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We thank the Editor and the two Reviewers for providing comments and suggestions. We have 

incorporated their comments in the revised version of the manuscript and answered each point below. 

The Editor’s and Reviewers' comments are in black font with gray shading while our replies are in 

blue font. Text in the original manuscript is reported in red, with Lo refers to the line number. Text 

in the tracked-revised version is presented in dark-blue, with Lr refers to the line number. 

 

 

Editor 

We have received a detailed list of comments from two reviewers. After reading them carefully, and 

also from my own personal reading of the manuscript, I believe there are some issues that need to be 

carefully solved whether you decide to revise your manuscript. 

 

Thank you for the review. We have addressed all the comments of the reviewers and made 

appropriate modifications in the manuscript, as outlined below. 

 

 

Response to Reviewer 1 

The authors provide empirical analyses on the pattern and drivers of the tail heaviness. They adopt 

hydrograph recession exponent as the indicator of watersheds with or without propensity for heavy 

tails of flood peak distributions. The contrasts in the tail heaviness across watersheds, climate regions, 

seasons, shed light on the importance of characterizing catchment storage in dictating flood regimes. 

The analyses are interesting and robust. A major of mine is that the manuscript is lengthy that obscure 

the new wisdom obtained. I would suggest the authors to further refine and remove unnecessary 

details. 

 

Thank you for the summarized review and positive feedback. We have streamlined the details, 

particularly addressing the specific comments below, to better highlight the key findings of this work 

as suggested by the reviewer. 

 

Specific comments: 

1) The part that emphasize the utility of hydrograph recession exponents in characterizing tail 

heaviness is lengthy, and needs to be shortened. …  

We have shortened the sections that describe the utility of hydrograph recession exponents in 

characterizing tail heaviness, as suggested by the reviewer. In particular, we shortened section 3.1 by 



making larger use of references to a previous publication where this approach was first introduced 

(Wang et al., 2023). See details, particularly, at the Lr 185-223: 

Within the PHEV framework, we obtain consistent expressions for the probability distributions of 

various flow metrics, including daily streamflow (Botter et al., 2009), ordinary peak flows (local flow 

peaks resulting from streamflow-producing rainfall events), and floods (flow maxima within a specified 

timeframe) (Basso et al., 2016). The mathematical expressions for these are presented as Eqs. (1) to 

(3), respectively: 
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𝑑𝑞, 𝜏[𝑑𝑎𝑦] is the duration of the considered time frame, 𝐶ଵ and 𝐶ଶ are 

normalization constants. 

By taking the limit of these distributions, insights into the tail behavior of these theoretical flow 

distributions are obtained (Basso et al., 2015; Wang et al., 2023) (see Eqs. (4) to (6), set 𝑪𝟑 = 𝛌𝛕𝑪𝟐). 

In particular, Wang et al. (2023) showed that the tail of the distribution is exclusively governed by a 

power law function (indicating heavy tails) when the hydrograph recession exponent exceeds two, 

signifying discernible nonlinearity of catchment responses. Conversely, the tail appears as nonheavy 

when the recession exponent is below two, suggesting linearity of catchment responses (notice that 

recession exponents are found to be above one in most river basins; Biswal and Kumar, 2014; Tashie 

et al., 2020b). Eq. (1) provides the mathematical expressions for the case of floods as an example 

(Note that similar conclusions are drawn for the theoretical distributions of daily streamflow and 

ordinary peak flows). As a result, the hydrograph recession exponent has been proposed as a suitable 



indicator of heavy-tailed flood behavior, based on the analysis of common discharge dynamics. For 

further detailed information, please refer to Wang et al (2023).  
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Here, 𝒒 represents the discharge, 𝒑𝑴(𝒒) denotes the mathematical expression of the probability 

distribution of flow maxima (i.e., floods) in PHEV, and C is a normalization constant. 

We employ an event-based analysis for estimating hydrograph recession exponents, a method 

deemed more robust than cloud-based analysis (Biswal and Marani, 2010; Dralle et al., 2017; Jachens 

et al., 2020). Specifically, we estimate the parameters of empirical power laws for individual 

hydrograph recessions through a linear regression of the pairs of 𝒅𝒒/𝒅𝒕 and 𝒒 in log-log scale. The 

constant time step (CTS) method has been commonly used in various studies to estimate the time 

derivatives 𝒅𝒒/𝒅𝒕 (e.g., Biswal and Marani, 2010; Mutzner et al., 2013; Dralle et al., 2017; Tashie et 

al., 2020b; Basso et al., 2023), while other methodologies (Wittenberg, 1999; Rupp and Selker, 2006; 

