated

the aptness of Seq2Seq models for predicting runoff at multiple lead times (Xiang et al., 2020; Girihagama et al., 2022; Zhang125

et al., 2022).

The Seq2Seq models in this study use hyperparameter values that are common for LSTM rainfall runoff models. The models

in this study use a hidden layer size of 128 cells, a dropout rate of 0.2, a batch size of 32, and Adam optimisation with a decaying

learning rate of 0.001 to 0.0001 across a total of 80 epochs. Input and output sequences of 7 and 3 days were used, respectively.

While an input sequence of 365 days is commonly used for streamflow prediction (Kratzert et al., 2019; Arsenault et al.,130

2023b), Gauch et al. (2021) noted that small sequences are better suited to small basin sets, and have been used in AR models

(Nevo et al., 2022).

Typically, for regional training, the error terms of individual basins are normalised based on streamflow variance of that basin.

Using the typical variance-based regularisation applied to the cost function produces a relative increase in weight applied to
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low variance basins. While this works well for non-AR models, AR models have a tendency to develop an over-reliance on135

recent streamflow observations, which can manifest in a positive timing error (Snieder, 2019). The resulting models may be

barely distinguishable from the naive model (i.e., the most recent streamflow observation). Highly seasonal, naturalised basins

are most prone to this problem, as streamflow tends to change gradually with time, thus a model that outputs recent streamflow

observations might be mistakenly seen as accurate. Specialised performance metrics such as the Persistence Index (PI) are

often used to identify this problem in real-time forecasting applications (Nevo et al., 2022). This is simply because the PI140

normalises error relative to the naive model, with a PI less than 0 corresponding to a non-informative forecast relative to real-

time observations. The same is not the case for widely used Nash Sutcliffe Efficiency (NSE), which can be misleadingly high in

the same cases (Knoben et al., 2019). For this reason, we propose that basin persistence (i.e., mean squared deviation between

observations at the current time and forecast time) be used to regularise the cost function for regionally trained models. Instead

of placing more weight on low variance basins, persistence-based regularisation places more weight on basins that have low145

error between recent and future streamflow values. Failure to do so results in models that are not adequately trained in those

basins, and produce non-informative forecasts (relative to the naive model).

In this study, basins are normalised using the formulation proposed in (Kratzert et al., 2019) for NSE*, but substituting the

basin variance for the persistence corresponding to the forecast lead time. The persistence-based cost function PI∗ is given by:

PI∗ =
1
B

B∑

b=1

T∑

t=1

∑
(qt− q̂t)2∑
(pb + ϵ)2

(1)150

in which qt is the observed streamflow, q̂t is the predicted streamflow, ϵ is a constant (0.1) that prevents the function from

exploding to negative infinity (Kratzert et al., 2019), and pb corresponds to the persistence of an individual basin b in a set B

basins, given by:

pb =

√√√√
T∑

t=1

(qt− q(t−L))2 (2)

in which L is the forecast lead time of q̂t.155

2.4 Performance metrics

Models are evaluated using two performance metrics: NSE and PI. The NSE, given in Eqn. 3, is amongst the most widely used

metrics for hydrological models and effectively normalises the mean squared model error based on streamflow variance. The

PI, which is given in Eqn. 4 and used in the basin regularisation function described above, is a similar metric but instead of

normalising squared residuals using the mean, it normalises forecasts based on the squared error between the streamflow at the160

current and forecast timesteps (Kitanidis and Bras, 1980).
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NSE = 1−
∑T

t=1(qt− q̂t)2∑T
t=1(qt− q̄)2

(3)

PI = 1−
∑T

t=1(qt− q̂t)2∑T
t=1(qt− qt−L)2

(4)

where q̂t to the predicted streamflow, and q̄ to the mean observed streamflow. qt−L is the observed streamflow, shifted by the

lead time L of the forecast such that it represents the real-time observable streamflow in an operational context. Both metrics165

range between −∞ and 1, with 1 being perfect and values less than 0 indicating performance worse than each respective

baseline.

