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Abstract. Heavy-tailed flood distributions depict the higher occurrence probability of extreme floods. Understanding
the spatial distribution of heavy tail floods is essential for effective risk assessment. Conventional methods often
encounter data limitations, leading to uncertainty across regions. To address this challenge, we utilize hydrograph
recession exponents derived from common streamflow dynamics, which have shown to be a robust indicator of flood
tail propensity across analyses with varying data lengths. Analyzing extensive datasets covering the Atlantic Europe,
Northern Europe, and the continental United States, we uncover distinct patterns: prevalent heavy tails in the Atlantic
Europe, diverse behavior in the continental United States, and predominantly nonheavy tails in Northern Europe. The
regional tail behavior has been observed in relation to the interplay between terrain and meteorological characteristics,
and we further conducted quantitative analyses to assess the influence of hydroclimatic conditions using Képpen
classifications. Notably, temporal variations in catchment storage are a crucial mechanism driving highly nonlinear
catchment responses that favor heavy-tailed floods, often intensified by concurrent dry periods and high temperatures.
Furthermore, this mechanism is influenced by various flood generation processes, which can be shaped by both
hydroclimatic seasonality and catchment scale. These insights deepen our understanding of the interplay between
climate, physiographical settings, and flood behavior, while highlighting the utility of hydrograph recession exponents
in flood hazard assessment.
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1 Introduction

Floods are devastating natural hazards that pose significant risks to infrastructure, property, and human life
(McDermott, 2022; Bevere and Remondi, 2022). The unprecedented magnitude of extreme floods often characterizes
these hazards, which is better depicted by the heavy-tailed behavior exhibited in flood frequency distributions (Smith
et al., 2018; Merz et al., 2021; Merz et al., 2022). The concept of heavy-tailed behavior finds broad application in
various fields to describe the likelihood of extreme event occurrences (Katz et al., 2002; Kondor et al., 2014; Malamud,
2004; Sartori and Schiavo, 2015; Wang et al., 2022). In particular, it is widely recognized as a prevalent feature in
hydrologic extremes (Papalexiou and Koutsoyiannis, 2013; Smith et al., 2018). While acknowledging various
statistical definitions of heavy-tailed distributions (e.g., Gumbel, 1958; Hosking, 1990; Werner and Upper, 2002; El
Adlouni et al., 2008; Merz et al., 2022; Nair et al., 2022), we have identified a theoretical control on the occurrence
of power-law-tailed flows (Wang et al., 2023), which is one type of heavy-tailed distribution and indicates a substantial
probability of extreme floods.

To organize current knowledge on the drivers and underlying mechanisms of heavy-tailed flood distributions, Merz
et al. (2022) conducted an extensive review of current studies and summarized their findings into nine hypotheses.
Notably, they pointed out that while one might intuitively assume that heavy-tailed flood distributions are inherited
from heavy-tailed rainfall distributions, the evidence does not always support this hypothesis. For instance, a study by
McCuen and Smith (2008) revealed that cases with skewed rainfall distributions, implying longer and heavier tails,
do not necessarily translate into skewed flood distributions. This finding is supported by similar results from Sharma
et al. (2018), who discovered that although there has been a significant increase in rainfall extremes, a corresponding
increase in flood extremes is not observed. Indeed, Gaume (2006) pointed out that the asymptotic behavior of flood
distributions is primarily controlled by rainfall distributions only for situations with very large return periods.

In the review of Merz et al. (2022), it becomes evident that multiple hydro-physiographic characteristics interact within
a complex system, collectively shaping flood tail behavior. Specifically, the interplay between characteristic flood
generation (Bernardara et al., 2008; Thorarinsdottir et al., 2018), the presence of mixed flood types (Morrison and
Smith, 2002; Villarini and Smith, 2010), the tail heaviness of rainfall distributions (Gaume, 2006), catchment aridity
(Molnar et al., 2006; Merz and Bloschl, 2009; Guo et al., 2014), and catchment area (Pallard et al., 2009; Villarini and
Smith, 2010) are proposed as contributing factors to the nonlinearity of catchment responses. This nonlinearity is
increasingly recognized as a plausible driver of heavy-tailed flood behavior (Fiorentino et al., 2007; Struthers and
Sivapalan, 2007; Gioia et al., 2008; Rogger et al., 2012; Basso et al., 2015; Merz et al., 2022; Basso et al., 2023; Wang
etal., 2023).

The nonlinearity of catchment hydrological responses manifests in the hydrograph recession behavior, commonly
described by a power law function (Brutsaert and Nieber, 1977; Biswal and Marani, 2010; Tashie et al., 2020a):

dq a
a8

Here, ¢ represents streamflow, ¢ denotes time, and B and a are empirical constants referred to as the recession
coefficient and exponent, respectively. Particularly, the recession exponent a is used to express linear to nonlinear
responses. Higher a values indicate streamflow behavior with quicker rise for a peak and faster decay during high
flow, while slower decay and more stability during low flow (Tashie et al., 2019). Given that a higher recession
exponent reflects significant nonlinearity in catchment responses, it has been proposed as an indicator of the
emergence of heavy-tailed flood distributions (Basso et al., 2015; Wang et al., 2023).

In our prior research (Wang et al., 2023), we introduced hydrograph recession exponents as a newly proposed indicator
for heavy-tailed flood behavior. This indicator allows for inference of heavy-tailed flood distributions based on
physical mechanisms (i.e., typical hydrological processes within common streamflow dynamics). Importantly, it has
shown its capacity to provide robust estimates for both short and long data records. This is mainly because it infers
heavy-tailed behavior from common discharge dynamics, which allows for a more effective use of information
contained in the data. For instance, when working with a 10-year data series, only 10 samples are available for annual
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maxima analysis, while a much larger number of of recession events (an average of 400 in Wang et al., 2023) can
possibly be used for estimating hydrograph recession exponents and inferring from this the flood tail behavior.

A reliable estimation of tail heaviness is challenging due to data scarcity. Wietzke et al. (2020) employed bootstrap
experiments to evaluate the sensitivity to data availability of four frequently used indices (i.e., shape parameter of the
generalized extreme value (GEV) distribution, upper tail ratio, Gini index, and obesity index). They highlighted that
estimates are often unreliable, particularly for cases with heavier tails. Studies based on goodness-of-fit tests for
Generalized Extreme Value (GEV) distributions suggested that 30 to 40 samples are necessary for reliable estimation
(Cai and Hames, 2010; Németh et al., 2020). Additional efforts to improve the reliability of tail heaviness estimates
include the use of L-moments (Hosking et al., 1985), which ensure better upper tail estimation of GEV compared to
maximum likelihood, and L-moment ratio diagrams (Vogel and Fennessey, 1993), which improve estimation in highly
skewed samples. Besides advancements in tail heaviness indices and parameter estimation methods, the reduced
demands on data length for estimating tail behavior through the hydrograph recession exponent present an alternative
solution to this issue. Particularly, the consistent estimates of flood tail heaviness across various data lengths based on
hydrograph recession exponents suggest its potential value as a tool for analyzing regions with diverse gauge data
records.

Our aim in this following work is to construct a geography of flood tail behavior based on the inferred heavy-tailed
flood ‘hotspots’, recognized by this indicator, thus ensuring comparability of analyses across different data lengths.
Nonetheless, we acknowledge that other indicators could also be used; however, we are specifically interested in the
recession exponent because it is a novel index that allows us to infer the propensity of rivers to experience extreme
floods. Such an index enables us to identify potential risks even in the absence of recorded extreme floods, which is
often not possible with other indicators. Its stability provides additional value to mitigate the bias often introduced by
the variance in dataset lengths across cases. Given that longer and comparable record lengths are desirable for
analyzing heavy-tailed distributions using conventional methods (Cunderlik and Burn, 2002; Papalexiou and
Koutsoyiannis, 2013; Zaerpour et al., 2024), and considering the global variation in available hydrological data lengths
(Lins, 2008), this work contributes to filling the research gap by providing a reliable estimation of heavy-tailed flood
behavior across a wide range of geography (Merz et al., 2022; Zaerpour et al., 2024). Specifically, our objectives are
twofold: (1) to validate the effectiveness of recession exponents in identifying heavy-tailed flood behavior through an
extensive analysis, and (2) to investigate the underlying factors related to diverse physiographical settings, taking into
account spatial patterns, seasonality, and catchment scale characteristics, and how they influence catchment
nonlinearity, leading to the emergence of heavy-tailed floods.

We organize the structure of this paper as follows: Section 2 describes the study areas and the hydrological data based
on an extensive dataset composed of four countries, Section 3 describes the methods of estimation and validation of
hydrograph recession exponents in identifying heavy-tailed flood behavior in the dataset, the framework of the
analyses of spatial patterns of inferred heavy-tailed flood behavior, the framework of the analyses of seasonal
dynamics of inferred heavy-tailed flood behavior, and statistical tests. In Section 4, we present the validation results
of our heavy-tailed flood behavior index, along with analyses of the relationships between flood tail behavior and
geographical spatial characteristics, seasonal patterns, and catchment scales in these comparable countries. Physical
interpretations of the results and remarks from the literature are discussed in Section 5. The main conclusions are
summarized in Section 6.

