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Abstract. The Mississippi River is a critical waterway in the United States, and hydrologic variability along its course represents 

a perennial threat to trade, agriculture, industry, the economy, and communities. The Community Earth System Model version 1 10 

(CESM1) complements observational records of river discharge by providing fully coupled output from a state-of-the-art earth 

system model that includes a river transport model. These simulations of past, historic, and projected river discharge have been 

widely used to assess the dynamics and causes of changes in the hydrology of the Mississippi River basin. Here, we compare 

observations and reanalysis datasets of key hydrologic variables to CESM1 output within the Mississippi River basin to evaluate 

model performance and bias. We show that the seasonality of simulated river discharge in CESM1 is shifted 2-3 months late 15 

relative to observations. This offset is attributed to seasonal biases in precipitation and runoff in the region. We also evaluate 

performance of several CMIP6 models over the Mississippi River basin, and show that runoff in other models — notably CESM2 

— more closely simulates the seasonal trends in the reanalysis data. Our results have implications for model selection when 

assessing hydroclimate variability on the Mississippi River basin, and show that the seasonal timing of runoff can vary widely 

between models.  Our findings imply that continued improvements in the representation of land surface hydrology in earth system 20 

models may improve our ability to assess the causes and consequences of environmental change on terrestrial water resources and 

major river systems globally.  

1 Introduction 

Ongoing and projected changes in streamflow due to climate change remain uncertain because of the complex and dynamic 

nature of river systems and the interactions between the ocean, atmosphere, and land surface that govern terrestrial hydrologic 25 

processes (Clark et al., 2015; Fisher & Koven, 2020; Good et al., 2015; Wood et al., 2011). Our understanding of hydrologic 

changes is informed by observational datasets, but earth system and hydrologic models play an increasingly critical role in 

examining the impacts of climate variability and climate change on river discharge as systems vary outside of what has 

previously been observed as normal(Fowler et al., 2022; Herrera et al., 2023; Milly et al., 2008). However, several key 

hydrologic processes that regulate river discharge remain poorly constrained in earth system models. This results in uncertainties 30 

around future streamflow conditions that represent a critical challenge for water resources management, hazard mitigation, and 

emergency response(Fowler et al., 2022; Her et al., 2019; Troin et al., 2022; Vetter et al., 2017). While understanding changes in 

river discharge and its repercussions for management is important across multiple spatial and temporal scales, it is particularly 

important for large river systems, like the Mississippi River basin (Figure 1), which serve as regional economic arteries for 

hydroelectric power, transportation, and fresh water for municipal, industrial, and agricultural use. 35 
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Figure 1. Mississippi River Basin and major tributaries: (a) Basins of major tributaries and corresponding stream gage 

locations. (b) Average precipitation from GPCC10 and grouping of subbasins into Eastern and Western Basins (gray line). 

(c) Monthly mean discharge from stream gages on the major tributaries (1950–2010). 40 

 

Climate change creates substantial uncertainties in future hydrologic conditions on the Mississippi River, exemplifying those 

inherent in many of the world’s large temperate river systems (Fowler et al., 2022). At present, it is unclear whether recent 

changes in Mississippi River streamflow should be attributed primarily to changes in climate or to human modifications to the 

land surface and river channel (Criss & Shock, 2001; Munoz et al., 2018; Pinter et al., 2008; Watson et al., 2013). Precipitation 45 

over the upper Mississippi River basin has increased by 0.66 mm per year (Ziegler et al., 2005) but evapotranspiration has also 

increased since the late 20th century (Mccabe & Wolock, 2019; Qian et al., 2007). Observations alone cannot fully constrain 

these changes, as monitoring networks can be sparse, inconsistent, or have data that is difficult to access depending on the 

hydrologic variable (Fekete & Vörösmarty, 2007).   

Global climate models offer one way to explore the causes of historic hydrologic changes, and possible changes in projected 50 

hydrologic conditions. However, projections of streamflow remain uncertain, with modeling studies documenting both increases 

in river discharge (Tao et al., 2014) and decreases in Mississippi river discharge (van der Wiel et al., 2018) over the 21st century 

in response to climate change. The disparities in these streamflow projections reflect, in part, the use of different models and 

emissions scenarios, related hydrologic parameters remaining difficult to constrain, and the challenges of validating models 

against observations on a river system that has been heavily modified by human activities. Some uncertainty can be constrained 55 

by the use of multiple models or model ensembles as they are run into the future for different scenarios (Thackeray et al., 2022; 

Velázquez et al., 2011). At the same time, artificial reservoirs, levees, cutoffs, and spillways constructed primarily during the 

mid-20th century remain challenging to incorporate into hydrologic models (Brookfield et al., 2023; Tavakoly et al., 2021). 

Additionally, it is not standard for river routing to be incorporated into earth system models. 

One approach to evaluate the roles of climate variability and change on streamflow is to use a fully coupled earth system model 60 

that includes a hydrologic model; one such model widely used for this purpose is the Community Earth System Model (CESM1)  

. In addition to simulating hydrologic processes included in all Coupled Model Intercomparison Project (CMIP6) models (i.e., 
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precipitation, soil moisture, runoff), CESM1 includes a River Transport Model (RTM) that simulates river discharge at daily and 

sub-daily time-steps on a finer resolution (0.25° grid). The RTM is included in multiple CESM1 runs, including paleo, historical, 

projected experiments, and has been widely implemented to examine the roles of climate variability, climate change, and land 65 

cover changes on streamflow (Abram et al., 2020; Cresswell-Clay et al., 2022; Falster et al., 2023; Munoz & Dee, 2017; Wiman 

et al., 2021; Zhao et al., 2020). Despite the large potential for this particular hydrologic model coupled to an earth system model 

to study and resolve uncertainties in the response of streamflow to climate change, we currently lack a robust validation of the 

CESM1’s terrestrial hydrology over a major temperate river basin, including the Mississippi River Basin.  