2.5 Clustering

Clustering is a simple yet effective way to identify hydrologically diverse data for training streamflow forecasting models. This

study uses clustering to identify two forms of hydrological diversity. First, it is applied to streamflow records of individual170

basins, to identify diverse streamflow conditions. Second, it is applied to static basin attributes, to identify basins with diverse

hydrometeorological attributes. Note that both methods are independent of one another. This study uses the constrained K-

means clustering algorithm (Bennett et al., 2000), which allows for the specification of a minimum cluster size. This avoids

a problem that occurs with clustering streamflow, which is that infrequent flood streamflows typically produce a very small

cluster, constraining the number of samples that are available when drawing an even number of samples from each cluster175

(Toth, 2009).

The first application of clustering is to identify hydrologically diverse streamflows. Previous studies have applied clustering

to the input vectors of ML models (Anctil and Lauzon, 2004; Abrahart and See, 2000). However, such approaches do not

guarantee that streamflow is the main variable by which clusters are discriminated. For that reason, we engineer a feature

set for clustering streamflow based solely on the target streamflow data, which encourages diverse streamflow conditions180

between clusters. The engineered feature set includes streamflow (qt), two streamflow gradient features (given as (qt−3− qt)/3

and qt−1− qt), and two day of year features (given as sin−1 (t/365) and cos−1 (t/365) for t as day of year). Features such

as the streamflow gradient, encourages the representation of rising and falling limbs within the clusters - which would be

indistinguishable based solely on streamflow value.

The second application is on basins, which are clustered based on their static attributes. Due to the large number of features185

(39) and collinearity between features, principal component analysis (PCA) is used to reduce the feature set to 8 principal

components. Names and statistics of the static attribute set are provided in Table S1 in the supplementary information.
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Both clustering applications are used to inform a simple resampling procedure that aims to maximise hydrological diversity.

The cluster-based undersampling (CUS) procedure is as follows. Given N training examples (either streamflow samples or

basins):190

1. Select an undersampling rate ϕ as a fraction of N and a number of clusters K

2. Cluster records into K clusters with a minimum cluster size of ϕN /K

3. Sort samples based on distance to the cluster centroid

4. Select samples 1 to ϕN /K from each cluster to form the training dataset

Each undersampling strategy is illustrated in Fig. 1. Subplots (a), (c), and (e) illustrate the raw streamflow timeseries (a),195

clustered streamflow (c), and undersampled streamflow (f). Note how the timeseries in (f) contains fewer typical streamflows

and proportionally more high streamflows, compared to the continuous record in (a) and (c). Similarly, subplots (b), (d), and

(f) show Canadian basins (a), clustered basins (d), and diverse, undersampled basins (f).

CUS applied to streamflow and basins are denoted as CUSQ and CUSB, respectively. Selecting an equal number of exam-

ples (streamflow or basins) from each cluster results in a balanced variety of hydrological conditions within the training set.200

There are several reasons why such a training dataset is desirable. First, balanced hydrological conditions encourage balanced

performance across different streamflows, or basins. Models trained to imbalanced datasets, such as streamflow records in

which low streamflows drastically outnumber high streamflows, may be biased towards low streamflow conditions (Snieder

et al. (2021)). The same reasoning applies to basin selection. A regionally trained model may be biased towards areas with

dense spatial coverage. By selecting an equal number of each ‘type’ of basin, we encourage balanced spread of hydrological205

characteristics in the training basin dataset, which translates to good generalisation across a broader range of basins.

Due to the large and diverse feature set, feature importance is calculated to interpret the dominant basin attributes that

distinguish clusters. Since K-means does not inherently quantify feature importance, a random forest (RF) classifier is used

as a surrogate for approximating feature importance. RFs contain an intrinsic importance metric that is commonly used in

hydrology (Tyralis et al., 2019). An RF with 256 estimators, and a max depth of 6 is used. Since the RF is simply fitting210

the outcome of the constrained K-means clustering, the RF is expected to achieve near perfect accuracy, without the need for

hyperparameter tuning.