Roques et al., 2017) have been developed for specific conditions. For instance, the exponential time 

step (ETS) method was introduced to reduce estimation uncertainty mainly caused by the latter-stage 

(low-flow) recession (Roques et al., 2017). In this study, recession exponents have been calculated 

using both CTS and ETS methods, yielding similar conclusions regarding flood tail behavior (see 

supporting information Text S1 and Figure S1). Therefore, we chose to base the subsequent analyses 

on the results obtained from the more commonly utilized approach (i.e., the CTS). The supporting 

information, Figure S2, provides an example of this process. We use the constant time step (CTS) 

method to estimate the time derivatives dq/dt (see an example in supporting information Figure S2), 

which has been commonly used in various studies (e.g., Biswal and Marani, 2010; Mutzner et al., 2013; 

Dralle et al., 2017; Tashie et al., 2020b; Basso et al., 2023). We acknowledge the availability of 



alternative methods, such as the exponential time step (ETS), and confirm that ETS yields results 

similar to CTS in this study (see supporting information Text S1 and Figure S1). 

 

…One question might be, as far as can be seen from the dataset, the record lengths are quite adequate 

despite of variance, some of other tail heaviness indicators would be able to perform as well. 

 

The dataset employed in this study spans 24 to 148 years. We acknowledge that other indicators could 

also be used; however, we are specifically interested in the recession exponent because it is a novel 

index that allows us to infer the propensity of rivers to experience extreme floods. This index enables 

us to identify potential risks even in the absence of recorded extreme floods, which is often not 

possible with other indicators. Additionally, the recession exponent is suggested to mitigate the bias 

often introduced by the variance in dataset lengths across cases (Smith et al., 2018; Wietzke et al., 

2020; Wang et al., 2023). 

 

We have improved the literature review on this topic in Lo 72-80. We further supplement this with the 

following statement, Lr 99-103: “Nonetheless, we acknowledge that other indicators could also be 

used; however, we are specifically interested in the recession exponent because it is a novel index 

that allows us to infer the propensity of rivers to experience extreme floods. Such an index enables us 

to identify potential risks even in the absence of recorded extreme floods, which is often not possible 

with other indicators. Its stability provides additional value to mitigate the bias often introduced by 

the variance in dataset lengths across cases.” 

 

 

2) What is the rationale of using five days as the minimum duration, considering the vast variance in 

drainage areas? 

 

Event-based recession analyses of daily discharge data typically consider recessions which last for a 

minimum of 3 to 5 days (e.g., Shaw and Riha, 2012; Biswal and Marani, 2010) to minimize noise from 

short events (Ye et al., 2014) while ensuring a sufficient sample size (i.e., a sufficient number of 

analyzed recessions) to obtain representative values of recession parameters (Shaw, 2016). We 

acknowledge that the most suitable recession length may vary depending on the drainage area. 

Although drainage area is an important factor, our catchments are somehow mesoscale catchments. 

Hence, for the sake of simplicity, we applied a single minimum duration, i.e., 5 days, a common 

practice in other studies (Biswal and Marani 2010; Shaw and Riha, 2012; Dralle et al., 2017; Jachens et 

al., 2020; Tashie et al., 2020a). 

 

We have modified the manuscript accordingly:  



Lo 212-213: “The minimum duration of a recession is set to five days (Dralle et al., 2017), denoting that 

recessions shorter than five days are not considered.” 

Lr 233-237: “To reduce noise from short events (Ye et al., 2014) and ensure sufficient sample sizes (i.e., 

a sufficient number of analyzed recessions) to obtain representative values of recession parameters 

(Shaw, 2016), it is common practice to set a minimum recession duration. Following previous studies, 

we did not vary this duration across basins and set it equal to 5 days (Biswal and Marani 2010; Shaw 

and Riha, 2012; Dralle et al., 2017; Jachens et al., 2020; Tashie et al., 2020a).” 

 

 

3) “The upper tail is defined by an optimized lower boundary of the discharge, determined by selecting 

the best fit based on the KS statistic”. This is not quite clear. How the upper tail is defined and 

statistically modelled is important. Section 3.2 also needs to be concise and informative. Please 

reconstruct. 

 

Thank you for your suggestions. We have rephrased the sentence to improve clarity as below: 

Lo 232-233: “The upper tail is defined by an optimized lower boundary of the discharge, determined 

by selecting the best fit based on the KS statistic” 

Lr 259-265: “Empirical data following a power-law distribution (if applicable) typically do so above a 

certain lower bound (Clauset et al., 2009). Therefore, we employ the approach proposed by Clauset 

et al. (2007) to determine an optimized lower boundary above which a power-law tail may emerge. 