Here, we validate output from CESM1 over the Mississippi River basin through comparisons to observed river discharge and 70 

climate reanalysis of other key hydrologic variables, including precipitation, soil moisture, snowmelt, evapotranspiration, and 

runoff. Specifically, we use monthly output from the Last Millennium Ensemble (LME) of CESM1, which provides 13 fully-

forced ensemble members over the historic period, and compare simulated seasonal trends in all major hydrologic variables over 

multiple parts of the Mississippi River basin to stream gage observations (U.S. Geological Survey, 2016a, p. 07, 2016b, 2016c, 

2016d, 2016e) and ERA5 reanalysis (Muñoz-Sabater et al., 2021) from the 20th century to present. We show that, on all major 75 

tributaries of the Mississippi River, the seasonality of peak discharge in CESM1 is 2-3 months late relative to observations. We 

then show that the shifted seasonality of simulated river discharge is primarily due to an offset in the seasonality of simulated 

precipitation in CESM1, particularly over the eastern portion of the Mississippi River basin. Finally, we evaluate how 

Mississippi River basin hydrology in CESM1 compares to other CMIP6 models, and show that other models — notably CESM2, 

which also simulates river discharge, but with the updated hydrologic model Model for Scale Adaptive River Transport 80 

(MOSART) — are more skillful in simulating the observed seasonality of runoff. We conclude that recent improvements in earth 

system models with robust representations of terrestrial hydrology, specifically their simulations of runoff, represent an 

important step towards improving projections of water resources in the face of ongoing climate change. 

2 Methods and Data 

2.1 Subbasin Hydroclimate 85 

The Mississippi River Basin spans a range of hydroclimatic conditions. The western portion of the basin, including the Arkansas, 

Missouri, and Upper Mississippi basins, receives an average annual precipitation of 5–59 mm. The eastern portion of the basin, 

including the Ohio-Tennessee and Lower Mississippi, receives 60–150 mm. The subbasins are divided along the median range of 

precipitation values (~60 mm/year), which most closely follows a set of sub-basin boundaries (Figure 1b). The Entire Mississippi 

basin can also be categorized into subbasins by other hydroclimate variables, including temperature, actual evapotranspiration, 90 

and runoff; when categorized by these variables, similar subbasin groupings emerge to those produced by precipitation patterns 

(Mccabe & Wolock, 2019). While the basin can be divided and grouped at different scales, we refer to it as the Eastern 

Mississippi basin (Ohio-Tennessee and Lower Mississippi), Western Mississippi basin (Arkansas, Missouri, and Upper 

Mississippi basins) and entire Mississippi basin in subsequent sections of the discussion given similar precipitation and 

hydroclimate characteristics (Figure 1).  95 

2.2 Stream gage observations 

To evaluate the skill of CESM1 to simulate river discharge on the major tributaries of the Mississippi River basin, we first 

selected United States Geological Survey (USGS) streamflow gages from the lowermost reaches from the Upper Mississippi 
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River, Missouri River, Ohio River, Arkansas River, and Lower Mississippi River. Gages were selected based on their geographic 

location as far downstream on the tributary and near to the confluence with the main stem of the Mississippi as possible, and for 100 

the length and continuity of daily streamflow data available; selected gages include the Mississippi River at St. Louis, MO 

(07010000) (U.S. Geological Survey, 2016a), Missouri River at Hermann, MO (06934500) (U.S. Geological Survey, 2016c), 

Ohio River at Louisville, KY (03294500) (U.S. Geological Survey, 2016b), Arkansas River at Little Rock, AR (07263500) (U.S. 

Geological Survey, 2016d), and Mississippi River at Vicksburg, MS (07289000) (U.S. Geological Survey, 2016e) [Table 1].   
 105 

Table 1. USGS Gage Statistics for gages used in analysis, including Mississippi River at St. Louis, MO, Missouri River at 

Hermann, MO, Ohio River at Louisville, KY, Arkansas River at Little Rock, AR, and Mississippi River at Vicksburg, 

MS (U.S. Geological Survey, 2016c, 2016c, 2016b, 2016d, 2016e). 

 

Tributary Gage Name 
Gage 

Number 
Agency 

Available Period of 

Record (Monthly 

Statistics) 

Start 

Year 

End 

Year 

Length 

of 

Record 

(Years) 

Upper 

Mississippi 

Mississippi River at St. 

Louis, MO 
07010000 USGS 1861-01 to 2023-03 1861 2023 162 

Missouri 
Missouri River at Hermann, 

MO 
06934500 USGS 1928-10 to 2023-02 1928 2023 95 

Ohio 
Ohio River at Louisville, 

KY 
03294500 USGS 1928-01 to 2021-09 1928 2021 93 

Arkansas 
Arkansas River at Little 

Rock, AR 
07263500 USGS 1927-10 to 1970-09 1928 1970 42 

Lower 

Mississippi 

Mississippi River at 

Vicksburg, MS 
07289000 USGS 2008-01 to 2022-09 2008 2022 14 

 110 

From the daily streamflow data, we computed monthly means for the period of USGS record (Table 1) that overlaps with 

CESM1 data (850-2005). To evaluate the influence of human modifications on river discharge seasonality, we also computed 

monthly means for the period prior to the implementation of most artificial reservoirs and spillways [Table 2]. We discuss this 

further in Section 3.1. 

