
Reviewers’ comments in blue. Our responses in black. Yellow highlighting emphasises 
revision undertaken. 

Reviewer 2: 

This study applies ‘the Joint UK Land Environment Simulator (JULES)’ to simulate and project 
runoff in China at a high resolution; and further analyze the flood and drought risks. The 
authors claim that 1) annual runoff in China is projected to increase significantly, notably in 
eastern and southern basins; 2) northern China is expected to have wetter conditions in the 
near future and drier summers in the far future; 3) southern China is projected to face greater 
flood risks; 4) central Yangtze River basin can face intensified drought risk. Overall, the idea of 
using the JULES to project runoff in China is kind of good; However, the whole story is really 
boring and unclear, and there are some technique problems exist. Overall, I consider this 
manuscript cannot be published at such a good journal at this stage. 

Thank you for taking your time to review our manuscript. 

Major concerns: 

1. In abstract, I cannot see any logic in reporting the results but only redundancy. The authors 
only say e.g., annual runoff increase; southern China runoff increase…; all of them is only 
qualitative description without a single robust number to show the results; besides, no 
mechanisms at all to reveal why the runoff is projected to change like that. Because of 
increasing precipitation? Evapotranspiration? This makes the whole story really boring! And I 
cannot even see a clear storyline to show how the spatial patterns of runoff changes in China! 

Thanks for your comments. The abstract mainly presents the key messages from the regions 
showing significant shift. Granular details are presented in the paper. We plan to revise the 
abstract to include a more structured presentation of our findings and important numbers as 
following: Projecting and understanding future hydrological changes in China are critical for 
effective water resource management and adaptation planning in response to climate 
variability. However, few studies have investigated runoff variability, as well as flood and 
drought risks under climate change scenarios for the entire region of China at high resolution. 
In this study, we use the Joint UK Land Environment Simulator (JULES), specifically tailored for 
simulating hydrological processes in China at a 0.25-degree resolution. The model is driven by 
downscaled and bias-corrected data from Global Climate Models (GCMs), using the bias-
correction and spatial disaggregation (BCSD) method, to project future hydrological processes 
under medium (SSP245) and high (SSP585) emission scenarios. The results indicate a 
significant increase in annual runoff across China under the high emission scenario, with a 
projected increase of 7.30 mm per decade, particularly in the eastern and southern basins. 
Regional patterns emerge, with wetter summers and drier winters expected in southern China, 
while northern China is projected to experience drier summers in the far future. Furthermore, 
shifts from drier to wetter conditions are projected in the southeast and southwest areas, 
while the middle Yangtze River basin is expected to experience the opposite trend. Flood risks 
are projected to rise in spring, summer, and autumn, particularly in southern China, while 
drought risks are expected to intensify in the central Yangtze River basin, especially in the far 
future. These findings highlight the influence of different emission scenarios on flood and 



drought risks, emphasizing the need for proactive measures to enhance climate adaptation in 
the future. 

The main causes of runoff change include natural factors such as climate change, and 
anthropogenic factors such as land use change, water conservancy projects (Zhai and Tao, 
2017). Our purpose is to investigate the runoff change under climate change, without 
consideration of anthropogenic factors. Therefore, the runoff changes discussed in this 
research are primarily driven by natural variations in the water cycle. We have already 
included the discussion about the dominant driving forces for runoff changes in Section 4.3, 
Lines 348-363.  

Zhai, R., & Tao, F. (2017). Contributions of climate change and human activities to runoff 
change in seven typical catchments across China. Science of The Total Environment, 605–
606, 219–229. https://doi.org/10.1016/j.scitotenv.2017.06.210 

2. Line 116: a reference period from 1959-2014 were chosen to generate two CDFs. This 
reference period contains 65 years in total and involves significant warming and is not 
stationary!! How can the authors choose such a long time period as a reference period? The 
typical time period only involves 20-30 years to ensure the stationarity of the data! 

Thank you for your question regarding the length of the reference period. We have followed 
a similar approach to the bias correction and spatial disaggregation (BCSD) method used in 
the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6, Thrasher 
et al., 2022) They used reference period of 1960-2014 as the basis for the cumulative 
distribution function (CDF). 

A longer reference period can provide a more robust dataset by encompassing a wider range 
of climate variability and extreme events, which is beneficial for statistical modelling. In our 
study, we have chosen a reference period from 1959 to 2014, ensuring it is long enough to 
capture significant climate trends while maintaining relevance to current and future climate 
conditions. 