This method selects the boundary for which the empirical probability distribution and the best-fit 

power-law model are most similar as evaluated by the Kolmogorov-Smirnov (KS) statistic, which is 

used to quantify the distance between these distributions. If the optimized lower boundary is higher 

than the true lower boundary, the reduced data sample leads to a poor match due to statistical 

fluctuations. If it is lower, the distributions differ fundamentally.” 

 

We have revised the remaining of section 3.2 with the goal of shortening it. Below are the main 

modifications: 

Lo 221-231: “We used the Kolmogorov-Smirnov (KS) statistic (κ) to preliminarily assess empirical power 

law distribution reliability (κ∈[0,∞], with κ=0 denoting highest reliability) (Clauset et al., 2009; Klaus 

et al., 2011; Alstott et al., 2014). We acknowledge that there are alternative methods for evaluating 

goodness-of-fit. For example, the Anderson-Darling test, which is essentially a modified version of the 

Kolmogorov-Smirnov test, gives greater weight to the tails when assessing the distance between 

distributions. However, using such tests can be more conservative in determining the minimum 

threshold of the variable that delineates the tail range of the empirical distribution.  This 

characteristic necessitates a much larger dataset to ensure a robust distribution fit for the tail; 

otherwise, the sample size of the identified tail may be insufficient for a reliable fit (Alstott et al., 2014; 

Clauset et al., 2009). In our case, we opted for the KS test because it allows for more appropriate 



sample sizes based on our datasets (Hosking and Wallis, 1987) (see Figure S4 in the supporting 

information). To establish the reference point for plausible empirical power laws, we employed the 

framework introduced by Clauset et al. (2009).” 

Lo 233-246: “The goodness-of-fit test is conducted using the KS test with a significance level of p > 0.1. 

It's important to note that a higher 𝑝-value is considered more rigorous in this context, as the aim is 

to verify the null hypothesis rather than to reject it, as is often considered in other cases. Thus, p > 0.1 

is a more stringent criterion than p > 0.05 in this scenario. All cases that meet the goodness-of-fit 

criteria are further evaluated for plausibility against common alternative distributions using the 

bootstrapping method. This involves generating 1000 sets of synthetic data from the optimized power 

law model, each with the same sample size as the fitted observations. In their experiments, the 

number of 1000 repetitions has proven sufficient to distinguish power laws from both exponential and 

lognormal distributions using the KS test with a p > 0.1 significance level. Once the empirical power 

law passes all these criteria, it is considered a dependable (plausible) representation of the empirical 

data distribution. We term such a case study a 'power-law-tailed case study,' while cases that don't 

meet these criteria are labeled as 'uncertain case studies' in subsequent analyses. The latter label 

acknowledges the awareness that we cannot definitively conclude whether these case studies are 

indeed not power-law-tailed or if their underlying distributions cannot be determined due to the high 

uncertainty caused by the small sample sizes of available observations.” 

Lr 278-288: “The goodness-of-fit is evaluated by means of the KS test. We used the KS test instead of 

alternatives like the Anderson-Darling test to ensure appropriate sample sizes for our datasets 

(Hosking and Wallis, 1987; Clauset et al., 2009; Klaus et al., 2011; Alstott et al., 2014) (see Figure S4 in 

the supporting information). The KS statistic (κ) is employed to preliminarily assess the reliability of 

empirical power law distributions (κ∈[0,∞], with κ=0 denoting the highest reliability). The test is 

applied with a significance level of p > 0.1, which is more stringent than the typical p > 0.05 since the 

goal here is to fail to reject the null hypothesis (i.e., to confirm the lack of evidence to conclude that a 

difference exists between the distributions). Cases meeting this criterion are further evaluated against 

alternative distributions (e.g., lognormal) by using a bootstrapping method, where 1000 synthetic 

datasets are generated from the optimized power law model (Clauset et al., 2009). Cases passing also 

this further criterion are deemed 'power-law-tailed.' Those that don't are labeled 'uncertain,' 

indicating that either these cases are not power-law-tailed, or their distribution cannot be determined 

due to high uncertainty from small sample sizes.” 

Lo 250-253: “The sample sizes of the identified upper tails for the distributions of daily streamflow 

range from 176 to 11260, with a median of 1280. For the distributions of ordinary peaks, the sample 

sizes range from 13 to 2240, with a median of 512. In the case of monthly maxima distributions, the 

sample sizes vary from 6 to 418, with a median of 132.  