2 Study areas and data

We conducted analyses based on datasets covering three main regions: Atlantic Europe, Northern Europe, and the
continental United States. Our dataset for Atlantic Europe includes river gauges of catchments in Germany and the
United Kingdom. The former exhibits a larger variation in elevation, ranging from sea level to 2,962 meters, while
the latter is generally flatter, with elevations ranging from sea level to 1,345 meters. Northern Europe is characterized
by strong snow dynamics in flood generation processes, setting it apart from the other regions in this study. The
continental United States represents the most diverse region in terms of physiographical settings, allowing us to
validate and consolidate the transferability of our findings.We aim to select catchments with low anthropogenic
influences and long continuous records. Specifically, the Model Parameter Estimation Experiment dataset (MOPEX,
Duan et al., 2006) is used for the continental United States, which claims an exclusion of strong effects from human
activities. The Global Runoff Data Centre (GRDC, Bundesanstalt fiir Gewidsserkunde, 2022) provided runoff data
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with continuous records spanning more than 50 years for Norway and the United Kingdom, contributing to the dataset
for Northern Europe and part of the Atlantic Europe. Additionally, the dataset from Germany, collected by Tarasova
et al. (2018), was utilized for another part of the Atlantic Europe. For all the datasets, we excluded catchments where
flows were reported to be disturbed by large reservoirs or control gates (Lehner et al., 2011; Wang, Walter et al., 2022),
or where visual examination revealed obvious flow disturbances. A total of 575 river gauges were selected from an
initial pool of 797 based on these criteria. We collected daily continuous streamflow records with a median recording
length of 62 years (ranging from 24 to 148 years, covering the years 1872-2021) across these regions. The
corresponding drainage areas range from 4 to 40,504 km?, with a median of 1,240 km? (refer to Table A1 for detailed
information of each region).

Our analysis was performed on a seasonal basis, considering spring (March-May), summer (June-August), autumn
(September-November), and winter (December-February) to account for the seasonality of hydrograph recessions
(Tashie et al., 2020b) and flood distributions (Durrans et al., 2003). Each analysis conducted on a specific river gauge
during a season was treated as a case study. Consistent with previous studies (e.g., Botter et al., 2007a; Botter et al.,
2010; Ceola et al., 2010; Doulatyari et al., 2015; Basso et al., 2021; Basso et al., 2023), we chose case studies in the
Atlantic Europe and the continental United States characterized by limited snowfall, which minimizes the potential
transfer of water across seasons due to strong snow accumulation and melting. Specifically, this condition is defined
as having an average daily temperature below zero degrees Celsius during precipitation events for over 50% of a
season (Basso et al., 2021). However, recognizing that recession exponents can inherently capture both linear and
nonlinear catchment responses, we intentionally included case studies in Northern Europe, which are characterized by
a dominant runoff generation process driven by snow dynamics. This deliberate inclusion provides a counter-
verification, allowing us to explore the capability of the recession exponent as a measure of flood tail behavior in
regions primarily characterized by snowmelt-driven flood generation processes. In summary, this analysis
encompasses regions dominated by both rainfall-driven and snowmelt-driven floods, providing an extensive
examination of these factors. These procedures resulted in a total of 1997 case studies, distributed as follows: 540 in
spring, 520 in summer, 543 in autumn, and 394 in winter (refer to Table A1 for detailed information of each region).

Ko&ppen climate classification and the derived potential evapotranspiration are employed to describe and categorize
the hydroclimatic characteristics of the study regions. The Képpen climate classification is sourced from the work of
Beck et al. (2018), providing high-resolution (1-km) maps that depict present-day conditions (1980-2016).
Concurrently, the derived potential evapotranspiration is obtained from the research presented by Zomer and Trabucco
(2022), offering high-resolution (1-km) maps that illustrate monthly average data (1970-2000). The latter is based on
the Food and Agriculture Organization application of the Penman-Monteith equation (FAO-56, Allen et al. 1998; Fick
and Hijmans, 2017).

3 Methods
3.1 Inferring Heavy Tails of Flood Distributions from Common Streamflow Dynamics

We adopt a framework of the Physically-based Extreme Value (PHEV) distribution of river flows, introduced by
Basso et al. (2021). This framework offers a mechanistic-stochastic characterization of both the magnitude and
probability of flows, underpinned by essential hydrological processes like precipitation, infiltration,
evapotranspiration, soil moisture, and runoff generation within river basins, as previously described in well-
established mathematical description (Laio et al., 2001; Porporato et al., 2004; Botter et al., 2007b, 2009). Specifically,
rainfall is described as a marked Poisson process with frequency /lp[T_l] and exponentially distributed depths with
average a [L]. Soil moisture increases due to rainfall infiltration and decreases due to evapotranspiration. The latter
is represented by a linear function of soil moisture between the wilting point and an upper critical value expressing
the water holding capacity of the root zone. Runoff pulses occur with frequency 4 < 4, when the soil moisture
exceeds the critical value. These pulses replenish a single catchment storage, which drains according to a nonlinear
storage-discharge relation. The related hydrograph recession is described via a power law function with exponent
a [—] and coefficient K [L1~3/T272] (Brutsaert and Nieber, 1977), which allows for mimicking the joint effect of
different flow components (Basso et al., 2015). The description of runoff generation and streamflow dynamics
provided by this framework has been successfully tested across a diverse range of hydroclimatic and physiographic
conditions through a number of studies (Arai et al., 2020; Botter et al., 2007a; Botter et al., 2010; Ceola et al., 2010;
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Doulatyari et al., 2015; Mejia et al., 2014; Miiller et al., 2014; Miiller et al., 2021; Pumo et al., 2014; Santos et al.,
2018; Schaefli et al., 2013).

Within the PHEV framework, we obtain consistent expressions for the probability distributions of various flow metrics,
including daily streamflow (Botter et al., 2009), ordinary peak flows (local flow peaks resulting from streamflow-
producing rainfall events), and floods (flow maxima within a specified timeframe) (Basso et al., 2016).

By taking the limit of these distributions, insights into the tail behavior of these theoretical flow distributions are
obtained (Basso et al., 2015; Wang et al., 2023). In particular, Wang et al. (2023) showed that the tail of the distribution
is exclusively governed by a power law function (indicating heavy tails) when the hydrograph recession exponent
exceeds two, signifying discernible nonlinearity of catchment responses. Conversely, the tail appears as nonheavy
when the recession exponent is below two, suggesting linearity of catchment responses (notice that recession
exponents are found to be above one in most river basins; Biswal and Kumar, 2014; Tashie et al., 2020b). Eq. (1)
provides the mathematical expressions for the case of floods as an example (Note that similar conclusions are drawn
for the theoretical distributions of daily streamflow and ordinary peak flows). As a result, the hydrograph recession
exponent has been proposed as a suitable indicator of heavy-tailed flood behavior, based on the analysis of common
discharge dynamics. For further detailed information, please refer to Wang et al (2023).

—0 —0 for1<a<?2
—n—
=1 .qg2—a
lim pu(a) = lim {~C - q'- (em@a ™)} (1)
q—-+o q—+coo
o
— 0 —ed =1 for a > 2

Here, q represents the discharge, py(q) denotes the mathematical expression of the probability distribution of flow
maxima (i.e., floods) in PHEV, and C is a normalization constant.

We employ an event-based analysis for estimating hydrograph recession exponents, a method deemed more robust
than cloud-based analysis (Biswal and Marani, 2010; Dralle et al., 2017; Jachens et al., 2020). Specifically, we
estimate the parameters of empirical power laws for individual hydrograph recessions through a linear regression of
the pairs of dq/dt and q in log-log scale. We use the constant time step (CTS) method to estimate the time derivatives
dq/dt (see an example in supporting information Figure S2), which has been commonly used in various studies (e.g.,
Biswal and Marani, 2010; Mutzner et al., 2013; Dralle et al., 2017; Tashie et al., 2020b; Basso et al., 2023). We
acknowledge the availability of alternative methods, such as the exponential time step (ETS), and confirm that ETS
yields results similar to CTS in this study (see supporting information Text S1 and Figure S1). The initiation of a
recession event is defined as an ordinary peak of daily discharge that surpasses the mean discharge over the entire
discharge records (Biswal and Marani, 2010; Mutzner et al., 2013). We incorporate the entire recession process in the
estimation of power law exponents (which has been shown as crucial in shaping flood frequency behavior; Guo et al.,
2014; Basso et al., 2016), meaning both the peak and the subsequent daily streamflow decay are included without
excluding any days (Dralle et al., 2017). This decision ensures that we account for the effects of both fast, mainly
associated with surface (early stage of recession) and slow, mainly associated with subsurface flows (late stage of
recession) on catchment nonlinear responses in the adopted recession analysis (Barnes, 1939; Chen and Krajewski,
2016; Mathai and Mujumdar, 2022). This procedure marks the pivotal difference between the adopted analysis and
those solely focused on the recession behavior of low flow/baseflow (Figure S3 in the supporting information provides
a schematic diagram of hydrograph recession analysis adopted in this study). To reduce noise from short events (Ye
et al., 2014) and ensure sufficient sample sizes (i.e., a sufficient number of analyzed recessions) to obtain
representative values of recession parameters (Shaw, 2016), it is common practice to set a minimum recession duration.
Following previous studies, we did not vary this duration across basins and set it equal to 5 days (Biswal and Marani
2010; Shaw and Riha, 2012; Dralle et al., 2017; Jachens et al., 2020; Tashie et al., 2020a). Finally, we determine the
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median value of estimated exponents across all identified events as the representative value to ensure robustness
(Dralle et al., 2017; Jachens et al., 2020).

3.2 Validation of Hydrograph Recession Exponents as An Index of Heavy-Tailed Flood Behavior

To validate the identification of heavy-tailed flood behavior obtained through recession exponents, we compare it to
the behavior estimated from data by fitting a power law distribution to the empirical data distribution and evaluating
the reliability of these empirical power laws.