2.6 Experiments

2.6.1 Experiment 1: evaluating streamflow and basin redundancy in training datasets

In this experiment, CUS is applied to streamflow (experiment 1a) and separately applied to basins (1b). These experiments are215

designed to determine the extent to which non-diverse (i.e., redundant) data can be removed from training datasets, without

any loss in model performance. The CUS generated datasets are compared with random undersampled (RUS) datasets, which

consist of ϕN samples (sampled without replacement).
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Figure 1. left, from top to bottom: unclustered (a), clustered (c), and undersampled streamflow (e) for a single basin (Basin 01AD003).
Right, from top to bottom: unclustered (b), clustered (d), and undersampled basins (f). Cluster colours are arbitrary and there is no connection
between temporal (a, c, e), and spatial (b, d, f) cluster colours. World Gray Canvas basemap in (b, d, f) provided by ESRI.

To evaluate CUSQ (experiment 1a), a set of 64 randomly sampled basins is established. CUSQ is applied to each basin

individually, then merged to form the training dataset. Several resampling configurations are considered, including ϕ values220

of 0.25 to 0.50, and K values 6 and 12. These configurations are compared against two baseline models, which are trained to

(1) the entire dataset and (2) an RUS, which are also undersampled at 0.25 and 0.50 to match the sample size of the CUSQ

datasets. The parameters for each training configuration are listed in Table 1.

The framework outlined above is replicated to evaluate the effects of spatial undersampling (experiment 1b). Beginning this

time with a set of 128 randomly sampled basins, subsets of basins sampled for varying numbers of clusters. Basin subsets225

comparisons are made against a baseline model that is trained to the entire set of basins, and RUS subsets. The purpose of

this experiment is to determine whether clustering can effectively be used to identify a subset of basins that is sufficiently

hydrologically diverse such that it can be used to train a model capable of generalisability on the complete set. In this exper-
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Table 1. Streamflow resampling configurations in Experiment 1a. Labels denote the resampling type, number of clusters (K; for CUS), and
resampling rage (ϕ).

label unique samples total samples
(K, ϕ) basins (per basin) (thousands)
baseline 64 4380 280
CUSQ (K=6, ϕ=0.25) 64 1095 70
CUSQ (K=6, ϕ=0.50) 64 2190 140
CUSQ (K=12, ϕ=0.50) 64 2190 140
RUSQ (ϕ=0.50) 64 2190 140

Table 2. Basin resampling configurations in Experiment 1b. Labels denote the resampling type, number of clusters (K; for CUSB), and
resampling rage (ϕ).

label unique samples total samples
(K, ϕ) basins (per basin) (thousands)
baseline 128 4380 560
CUSB (K=2, ϕ=0.50) 64 4380 280
CUSB (K=8, ϕ=0.50) 64 4380 280
CUSB (K=32, ϕ=0.50) 96 4380 420
RUSB (ϕ=0.50) 64 4380 280
RUSB (ϕ=0.75) 96 4380 420

iment, the basins are trained to the entire streamflow records (i.e., no temporal resampling). The parameters for each training

configuration are listed in Table 2.230

2.6.2 Experiment 2: cross-comparison of 2 clusters of basins

The next experiment is designed to determine to what extent hydrologically dissimilar basins are useful to one another for model

training. In experiment 2a, basins are divided into two clusters (which are referred to as C0 and C1). The reasoning behind 2

clusters is to maximise the hydrological dissimilarity between basins in each cluster (based on the static basin attributes). In

the first experiment, for each cluster, a baseline model is trained to 32 basins that belong to that cluster. Next, we compare the235

effects of adding 32 similar basins (labelled as ‘+similar’), with adding 32 dissimilar basins to the training set (i.e., from the

other cluster; labelled as ‘+dissimilar’). In all cases, only the original 32 basins are evaluated (those used to train the baseline

model); the performance of the additional training basins is not reported. This produces five unique training sets: 32 basins in

cluster 0, 64 basins in cluster 0, 32 basins in cluster 1, 64 basins in cluster 1, and 32 basins in each cluster 0 and 1.