Lr 287-288: “(the median sample sizes are 1280, 512, and 132 for daily streamflow, ordinary peaks, 

and monthly maxima, respectively)” 

 



Lo 259-263: “We acknowledge that the method of maximum likelihood used for parameter estimation 

could, in principle, be substituted with various established approaches based on the characteristics of 

the study data. For instance, Hosking and Wallis (1987) shown that the method of probability-

weighted moments could offer better parameter estimation when working on less than 500 samples 

for generalized Pareto distributions, which are known to exhibit power law tails in asymptotic analysis.” 

 

The following description is added for clarity (and in response to Reviewer 2's comments): 

Lr 302-305: “It's important to clarify that these sample sizes refer specifically to the tail of the empirical 

distributions. In other words, only the most extreme observations are analyzed to determine whether 

the empirical distributions exhibit power-law behavior in their tails. For the overview of the entire 

data series analyzed in this study, please refer to Section 2.” 

 

4) Line 269, by “majority” you use “50 %” as the threshold? 

 

Yes, we do. We have specified it in the revised manuscript (Lr 314). 

 

 

5) From Figure 1 and Figure 2, we can see there are many overlaps between heavy tails and nonheavy 

tails. This is especially evident in Figure 2 where we see the scatters are well mixed. These results make 

me wonder the utility of recession exponent (a=2) as the criteria. I would suggest the authors to 

explain and discuss the limitation. 

 

Ideally, the new index should be validated by comparing its predictions for both heavy-tailed and non-

heavy-tailed case studies, as determined from empirical frequency distributions. However, from data 

we can only determine which case studies are power-law-tailed (black dots in Figure 2), but we cannot 

state which cases are certainly non-heavy-tailed. These cases are therefore labeled uncertain case 

studies (gray dots in Figure 2). The latter category encompasses case studies that either do not follow 

a power-law distribution or whose underlying distributions cannot be determined because of high 

uncertainty due to small sample sizes, which may cause the overlaps of these two groups. In fact, 

several years of data are still a small sample to reliably characterize the tail of empirical data 

distributions. Due to this limitation, the effectiveness of the recession exponent is assessed by 

comparing its predictions with the identified heavy-tailed cases only (black dots in Figure 2). 

Additionally, to rigorously validate the effectiveness of the recession exponent criteria, we also include 

Figure 1, which tests sensitivity of the index accuracy to the reliability level of the empirical power 

laws. The index accuracy is achieved by means of conditional probability. The results show that the 

accuracy improves as the reliability level of the empirical power laws increases. This suggests that, 

although the two groups overlap (in Figure 2), cases identified as heavy-tailed indeed have a recession 

exponent greater than 2, as expected from our index. 



 

Notwithstanding the limitations inherent in identifying benchmarks for the new index based on data 

analyses, we acknowledge that misattribution can occur due to the recession exponent not always 

being able to properly distinguish between heavy and light tails, particularly when a is around the 

threshold value of 2. This issue is highlighted by the case studies in Norway, which we discuss in Lo 

356-363. We have clarified the matter discussed above at Lr 286-288:  

 

Lr 286-288: "Cases passing all criteria are deemed 'power-law-tailed.' Those that don't are labeled 

'uncertain,' indicating that either these cases are not power-law-tailed, or their distribution cannot be 

determined due to high uncertainty from small sample sizes." 

 

Moreover, we have inserted additional discussion after Lo 331: 

 

Lr 378-381: "We cannot conclude whether uncertain case studies (gray dots) represent cases that are 

indeed not power-law-tailed or if their underlying distributions cannot be determined due to the high 

uncertainty caused by small sample sizes. Therefore, we benchmark the recession exponent against 

the empirical power law exponent by focusing on the 'certain group,' i.e., power-law-tailed case 

studies (black dots)." 

 

The following statement has also been inserted at Lr 415: 

 

Lr 415: “However, we acknowledge that misattributions may occur, particularly when a is around the 

threshold value.” 

 

 

6) Figure 4 and the text, please explain the rationale of using percentage. The absolute count of 

watersheds would matter, as can be seen that there is only one watershed in Bwk. This can be due to 

sampling uncertainties. 

We recognize that the varying number of cases across climate types might introduce bias due to 

sample sensitivity (as we mentioned in Lo 490-493). Nonetheless, the ratio (i.e., percentage) of heavy- 

to non-heavy-tailed case studies in each climate region is considered to be one of the most direct 

approaches to display the propensity towards a certain tail behavior in each region. We have revised 

the manuscript to emphasize this concern related to the employed dataset: 

 

Lo 490-493: “We acknowledge that these results are based on overarching conditions and do not 

encompass all climate types, and achieving an equal number of study sites across various climate 

regions might not always be feasible. Expanding the number of study sites could further enhance our 

understanding, especially for extreme cases.” 