 115 

Table 2. Discharge statistics from USGS gages for pre- and post- river modifications, where modification dates are based 

on the end of major river engineering on the tributary (Alexander et al., 2012; Jacobson & Galat, 2008; Keown et al., 1986; 

Remo et al., 2018). USGS gages include Mississippi River at St. Louis, MO, Missouri River at Hermann, MO, Ohio River 

at Louisville, KY, Arkansas River at Little Rock, AR, and Mississippi River at Vicksburg, MS (U.S. Geological Survey, 

2016c, 2016c, 2016b, 2016d, 2016e).  120 
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2.3 Reanalysis and gridded observations  

To evaluate the hydrologic processes that contribute to Mississippi River discharge, and for validation of the CESM1 

simulations, we use ERA5 reanalysis (Muñoz-Sabater et al., 2021) and gridded observations of precipitation from the Global 

Precipitation Climatology Center (GPCC) (Becker et al., 2013). From the ERA5 reanalysis, we use 2m temperature (t2m), 125 

Snowmelt (smlt), Runoff (ro), Surface runoff (sro), and Sub-surface runoff (ssro). From the Livneh hydrometeorological dataset 

(Livneh et al., 2013), we use total evapotranspiration (et). Finally, from the GPCC (Becker et al., 2013) dataset, we use 

precipitation (precip). Periods of data used were selected based on the earliest starting date and latest ending date common to 

each dataset and CESM1, respectively [Table 1]. We use monthly means for GPCC, Livneh, and all ERA5 variables. Datasets 

were cropped to the extent of the grouped subbasins (Eastern and Western), as well as to the entire extent of the Mississippi 130 

River Basin. Grid cells falling within each were averaged over each subbasin.  

2.4 Earth system models and validation approach 

CESM1 variables examined include river discharge (QCHANR), total precipitation (PRECC + PRECL to represent total 

precipitation; convective precipitation rate (liquid + ice) + large scale (stable) precipitation rate (liquid + ice)), evapotranspiration 

(QSOIL + QVEG + QVEGT to represent total evapotranspiration), total liquid runoff (QRUNOFF), surface runoff (QOVER), 135 

subsurface runoff (QDRAI), temperature (TREFHT), and snow melt (QSNOMELT). 

To assess the skill of other models in the basin, data from six CMIP6 models was also compared to ERA5 and CESM1 runoff 

data for the major tributaries. CMIP6 model selection was guided by their previous application in other hydroclimate studies. 

Models were chosen if they had been used in studies at a major basin scale or larger, compared to other models, or used in 

studies related to hydroclimate changes in North America (P. Dai & Nie, 2022; Feng et al., 2022; Ji et al., 2024; Yazdandoost et 140 

al., 2021). Models selected include BCC CSM2 MR, CanESM5, CESM2 FV2, MIROC6, MPI ESM1 2 LR, and MRI ESM2.0. 

   Pre-modification Post-modification 

Tributary 

Gage 

Number 

Year of end 

of major 

modification 

Month 

of peak 

flow 

Mean 

Flow 

(cfs) 

Max Flow 

(cfs) 

Min 

Flow 

(cfs) 

Month of 

peak 

flow 

Mean 

Flow 

(cfs) 

Max 

Flow 

(cfs) 

Min 

Flow 

(cfs) 

Upper 

Mississippi 07010000 1980  May 113469 595806 4377 April 130112 474143 11336 

Missouri 06934500 1967 June 69331 445226 6827 June 94308 376290 21558 

Ohio 03294500 1975  March 113469 595806 4377 March 130112 474143 11336 

Arkansas 07263500 1970 May 39848 290268 1141 May 39461 99987 8291 

Lower 

Mississippi 07289000 1980 na na na na May 770456 1996909 217345 
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While CMIP6 models have many common output variables, the majority do not include simulated river discharge, so only total 

runoff (mrro) is compared between models here.  

The ensemble mean of the 13 individual ensemble members of the CESM1 full forcings runs was calculated for each variable 

being used for comparison (river discharge, total precipitation, evapotranspiration, total liquid runoff, surface runoff, subsurface 145 

runoff, temperature, and snowmelt). CESM1 river discharge was first compared to USGS discharge using the grid cell 

corresponding to the corresponding USGS gages. All remaining datasets were cropped to the extent of the major subbasins 

(Upper Mississippi, Lower Mississippi, Ohio/Tennessee, Arkansas, Missouri), the grouped subbasins (Eastern and Western), as 

well as to the entire extent of the Mississippi River Basin. Grid cells falling within each were averaged over each subbasin. For 

each variable, the monthly mean value is then plotted for CESM1 along with the corresponding reanalysis data.  150 

To assess the skill of the CESM1 model data, two primary metrics are used: lagged correlation and spectral angle. Lag 

correlation is used to assess the timing of peak flow in each dataset, and if the peak is offset between datasets, what the optimal 

offset is. Spectral angle is useful in this context because it indicates how well the shape of two data series match independently 

of differences in magnitude (Jackson et al., 2019). Relative difference is also calculated between simulated and observed or 

reanalysis data to assess the differences in magnitudes between datasets, though relative differences are large for many variables, 155 

so lag correlation and spectral angle are more representative in understanding the causes in shifted seasonal timing of discharge 

in CESM1.  