Next in experiment 2b, the configuration from 2a is repeated, but with the addition of cluster-based streamflow undersam-240

pling. This provides a comparison point between models trained in 32 basins without CUSB and models trained on 64 basins

with CUSB, as both configurations have the same number of samples. The 32 basin configurations have greater temporal repre-

sentation within the evaluation basins, while the 64 basin CUSB configurations have greater spatial diversity, at the expense of
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temporal data. These comparisons reveal which is more useful to model generalisation: temporal data from within the subject

basin, or data from outside the basin.245

Table 3. LSTM size and training datasets used in Experiment 2. Configurations are grouped by experiment

exp. code cells n basins
(k=0)

n basins
(k=1)

training data
(years)

n samples
(thousands)

exp. 2a cluster(0)-n(32) 128 32 0 12 140
exp. 2a cluster(0)-n(64) 128 64 0 12 280
exp. 2a cluster(1)-n(32) 128 0 32 12 140
exp. 2a cluster(1)-n(64) 128 0 64 12 280
exp. 2a cluster(0,1)-n(64) 128 32 32 12 280
exp. 2b cluster(0)-n(32) cus 128 32 0 6 70
exp. 2b cluster(0)-n(64) cus 128 64 0 6 140
exp. 2b cluster(1)-n(32) cus 128 0 32 6 70
exp. 2b cluster(1)-n(64) cus 128 0 64 6 140
exp. 2b cluster(0,1)-n(64) cus 128 32 32 6 140

3 Results and discussion

3.1 Experiment 1a: cluster-based temporal undersampling

Examples of temporal clustering results are provided in Figs. 2 (for basin 01AD003) and 3 (basins 01AD003 and 07AF002, one

from each basin cluster from Sec. 3.3). These results are for 6 clusters and minimum cluster sizes of 365. Although associations

between clusters and specific hydrological characteristics can be expected to vary between individual basins, the results from250

basins 01AD003 and 07AF002 characterise four seasonal periods, as well as rising and receding limbs. Distinguishing between

rising and falling limbs is consistent with previous studies that used streamflow clustering (Toth, 2009). Ensuring that distinct

seasons are represented in the clustering results is important, as streamflow drivers are known to change throughout the year.

The performance of models trained on a set of 64 randomly sampled basins is shown in Fig. 4 in terms of NSE (a-c) and

PI (d-f) for cases without resampling, CUSQ and temporal RUS. The cumulative density functions (CDFs), which have an255

optimum shape ‘⌟’, represent the proportion of basins (in the evaluation set) that fall below the performance along the x-axis.

The baseline model (no resampling) performs reasonably well across basins, with 100% and 75% of basins achieving an NSE

greater than 0.5 at the 1-day and 3-day lead times, respectively. Roughly 95% of basins achieve a positive PI, indicating lower

error than the naive model.

In comparison, the basin sets with CUSQ at a rate of 0.5, (meaning that they use 6 out of 12 years of available training data),260

achieve the same level of performance as the baseline, for both the 6-cluster and 12-cluster cases. The RUS model trained to

6 years of randomly sampled data performs very poorly. Similarly, the CUSQ model trained to 3 years of cluster-based data

perform poorly, indicating that key hydrological processes are no longer sufficiently represented in the reduced training data.
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Figure 2. Scatterplot matrix illustrating the temporal clustering results for Basin 01AD003 streamflows (K=6). Markers are colourised by
cluster and kernel smoothed histograms are shown along the diagonal. Axis labels q, qgrd1, qgrd3, sin, and cos, are shortform for qt,
(qt−3− qt)/3, qt−1− qt, sin−1 (t/365), and cos−1 (t/365), respectively

Figure 3. Hydrographs for Basins 01AD003 (top) and 07AF002 (bottom) with observations from October 1989–October 1991, colourised
by cluster. Cluster colours are arbitrarily assigned.

This also indicates that a lower limit of the extent to which CUSQ can be used is somewhere between an undersampling rate

of 0.25 and 0.5. Finally, in no cases do any undersampled configurations outperform the model trained to all data.265
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Figure 4. CDFs showing model performance according to NSE (top row) and PI (bottom row) for RUS (red), two CUSQ configurations (blue
and green) and no resampling baseline (black). Subplots (a), (b), (c), and (d), (e), (f) correspond to forecasts of 1, 2, and 3 days respectively.