Thrasher, B., Wang, W., Michaelis, A. et al. NASA Global Daily Downscaled Projections, CMIP6. 
Sci Data 9, 262 (2022). https://doi.org/10.1038/s41597-022-01393-4 

3. The authors only use six CMIP6 GCMs to downscale and simulate and project river runoff. I 
fully cannot understand why they need to downscale themselves? The ISIMIP 3b already 
provide high-resolution downscale climate output 
(https://www.isimip.org/newsletter/isimip3a3b-protocol-published/), they also use ERA5 as 
the reference dataset. And I consider their bias correction methodology is even better than 
the authors did. If the authors use more than 15 models to specifically consider the 
uncertainty and associated source, then it is fine; But the authors only use 6 models while 
ISIMIP3b provide 5 model outputs with really good bias correction, then why the authors 
perform bias correction themselves? If they do, I need to see the superiority of their bias 
correction results comparing to the ISIMIP 3b. (The ISIMIP 3b is a publicly accessible dataset 
and without comparison, I would like to trust them more comparing the authors did). 

Thank you for your questions. We appreciate the opportunity to clarify our methodology and 

https://doi.org/10.1016/j.scitotenv.2017.06.210
https://doi.org/10.1038/s41597-022-01393-4


the rationale behind our choices. 

Selection of CMIP6 GCMs: 

We chose six CMIP6 GCMs based on their performance in representing regional climate 
variability and their availability in high temporal resolution suitable for our hydrological model. 
While using more GCMs can indeed provide a broader range of uncertainties, we need to 
make a trade-off between the number of GCMs and the computational resources required. 
The ideal situation is to select a few models that can represent the majority of the GCMs and 
have a small bias from the observations. 

Our first step in GCM selection was to identify six GCMs based on previous studies that 
demonstrated their good performance for precipitation and temperature in China (Yang et al., 
2021; Lu et al., 2022; Jia et al., 2023). Next, we downscaled precipitation from these six GCMs 
and compared the bias with ERA5 datasets. Therefore, the GCMs we selected have biases that 
are as small as possible when compared to the observed data. These steps have been already 
included in the manuscript (Section 2.2, Lines 128-137). 

We will revise our manuscript to include evidence that the GCMs we selected can represent 
the majority of the GCMs. We downloaded 19 models (including ACCESS-CM2, ACCESS-ESM1-
5, CanESM5, CMCC-ESM2, CNRM-ESM2-1, EC-Earth3, EC-Earth3-Veg, FGOALS-g3, GFDL-ESM4, 
INM-CM4-8, INM-CM5-0, MIROC-ES2L, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, 
NorESM2-LM, NorESM2-MM, TaiESM1, and UKESM1-0-LL) according to the list in NEX-GDDP-
CMIP6 (Thrasher et al., 2022) and calculated the daily average precipitation and temperature 
from 1959 to 2014 of all GCM ensemble means and selected GCM ensemble means. The 
selected GCMs mean temperature is 6.07 °C while the mean for all GCMs is 6.03 °C. The 
selected GCMs mean precipitation is 2.08 mm/day while the mean for all GCMs is 2.45 
mm/day. Therefore, the GCMs we selected are representative of the performance of most 
GCMs. 

To present this evidence, we plan to include the following text in Section 2.2: To ensure the 
selected GCMs represent the performance of most GCMs, daily average precipitation and 
temperature from 1959 to 2014 for the selected GCM ensemble means were compared with 
the ensemble means of 19 GCMs. These GCMs include ACCESS-CM2, ACCESS-ESM1-5, 
CanESM5, CMCC-ESM2, CNRM-ESM2-1, EC-Earth3, EC-Earth3-Veg, FGOALS-g3, GFDL-ESM4, 
INM-CM4-8, INM-CM5-0, MIROC-ES2L, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, 
NorESM2-LM, NorESM2-MM, TaiESM1, and UKESM1-0-LL. And we plan to include the 
following text in Section 3.2: The selected GCMs mean temperature is 6.07 °C while the mean 
for all 19 GCMs is 6.03 °C. The selected GCMs mean precipitation is 2.08 mm/day while the 
mean for all 19 GCMs is 2.45 mm/day. Therefore, the GCMs we selected are representative of 
the performance of most GCMs. 

Why Downscale by Ourselves: 

The decision to perform our own downscaling was driven by the specific needs of our study 
region and objectives. Although ISIMIP3b provides downscaled climate outputs, their 
resolution (0.5°) does not meet our requirements. The resolution provided by ISIMIP3b, while 
excellent for broader applications, does not capture the finer-scale variability required for our 



hydrological modelling. Additionally, ISIMIP3b does not include the SSP245 scenario. Our 
study aims to analyse runoff changes at a finer resolution (0.25°) under medium (SSP245) and 
high (SSP585) emission scenarios, which necessitated the use of our own downscaling 
approach. 