A case study is considered to exhibit heavy-tailed behavior if the power law distribution effectively describes the tail
behavior of the data distribution. To establish whether this is happening, we employed the framework introduced by
Clauset et al. (2009). The upper tail of the discharge distribution is fitted with a power law distribution using the
method of maximum likelihood. Empirical data following a power-law distribution (if applicable) typically do so
above a certain lower bound (Clauset et al., 2009). Therefore, we employ the approach proposed by Clauset et al.
(2007) to determine an optimized lower boundary above which a power-law tail may emerge. This method selects the
boundary for which the empirical probability distribution and the best-fit power-law model are most similar as
evaluated by the Kolmogorov-Smirnov (KS) statistic, which is used to quantify the distance between these
distributions. If the optimized lower boundary is higher than the true lower boundary, the reduced data sample leads
to a poor match due to statistical fluctuations. If it is lower, the distributions differ fundamentally. The goodness-of-
fit is evaluated by means of the KS test. We used the KS test instead of alternatives like the Anderson-Darling test to
ensure appropriate sample sizes for our datasets (Hosking and Wallis, 1987; Clauset et al., 2009; Klaus et al., 2011;
Alstott et al., 2014) (see Figure S4 in the supporting information). The KS statistic (k) is employed to preliminarily
assess the reliability of empirical power law distributions (x€[0,00], with k=0 denoting the highest reliability). The test
is applied with a significance level of p > 0.1, which is more stringent than the typical p > 0.05 since the goal here is
to fail to reject the null hypothesis (i.e., to confirm the lack of evidence to conclude that a difference exists between
the distributions). Cases meeting this criterion are further evaluated against alternative distributions (e.g., lognormal)
by using a bootstrapping method, where 1000 synthetic datasets are generated from the optimized power law model
(Clauset et al., 2009). Cases passing also this further criterion are deemed 'power-law-tailed.' Those that don't are
labeled 'uncertain,' indicating that either these cases are not power-law-tailed, or their distribution cannot be
determined due to high uncertainty from small sample sizes. We conduct these computations using the Python package
plfit 1.0.3. We calculate empirical power law exponents b for each case and assess the consistency between the heavy-
tailed behavior identified by means of both a and b.

We conduct our approach using three distinct empirical data distributions: daily streamflow, ordinary peaks, and
monthly maxima. These multiple analyses strengthen our validation process and enhance the evaluation of our results.
It's worth noting that our chosen benchmark, the empirical power law, may be influenced by fitting uncertainty due to
data scarcity in certain cases, particularly when analyzing maxima. To mitigate this, we consider monthly maxima
(Fischer and Schumann, 2016; Malamud and Turcotte, 2006) instead of the seasonal maxima previously used in the
literature (e.g., Basso et al., 2021) in order to expand the sample size. Parallel analyses for cases with larger sample
sizes (i.e., daily streamflow and ordinary peaks) provide more robust validation and lend support to the interpretation
of results for maxima (the median sample sizes are 1280, 512, and 132 for daily streamflow, ordinary peaks, and
monthly maxima, respectively). It's important to clarify that these sample sizes refer specifically to the tail of the
empirical distributions. In other words, only the most extreme observations are analyzed to determine whether the
empirical distributions exhibit power-law behavior in their tails. For the overview of the entire data series analyzed in
this study, please refer to Section 2.

3.3 Analyses of Spatial and Seasonal Patterns of Inferred Flood Tail Behavior

We construct a geographical representation of inferred heavy-tailed flood behavior by utilizing estimated recession
exponents derived from common streamflow dynamics across study countries and for each season. This representation
serves as an evaluation of the propensity of heavy-tailed flood behavior across various regions and seasons. We
simplify the seasonal results by identifying the dominant tail behavior, which refers to the majority of seasons (>50%)
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exhibiting either heavy-tailed or nonheavy-tailed behavior, as the representative inferred flood tail behavior in the
analysis of spatial pattern (Section 4.2).

To determine the dominant hydroclimatic characteristic of each catchment, we overlay the Képpen climate map (Beck
et al., 2018) and a derived potential evapotranspiration map (Zomer and Trabucco, 2022) with the river gauge and
catchment boundary data. For the former, the most prevalent climate within the catchment (determined by overlapping
areas within the boundary, or by the river gauge location if the boundary data is absent) is assigned as the representative
feature. For the latter, we compute the catchment average value (or determined by the river gauge location if the
boundary data is absent).

To analyze seasonal patterns, we initially investigate the coherence of inferred flood tail behavior across seasons,
focusing on consistency between heavy- or nonheavy-tailed behavior. Catchments with valid recession exponents
from only one season are omitted from this analysis. As a result, the selection comprises 179 out of 180 catchments
in the Atlantic Europe, 79 out of 82 in Northern Europe, and 290 out of 313 in the continental United States. We also
employ the Wilcoxon signed-rank test (Wilcoxon, 1945), a non-parametric statistical hypothesis test, at a significance
level of 0.05 in this section. This test assesses whether the median of recession exponents (within a climate group on
a seasonal basis) is above two, below two, or shows no significant difference from two (Figure 7).

4 Results
4.1 Effectiveness of Identifying Heavy-tailed Flood Behavior Using Common Discharge Dynamics

Figure 1 shows the frequency histograms of KS statistics x for two groups of cases: red histograms denote cases with
recession exponents a above two, and blue histograms denote those below two. The mean « is significantly smaller
(p<0.05) for the former group (red histograms) compared to the latter one (blue histograms) for the case studies from
the Atlantic Europe (both Germany and the UK) and the continental United States. This result shows that power law
distributions (characterized by heavy-tailed behavior) better represents the empirical data in case studies with
recession exponents above two. In the Norwegian case studies, no significant difference was instead identified between
the two groups. This is likely due to the absolute values of the recession exponent in this context, which is lower than
in the other three countries and mostly comprised between 1 and 2, thus indicating a prevalence of nonheavy-tailed
behaviors to date.

To quantify the accuracy provided by the identification of heavy-tailed flood behavior through recession exponents,
we set decreasing thresholds for x, which correspond to increasing reliability of power laws as descriptions of the
empirical data. The accuracy of our index (i.e., the recession exponent) can therefore be calculated as
P(a>2|k<k,)=N.(a>2|k<k,)/N.(k < Kk,.), where k, is the threshold, N.(k < k,.) is the number of case
studies with k < Kk,., and N.(a > 2|k < k,.) is the number of case studies with @ > 2 among the N.(k < k,.) case
studies. We found that the accuracy is clearly correlated to the reliability level requested for the empirical power laws
(represented by k,.) for case studies in the Atlantic Europe and the continental United States. This confirms that the
recession exponent provides higher accuracy in detecting heavy-tailed behaviors when the empirical distributions of
observed data can be represented by power laws with more certainty, thus underscoring the consistency between
identifying heavy-tailed cases by using the proposed index and the observations. The accuracy increases in the same
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way also for case studies in Norway, but it always remains below 0.5. We will elucidate below reasons and
implications of this finding after considering the results presented in Figure 2.
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Figure 1. Effectiveness of identifying heavy-tailed flood behavior using hydrograph recession exponents. Case studies are
categorized into two groups in each study region: the Atlantic Europe-Germany (ATL-DE), the Atlantic Europe-the United
Kingdom (ATL-UK), Northern Europe (NOR), and the continental United States (CONUS). The group with recession exponents
a above two is represented by red histograms and the group with recession exponents a below two is represented by blue histograms.
In all three analyses (daily streamflow, ordinary peak flow, and monthly maxima), every case study is subjected to empirical power
law fitting, resulting in a representative power law for the dataset, measured by the KS statistic x (where x€[0,0] and x=0 signifies
maximum reliability). The histograms portray the count of case studies N analyzed as a function of k for two distinct groups.
Dashed lines on the histogram plots indicate the means of the histograms. The means of two groups (¢>2 and a<2) are subjected
to Welch's t-test at a significance level of 0.05 to determine whether they are significantly different (p < 0.05) or not (p > 0.05).
The line chart shows the accuracy of using the recession exponent to identify heavy-tailed behavior (denoted as
P(a> 2|k <k,)=N.(a>2|k<k.)/N.(k < Kk,)) as the K, threshold decreases (i.c., as the reliability of empirical power
laws increases). The results for ATL-DE are reproduced from Wang et al. (2023).

In Figure 2, we explore the correlation between the values of empirical power law exponents b and the values of
recession exponents a for case studies exhibiting heavy-tailed behavior. This is achieved by utilizing the goodness-
of-fit testing procedure of Clauset et al. (2009) to categorize case studies into ‘power-law-tailed case studies’ and
“uncertain case studies.” The former are depicted as black dots, while the latter are depicted as gray dots. The presence
of a sizable number of uncertain case studies indicates the difficulty of establishing with certainty whether the
underlying distribution of empirical data is or not a power law. This difficulty is often due to limited data availability,
although the possibility that they indeed do not follow power laws cannot be excluded. We also perform an L-moment
analysis, a compelling method in order statistics used to quantitatively describe extremes and known for its robustness
to stochastic sampling uncertainties (Hosking, 1990). This analysis serves to confirm the tail heaviness observed in
the identified power-law-tailed case studies, in which these case studies show clearly heavier tails than exponential
distributions (i.e., the widely accepted distinction of heavy- and nonheavy-tailed distributions; Merz et al., 2022) (see
supporting information Figure S5).

We cannot conclude whether uncertain case studies (gray dots) represent cases that are indeed not power-law-tailed
or if their underlying distributions cannot be determined due to the high uncertainty caused by small sample sizes.
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Therefore, we benchmark the recession exponent against the empirical power law exponent by focusing on the 'certain
group,' i.e., power-law-tailed case studies (black dots). For all power-law-tailed case studies, we calculated Spearman
correlations g (Spearman, 1904) to test the correlation between a and b, which is valid for both linear and nonlinear
associations between random variables. We found that a and b are significantly correlated at a significance level of
0.05 in the Atlantic Europe (both Germany and the UK) and the continental United States. To highlight the correlation,
we binned the power-law-tailed case studies and used red markers showing the median values of a and b (squares),
the interquartile intervals of b (vertical bars), and the binning ranges of a. In each region, the composition of each bin
encompasses one-seventh of the total number of case studies, except for Northern Europe, where this fraction is
adjusted to one-fifth due to the limited number of power-law-tailed cases. In the Atlantic Europe and the continental
United States, a larger number of uncertain case studies emerge in the analysis of flow maxima compared to the
analysis of daily streamflow and ordinary peak flow (respectively for daily streamflow, ordinary peaks, and flow
maxima: 265, 270, and 352 out of 386 case studies in Germany; 258, 280, and 306 out of 325 case studies in the UK
and 589, 624, and 836 out of 980 case studies in the continental United States). Since the same case studies have
already exhibited power-law-tailed distributions in their daily streamflow and ordinary peak flow data, the increase of
uncertain case studies in the analysis of flow maxima suggests that the greater level of uncertainty is due to limited
data availability rather than indicating a rise in the number of non-power-law-tailed case studies.