These results highlight how a simple clustering method can be used to efficiently identify subsets of data that are sufficiently

representative of the hydrological processes, which are identified by the clustering method, contained in each basin such

that there is no loss in temporal generalisation. In addition, these results show that a significant proportion of hydrological data

within a continuous series is redundant and needlessly adds to the computational burden of training, which is especially relevant

to computationally expensive tasks such as hyperparameter optimisation (HPO). Reducing the computational requirement of270

HPO speeds up model development, or allows for more extensive HPO, potentially improving model accuracy, thus FEWS

reliability.

3.2 Experiment 1b: cluster-based spatial undersampling

In experiment 1b, CUSB is is used to select training basins. As with temporal undersampling, reducing the number of training

basins required to train models has the potential to drastically reduce the computational demand of training, especially across275

large domains such as the thousands of gauged basins spread across Canada.

First, a baseline model is trained to a set of 128 randomly sampled basins. The basins are then grouped into K clusters,

sampled at rates of 0.5 and 0.75. As with the previous experiment, RUS configurations are included at the same resampling
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rates, which in this case, consists of models trained to randomly sampled basin sets. The CDFs for each training configuration

are shown in Fig. 5. Unlike with the temporal streamflow undersampling in experiment 1a, the basin subsets are unable to280

match the performance of the baseline model that is trained to the complete set of basins, which is visibly shown by the CDFs

for PI. As expected, the configurations with a greater number of training basins perform most closely to the baseline. The

CUSB configurations narrowly outperform the RUS configurations with the same undersampling rates, most of all at a rate of

0.50.

Figure 5. CDFs for NSE (top row) and PI (bottom row) for models trained to various basin subsets, which include a baseline (black line,
includes all basins), cluster-based undersampling (coloured solid lines), and random undersampling (coloured dashed lines). The number of
basins sampled from each cluster in the CUSB configurations is equal to B/K. Subplots (a), (b), (c), and (d), (e), (f) correspond to forecasts
of 1, 2, and 3 days respectively.

3.3 Experiment 2: cross-comparison of 2 clusters of basins285

To better understand the extent to which including hydrologically similar basins in the training dataset can benefit model

performance, we consider an extreme case in which basins are grouped into 2 clusters, which are referred to as C0 and C1.

The choice of 2 clusters is based on the maximum silhouette score, which is a commonly used measure of cluster cohesion

(Rousseeuw, 1987). An important note on the result of the maximum silhouette score is that the result depends on the use of

constrained K-means clustering, which uses a minimum cluster size of 64. A lower minimum cluster size tends to increase290

the optimum number of clusters, details are provided in the supplementary information. Another reason for using two clusters
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is that it simplifies the analysis. For example, we compare the effects of similar, and dissimilar clusters; in contrast, a greater

number of clusters would require a larger number of training configuration at varying degrees of hydrological similarity

Fig. 6 shows the spatial distribution of the cluster labels across Canada. C0 basins tend to be located at low elevations, along

coastlines and east of the Rocky Mountain range. In contrast, the C1 basins are mainly confined to higher elevations in the295

Rocky Mountains. Mean basin attributes for each cluster are provided in Table S2 in the supplementary information.

The five most important features, identified by applying an RF to unsupervised clustering outcome, include elevation, slope,

and landcovers, are shown in Fig. 7. The relevant features identified here by unsupervised clustering are consistent with the

relevant descriptors deemed significant for determining hydrological similarity in the model-based method referenced in (Oudin

et al., 2010).300

Figure 6. Clustering (K=2) result for basins across Canada. For each cluster, 32 square markers indicate basins selected for the baseline and
evaluation sets in the two-cluster experiments. World Street Map basemap provided by ESRI.

First, for each cluster, a model is trained to a set of 32 basins from that cluster. To measure the value of adding hydrologically

similar basins, 32 additional basins are added to the baseline training dataset. Finally, to measure the effects of dissimilar basins,

32 dissimilar basins are instead added to the baseline training set. Performance metrics are only calculated for the baseline set

of 32 basins. The above is repeated for each cluster.

Figs. 8 and 9 show the performance of the models evaluated on C0 and C1 basins, respectively. In C0 basins, more similar305

basins produce a notable improvement in performance across all lead times. Adding dissimilar basins instead produces even

greater improvements, most notably, according to the PI. The same trends are seen with the C1 forecasts, with an even greater

difference between the scores of the ‘+ similar’ and ‘+ dissimilar’ training sets.