NEX-GDDP-CMIP6 (Thrasher et al., 2022) provides driving data at 0.25° except for surface 
pressure. They downscaled CMIP6 based on the Global Meteorological Forcing Dataset 
(GMFD). For consistency of input data, historical modelling should use GMFD datasets if we 
want to use NEX-GDDP-CMIP6 data. However, we found that using GMFD datasets for 
calibration and validation of the JULES model did not perform as well as using ERA5 in China. 
Therefore, we decided to downscale ourselves based on ERA5 datasets. 

The bias correction methodology we employed is based on the Bias Correction and Spatial 
Disaggregation (BCSD) method, which is a well-established approach used in various studies 
(Wood et al., 2004; Thrasher et al., 2022). This method has been shown to effectively reduce 
biases in climate projections. While we acknowledge the robustness of the ISIMIP3b bias 
correction, our methodology is specifically tailored to our regional study area and includes a 
detailed comparison with ERA5 data to ensure accuracy. The performance of the downscaled 
GCMs compared with ERA5 has already been included in Section 3.2, Lines 167-199 in the 
manuscript and Fig. S1, S2 and S3 in the supplementary. 

Thrasher, B., Wang, W., Michaelis, A. et al. NASA Global Daily Downscaled Projections, CMIP6. 
Sci Data 9, 262 (2022). https://doi.org/10.1038/s41597-022-01393-4 

Jia, Q., Jia, H., Li, Y., & Yin, D. (2023). Applicability of CMIP5 and CMIP6 Models in China: 
Reproducibility of Historical Simulation and Uncertainty of Future Projection. Journal of 
Climate, 36(17), 5809–5824. https://doi.org/10.1175/JCLI-D-22-0375.1 

Lu, K., Arshad, M., Ma, X., Ullah, I., Wang, J., & Shao, W. (2022). Evaluating observed and future 
spatiotemporal changes in precipitation and temperature across China based on CMIP6-
GCMs. International Journal of Climatology, 42(15), 7703–7729. 
https://doi.org/10.1002/joc.7673 

Wood, A. W., Leung, L. R., Sridhar, V., & Lettenmaier, D. P. (2004). Hydrologic Implications of 
Dynamical and Statistical Approaches to Downscaling Climate Model Outputs. Climatic 
Change, 62(1–3), 189–216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e 

Yang, X., Zhou, B., Xu, Y., & Han, Z. (2021). CMIP6 Evaluation and Projection of Temperature 
and Precipitation over China. Advances in Atmospheric Sciences, 38(5), 817–830. 
https://doi.org/10.1007/s00376-021-0351-4 

4. In Lines 157-159: there is a sharp decrease with regard to the hydrological model 
performance. Is it because of over-fitting? Or what reasons cause this? Why the authors do-
not use cross-validation (e.g., Arsenault et al., 2018) to calibrate the hydrological models? 

Arsenault, R., Brissette, F., & Martel, J. L. (2018). The hazards of split-sample validation in 
hydrological model calibration. Journal of hydrology, 566, 346-362. 

Thank you for pointing this out. We apologize for any confusion caused by our wording. In 

https://doi.org/10.1038/s41597-022-01393-4
https://doi.org/10.1175/JCLI-D-22-0375.1
https://doi.org/10.1002/joc.7673
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e
https://doi.org/10.1007/s00376-021-0351-4


Lines 157-159, we stated: "The r and NSE values are above 0.83 and 0.64, respectively, for 
calibrations, and greater than 0.78 and 0.58, respectively, for validation, indicating that the 
simulation outcomes are acceptable." The performance metrics (r and NSE) during the 
calibration and validation periods vary by station. At some stations, the r and NSE values are 
higher during calibration than validation, while at other stations, the opposite is true. 
Therefore, there is no sharp decrease in hydrological model performance. We only described 
the minimum values, which might have been misleading. We plan to revise this sentence to 
clarify: The r and NSE values in monthly calibrations and validations are greater than 0.78 and 
0.58, respectively, indicating that the simulation outcomes are acceptable. 

Regarding cross-validation, it is widely used in machine learning due to its ability to improve 
model performance and prevent over-fitting through multiple training and verification 
iterations. With advances in computing resources, the training speed of machine learning 
models has increased significantly, making it feasible to perform these multiple iterations in a 
reasonable time. 

In your mentioned paper, Arsenault et al. (2018) proposed a cross-validation method for 
hydrological models, specifically using the GR4J-CN (a 6-parameter lumped model) and 
HMETS (a lumped-conceptual model). These lumped hydrological models have simpler 
structures and typically require less computationally intensive driving data, such as rainfall 
and temperature. Therefore, similar to machine learning models, these lumped hydrological 
models can be calibrated and validated multiple times in a reasonable timeframe. 