This aligns with existing literature that emphasizes the prevalence of heavy-tailed behavior when sufficiently long
data records are available (e.g., Farquharson et al., 1992; Bernardara et al., 2008; Villarini and Smith, 2010; Rogger
et al., 2012; Papalexiou and Koutsoyiannis, 2013; Guo et al., 2014; Basso et al., 2016; Smith et al., 2018). Such
findings, on the one hand, highlight the limitations of relying solely on statistical data analyses to identify flood tail
behavior. On the other hand, they underscore additional advantages of using the mechanistic approach proposed in
this study, namely the hydrograph recession exponent. The utilization of the hydrograph recession exponent
effectively identifies cases exhibiting heavy-tailed behavior; even in situations where statistical methods fail to
confirm the underlying distribution (as observed in monthly maxima), this index still yields robust estimates of tail
heaviness based on recession exponent values.

In Norway, however, the majority of case studies across all three analyses (i.e., daily streamflow, ordinary peaks, and
flow maxima) are identified as uncertain (respectively 291, 289, and 300 out of 306 case studies). These results align
with the fact that the values of the recession exponent for the Norwegian case studies predominantly fall between 1
and 2 (Figure 2), indicating that to date catchment responses are relatively closer to being linear in Norway compared
to the other countries, and implying the prevalence of nonheavy-tailed flood behavior. This also explains the pattern
presented in the Norway panel of Figure 1. Given that the case studies generally have recession exponents below two,
the number of case studies with recession exponents above two are not enough to distinguish between the two
distributions of k.

Overall, the effectiveness of recession exponents in distinguishing heavy- and nonheavy-tailed flood behavior has
been substantiated (see also Wang et al., 2023). This differentiation hinges on a critical threshold: the value two.
However, we acknowledge that misattributions may occur, particularly when « is around the threshold value. In
datasets showcasing diverse physiographical characteristics, the interpretation is consistent. Areas with higher
recession exponents (above two), indicating discernible nonlinearity in catchment responses, tend to exhibit heavy-
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tailed flood behavior. Conversely, regions with lower recession exponents (below two), reflecting relatively linear
responses in catchments, are more likely to signify nonheavy-tailed flood behavior.
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360 Figure 2. Empirical power law exponent b as a function of the hydrograph recession exponent a (physically-based index of
heavy-tailed flood behavior). Case studies are classified into groups of power-law-tailed (black dots) and uncertain (gray dots)
case studies on the basis of the goodness-of-fit test (Clauset et al., 2009). The former group shows statistical confirmation that the
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data's distribution tail can be properly characterized by a power law, indicating heavy-tailed behavior. Conversely, the latter group
indicates our inability to statistically affirm whether the data follows a power law distribution or not. For the power-law-tailed case
studies, the correlation between the empirical power law exponent b and the hydrograph recession exponent a is underlined by red
markers. This correlation is quantified using the Spearman correlation coefficient r¢ at a significance level of 0.05. The squares
represent the median values of a and b, vertical bars indicate the interquartile intervals of b, and horizontal dashed bars indicate the
binning ranges of a. In each region, the composition of each bin encompasses one-seventh of the total number of case studies,
except for NOR, where this fraction is adjusted to one-fifth due to the constraint posed by the total number of power-law-tailed
case studies. The count of the power-law-tailed case studies in the analyses of daily streamflows, ordinary peak flows, and monthly
flow maxima are as follows: 121, 116, and 34 out of 386 case studies for ATL-DE, respectively; 67, 45, and 19 out of 325 case
studies for ATL-UK, respectively; 391, 356, and 144 out of 980 case studies for CONUS, respectively; and 15, 17, and 6 out of
306 case studies for NOR, respectively. The results for ATL-DE are reproduced from Wang et al. (2023).

4.2 Spatial Patterns of Inferred Flood Tail Behavior

Figure 3 displays the spatial distribution of dominant flood tail behavior across seasons, based on the recession
exponent values. This dominant behavior represents either heavy or nonheavy tails, depending on what is observed in
the majority of seasons. Additionally, Figure 4 and Table 1 provide quantitative analyses of the propensity of flood
tail behavior across different regions.

In the Atlantic Europe-Germany (Figure 3a), approximately 81% of catchments are identified as sites with dominant
heavy-tailed flood behavior (red dots), indicating a prevalence of such behavior. This result agrees with the findings
of Mushtaq et al. (2022), which reported that a distribution with a relatively heavier tail (i.e., the log-normal) best
represent ordinary peak flows in the majority of German basins considered in their study. The inferred heavy-tailed
sites are spread across Germany. They dominate in the eastern part, while there are mixed patterns of heavy- and
nonheavy-tailed behavior in the western part. This finding aligns with Macdonald et al. (2022), who used GEV shape
parameters as an indicator of heavy-tailed behavior for gauges with more than 50 years of observations. The climate
conditions are primarily humid continental (Dfb) and temperate oceanic (Cfb). Humid continental climate is prominent
in the east, while temperate oceanic climate generally covers the west.

In the Atlantic Europe-the UK (Figure 3b), four climate types are present, with temperate oceanic climate (Cfb) being
the dominant one. The terrain of this country in comparison to the other three countries is relatively homogeneous,
with no high mountains. According to our findings, heavy-tailed flood behavior is prevalent in the UK, with a
prevalence of 77%, particularly in the eastern and southern coastal regions. This aligns with clues from historical
events (European Environmental Agency, 2010) and clues from future flood risk assessments (Rudd et al., 2021).
Huntingford et al. (2014) reported a case in which a rapid succession of vigorous Atlantic low-pressure systems
crossed much of the UK, resulting in repeated heavy rainfall events. Southeast England was identified as a distinct
region characterized by exceptionally high flows, exacerbated by increasingly saturated catchments. These catchment
characteristics and hydrological responses align with our findings, which indicate the pronounced heavy tails in such
aregion.

In Northern Europe (Norway) (Figure 3c), however, nonheavy-tailed flood behavior dominates. Approximately 89%
of sites are inferred to have nonheavy-tailed flood behavior. Norway encompasses nine climate types but is primarily
covered by Subarctic climate (Dfc), characterized by low temperatures and reduced evapotranspiration. Hydrological
processes are significantly influenced by snow dynamics, which generally determine linear catchment responses as a
result of snow accumulation and melting processes (Santos et al., 2018).

In contrast to the aforementioned countries with relatively consistent climate and dominant flood behavior, the
continental United States (Figure 3d) displays a diverse range of climate types and a balanced propensity toward
heavy- and nonheavy-tailed flood behavior. The eastern regions are dominated by humid subtropical climate (Cfa),
hot-summer humid continental climate (Dfa), and temperate oceanic climate (Cfb) from south to north. The interior
western states feature a cold semi-arid climate (BSk), while mixed patterns are observed in the western mountainous
and coastal areas. An overall relatively even distribution of inferred heavy-tailed (52%) and nonheavy-tailed (48%)
flood behavior prevails in this diverse climate country.

Figure 3e provides an example of how the spatial distribution of flood behavior is influenced by regional
physioclimatic features. In particular, catchments on the eastern side of the Appalachian Mountains exhibit
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pronounced heavy-tailed flood behavior, while those on the western side mostly exhibit non-heavy-tailed behavior.
This is consistent with several previous findings based on the skewness of annual maximum streamflow (Interagency
Advisory Committee on Water Data, 1982), the GEV shape parameters (Villarini and Smith, 2010), and the upper tail
ratio (Smith et al., 2018). This is likely due to the interaction between cold air from the inland polar jet stream and
warm ocean currents leads to the formation of Nor'easters, which are synoptic-scale extratropical cyclones in the
western North Atlantic Ocean along the northeast coast of the continental United States. These weather systems often
resulted in heavy rain or rain-on-snow events. Conversely, on the west side of mountains, catchments tend to exhibit
nonheavy-tailed behavior, potentially due to the leeward rain shadow effect.

In summary, the spatial distributions of inferred flood tail behavior indicate that regions with dominant climate types
tend to exhibit a single or dominant flood tail behavior, as observed in the Atlantic Europe and Northern Europe areas
studied in this research. Conversely, the interplay among regional physioclimatic conditions shows its impacts on the
propensity of regional flood behavior across diverse climate conditions in the continental United States.

LEGEND

@ Heavy

@ Nonheavy
(outlets of catchments)

[ Catchment boundary
[ Country boarder

o H/HN ratio

KOPPEN CLIMATE CLASSIFICATION

Af BWh Csa | Cwa Cfa
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[ |Aw BSh csc  Mcwe Cfc
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Figure 3. Spatial distribution of dominant flood behavior. The dominant pattern determines the representative flood tail behavior
of catchments across all study countries, whether it is heavy or non-heavy, which is defined by the major pattern recognized across
seasons. Tail behavior is inferred by hydrograph recession exponents. The ratio of heavy- to nonheavy-tailed catchments is
indicated as H/NH ratio. K&ppen climate classification based on Beck et al. (2018), with present climate types outlined by bold
dark frames in the legend. (a) ATL-DE, a total of 98 gauges represent catchments ranging from 110 to 23,843 km?, with a median
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area of 1,195 km?. (b) ATL-UK, a total of 82 gauges represent catchments ranging from 15 to 9,948 km?, with a median area of
283 km?. (¢) NOR, a total of 82 gauges represent catchments ranging from 4 to 40,504 km?, with a median area of 234 km?. (Note:
some catchment boundaries are absent in the dataset for catchments in the UK and Norway.) (d) CONUS, a total of 313 gauges
represent catchments ranging from 66 to 9,935 km?, with a median area of 1769 km?. (¢) A zoomed-in map illustrates the discernible
patterns of flood tail behavior resulting from specific flood generation processes influenced by the interplay between regional
terrain and meteorological features. (Note: the cylinder map projection is employed in these maps.)