CESM1 and USGS monthly discharge data are plotted and compared to establish the discrepancy in seasonality between the 

observed streamflow in the major tributaries of the Mississippi and the model output. Each hydrologic variable from CESM1 is 

compared to reanalysis data for general fit, then quantitatively assessed with the skill metrics of lag correlation and spectral 160 

angle.  

3 Results & Discussion 

3.1 Simulated discharge and stream gage observations 

 

Simulated river discharge in CESM1 exhibits biases in both the magnitudes and seasonality of observations relative to stream 165 

gages (Figure 2). The timing of modeled discharges are delayed on all major tributaries relative to observations; in this section, 

we diagnose potential model biases contributing to this shift.  

 

Peak Annual Discharge. CESM1 simulated annual peak (maximum) discharge is delayed relative to USGS observations for all 

major tributaries. For the Missouri, Arkansas, and Upper Mississippi the magnitude of peak discharge is 18–116% too large, 170 

while the Ohio and Lower Mississippi have simulated peak discharge values that are 1 and 42% smaller than the gage 

observations, respectively [Table 3]. For major tributaries including the Upper Mississippi, Missouri, Ohio, Arkansas-Red-

White, and Ohio Tennessee, CESM1 simulations show a delay of three months in the timing of their peak discharge, while the 

Lower Mississippi shows a delay of two months when CESM1 modeled data is compared to USGS gage data. This means that 

simulated peak flows are occurring in June through September, with high flows extending into the fall, instead of aligning with 175 

observed USGS peak flows that occur from March into June.   
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Table 3. Timing offset and relative difference values for hydroclimate variables between simulated (CESM1) and 

observed data (USGS for discharge) or reanalysis data (ERA5 for surface runoff, subsurface runoff, total runoff, 

temperature, soil moisture, and snowmelt; GPCC for precipitation; Livneh for evapotranspiration) for maximum and 180 

minimum values. Timing offset is in months, where positive values indicate simulated values are delayed relative to 

observations or reanalysis, and negative values indicate simulated values are early relative observations or reanalysis. 

Relative difference values are a percent, and positive values indicate that simulated values are larger, while negative 

values indicate that simulated values are smaller than observed or reanalysis values. 

    Maximum Minimum 

Variable Basin 

Timing 

offset 

(months) 

Relative 

Difference 

(%) 

Timing 

offset 

(months) 

Relative 

Difference 

(%) 

Discharge Missouri 3 116.18 2 73.32 

Discharge Arkansas 3 68.04 -5 187.55 

Discharge Ohio 3 -1.13 3 74.40 

Discharge Upper Mississippi 3 18.46 2 15.51 

Discharge Lower Mississippi 2 -41.61 -6 -18.66 

Precipitation Eastern Mississippi Region 2 -6.84 1 -20.03 

Precipitation Entire Mississippi Region 2 29.66 1 1.26 

Precipitation Western Mississippi Region 1 40.36 1 30.34 

Surface Runoff Eastern Mississippi Region 2 -98.46 3 -97.58 

Surface Runoff Entire Mississippi Region 2 -98.03 0 -97.62 

Surface Runoff Western Mississippi Region 2 -97.89 0 -96.67 

Subsurface Runoff Eastern Mississippi Region 2 -99.44 1 -99.36 

Subsurface Runoff Entire Mississippi Region 1 -99.47 2 -99.21 

Subsurface Runoff Western Mississippi Region 0 -99.48 3 -99.20 

Total Runoff Eastern Mississippi Region 2 -99.27 1 -98.65 

Total Runoff Entire Mississippi Region 1 -98.96 2 -98.63 

Total Runoff Western Mississippi Region 1 -98.86 1 -98.76 

Temperature Eastern Mississippi Region 1 -7.93 1 8.05 

Temperature Entire Mississippi Region 1 -7.93 1 3.20 

Temperature Western Mississippi Region 1 -8.16 1 4.52 

Evapotranspiration Eastern Mississippi Region 1 -6.12 0 -22.22 

Evapotranspiration Entire Mississippi Region -1 -77.50 1 -66.67 

Evapotranspiration Western Mississippi Region 1 23.68 1 -20.00 

Soil Moisture Eastern Mississippi Region 2 -29.13 2 -23.31 

Soil Moisture Entire Mississippi Region 1 -17.12 2 -0.93 

Soil Moisture Western Mississippi Region 1 -13.22 2 8.21 

Snowmelt Eastern Mississippi Region 0 -99.03 2 94.03 

Snowmelt Entire Mississippi Region 0 -98.86 0 -99.98 
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Snowmelt Western Mississippi Region 1 -98.74 0 -99.98 

 185 

Low-Flows. CESM1 simulated low flows (annual minima) are delayed 2–3 months relative to USGS gage observations for the 

Missouri, Ohio, and Upper Mississippi River tributaries, and all have simulated discharge magnitudes that are 15–188% larger 

than observed magnitudes. The Arkansas-Red-White and Lower Mississippi have simulated mean low flows that are seasonally 

early. The magnitude of simulated Arkansas-Red-White low flows is significantly larger (188%) than USGS observed values, 

while low flows on the Lower Mississippi are smaller (-19%) than the observed values [Table 3]. 190 

 

Seasonality. We do not expect simulated discharge data to reproduce the actual timing of peak and low flows in an individual 

year, we evaluate the ability of CESM1 to skillfully reproduce the average annual seasonality of river discharge. We 

acknowledge that observed discharge within the Mississippi River basin is influenced by human activities (e.g., reservoirs, 

levees, irrigation), but note that the seasonal timing of peak flows are minimally impacted at selected gages due to the location of 195 

the gages well downstream of high-head dams, or low-head dams which have no significant impact on peak discharges (Remo et 

al., 2018). The month of peak flow is, on average, the same pre- and post-modification, or is shifted one month earlier at the 

Upper Mississippi [Appendix Figure 1]. Additionally, CESM1 output, specifically RTM simulated discharge, has also been used 

previously to compare directly to gage station data (A. Dai & Trenberth, 2002). Given the large seasonal offsets between 

CESM1-simulated and observed discharge, we next turn to hydroclimatic variables to understand why these seasonal offsets in 200 

the simulated discharge occur.  