However, for more complex and longer-running models like the land surface model (JULES) 
we used, cross-validation is not practical due to their complex processes and significant 
computational resource requirements. As Arsenault et al. (2018) noted, "There is a trend in 
hydrological science toward increasingly more complex process-based and/or distributed 
hydrological models with some models now implementing land surface schemes with complex 
formulations such as the Richards nonlinear differential equations of water movement in the 
non-saturated portion of the soil column. In such models, calibration over the full dataset 
length would not be possible without access to massive parallel computing facility." 

Therefore, while cross-validation is a valuable tool in many contexts, its application in highly 
complex and resource-intensive models like JULES is limited by current computational 
constraints. 

5. In Lines 160-162: ‘Most stations with good performance are large rivers, indicating that the 
model simulates better in large rivers. This is really unreasonable! Large rivers involve 
reservoirs and hydraulic engineering, land cover and land type changes, which can evidently 
affect runoff regimes and is more difficult to simulate, irrespective of model resolution. This 
is why most previous studies focus on catchment scale and especially small catchments. The 
JULES model also does not consider land use and land cover change, nor the impacts from 
reservoirs, how can the performance be better in large catchments than small ones? 

Thank you for your question. Our comparison is the relative comparison between large and 
small rivers to highlight the differences in model performance across different scales. Our 
simulation is on a resolution of 0.25°, which means that within a 0.25° x 0.25° grid, we use 



simulated data from the point closest to the station among the four corners of the grid to 
compare with the station data. For large rivers, the selected point is very likely to be within 
the same river as the station, whereas for small rivers, sometimes the conditions at the point 
can be different from the station's location. 

We appreciate that an inclusion of made features including reservoirs and large rivers 
representation can further improve predictions. We have already included it in Lines 368-372. 

We plan to enhance Section 4.4 as following: Additionally, this study did not consider the 
influence of hydraulic engineering on runoff, which could potentially alter the rainfall-runoff 
response. Our study primarily focuses on understanding the impacts of climate change on 
hydrological processes. Investigating how hydraulic structures affect such processes is beyond 
our scope. Consequently, we did not incorporate the effects of hydraulic engineering 
structures into our model. Future research could involve integrating data on dams, reservoirs, 
and other hydraulic structures into hydrological models to assess their effects on runoff 
dynamics. This approach could investigate how human activities impact hydrological 
processes and contribute to flood vulnerability. 

6. Most importantly! All calibration and validation of runoff are based on a monthly scale, how 
can the authors then use the calibrated models to simulate daily runoff (e.g., Figs. 7-8)?! I 
cannot trust the results in this case. If the authors need to analyze the daily runoff variations, 
they need to train and validate the models at the daily scale. 

Thank you for your comments. While our initial calibration used monthly data due to data 
availability, we subsequently validated our model using daily data at four stations. This 
allowed us to assess model performance at a finer temporal scale. The results indicated 
satisfactory performance (NSE > 0.53). We plan to add the following figure and text in Section 
3.1 and supplement: The r and NSE values of daily validation are greater than 0.81 and 0.53, 
respectively, indicating that the simulation effect on the daily scale is also acceptable (Fig. S1). 

 

Figure S1. Comparison of observed and simulated discharge in daily validation 

7. In 278-285: again, I consider the authors really donot know basic concepts of hydrology. 1) 
if using monthly data to calibrate the hydrological model, then the calibrated models cannot 
be used to simulate daily runoff! Nor can they be used to simulate and project floods which 
are measured at the daily scale! 2) the low flows, e.g., 10th percentile runoff, cannot be 
directly used to indicate droughts! The drought episode is typically defined as the abnormally 
runoff deficits persist for a long time! Not the change of low flow! 



Thanks for. For daily validation, as our response to your last comment, we will add figures and 
detailed descriptions in Section 3.1 and supplement. 

Thank you for your comments regarding drought. Our main purpose is to evaluate potential 
drought risks rather than to identify specific drought events. Therefore, our focus is primarily 
on changes in low flows, rather than on the duration of these low flow conditions. 

 

Specific concerns: 

1. Figs 2-3, please change the unit of m3/s to mm by dividing the discharge area. 

Thank you. There seems to be a misunderstanding regarding the standard units used in 
hydrology. Discharge is typically expressed in cubic meters per second (m³/s) rather than 
millimetres (mm). This is a standard practice in the field. Refsgaard (1997) provides a 
comprehensive illustration of the steps involved in distributed hydrological modelling and 
correctly uses m³/s for calibration and validation. I recommend reviewing this article to gain a 
clearer understanding of these standard practices. 

Refsgaard, J. C. (1997). Parameterisation, calibration and validation of distributed hydrological 
models. Journal of Hydrology, 198(1), 69–97. https://doi.org/10.1016/S0022-
1694(96)03329-X 

2. In all figures, the labels and characters are really too small. 

Thank you. We will address these in the revised version. 
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