To obtain quantitative results we examine the predominant flood tail behavior (inferred by recession exponents) of
catchments across various climate regions and sort these regions based on the proportion of heavy-tailed catchments
from high to low, as illustrated in Figure 4. By categorizing climate type regions based on the proportion of heavy-
tailed catchments, we establish three groups according to their propensity of flood tail behavior: Heavy-tailed group,
indicating regions with over 66.6% of catchments dominated by heavy tails; Neutral group, encompassing regions
with 33.3% to 66.6% of catchments dominated by heavy tails, represents a relatively even propensity for both heavy
and nonheavy tails in the catchments within these regions; and Nonheavy-tailed group, representing regions with less
than 33.3% of catchments dominated by heavy tails, denotes the propensity for nonheavy tails. According to the
Koppen climate type classification, the overarching hydroclimatic characteristics can be delineated by three
hierarchical features: 1. the main group, which encompasses five areas—Tropical, Arid, Temperate, Continental, and
Polar; 2. precipitation characteristics; and 3. temperature characteristics (The detailed quantitative criterion adopted is
provided in Table S1 in the supporting information). The findings are synthesized in Figure 4 and Table 1, where the
groups of flood tail behavior propensity are juxtaposed with the distinctive traits of each climate region.

Five climate regions are identified as having a higher propensity for heavy tails: mediterranean climate (Csa), hot
semi-arid climates (BSh), humid continental climate (Dsb), temperate oceanic climate (Cfb), and cool-summer
mediterranean climate (Csb). These regions are characterized by warm to hot temperatures, often accompanied by
occasional dry periods (except for Cfb). Based on the definition of Kdppen climate classification the occurrence of
dry periods is a result of significantly uneven rainfall throughout the year, with at least three times as much rainfall in
the wettest month as in the driest month. In semi-arid climates (BSh), there is generally lower annual rainfall
(summarized in Table 1). Higher temperatures increase the potentail evapotranspiration, often enhancing atmospheric
moisture content and facilitating convective rainfall. Moreover, the dynamics of evapotranspiration in hillslopes
influence the nonlinearity of runoff processes in catchments (Tashie et al., 2019). Dry periods can lead to lower
catchment soil moisture, facilitating nonlinear runoff generation (Merz and Bloschl, 2009; Viglione et al., 2009). The
findings presented here indicate that heavy-tailed flood behavior tends to emerge due to the substantial nonlinearity
observed in catchment hydrological processes, which is facilitated by temporally uneven rainfall and higher
evapotranspiration variation throughout the year.

We also find that certain regions show a relatively neutral propensity regarding flood tail behavior (either heavy- or
nonheavy-tailed) and aggregate them into the second group of Figure 4 and Table 1. These regions encompass cold
semi-arid climates (BSk), humid continental climate (Dfb), humid subtropical climate (Cfa), and humid continental
climate (Dfa). While cold semi-arid climates (BSk) experience dryness, they are characterized by very limit
precipitation. In the other three regions (Dfb, Cfa, and Dfa), heavy tails may still occur due to higher
evapotranspiration, which is driven by high temperatures. However, the relatively even distribution of rainfall
throughout the year in these regions may reduce the propensity for heavy tails, resulting in a smoother occurrence of
heavy-tailed flood behavior. In summary, the regions in this group still have a certain probability of exhibiting heavy-
tailed flood behavior. However, the absence of either a drier state of the catchment (caused by uneven rainfall) or
higher temperatures (that ensure sufficient atmospheric moisture for rainfall and strengthened nonlinearity) could
constrain the occurrence of such behavior.

In the last group, which includes regions with subpolar climate (Dfc), tundra climate (ET), and cold desert climates
(BWKk), there is a higher propensity for nonheavy tails, and the two evident factors for heavy tails recognized from
previous results are generally lacking. Runoff generation in Dfc and ET is primarily driven by snow dynamics, with
snowmelt being the main contributor to runoff. Snowmelt is highly dependent on energy capacity, resulting in
hydrological responses that are more likely to exhibit linearity. This favors the occurrence of nonheavy-tailed flood
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behavior (Thorarinsdottir et al., 2018). Catchments located in the region of BWk exhibit nonheavy-tailed behavior
might also be attributed to limited precipitation in desert.

In this study, we do not find substantial influences of the general hierarchical feature (especially the temperate and
continental climate classifications) on the propensity of flood tail behavior.

To sum up this section, we have identified the conjunction of dry periods and higher temperatures as crucial
meteorological factors significantly contributing to the dynamics of catchment storage, thereby influencing the
nonlinearity of hydrological responses. We refer to catchment storage sensu Kirchner et al. (2009) and Botter et al.
(2009), i.e., the varying amount of water contained in a catchment between dry and wet periods.. This capacity is
dynamic and depends on various factors, such as soil moisture states, precipitation, and evapotranspiration (Merz and
Bloschl, 2009; Zhou et al., 2022). These findings shed light on the interplay between catchments and meteorological
conditions in the manifestation of heavy-tailed flood behavior. We acknowledge that these results are based on
overarching climate conditions and do not encompass all climate types, and achieving an equal number of study sites
across various climate regions might not always be feasible. We should be mindful of potential bias caused by sample
sensitivity, particularly in regions with a limited number of cases (e.g., Csa, BSh, BWk in this study). Expanding the
number of study sites in these climate regions could strengthen the current understanding.

I heavy-tailed dominant Il nonheavy-tailed dominant

Zone 3 Zone 2 Zone 1

BSk (11)
Dfb (103)
Cfa (83)

CLIMATE TYPE

Dfa (127)

0 20 %5 40 60 oee 80 100
PERCENTAGE OF CATCHMENTS

Figure 4. Propensity of inferred flood tail behavior in diverse climate regions. Catchments are categorized by climate types
and grouped by dominant (across seasons) heavy-tailed case percentages. Three groups are defined by heavy-tailed case proportions:
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Zone 1 (>66.6%) represents heavy tails, Zone 2 (33.3-66.6%) is neutral, and Zone 3 (<33.3%) represents nonheavy tails. The
number of catchments in each climate region is indicated in parentheses after the climate type.

Table 1. Comparison of inferred flood tail behavior propensity with climate characteristics.

Koppen Climate Classification

Propensity of 2nd Seasonal 3rd Dry Warm-
Tail Behavior Code  1%Main Group Precipitation Temperature Period Hot
Csa Temperate Dry Summer Hot Summer o o
BSh Arid Semi-Arid Hot o o
Heavy Dsb Continental Dry Summer Warm Summer o o
(Zone 1)
Cfb Temperate No dry season Warm Summer o
Csb Temperate Dry Summer Warm Summer b b
BSk Arid Semi-Arid Cold d
Neutral Dfb Continental No dry season Warm Summer hd
(Zone 2) Cfa Temperate No dry season Hot Summer M
Dfa Continental No dry season Hot Summer o
Dfc Continental No dry season Cold Summer
Nonheavy BWk Arid Dessert Cold d
(Zone 3)
ET Polar - Tundra

4.3 Seasonal Patterns of Inferred Flood Tail Behavior

We analyze the seasonality of flood tail behavior, an aspect of this phenomenon which has been previously suggested
but remains poorly understood (Durrans et al., 2003; Basso et al., 2015; Macdonald et al., 2022). Figure 5 illustrates
the spatial distribution of catchments with consistent tail behavior across seasons (i.e., with either heavy or nonheavy
tails across all seasons; black triangles) and those with varying tail behavior across seasons (green dots). The
percentages of catchments exhibiting inconsistent flood tail behaviors are respectively 33%, 33%, 17%, and 34% in
the continental United States, the Atlantic Europe-Germany, the Atlantic Europe-the UK, and Northern Europe. The
results indicate that although the majority of catchments tend to exhibit stable heavy-/nonheavy-tailed behavior, still
around one-third reveal changing patterns across seasons. Notably, there is a particularly high percentage of consistent
patterns (83%) in the Atlantic Europe-the UK, likely due to the relatively uniform climate and terrain conditions across
the country characterized by continuous rainfall throughout a year (as shown in Figure 3b).

We further investigate the dynamics of heavy- and nonheavy-tailed case studies across seasons in Figure 6. Heavy-
tailed case studies increase from spring to autumn (approximately corresponding to the growing season in the northern
hemisphere) and decrease from autumn to spring (approximately corresponding to the dormant season in the northern
hemisphere), as seen in the aggregated patterns across all regions (panel a). This pattern can be attributed to the
increasing temperature in the growing season, during which increasing evapotranspiration consumes water storage in
the shallow subsurface, escalating the nonlinearity of catchment responses (Tashie et al., 2019). The seasonality of
evapotranspiration effects on catchment nonlinearity is supported by the findings of Tarasova et al. (2018), who
observed clear seasonal dynamics of catchment average runoff coefficients. These coefficients tend to be higher in
wet winters and lower in dry summers. It has been shown that significant variation in runoff coefficients is linked to
high nonlinearity of hydrological responses, facilitating heavier-tailed floods. This phenomenon is often observed in
dry catchments (Merz and Bloschl, 2009). Other studies confirmed that the nonlinearity of catchment responses favors
the emergence of heavy-tailed flood behavior (Gioia et al., 2008; Rogger et al., 2012; Basso et al. 2015), and is often
expressed by quicker recession during high flow periods and greater stability during low flow periods. Conversely,
during the dormant season, nonlinearity decreases due to reduced competition from evapotranspiration and replenished
water storage. We underscore that the significant variability in evapotranspiration amplifies the fluctuation of
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catchment storage conditions, causing soil moisture levels to oscillate between drier and wetter states. This alternation
leads to the occurrence of both very small and very large events, which are characteristic of heavy-tailed flood behavior.