 

Lr 554-558: “We acknowledge that these results are based on overarching climate conditions and do 

not encompass all climate types, and achieving an equal number of study sites across various climate 

regions might not always be feasible. We should be mindful of potential bias caused by sample 

sensitivity, particularly in regions with a limited number of cases (e.g., Csa, BSh, BWk in this study). 

Expanding the number of study sites in these climate regions could strengthen the current 

understanding.” 

 

7) What do the authors mean by “catchment storage”? Please clarify. 

 

Thank you for pointing this out. We have clarified this as follows: 

 

Lr 547-550: “We refer to catchment storage sensu Kirchner et al. (2009) and Botter et al. (2009), i.e., 

the varying amount of water contained in a catchment between dry and wet periods.. This capacity is 

dynamic and depends on various factors, such as soil moisture states, precipitation, and 

evapotranspiration (Merz and Blöschl, 2009; Zhou et al., 2022).” 

 

 

8) Line 571, I would suggest the role of ET alone might not be that important. The ratio of ET to P 

worthwhile to be explored. 

 

We agree that, also based on our analyses and findings, the temporal characteristics of rainfall and 

evapotranspiration collaboratively influence this seasonality, as discussed in detail at Lo 539-548. We 

therefore revise Lo 569-571 as follows: 

Lo 569-571: “Regions with pronounced temperature variations across seasons, particularly with higher 

temperature in summer, tend to display such dynamics and highlight the role of evapotranspiration in 

catchments in driving this seasonality.” 

Lr 634-638: “Regions with pronounced temperature variations across seasons, particularly with higher 

temperatures in summer, and characterized by relatively evenly distributed rainfall throughout the 

year tend to display such dynamics. This highlights the importance of both evapotranspiration and the 

temporal characteristics of rainfall in shaping flood tail behavior across seasons, aligning with previous 

studies (Guo et al., 2014; Basso et al., 2023).” 

 

9) Line 605-606, the three references use indicators that quantify the heaviness of upper tails, while 

in this study, the authors are in fact addressing “propensity”. 

 



Thank you for pointing this out. We have improved the text as below: 

 

Lo 604-606: “These findings align with previous discussions on this matter (e.g., Merz and Blöschl, 2009; 

Villarini and Smith, 2010; Smith et al., 2018), which have suggested a relatively weak inverse 

correlation between catchment area and the occurrence of heavy-tailed flood behavior.” 

Lr 673-676: “These findings align with the results of previous studies (e.g., Merz and Blöschl, 2009; 

Villarini and Smith, 2010; Smith et al., 2018) which, by using different indices to quantify the heaviness 

of upper tails, have suggested a relatively weak inverse correlation between catchment area and the 

occurrence of heavy-tailed flood behavior.” 

 

 

10) Line 649-650, this is obvious. 

 

This sentence (Lo 649-650) serves as a contrast to the following one (Lo 650-652). To address the 

reviewer’s comment, we have revised it as follows: 

 

Lo 649-650: “Our findings first indicate that regions with relatively uniform …” 

Lr 726: “Regions with relatively uniform …” 

 

 

11) Section 5, I enjoy reading this section overall, but it can be further improved by explicitly 

highlighting what are found in this study, and what are proposed by previous studies, especially the 

review paper by Merz et al. 

 

Thank you for the suggestion. We have enhanced the clarity of this section by adding or refining 

statements in Section 5. Particularly, we highlight the comparison between current understanding and 

the new findings contributed by this study in the revised version across hypotheses: 

 

Hypothesis 2 (Lo717-729): 

Lr 806-808: “Therefore, this study provides evidence that the influence of flood generation processes 

is closely tied to the nonlinearity of hydrological behaviors. This finding enhances the understanding 

of these processes, supporting advancements in this area as suggested by Merz et al. (2022).” 

 

Hypothesis 3 (Lo730-737): 

Lo 736-737: “Thus, our findings provide evidence that supports this hypothesis.” 

Lr 815-818: “Thus, this study addresses the knowledge gap by showing that a mix of flood event types 

can result in heavy-tailed flood behavior. It further suggests that this is especially critical for regions 



transitioning from snow-dominated flood generation processes to more mixed types, as observed in 

Northern Europe (Tarasova et al., 2023).” 