 
Figure 2. Monthly mean CESM1 simulated river discharge (red) compared to observations from USGS stream gages 

(black): (a) Arkansas-Red-White (07263500), (b) Missouri (06934500), (c) Lower Mississippi (07289000) (d) Upper 

Mississippi (07010000), (e) Ohio-Tennessee (03294500). 205 

3.2 Hydroclimate variable comparison 

To evaluate the mechanisms that generate the seasonal biases in discharge simulated in CESM1, we examine the major 

hydrologic variables that contribute to river discharge, including precipitation, total runoff, surface runoff, subsurface drainage, 

temperature, evapotranspiration, soil moisture, and snowmelt in both simulations (CESM1) and reanalysis (GPCC and ERA5). 
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Hydroclimate variables are compared here between CESM1 and reanalysis datasets, rather than point observations such as from 210 

USGS gages, for data availability and continuity across the domain.  

 

We find that precipitation and runoff components are the largest contributors to the shift in the seasonality of simulated discharge 

(Figure 3). In the CESM1 simulations, seasonal biases in simulations for precipitation, total runoff, surface runoff, and 

subsurface runoff, have peak timing differences up to three months. The biases in these four variables culminate in the seasonal 215 

discharge values that are offset from observed values and imply that there are underlying issues in the model that need to be 

understood and addressed.  

 

Precipitation: CESM1 simulated precipitation is seasonally delayed in the Western, Eastern, and across the Entire Mississippi 

basin for both peak (1-2 months) and minimum (1 month) values when compared to reanalysis data. Simulated precipitation has 220 

a magnitude larger than reanalysis in the Western and Entire Mississippi basins for both the peak (29.66 – 40.36%) and 

minimum (1.26 - 30.34%) values, but the magnitude is smaller in the Eastern Mississippi basin for both the peak (-6.84%)  and 

minimum values (-20.03%) (Figure 3a-c) (Table 3). The delayed timing of simulated precipitation causes the peak to occur in 

July across all portions of the basin, up to two months after the peak in reanalysis data, and during summer months when peak 

rainfall is less likely to occur in this climate. 225 

 

Surface runoff: Similar to precipitation, CESM1 simulated peak surface runoff is delayed relative to ERA5 reanalysis across all 

basins of the Mississippi River basin (2 months) (Figure 3d-f) (Table 3). Minimum surface runoff is only delayed in the Eastern 

Mississippi basin relative to ERA5 (3 months), but timing is aligned in the Western Mississippi and across the Entire basin. In all 

basins examined here, the magnitudes of simulated peak and minimum runoff are smaller ( -96.67 – -98.46%) than those of the 230 

peak and minimum runoff values in reanalysis data. Patterns in the time series shape for surface runoff reflect the seasonal 

precipitation patterns in CESM1, suggesting precipitation plays a role in the delayed timing of runoff: in the Eastern region of 

the basin, simulated surface runoff peaks two months after the peak in reanalysis data and instead of immediately declining, 

following the shape of the runoff reanalysis time series shape, CESM1 simulated runoff remains near its peak from June through 

August before declining in the fall. CESM1 surface runoff in the Western basin and Entire Mississippi basin similarly resembles 235 

the shape of the CESM1 precipitation time series, and declines from peak values more gradually than the reanalysis time series. 

All three basins mimic the shape of the CESM1 precipitation time series, rather than the reanalysis time series of surface runoff 

(Figure 3d-f).  

 

Subsurface runoff: Subsurface runoff is seasonally delayed in both the Eastern Mississippi and across the entire Mississippi basin 240 

(1-3 months), but the peak for maximum subsurface runoff is aligned for the Western Mississippi basin when CESM1 

simulations are compared to ERA5 (Figure 3g-i) (Table 3). Simulated seasonal peak and minimum magnitudes of CESM1 data 

are smaller (-99.20 – -99.48%) for all basins than peak and minimum magnitudes of subsurface drainage in reanalysis data. 

While the timing of peak values is aligned in the Western Mississippi basin, CESM1 subsurface runoff values decline more 

gradually than reanalysis values. The shape of CESM1 and reanalysis time series in the Eastern Mississippi and across the Entire 245 

Mississippi Basin are more similar as subsurface runoff values decline from their peak.  

 

Total runoff: CESM1 simulated total runoff is delayed across all basins relative to ERA5 reanalysis for both peak and minimum 

values (1-2 months) (Figure 3j-l) (Table 3).  Magnitudes of CESM1 peak and minimum values are smaller than those of ERA5 
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total runoff (-98.63 – -99.27%). In the Western Mississippi basin (Figure 3j), the shape of the time series more closely resembles 250 

the time series of surface runoff and precipitation from the Western Mississippi basin than the total runoff in the reanalysis time 

series. In the Eastern Mississippi (Figure 3k), the shape of the total runoff time series reflects the shape of the subsurface time 

series. At the scale of the Entire Mississippi (Figure 3l), total runoff resembles subsurface runoff from January through its peak 

in May, but is more similar to surface runoff as it declines through December. 