This dynamic is particularly pronounced in the continental United States (panel b), where is characterized by a wide
range of geography and diverse temperate and continental climates. The number of inferred heavy-tailed cases can
increase by 50 % from spring to autumn. In the Atlantic Europe (panels ¢ and d), heavy-tailed behavior is relatively
prevalent and shows no significant distinction from spring to autumn, but still experiences a noticeable decrease in
winter, likely due to lower temperatures and evapotranspiration. Northern Europe (panel e) presents different patterns
due to varying controls on runoff generation. A slight increase in heavy-tailed cases during the winter is observed,
which could be attributed to a relatively higher contribution of rainfall-driven flood events during a season when
snowmelt-driven events are less common.

We delve into the seasonal characteristics of this behavior further by combining the regional patterns based on climate
classification.

We find that the grouping based on their distinct patterns of seasonality (Figure 7a) closely aligns with the grouping
based on the analysis of dominant patterns throughout the year (Figure 4 and Table 1). Regions (red area in Figure 7a
corresponded to the heavy-tailed group in Table 1) characterized by uneven rainfall distribution throughout the year
based on the Koppen classification (see Table S1 in the supporting information), leading to pronounced fluctuations
between drier and wetter soil states, combined with higher evapotranspiration rates (indicated by warm to hot
temperatures), tend to exhibit a dominance of heavy-tailed behavior in their hydrological responses across all seasons.
In regions represented by the white area in Figure 7a (corresponding to the neutral group in Table 1), unlike the former
group (red area), the rainfall pattern does not favor the emergence of heavy-tailed behavior as it is more evenly
distributed in time. However, strong evapotranspiration, as depicted in Figure 7b, characterizes these areas. The
increased evapotranspiration during the growing seasons and decreased during the dormant seasons may be mainly
responsible for the seasonality of flood tail behavior in these areas. Regions represented by the blue area in Figure 7a
(corresponding to the nonheavy-tailed group in Table 1) still exhibit dynamics in evapotranspiration across seasons,
but the amounts are comparably low (Figure 7b). In these regions, runoff generation is primarily influenced by snow
dynamics, and most runoff results from snowmelt during the growing seasons, driven by energy availability. Previous
study (Santos et al., 2018) has found that such a flood generation process tends to display close-to-linear hydrological
responses. These findings support the proposed mechanism of heavy-tailed flood behavior concluded in the spatial
analyses and further demonstrate the pivotal effect played by the variation of evapotranspiration and catchment storage
on the emergence of heavy-tailed flood behavior.

We acknowledge that the hydroclimatic factors analyzed in this study may not account for all cases, as observed in
regions classified as Cfa and Cfb, where the former has higher temperatures but fewer heavy-tailed case studies
compared to the latter. This discrepancy could be attributed to either the uncertainty in inferring heavy-tailed floods
through recession exponents (particularly for cases with values close to the threshold) or the presence of additional
factors or mechanisms influencing flood tail behavior in these regions. It is crucial to note that most catchments
classified as Cfb in our dataset are primarily from the UK, while those classified as Cfa are mostly from the Southeast
US. Indeed, extreme floods are prevalent in the UK (European Environmental Agency, 2010; Robson, 2002), aligning
with the inference based on our analysis of recession exponents. One of the primary causes of floods in the UK is
suggested to be extreme or storm-related heavy rainfall (Osborn et al., 2000; Huntingford et al., 2014), which has been
identified to some extent as a factor contributing to the emergence of heavy-tailed flood behavior (e.g., McCuen and
Smith; Macdonald et al., 2022) but has not been explicitly included in the analyses of this study.

In summary, while heavy-/nonheavy-tailed behavior is generally consistent across seasons, there is a certain
probability for cases to exhibit seasonality. This seasonality of inferred heavy-tailed behavior shows a dynamic pattern
of increasing during the growing season and decreasing during the dormant season. Regions with pronounced
temperature variations across seasons, particularly with higher temperatures in summer, and characterized by
relatively evenly distributed rainfall throughout the year tend to display such dynamics. This highlights the importance
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of both evapotranspiration and the temporal characteristics of rainfall in shaping flood tail behavior across seasons,
aligning with previous studies (Guo et al., 2014 ; Basso et al., 2023 ).
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1,997 case studies composed by 540 in spring, 520 in summer, 543 in autumn, and 394 in winter. (b)-(e) Results for each study
region (see Table A1 for detailed case numbers across seasons in each region).
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Figure 7. Seasonal variations in recession exponents (inferred flood tail behavior) and potential evapotranspiration across
diverse climate regions. a) Seasonality of flood tail behavior. Case studies grouped by climate regions based on seasons. Medians
of recession exponents in each group are compared with a value of two using Wilcoxon signed-rank test (significance level: 0.05).
Red squares indicate significantly heavy-tailed (recession exponents > 2) groups, blue squares indicate significantly nonheavy-
tailed (recession exponents < 2) groups, and black squares denote insignificance. Climate regions are categorized as follows: the
red area denotes regions with prominent heavy tails across seasons, the blue area denotes regions with prominent nonheavy tails
across seasons, and the white area denotes regions with significant seasonality in flood tail behavior. b) Seasonality of derived
potential evapotranspiration (Zomer and Trabucco, 2022) as a function of the seasonality characteristic of flood tail behavior.

4.4 Factors associated with catchment scales and their role in flood tail behavior

It remains unclear how flood tail behavior varies across catchment scales and what the underlying drivers and
mechanisms are (Merz et al., 2022). We employ catchment nonlinearity, represented by recession exponents, to
explore the influence of catchment scales on flood tail behavior, as depicted in Figure 8. We utilize the categorization
of regions characterized by distinct controls on flood tail behavior, primarily influenced by characteristic runoff
generation processes (as three groups identified in Figure 7), to elucidate the underlying mechanisms. Case studies
are categorized into bins based on catchment areas, with the median values represented by squares, interquartile
intervals depicted by vertical bars, and catchment area ranges indicated by horizontal dashed bars. Panels a, b, ¢, and
d present results for all regions, regions exhibiting significant heavy tails across seasons, regions with a neutral
propensity and seasonal variations, and regions displaying pronounced nonheavy tails across seasons, respectively.
Each panel comprises a total of 30 bins, with approximately 67, 33, 24, and 10 case studies in panels a, b, ¢, and d,
respectively (with minor variations due to rounding).

From the perspective of all case studies (Figure 8a), the pattern appears somewhat unclear. Apart from the case studies
involving extremely small and large catchment areas, there seems to be a decrease in nonlinearity as catchment areas
increase. Nevertheless, the relationship is rather weak. These findings align with the results of previous studies (e.g.,
Merz and Bléschl, 2009; Villarini and Smith, 2010; Smith et al., 2018) which, by using different indices to quantify
the heaviness of upper tails, have suggested a relatively weak inverse correlation between catchment area and the
occurrence of heavy-tailed flood behavior.

However, we can evidently clarify this relationship by considering the distinct runoff generation processes recognized
in different regions. Panel b illustrates that catchment area plays no significant role in catchment nonlinearity in
regions characterized by prominent heavy tails. Whereas a clear inverse relationship between nonlinearity and
catchment area is shown in panel ¢, representing regions characterized by a neutral propensity for heavy and nonheavy
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tails. In contrast, a proportional relationship between nonlinearity and catchment area is identified in panel d,
representing regions characterized by prominent nonheavy tails.

As shown by the previous sections, nonlinearity in neutral regions is primarily driven by high evapotranspiration
facilitated by high temperatures. When the catchment area increases, it has a higher chance of encompassing diverse
terrain types, including areas with higher altitudes, such as mountainous regions. Increased altitude tends to result in
lower temperatures and evapotranspiration rates, negating the evapotranspiration variation and its impact on catchment
nonlinearity, which is the main driver of nonlinearity in this region and thus substantiates an inverse relationship
(Figure 8c). In regions with prominent heavy tails (Figure 8b), nonlinearity is generated from the interplay of uneven
rainfall and evapotranspiration dynamics, and the enlargement of catchments does not substantively change this
relationship. For regions with prominent nonheavy tails (Figure 8d), the underlying mechanisms are similar to the
neutral regions but work in the opposite direction due to the differently dominant mechanism. Recall that the runoff
process in this region is generally dominated by snow dynamics. The region is mainly located in high mountain or
high latitude areas. As catchments expand, more diverse terrain is encompassed, potentially introducing a mixture of
flood generation processes due to the incorporation of lowland or coastal areas. Particularly, more rain-on-snow events
or rainfall-driven events may be encompassed in a same catchment together with snowmelt-driven events (Vormoor
et al., 2016). Therefore, an increase in nonlinearity is facilitated due to the mixture of flood types, favoring the
emergence of heavier tails in flood distributions (Tarasova et al., 2020). It should be noted that the tail patterns, based
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on Figure 8d, are still more likely to be nonheavy tails (i.e., recession exponents below two), even though nonlinearity
indeed appears to show an increasing tendency along with catchment area.

These findings disentangle the relationship between flood tail behavior (inferred from catchment nonlinearity) and
catchment scale, and provide a mechanistic understanding that underscores the role of variability in runoff generation
processes introduced by the expansion of catchment area.
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Figure 8. Catchment nonlinearity as a function of catchment area. The recession exponents, representing catchment
nonlinearity, have been evenly grouped into bins based on catchment areas. The squares denote the median values, vertical bars
represent the interquartile intervals of the recession exponents, and horizontal dashed bars indicate the catchment area ranges for
each bin. (a) All regions (encompassing case studies, #=1997). (b)-(d) show case studies separately according to categorization
recognized in Figure 7. (b) Regions with prominent heavy tails (n=978). (c) Regions with seasonality and neutral propensity of
flood tail behavior (n=733). (d) Regions with prominent nonheavy tails (#=286). In each panel, there are a total of 30 bins, each
containing approximately 67, 33, 24, and 10 case studies in panels a, b, ¢, and d, respectively (with slight variations due to rounding).