 

Hypothesis 4 (Lo738-749): 

Lr 831-834: “In summary, this study proposes a quantification approach based on these acknowledged, 

robust drivers, using daily streamflow observations. This approach paves a broader path for exploring 

the relationship between flood tail behavior and other physioclimatic variables, enhancing our 

understanding of extreme hydrological events.” 

 

Hypothesis 5 (Lo750-763): 

Lr 848-850: “The interaction between evapotranspiration and the temporal characteristics of rainfall 

is suggested to be the underlying reason why drier catchments favor heavy-tailed floods, as observed 

in their seasonal flood tail behavior.” 

 

Hypothesis 6 (Lo764-774): 

Lo 772-774: “These findings underscore the importance of considering the dominant flood generation 

processes in each region and elucidate how catchment size interacts with flood tail behavior by 

influencing these dominant processes—either amplifying, reducing, or having no significant effect.” 

Lr 859-863: “These findings underscore the importance of considering the dominant flood generation 

processes specific to each region. To thoroughly address how catchment sizes affect flood tail behavior, 

it is important not only to focus on the size itself but also investigate how flood generation processes 

vary across different sizes within their study areas. This nuanced understanding can illuminate how 

catchment size interacts with flood dynamics—either amplifying, reducing, or exerting no significant 

effect on heavy-tailed flood behavior.” 

 

 

We sincerely appreciate the reviewer's valuable comments, which have certainly enhanced the quality 

and clarity of this manuscript. 

 

 

 

 

 

 

 

 

 

 



Response to Reviewer 2 

This paper investigates an interesting hypothesis, that the tail heaviness of flood distributions can be 

inferred from a recession analysis, through a large sample analysis with data from Europe and the 

United States. In hydrology, a heavy tail distribution of floods means that extreme floods are more 

likely to occur than would be predicted by distributions that have exponential asymptotic behaviour. 

Very large extremes may therefore happen with a probability that is not as small as one would expect 

if using, for example, a Gumbel distribution to model flood probabilities, and may result in huge 

damages due to their surprising nature. Identifying the properties of the distribution tails is a hard 

task which requires, usually, very long series of data and/or regional analyses when using statistical 

techniques. Linking tail heaviness to catchment behaviour and process understanding is therefore a 

very interesting avenue to follow in order to increase our confidence in the behaviour of the extremes. 

This is the aim of this paper and it is therefore of interest to the hydrology community. The paper is 

well-written with high-quality figures. 

 

Thank you for summarizing the aims of this study.  

 

1) The first aim of the paper is to validate the effectiveness of the method in identifying heavy tail 

flood behavior (line 95). However, the validation is based on analysing whether samples of (on average) 

10 years of length (line 253), at the daily to monthly maxima timescales, can be represented in the 

tails by an empirical power law. My question is whether this "tail analysis" is representative of the 

extremes of practical interest? In hydrological practice, we typically focus on return periods of 100 or 

200 years and sometimes more. It is unclear to me what are the return periods of interest in this paper. 

It is important to reflect on the range of return periods for which the analyses in this paper are meant 

because processes may emerge with increasing return periods which are not at work for less extreme 

floods. I am not convinced that the paper demonstrates that the method is relevant for extremes that 

are of interest in hydrology. Benchmarking the recession analysis on a statistical analysis on short 

samples does not constitute a proper validation of the method. In order to better evaluate the 

effectiveness of the method in identifying heavy tail flood behavior, an additional, and to me more 

convincing, benchmark should be the analysis of (many) long timeseries with methods usually adopted 

in flood frequency analysis (e.g., fit of the GEV shape parameter, better if using regional analysis). 

 

The concern raised pertains to Lo 253 (Lr 301), where we mention that the average sample size used 

for fitting empirical power laws on monthly maximum streamflow is 132. We believe the reviewer 

interpreted this as representing roughly 10 years of observations, which is considered too short to 

represent extreme behavior. We would like to clarify that the average sample size of 132 refers only 

to the length of the identified 'tail' of the frequency distribution, not the length of the entire 

observation period. The full observation period is on average 62 years (ranging from 24 to 148 years) 

across the dataset used in this study (see Lo 125 / Lr 138). Empirical data, if they follow a power-law 



distribution, typically do so only for values above a certain threshold (i.e., the tail). Consequently, it is 

standard practice to first identify this threshold (i.e., where is the tail) before fitting a power law. The 

sample size of 132 hence refers to the most extreme monthly maxima above this threshold observed 

within an average 62-year long data series. 