 255 

Precipitation biases previously documented in other regions and the Mississippi River Basin are primarily due to regional scale 

processes including deep convection parameterization or low-level moisture divergence and convergence (Benedict et al., 2017; 

Moseley et al., 2016; Sakaguchi et al., 2018; Wang & Zhang, 2016), the impacts of modeled climate teleconnections on 

simulated precipitation, due to the climate forcings used, which include precipitation (H.-Y. Li et al., 2015), model resolution, or 

as documented in experimental setups (H. Li et al., 2013; H.-Y. Li et al., 2015). However, a precipitation bias has not been 260 

previously documented over the Mississippi Basin in CESM1, and is the most significant driver of the shift in timing of the 

simulated discharge. This bias propagates through to surface runoff, particularly in the Eastern Mississippi basin where rainfall 

dominates the hydrologic cycle.  

 

Additionally, subsurface runoff is impacted by the routing mechanisms in the River Transport Model (RTM) of CESM1. While 265 

the model has been shown to accurately simulate runoff and discharge for small watersheds (<66,000 km2), there are biases due 

to the routing, which becomes more severe the larger the watershed (H. Li et al., 2013). Prior work has shown that RTM 

overestimates the time lag between surface runoff and discharge, especially for larger watersheds, which is relevant for the 

Mississippi River basin as its drainage area is ~3.2 million km2. The RTM also assumes homogeneity between grid cells and a 

constant channel velocity (H. Li et al., 2013), both of which hinder the models ability to fully capture seasonal and spatial 270 

variability.  
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Figure 3. Monthly mean CESM1 simulated (red; primary y-axis) values compared to reanalysis (black; secondary y-axis) 

values for precipitation (a-c), surface runoff (d-f), subsurface runoff (g-i), and runoff (j-l) for the Western Mississippi, 

Eastern Mississippi, and Entire Mississippi Basin basins.  275 

 

Other hydrologic variables: Seasonal biases are less pronounced in temperature, evapotranspiration, soil moisture, and snowmelt 

(Figure 4), with peak timing differences of zero to two months.  

 

CESM1 maximum and minimum temperature values are one month late relative to reanalysis data. CESM1 maximum values are 280 

all smaller than reanalysis values (-7.93 – -8.16%), while minimum values are all larger than reanalysis values (3.20 – 8.05%) 

(Table 3).  

 

CESM1 evapotranspiration is one month late relative to reanalysis in the Eastern and Western basins, and one month early for 

the entire Basin when peak values are examined. Minimum values are aligned in the Eastern Mississippi basin, and one month 285 

late in the Western and Entire Mississippi basins. Only the maximum value of evapotranspiration in the Western Mississippi 

basin is larger than reanalysis values (22.68%), all other minimum and maximum values are smaller than reanalysis values (-6.12 

– -77.50%) (Table 3). 

 

Soil moisture in CESM1 simulations is one to two months late for all basins for both minimum and maximum values relative to 290 

reanalysis data. All CESM1 values are smaller than reanalysis data (-0.93 – -29.13%) except for the minimum value in the 

Western Mississippi basin (8.12%) (Table 3).   

 

https://doi.org/10.5194/hess-2024-153
Preprint. Discussion started: 10 June 2024
c© Author(s) 2024. CC BY 4.0 License.



 
 

12 

Snowmelt has no difference in timing of the maximum values for the Eastern Mississippi or Entire Mississippi Basins, or the 

minimum values of the Western Mississippi or Entire Mississippi basin. The CESM1 Western Mississippi peak and Eastern 295 

Mississippi minimum values are late relative to reanalysis (1-2 months) (Table 3). All CESM1 snowmelt values are smaller than 

reanalysis (-98.74 – -99.98%), except for the minimum value in the Eastern Mississippi basin (Table 3). 

 

Temperature, evapotranspiration, soil moisture, and snowmelt are less impacted by precipitation and are better represented by 

CESM1. Evapotranspiration can be impacted by rainfall, however it is also governed by solar radiation, wet leaf fraction, canopy 300 

evaporation, and vegetation transpiration (Cui et al., 2022). The snow model is noted as being an area of new improvement in 

CESM1, with updates to modeled snow cover and related parameterizations (Lawrence et al., 2011). Of note, snow melt has not 

been independently validated, though other variables related to snow processes have and generally perform well (Cammalleri et 

al., 2022; Kouki et al., 2023; Tarek et al., 2020). Lastly, soil moisture has been evaluated in other contexts and shown to perform 

well in CESM1 across CONUS at different soil depths, so the skill here is consistent with previous findings (Yuan & Quiring, 305 

2017). Overall we expect temperature, evapotranspiration, soil moisture, and snowmelt to be skillful based on the model setup 

and governing factors, and the analysis supports this.  

 
Figure 4. Monthly mean CESM1 simulated (red; primary y-axis) values compared to reanalysis (black; secondary y-axis) 

values for temperature (a-c), evapotranspiration (d-f), soil moisture (g-i), and snow melt (j-l) for the Western Mississippi, 310 

Eastern Mississippi, and Entire Mississippi Basin basins.  

3.3 Relative Difference 

Relative differences are calculated as: 

https://doi.org/10.5194/hess-2024-153
Preprint. Discussion started: 10 June 2024
c© Author(s) 2024. CC BY 4.0 License.