5 Discussion

We have confirmed the effectiveness of the recession exponent in identifying heavy-tailed flood behavior in case
studies across study regions with varying degrees of the propensity of such behavior: heavy-tailed richness (the
Atlantic Europe), neutrality (the continental United States), and nonheavy-tailed richness (Northern Europe). This
validation is substantiated by power law tailed cases, widely acknowledged as representatives of heavy-tailed
distributions (E1 Adlouni et al., 2008; Clauset et al., 2009), and supported by the significance of catchment nonlinearity
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as a robust driver of heavy-tailed flood behavior (Fiorentino et al., 2007; Struthers and Sivapalan, 2007; Gioia et al.,
2008; Rogger et al., 2012; Basso et al., 2015; Merz et al., 2022; Basso et al., 2023; Wang et al., 2023).

This study focuses a binary distinction between heavy and non-heavy-tailed distributions, rather than assessing the
degree of heaviness, for two key reasons. First, identifying heavy-tailed distributions is inherently challenging. Second,
the identification itself holds significant hydrological importance, regardless of the degree of heaviness. In fact, the
presence of a heavy tail alone can serve as a critical warning of a relatively high probability of extreme events, making
it a crucial issue also in studies using other indices (e.g., Macdonald et al., 2022).

Regions with relatively uniform hydroclimatic conditions (the Atlantic Europe and Northern Europe) tend to exhibit
a single/dominant propensity of flood tail behavior. Conversely, in regions characterized by diverse conditions (the
continental United States), inferred flood tail behavior presents a balance between heavy- and nonheavy-tailed cases
in terms of frequency and distribution. Climate conditions have been found shaping the catchment geomorphology
(Wu et al., 2023) and river network dynamics (Ward et al., 2020) which contribute to the degree of catchment response
nonlinearity (Biswal and Marani, 2010). Meanwhile, the changes in flood generation processes can significantly affect
the frequency of large floods (Tarasova et al., 2023), potentially altering flood tail behavior. Our findings in Figure 3e
exemplify how different flood generation processes, influenced by the interplay of varied hydrometeorological and
terrain conditions, result in opposite flood tail propensities.

We further identify key drivers of heavy-tailed flood behavior by conducting large scale physioclimatic analyses.
Specifically, our findings reveal that regions with a pronounced propensity for heavy tails exhibit distinct
characteristics: the presence of a dry period and higher temperatures (as shown in Figure 4 and Table 1). This aligns
with previous studies based on the mathematical analysis which associates heavier-tailed flood behavior with a lower
frequency of streamflow-triggering rainfall events. Such lower frequency often results from erratic rainfall patterns
and higher rates of evapotranspiration, leading to drier catchment conditions (Botter, 2010; Basso et al., 2016). In line
with this theory, our large scale analysis provides evidence by showing a prevalent propensity for heavy tails in regions
characterized by uneven rainfall patterns throughout the year (i.e., more erratic rainfall), contributing to the presence
of dry periods, along with higher potential evapotranspiration rates, as indicated by higher temperatures.

The underlying mechanism of the emergence of heavy-tailed flood behavior is attributed to variations in catchment
water storage. In wetter catchments, relatively stable runoff coefficients are observed due to consistent high levels of
soil moisture across events. In contrast, drier catchments exhibit larger variations in runoff coefficients between small
and large events (Merz and Bloschl, 2009; Viglione et al., 2009). This increased variability in runoff coefficients
results in high nonlinearity of catchment responses, favoring heavy-tailed flood behavior. Previous studies have
suggested the prevalence of heavy tails in drier catchments (Molnar et al., 2006; Merz and Bloschl, 2009; Guo et al.,
2014). Our findings show that this mechanism is primarily driven by concurrent higher evapotranspiration and lower
rainfall in summer, as well as lower evapotranspiration and higher rainfall in winter. These conditions lead to
variations in storage, enabling the occurrence of both very small and very large flood events, thereby resulting in
heavy-tailed flood behavior. In line with this, Tarasova et al. (2018) observed clear seasonal dynamics of catchment
average runoff coefficients in Germany, with higher values in wet winters and lower values in dry summers.

The seasonality of flood tail behavior has been suggested in previous studies but remains less understood (Basso et
al., 2015; Smith et al., 2018; Macdonald et al., 2022). It's noteworthy that more than one-third of catchments appear
to exhibit inconsistent flood tail behavior across seasons (Figure 5). In these catchments, some seasons show a
tendency toward nonheavy tails, while others tend to display heavy tails. Identifying these catchments and
understanding the factors driving them to exhibit heavy tails is vital for hazard assessment. This understanding allows
us to pinpoint catchments where extreme floods could potentially occur, even if methods solely based on annual
maximum floods might estimate the flood tail as nonheavy based on annual maxima, when heavy tails can still occur
within a single season. We have identified that regions characterized by stronger evapotranspiration favor this
seasonality of flood tail behavior, as it may lead to larger variations in water storage, particularly in the growing
seasons (highlighted in white in Figure 7). This finding aligns with previous studies that have observed similar
seasonal dynamics in the nonlinearity of hydrological responses (Tashie et al., 2019; Tarasova et al., 2018).

In this study, we also found that the relationship between flood tail behavior and the expansion of catchment scales

can be explained by changes in catchment nonlinearity, which are influenced by distinct flood generation processes.
Previous studies have presented diverse perspectives on the relationship between flood tail behavior and catchment
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scales. While some studies have suggested that smaller catchments tend to exhibit heavier tails (e.g., Meigh et al.,
1997; Pallard et al., 2009), others have noted a similar trend but with only a weak correlation (Merz and Bléschl, 2009;
Villarini and Smith, 2010). Meanwhile, some studies have found no significant relationship between these two
variables (Morrison and Smith, 2002; Smith et al., 2018). These studies have explored this topic without reaching a
consensus, and many conclusions lack sufficient evidence and a clear understanding. In contrast, our findings (Figure
8) distinctly differentiate between various patterns by considering region classifications based on distinct dominant
flood generation processes, thereby providing a mechanistic understanding. As a catchment expands, it encompasses
more diverse terrain, which in turn facilitates a wider range of altitudes and flood types. In regions where tail behavior
is primarily influenced by evapotranspiration dynamics (Figure 8c), the presence of diverse altitudes tends to moderate
the effect of higher temperatures, reducing the influence of high evapotranspiration on the emergence of heavy tails.
In regions where tail behavior is primarily controlled by snowmelt (Figure 8d) (mainly composed of catchments in
Norway in this study), it has been shown that larger catchments are more likely to encompass a mix of flood types,
including snowmelt-driven and rainfall-driven floods (Vormoor et al., 2016). Merz et al. (2022) suggested that heavier-
tailed behavior in rainfall-driven floods tends to dominate in such mixed conditions. Our findings support this
hypothesis by demonstrating an increase in tail heaviness as catchment area enlarges. In regions where heavy tails are
pronounced due to the strong nonlinearity resulting from the interplay of uneven rainfall and high evapotranspiration,
there is no significant relationship between catchment nonlinearity and catchment area (Figure 8b). This lack of
relationship may be because the expansion of the catchment area does not appear to significantly enhance or reduce
this interplay.

To summarize the findings and underscore the contributions of this study, we benchmark them against the existing
hypotheses proposed in the state-of-the-art review of heavy-tailed flood distributions (Merz et al., 2022). These
hypotheses (highlighted in italics) provide a framework for understanding the factors influencing flood tail behavior,
and our study sheds light on which of these hypotheses receive stronger support or require further refinement. We
acknowledge that this summary does not cover all the hypotheses proposed in the review due to the scope of this study.
Instead, it primarily focuses on the compartments of the atmosphere and catchment:

“Hypothesis 2 (of the review paper): The Characteristic Flood Generation Process Shapes the Upper Flood Tail
Catchments.” While previous studies have hinted at the possibility that regions where flood generation is dominated
by rainfall-driven floods tend to exhibit heavier-tailed flood behavior compared to regions dominated by snowmelt
(Bernardara et al., 2008; Thorarinsdottir et al., 2018), more explicit process explanations are desired. In line with this
hypothesis, we present further evidence showing that the specific nonlinearity inherent in each flood generation
process is the primary driver of flood tail behavior. Specifically, we show that in snowmelt-dominated regions, such
as the case studies in Norway, hydrological responses closely resemble linear behavior and thus floods tend to exhibit
pronounced nonheavy-tailed behavior. Conversely, heavy-tailed floods are more prominent in regions like the UK,
where hydrological responses display nonlinearity (as indicated by recession exponents above two). In these areas,
flood generation processes are primarily driven by rainfall events. Furthermore, our study reveals that flood generation
processes are significantly influenced by the interplay between regional terrain and meteorological features. These
factors, in turn, impact the nonlinearity of hydrological responses and can determine the occurrence of heavy or
nonheavy tails in flood distributions (Figure 3e). Therefore, this study provides evidence that the influence of flood
generation processes is closely tied to the nonlinearity of hydrological behaviors. This finding enhances the
understanding of these processes, supporting advancements in this area as suggested by Merz et al. (2022).

“Hypothesis 3: Mixture of Flood Event Types Generates Heavy Tails.” One argument presented in this hypothesis is
that heavy tails may arise from the presence of a flood type displaying heavy-tailed behavior within a mixture of
processes (Morrison and Smith, 2002; Villarini and Smith, 2010). However, studies exploring the relationship between
the mixture of flood types and flood tails have been lacking. Our research addresses this gap by demonstrating that in
regions primarily characterized by nonheavy-tailed floods, driven mainly by snowmelt, the tail heaviness increases as
catchment areas expand. This increase is likely attributed to the incorporation of additional flood types, especially
those associated with rainfall processes occurring in lowland and coastal areas, as catchment areas expand. Thus, this
study addresses the knowledge gap by showing that a mix of flood event types can result in heavy-tailed flood behavior.
It further suggests that this is especially critical for regions transitioning from snow-dominated flood generation
processes to more mixed types, as observed in Northern Europe (Tarasova et al., 2023).