In C0 basins, adding more similar, or dissimilar basins both improve the performance, with dissimilar basins producing

larger improvements across all lead times and both metrics. A similar result is observed with the C1 basins, with the addition310

of dissimilar basins causing comparatively greater improvements in performance.

In experiment 2b the configurations from 2a are repeated, but incorporating CUSQ, which is introduced in Sec. 3.1. Models

from 2a and 2b are compared in Fig. 10 for C0 (a) and C1 (b) evaluation sets. Consistent with the results from experiment 1a

in Sec. 3.1, CUSQ is found to have very little impact on model test performance. This result indicates that for fixed training
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Figure 7. Scatterplot matrix illustrating the five most important features for clustering, as determined using the RF surrogate model. Markers
are colourised by cluster and kernel smoothed histograms are shown along the diagonal.

dataset size, data from outside the region of interest is much more useful to the training procedure than redundant data within315

the region of interest, identifiable using the clustering procedure.

An interesting result of the cross-comparison in Fig. 10 is that the spatial generalisability between clusters is asymmetric.

The models trained to C1 basins perform reasonably well on C0 basins. For example, the model trained to 32 C1 basins

performs reasonably well on 32 C0 basins, despite not seeing any C0 basins during training (see Fig. 10(b). However, the

opposite is not true; models trained to C0 basins perform very poorly on C1 basins, and their performance is beyond the left320

x-limit in Fig. 10(d). This result suggests that there may be an intersection of common hydrological processes between the 2

clusters, but there are processes present in C1 basins that are not present in C0 basins, such as slow response snowmelt driven

runoff, characteristic of basins at high elevations. Since these unique conditions do not exist in the C0 training data, the models

perform very poorly when evaluated on the C1 basins.

Collectively, these results reveal that the addition of training basins with distinctive hydrological characteristics is more325

useful in terms of improving model performance when compared to the addition of basins with similar characteristics. This

outcome might be counter-intuitive, since one could expect that training to additional basins that are most similar to the test

set would be the most useful. This result also highlights the danger of training models to a hydrologically similar basin sets,

which is a common approach in literature (Kratzert et al., 2024; Hashemi et al., 2022).

One explanation for this result is that the input feature set is missing key explanatory variables. Two basins could have330

similar input vectors but different corresponding streamflow values. This difference may be explained by processes that are

not captured within the input features. For example, two basins may appear to be hydrologically similar based on the available
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Figure 8. CDFs for models evaluated on C0 basins according to NSE (top row) PI (bottom row). Each row compares models trained to three
different training datasets: a baseline that includes 32 basins in the respective cluster, the baseline plus 32 basins in the same cluster, and the
baseline plus 32 basins in the other cluster. Subplots (a), (b), (c), and (d), (e), (f) correspond to forecasts of 1, 2, and 3 days respectively.

basin attributes, may have a different rainfall-runoff relationship, due to factors not included in the basin attributes, such as

surficial geology, or the presence of hydraulic structures such as dams. While the LSTM should be able to distinguish between

these two basins using the one-hot encoded basin labels, incomplete explanatory variables may inhibit the ability of models to335

transfer learned behaviour between basins.

Another explanation is that hydrologically similar basins contain a high degree of overlapping input-output patterns, reducing

the amount of new information that can benefit predictions in the region of interest, in contrast to dissimilar basins. Information

from dissimilar basins could be useful from a hydrological perspective, or simply provide a regularisation effect to the LSTM.

Adding basins with distinct hydrological properties from some region of interest might occupy more neural pathways during340

model training compared to basins that have similar properties, which could mitigate overfitting to the region of interest.

However, this explanation is not supported by the fact that constraining the number of cells in the network did not produce

comparable regularisation.