 

We regret any confusion caused by the previous wording and have added the following description to 

clarify this point in the revised manuscript:  

Lr 302-305: “It's important to clarify that these sample sizes refer specifically to the tail of the empirical 

distributions. In other words, only the most extreme observations are analyzed to determine whether 

the empirical distributions exhibit power-law behavior in their tails. For the overview of the entire 

data series analyzed in this study, please refer to Section 2.” 

 

Nonetheless, We acknowledge that the length of the data series used in this study (62-years on 

average) does not allow to directly derive from data the magnitude of events with 100 or 200 years 

return period, as it occurs in most cases by using any other method. In fact, such an observation period 

aligns with what is normally available (e.g., Bertola et al., 2023) and used in flood frequency analysis 

for estimating (through extrapolation) 100- or 200-year floods (Zhao et al., 2021).  

 

Several studies suggested that the shape parameter of the GEV may not be a reliable indicator of tail 

heaviness because it is highly sensitive to the length of observation series and the occurrence of 

outliers (Hu et al., 2020; Cai and Hames, 2010). However, to address the concerns of the reviewer and 

provide an additional benchmark for the method employed in this study, we also calculated the L-

moment ratio diagrams, which have been shown to provide more robust results than the shape 

parameter of the GEV, particularly for evaluating highly skewed samples (Vogel and Fennessey, 1993). 

97.8%, 100%, and 94.1% of the identified heavy-tailed case studies(based on empirical power law 

fitting of daily flows, ordinary peaks, and monthly maxima) exhibit greater L-skewness and L-kurtosis 

than the exponential distribution, thus indicating heavy-tailed behavior. These results, which confirm 

the results of the previous benchmarking through the use of L-moment ratio diagrams, are shown in 

Figure S5 and discussed at lines Lr 77-80, 372-377. 

 

Lr 77-80: “Additional efforts to improve the reliability of tail heaviness estimates include the use of L-

moments (Hosking et al., 1985), which ensure better upper tail estimation of GEV compared to 

maximum likelihood, and L-moment ratio diagrams (Vogel and Fennessey, 1993), which improve 

estimation in highly skewed samples.” 

 

Lr 372-377: “We also perform an L-moment analysis, a compelling method in order statistics used to 

quantitatively describe extremes and known for its robustness to stochastic sampling uncertainties 

(Hosking, 1990). This analysis serves to confirm the tail heaviness observed in the identified power-



law-tailed case studies, in which these case studies show clearly heavier tails than exponential 

distributions (i.e., the widely accepted distinction of heavy- and nonheavy-tailed distributions; Merz 

et al., 2022) (see supporting information Figure S5).” 

 

 

2) The second aim of the paper is the evaluation of the causes for differences in the recession 

coefficient and therefore, based on the hypothesis made here, of the tail heaviness of floods. The 

results are not that easy to interpret, since the method proposed uses a sharp threshold on the 

recession coefficient (a=2) to distinguish between heavy tail behaviour and (possibly) non-heavy tail 

behaviour. So only a binary distinction is made and differences between Germany and UK, for example, 

cannot be clearly identified. Since different degrees of tail heaviness exist, wouldn't it be more useful 

to link the recession coefficient to, for example, the exponent of the empirical power law b? The 

Authors show something like this in Figure 2 even though the relationship doesn't seem to be so strong. 

But wouldn't that be more useful in hydrological practice where, for instance, the estimation of the 

GEV shape parameter is of interest?  

 

The identification of heavy-tailed floods through hydrograph recession analysis (employed in this 

study) uses a threshold of two on the recession exponent to distinguish heavy-tailed cases from non-

heavy-tailed ones. The method further allows for evaluating the tail heaviness based on the specific 

exponent values, as noted by the reviewer. Such an approach resembles what done for other indices, 

such as the GEV shape parameter, where a threshold value of zero is used to differentiate between 

heavy-tailed and non-heavy-tailed distributions. Differently from the latter case, where the threshold 

of zero has a statistical meaning only, the threshold of two in the method adopted in this study has 

also a physical meaning, as it represents a degree of non-linearity of the catchment hydrologic 

response which cause a shift in the shape of the resulting streamflow and flood distributions (see 

Botter et al., 2009 and Kirchner et al., 2009 for details in this regard; see Basso et al., 2016, 2023 for 

how the shift in the shape of the streamflow distribution translates into a shift in the shape of the 

flood distribution). 