“Hypothesis 4: Non-Linear Response to Precipitation Causes Heavy Flood Tails.” Studies have consistently
highlighted the significance of nonlinearity in hydrological processes within catchments as a key determinant in the
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emergence of heavy-tailed flood behavior (e.g., Struthers and Sivapalan, 2007; Rogger et al., 2012; Basso et al., 2015).
In our research, we contribute by introducing a quantitative approach that employs hydrograph recession exponents
as a measure of nonlinearity in flood tail analyses and validate its effectiveness in identifying heavy-tailed flood
behavior in a large scale analysis. While nonlinearity has long been acknowledged as a contributing factor, our works
uniquely utilizes this driver as a reliable index by establishing a specific recession exponent threshold that robustly
discriminates heavy-tailed distributions, characterized by power-law tails, from nonheavy ones, offering a valuable
tool to the field. Furthermore, our large scale analysis identifies rainfall unevenness and high temperatures as crucial
drivers behind the observed nonlinearity in flood responses. Specifically, they intensify catchment soil dryness and
amplify water balance storage variations, thereby facilitating both very small and very large runoff events, translating
into heavy-tailed flood behavior. In summary, this study proposes a quantification approach based on these
acknowledged, robust drivers, using daily streamflow observations. This approach paves a broader path for exploring
the relationship between flood tail behavior and other physioclimatic variables, enhancing our understanding of
extreme hydrological events.

“Hypothesis 5: Drier Catchments Have Heavier Flood Tails Due To Interaction of Water Balance Processes.” In
alignment with previous studies that suggest the water balance processes in drier catchments contribute to the
emergence of heavy-tailed flood behavior (e.g., Molnar et al., 2006; Merz and Bldschl, 2009; Guo et al., 2014), we
emphasize the critical interplay between uneven rainfall and evapotranspiration dynamics in facilitating these
processes and shaping such the behavior. Specifically, our findings show that heavy-tailed flood behavior is more
likely to occur in catchments characterized by lower rainfall and higher evapotranspiration in one season (e.g.,
summer), contrasted with more rainfall and lower evapotranspiration in another season (e.g., winter). When one of
these conditions is lacking, heavy-tailed behavior may be less pronounced. For example, regions classified as BSh
and BSk, both of which exhibit semi-arid characteristics based on their rainfall patterns, exhibit differences in the
prevalence of heavy-tailed cases. BSk regions, despite their semi-arid status, exhibit fewer pronounced heavy-tailed
cases due to colder temperatures (Table 1) and only show a higher rate of heavy-tailed cases during the summer (Figure
7). This interplay highlights the importance of considering the seasonality of flood tail behavior, particularly in regions
that do not experience significant dry periods based on their rainfall patterns. In such regions, heavy tails are still
likely to occur in seasons with higher evapotranspiration rates (indicated by the white area in Figure 7). The interaction
between evapotranspiration and the temporal characteristics of rainfall is suggested to be the underlying reason why
drier catchments favor heavy-tailed floods, as observed in their seasonal flood tail behavior.

“Hypothesis 6: Smaller Catchments Have Heavier Flood Tails Due To Less Pronounced Spatial Aggregation Effects.”
A commonly debated question among hydrologists is whether the roles identified in large catchments are applicable
to smaller ones, and vice versa. This issue has also arisen in discussions regarding flood tail heaviness, but evidence
on the matter has been scattered. While smaller catchments have been suggested to exhibit heavier tails (Meigh et al.,
1997; Pallard et al., 2009), previous research has revealed weak (Merz and Bldschl, 2009; Villarini and Smith, 2010)
to no (Morrison and Smith, 2002; Smith et al., 2018) correlations between catchment size and tail heaviness. Our
findings (Figure 8) help clarify the relationship between catchment nonlinearity (used as an indicator of tail heaviness)
and catchment sizes. We observe distinct patterns among regions characterized by strong, neutral, and weak conditions
of heavy tail behavior. These findings underscore the importance of considering the dominant flood generation
processes specific to each region. To thoroughly address how catchment sizes affect flood tail behavior, it is important
not only to focus on the size itself but also investigate how flood generation processes vary across different sizes
within their study areas. This nuanced understanding can illuminate how catchment size interacts with flood
dynamics—either amplifying, reducing, or exerting no significant effect on heavy-tailed flood behavior.

6 Conclusions

We analyze common streamflow dynamics to infer heavy-tailed flood behavior by employing a recently developed
index of tail heaviness, namely the hydrograph recession exponent. The wide-ranging dataset allows for unveiling
spatial and seasonal patterns of flood tail behavior, and to construct a geography of heavy-tailed flood distributions.
We analyze and discuss the underlying influences of hydroclimatic settings on this geographical patterns, as
represented by Koppen climate characteristics. The main findings of this study can be summarized as follows:

1. Capability of Recession Exponents for Detecting Heavy-Tailed Flood Behavior: The capability of this index
to discern between case studies which display heavy-tailed flood distributions and those exhibit nonheavy-tailed
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behavior is validated by using empirical data from catchments across an extensive dataset covering the Atlantic
Europe, Northern Europe, and the continental United States. This extensive analysis provides a well-rounded
evaluation due to the inclusion of regions with divergent conditions, such as rainfall-driven floods (the Atlantic
Europe and the continental United States) versus snowmelt-driven floods (Northern Europe), as well as regions
characterized by single/dominant hydroclimates (the Atlantic and Northern Europe) versus those with mixed
hydroclimates (the continental United States).

2. Regional Propensity for Heavy-Tailed Flood Behavior: The Atlantic Europe are characterized by a propensity
for heavy-tailed flood behavior, which is prevalent in these regions. Conversely, a tendency for nonheavy-tailed
flood behavior is predominant in Northern Europe under current hydroclimatic conditions, as indicated by the
degree of catchment nonlinearity in each region. The continental United States exhibits a mixture of heavy- and
nonheavy-tailed behavior. This is likely the results of overarching climatic characteristics, which also shape river
network morphology, interacting with diverse regional physioclimatic settings. We emphasize that the relatively
more uniform climates in the Atlantic and Northern European regions covered in this study contribute to a
dominant presence of heavy or nonheavy-tailed behaviorsin these countries, while the continental United States
emcompasses more complex patterns due to more diverse hydroclimatic conditions.

3. Factors Influencing Heavy-Tailed Flood Behavior: The presence of simultaneous dry periods (defined by
uneven rainfall throughout the year) and higher temperatures emerge as the pivotal conditions favoring heavy-
tailed flood behavior. Drier catchments alter the runoff generation process, resulting in higher nonlinearity of
catchment responses, while higher temperatures elevate evapotranspiration rates, enhancing nonlinearity but also
maintaining atmospheric moisture preventing precipitation limitations. The absence of either condition
diminishes the prevalence of heavy-tailed flood behavior. More generalized climate categorizations like Arid,
Temperate, and Continental exhibit minimal influence on our results.

4. Seasonality of Flood Tail Behavior: We contribute to a better understanding of the seasonality of flood tail
behavior. Around two-thirds of catchments exhibit consistent behavior across seasons, with the remaining one-
third demonstrating seasonality. Heavy-tailed flood behavior is more likely during the growing season (spring to
autumn) and diminishes during the dormant season (autumn to winter). These findings hint at the role of
temperature-driven evapotranspiration dynamics for the emergence of heavy-tailed flood behavior, which are
particularly important in regions which do not experience simultaneous dry conditions and high temperatures.

5. Influences of Catchment Area on Flood Tail Behavior: We elucidate that the impacts of catchment size on
flood tail behavior are primarily contingent on the dominant flood generation processes within each region.
Specifically, the expansion of catchment area tends to have three distinct effects: (1) It diminishes tail heaviness
in regions with moderate nonlinearity, characterized by strong evapotranspiration dynamics and relatively even
rainfall throughout the year. This reduction is attributed to the smoothing of evapotranspiration variations. (2)
Conversely, in regions with low nonlinearity, characterized by snowfall dynamics, increasing catchment area
intensifies tail heaviness. This effect results from the inclusion of diverse flood types, particularly rainfall-driven
floods. (3) In regions with high nonlinearity, characterized by simultaneous strong evapotranspiration dynamics
and uneven rainfall throughout the year, catchment size expansion appears to have no significant impact on tail
heaviness. This lack of effect is likely due to the absence of significant influence on rainfall patterns, which are
critical in determining the presence of drier soil conditions.

We propose that a key mechanism driving the emergence of heavy-tailed flood behavior is the temporal variability in
catchment storage, primarily induced by simultaneous high evapotranspiration rates and drier soil conditions. This
variation in storage can lead to the occurrence of both very small and very large flood events, ultimately resulting in
heavy-tailed flood behavior. In contrast, when the catchment remains consistently wet or dry, the magnitude of
generated floods tends to fall within a similar range, leading to nonheavy tails in the distribution. It's important to
emphasize that this mechanism is influenced by seasonality and catchment sizes, both of which play a role in shaping
the variability in catchment storage.
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Appendix A Information on Study Regions

Table Al. Daily Hydrological Data Information

The Atlantic Europe Northern Europe The Continental
Region .
Germany UK Norway United States
Gauge Number 98 82 82 313
Catchment Size 110-23,843 15-9,948 4 - 40,504 66 — 9,935

[km?’)

Streamflow Record

(median: 1,195)

(median: 283)

(median: 234)

(median: 1,769)

Lensth 35-63 50— 138 50— 148 24-55
g (median: 58) (median: 59) (median: 96) (median: 55)
[year]
Streamflow Record 1951 - 2013 1883 - 2021 1871 - 2019 1948 — 2002
Duration
Number of Case Study 386 325 306 980
(spring / summer / (97796 /98 /95) (82/81/81/81) (76/76/76/78)  (285/267 /288 /140)

autumn/ winter)
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