 
 

13 

("#$%&%$'#()%*+%$)
#()%*+%$

× 100		,                                                                                                                                                          (1) 

  where observed values are either USGS observed values, or reanalysis values (Jackson et al., 2019; Michalek et al., 2023). CESM1 315 

values are smaller than all reanalysis values for both the seasonal minimum and maximum values for runoff related variables in all 

basins, but relative difference values are large between simulated and reanalysis datasets (Table 3). These differences can be bias 

corrected (Teutschbein & Seibert, 2012), so offsets in timing are investigated rather than further assessing differences in magnitude. 

3.4 Lag Correlation 

Lag correlation indicates the timing offset at which two time series are best correlated, and here supports our comparison of the 320 

monthly mean time series (Figure 4a-h). Temperature, evapotranspiration, soil moisture, and snow melt exhibit peak correlations 

at no lag (0 months) or slightly delayed (-1 month) when CESM1 is compared to reanalysis data, supporting our assessment that 

these variables are simulated relatively skillfully in CESM1 (Figure 5e-h). Soil moisture is highly correlated when the time series 

are not lagged. The Eastern Mississippi Basin soil moisture has a maximum correlation with no lag (0 months). However the 

maximum correlations for soil moisture are at negative seven months for the Western and Entire Mississippi basins, but the 325 

second highest correlation values for these two basins are at a lag of zero months. Evapotranspiration has a peak correlation for 

both grouped subbasins at negative one month, but a maximum correlation for the entire basin when there is no lag. Temperature 

has a maximum correlation for all three basin groupings at a lag of negative one month. Snowmelt has a maximum correlation 

for all three basin groupings when there is no lag between the CESM1 and reanalysis time series.  

 330 

In contrast, precipitation has lag correlations that support simulated peak values being offset from reanalysis peak values, 

particularly in the Eastern Mississippi Basin (Figure 5a). The peak correlation of precipitation, particularly in the Eastern 

Mississippi Basin, supports the timing of precipitation being a factor in the delayed runoff and discharge. Correlation values of 

precipitation are at a maximum for the Eastern Mississippi basin at a lag of negative five months, and for the Western and entire 

Mississippi basin at a lag of negative one month. 335 

 

Peak correlations of all three runoff variables (subsurface runoff, surface runoff, total runoff; Figure 5b-d) both support their 

contributions to, and align with the previous findings that the RTM model has biases due to the runoff routing (H. Li et al., 2013; 

H.-Y. Li et al., 2015). Surface runoff has a peak correlation at negative seven months for the Eastern Mississippi basin, and at 

negative one month for the Western and Entire Mississippi basin. Subsurface runoff has a peak correlation of negative one month 340 

for all basins, and total runoff has a peak correlation at negative one month for the Western Mississippi Basin, and negative two 

months for the Eastern and Entire Mississippi basin. However, both have bimodal lag correlation peaks for the Eastern basin, 

where a second peak correlation is at a lag of negative seven months.  
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Figure 5. Monthly lag correlation values for each hydrologic variable [a) precipitation, b) subsurface runoff, c) surface 345 

runoff, d) runoff, e) temperature, f) soil moisture, g) ET, h) snowmelt], for each region: Eastern Mississippi Basin basin 

(light blue), Western Mississippi Basin (dark blue), Entire MIssissippi basin (green). 

3.5 Spectral Angle 

Spectral angle (Figure 6) is used to compare the shape of the time series without comparing the magnitude or timing offsets. It 

treats the data being compared as dimensionless unit vectors to assess if they have the same direction in space, which indicates 350 

similarity in shape regardless of similarity in magnitude. A value closer to zero indicates better agreement between the shape of 
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two time series. A value of zero would mean that one vector, or time series in this case, was identical to the other in its shape 

(Jackson et al., 2019).  

 

Temperature, evapotranspiration, and soil moisture have the lowest values, or best agreement. Soil moisture has the lowest 355 

values (0.098 – 0.115), and temperature (0.266 – 0.391) and evapotranspiration (0.256 – 0.411) values fall within similar ranges 

across the Eastern Mississippi, Western Mississippi, and Entire Mississippi Basin basins [Appendix Table 2].  

 

Conversely, subsurface runoff, surface runoff, total runoff, and precipitation have the highest values across all basins, indicating 

worse agreement. Subsurface drainage (0.543 – 0.640), surface drainage (0.576 – 0.681), and runoff (0.545 – 0.604) have 360 

spectral angle values that fall within similar ranges across the basin groupings. The range of precipitation values (0.378 – 0.388) 

falls below those of runoff related variables, while snowmelt has the widest range (0.474 – 0.733) [Appendix Table 2]. 

 

For all variables other than temperature and soil moisture, values are lower for the entire basin than at the grouped basin scale. 

For both temperature and soil moisture, the Eastern Mississippi has a lower value. Conversely, snowmelt has a significantly 365 

higher value in the Eastern Mississippi basin.  

 

These spectral angle values help demonstrate that while the seasonality is severely shifted for several hydroclimate variables, the 

shape of the annual time series for other CESM1 variables is similar between simulated and reanalysis datasets. For temperature, 

evapotranspiration, and soil moisture, the spectral angle values, along with lag correlation and relative bias, are small, suggesting 370 

these variables represent average annual seasonality relatively well. For precipitation, subsurface drainage, surface drainage and 

total drainage, the higher values of spectral angle show that in addition to the seasonal timing offset, the shape of the time series 

is not well represented. This supports the precipitation biases and limitations of the RTM in simulating runoff related variables 

over large basins.  