 

This study emphasizes a binary distinction between heavy and non-heavy-tailed distributions - rather 

than discussing the degree of heaviness - for two reasons. First, a reliable identification of heavy-tailed 

distributions (i.e., even without any claim about their degree of heaviness) is per se a difficult task, as 

noted by the reviewer in the previous comment. Second, the identification itself holds significant 

hydrological importance, regardless of the degree of heaviness. In fact, the presence of a heavy tail 

alone can serve as a critical warning of a relatively high probability of extreme events. For the latter 

reason also other studies, even those using indices like the GEV shape parameter, often focus on 

distinguishing cases with heavy-tailed flood distributions from those without (e.g., Macdonald et al., 

2022). In addition, there is a notable gap in conducting such investigations on an extended spatial 



scale. This gap is largely due to the fact that quantifying such behavior remains highly sensitive to the 

sample size (Wietzke et al., 2020; Hu et al., 2020), making reliable identification across different 

datasets challenging (Merz et al., 2022). The use of the empirical power law exponent b, as suggested 

by the reviewer, would similarly suffer from sensitivity to the sample size, as discussed at lines Lr 291-

301, 388-395. 

Instead, the recession exponent used in this study has been tested and found to be more reliable to 

distinguish between heavy and non-heavy-tailed distributions than, e.g., the GEV shape parameter, 

especially in analyses with short data lengths, as shown in a previous work (see Hu et al., 2020 and 

Wang et al., 2023). This justifies the selection of such an index for investigations across a broader 

range of study areas. We have added the following statement to enhance the relevant discussion:  

Lr 721-725: “This study focuses a binary distinction between heavy and non-heavy-tailed distributions, 

rather than assessing the degree of heaviness, for two key reasons. First, identifying heavy-tailed 

distributions is inherently challenging. Second, the identification itself holds significant hydrological 

importance, regardless of the degree of heaviness. In fact, the presence of a heavy tail alone can serve 

as a critical warning of a relatively high probability of extreme events, making it a crucial issue also in 

studies using other indices (e.g., Macdonald et al., 2022).” 

 

 

Besides, I think the spatial results obtained here should be compared to regional studies on flood 

frequency? One example is Macdonald et al. (2022) who identify the GEV shape parameter as a 

quantification of tail heaviness in Germany. Figure 3a here seems consistent with Figure 4 of 

Macdonald et al. (2022). What about the other regions? In the US there are maps of the regional 

skewness in the Bulletin 17b. These comparisons could strengthen the confidence in the effectiveness 

of the method, since they are based on longer timeseries and on regional analyses. 

 

We agree that comparing our findings with previous regional studies would strengthen the 

conclusions of this work, as we described in Lo 390-424. We thank the reviewer for suggesting further 

comparisons. Accordingly, we will enhance this section with the following modifications: 

 

For Germany: Lr 445-446: “This finding aligns with Macdonald et al. (2022), who used GEV shape 

parameters as an indicator of heavy-tailed behavior for gauges with more than 50 years of 

observations.” 

 

For the UK: Lr 451-453: “According to our findings, heavy-tailed flood behavior is prevalent in the UK, 

with a prevalence of 77%, particularly in the eastern and southern coastal regions. This aligns with 

clues from historical events (European Environmental Agency, 2010) and clues from future flood risk 

assessments (Rudd et al., 2021).” 

 



For the US: Lr 473-477: “In particular, catchments on the eastern side of the Appalachian Mountains 

exhibit pronounced heavy-tailed flood behavior, while those on the western side mostly exhibit non-

heavy-tailed behavior. This is consistent with several previous findings based on the skewness of 

annual maximum streamflow (Interagency Advisory Committee on Water Data, 1982), the GEV shape 

parameters (Villarini and Smith, 2010), and the upper tail ratio (Smith et al., 2018).” 

 

We would like to highlight that the analyses of this study, which are based on shorter and more 

variable lengths of data (24-148 years) and on analyzing hydrograph recessions from ordinary flows 

rather than flood records, provide findings in agreement with studies that rely on longer data records 

(e.g., only gauges with more than 75 years in the work of Villarini and Smith (2010), and more than 50 

years in Macdonald et al. (2022)). In our view, such an agreement not only confirms the effectiveness 

of this new approach but also highlights its advantages, as it allows for analyses across broader 

geographical areas where less data may be available, facilitating the investigation of diverse conditions. 

 

Given these concerns, I am sorry I cannot recommend publication of this work in HESS. 

 

We hope the responses provided above satisfactorily address the reviewer’s concerns. We would like 

to emphasize that this work not only aims at validating the effectiveness of the newly proposed 

approach (as demonstrated in greater detail in our previous work, Wang et al., 2023) but also at using 

this index to shed light on the relationships between heavy-tailed flood behavior and critical 

environmental factors (e.g., climate, catchment areas) that remain poorly understood. 
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