A final explanation is that while similar basins provide examples of similar hydrological behaviour, dissimilar basins provide

examples of what not to predict. A simple analogy from image classification, is that a model trained to classify photos of dogs345

might benefit more from being trained to some photos of cats, than to be trained to more photos of dogs.
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Figure 9. CDFs for models evaluated on C1 basins according to NSE (top row) PI (bottom row). Each row compares models trained to three
different training datasets: a baseline that includes 32 basins in the respective cluster, the baseline plus 32 basins in the same cluster, and the
baseline plus 32 basins in the other cluster. Subplots (a), (b), (c), and (d), (e), (f) correspond to forecasts of 1, 2, and 3 days respectively.

Lastly, to better understand the effect that additions of similar and dissimilar basins have on model performance, we consider

small, incremental additions. First, we begin with a model trained to 4 basins in a given cluster. Next, we consider two additions

to the training dataset: 4 C0 basins, and 4 C1 basins. The addition that produces the best performance is retained, and the process

is repeated. The models are retrained from scratch for each modification to the training dataset. The outcome is shown in Fig.350

11 for models evaluated on 4 C0 basins (a) and 4 C1 basins (b). In both cases, the models benefit from the addition of 4 basins

that belong to the same cluster, however, afterwards there are no clear preference in terms of which basin clusters produce the

best improvements. Despite some incremental additions hampering model performance, the performance on each evaluation

improves across the larger training dataset, but the improvements decay exponentially, which is consistent with other studies

that have looked at model performance across increasing training data (Kratzert et al., 2024; Gauch et al., 2021). In Fig. 11(a),355

adding 4 similar basins to the 8 basin training dataset produces a large loss in performance, which highlights the lack of

robustness against of models trained to very small basin sets. Between C0 and C1 evaluations, C0 basins are more sensitive

to new training data, and are comparatively more likely than C1 basins to exhibit worse performance after the addition of new

training basins.

The experimental results detailed above all assert the importance of hydrologically diverse, information rich training datasets.360

This is of particular importance in small regions of interest, where far away, dissimilar basins may be seen as not relevant to
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Figure 10. Boxplots showing the NSE and PI of models evaluated on 32 C0 basins (a), (b), and 32 C1 basins (c), (d), respectively, for a lead
time of 3 days. The baseline model, which is trained uniquely using the evaluation basins, is indicated in bold. Blue, red, and green colours
indicate models trained on C0, C1, and both types of basins.

Figure 11. Model performance (PI) across increasing numbers of training basins for models evaluated on 4 C0 basins (a) and 4 C1 basins
(b). Pie chart markers illustrate the proportion of C0 and C1 basins used in each training dataset. The coloured dashes along the top of each
subplot indicate the which cluster produced the better addition to the training dataset.
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the training task. This study presents many opportunities for future work on curating datasets for hydrological models. While

our study uses a simple clustering approach to quantify hydrological diversity, more sophisticated approaches, such as one

based on mutual information, may further improve the results. Additionally, relatively little work exists on transferring models

between different hydrological regions - which can potentially provide an improved starting point for model training, leading365

to better performance and more reliable FEWS.

4 Conclusions

The selection of training data is amongst the most important factors contributing to the performance of streamflow forecasting

models. Our study showed that the performance of flow forecasting models relies on diverse training data, using a novel

use of cluster-based resampling to identify and maximise temporal and spatial hydrological diversity within training datasets.370

In the first set of experiments, cluster-based undersampling was used to eliminate redundant temporal data from training

datasets, drastically reducing the computational demand of model training. The next set of experiments showed how, given

some region of interest, data from hydrologically dissimilar basins can be much more useful than data from similar basins.

This result is counter to the intuitive approach to curating training basins for training, which is to train models to a group of

hydrologically similar, or proximal basins. This outcome also highlights the need for large and hydrologically diverse training375

datasets. The latter can be combined with cluster-based temporal undersampling to generate diverse training sets that produce

more performative models, for a fixed number of training observations, compared to models trained without cluster-based

undersampling. Finally, temporal and spatial undersampling routines are combined to demonstrate how, for a fixed number of

training samples, spatial hydrological diversity is much more beneficial than temporal diversity. These findings are critical to

improving the reliability and accuracy of flood forecasting models, and minimising the effects of flooding.380

Data availability. The data used in this research is described in the publication by Arsenault et al. (2020) and availble for download through

the Center for Open Science. Basemaps for several figures were provided by ESRI through the Contextily Python module.
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