 375 
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Figure 6. Spectral angle (SA) values for each hydrologic variable [a) precipitation, b) subsurface runoff, c) surface runoff, 

d) runoff, e) temperature, f) soil moisture, g) ET, h) snowmelt], for each region: Eastern Mississippi Basin (light blue), 

Western Mississippi Basin (dark blue), Entire Mississippi basin (green). 

 

3.5 CMIP6 model runoff comparison 380 

Finally, we compare how other CMIP6 models perform in simulating runoff over the Mississippi River basin relative to 

reanalysis (Figure 7). The comparison of runoff is necessary as only CESM1 and CESM2 explicitly simulate river discharge, but 

we expect biases in the magnitude and seasonality of runoff to closely mirror those of river discharge. In general, the timing of 

runoff in some CMIP6 models shows better agreement with ERA5 reanalysis compared to CESM1; the timing of modeled runoff 

is also more accurately captured by CMIP6 models in the Eastern Mississippi Basin than by CESM1. Notably, modeled runoff in 385 

CESM2 has improved timing of maximum and minimum flows relative to ERA5. 

 

Seasonal maxima of runoff are most closely aligned between models in the Eastern basin of the Mississippi basin, and have more 

spread but still overall agreement between most models in the Western basin of the Mississippi Basin and across the entire 

Mississippi Basin. In the Eastern basin, CESM2, BCC CSM2 MR, CanESM5, MIROC6, and MPI ESM1 2 LR all peak in 390 

March, aligning with ERA5 reanalysis, as opposed to CESM1, which peaks in May. In the Western Mississippi basin, CESM2 

peak runoff occurs in March, as is the case for BCC CSM2 MR, CanESM5, and MIROC6; ERA5 peaks in May, and CESM1 

peaks in July. At the Entire Mississippi River Basin scale, CESM2, BCC CSM2 MR, CanESM5, MIROC6, and MPI ESM1 2 LR 

have peaks aligned in March, and ERA peaks in April and May. 

 395 

Runoff minimums have more spread in timing between CMIP6 models. In the Western region of the basin, ERA5 has a 

minimum runoff in November, whereas other models have minimums in August, September, and December. In the Eastern 

basin, ERA5 reaches a minimum in October, as does CanESM5, where BCC CSM2 MR has a minimum in August, CESM2, 

MPI ESM1 2 LR and MRI ESM2 0 reach minimums in October, and CESM1 reaches a minimum in November. Across the 

Entire Mississippi Basin, ERA5 reaches a minimum in October, with all other models again ranging between August and 400 

December.  

 

Overall, our findings show that CMIP6 models exhibit improvements in the seasonal timing of runoff compared to CESM1. A 

major benefit of CESM1, however, is that it is one of the few CMIP5 models that has a routing model and multiple available 

modeling projects, including the Large Ensemble (CESM-LE) (Kay et al., 2015) and the Last Millennium Ensemble (CESM-405 

LME) (Otto-Bliesner et al., 2016). Of note, our findings highlight the improvements of CESM2 over CESM1, which is due to 

updates to the routing model, namely from the RTM to the Model for Scale Adaptive River Transport (MOSART) model (H. Li 

et al., 2013; H.-Y. Li et al., 2015). The MOSART model uses the kinematic wave equation to simulate streamflow, improving 

hydrograph timing and values over RTM. Additionally, MOSART incorporates spatial heterogeneity across grid cells, whereas 

RTM uses spatial homogeneity with the assumptions of spatially uniform constant velocity, allowing MOSART to perform 410 

better across spatial scales. Overall, MOSART has been shown to better capture the time lag between runoff generation and 

streamflow, a critical issue also demonstrated in the Mississippi River Basin here with CESM1(H.-Y. Li et al., 2015). 
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Figure 7. Monthly mean simulated runoff (m/s) from selected CMIP6 models (BCC CSM2 MR [red], CanESM5 [dark 

orange], CEMS2 [light orange], MIROC6 [yellow], MPI ESM1 2 LR [light green], MRI ESM2 0 [dark green]), CESM1 415 

[blue], and ERA5 reanalysis [black] for the Western Mississippi basin (a), Eastern Mississippi basin (b), and Entire 

Mississippi Basin (c). 
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4 Conclusions 

 

In this study, we investigate the skill of CESM1 in simulating hydrologic processes over the Mississippi River basin. This model 420 

(CESM1) is unique among CMIP models because it simulates river discharge, and has been used for understanding the 

hydrologic changes in the Mississippi basin in the past and future (Munoz & Dee, 2017; Wiman et al., 2021). Our analysis shows 

that CESM1-simulated river discharge exhibits large biases in both its magnitude and seasonality relative to stream gage 

measurements. The causes of this seasonal bias were diagnosed by comparing simulations to reanalysis products (GPCC, ERA5); 

we showed that the seasonal bias arises primarily from the delayed timing of precipitation and runoff related processes in 425 

CESM1. Simulated precipitation, surface runoff, subsurface runoff, and total runoff are all delayed relative to reanalysis data by 

up to three months. An examination of runoff over the Mississippi River basin in several CMIP6 models including BCC CSM2 

MR, CanESM5, CESM2, MIROC6, MPI ESM1 2 LR, and MRI ESM2 0 reveals simulated runoff seasonality is more aligned 

with reanalysis than that in CESM1. Of note, the seasonality of CESM2 simulated runoff exhibits significant improvement 

relative to CESM1. We attribute this improvement to a major update in the river routing model from the River Transport Model 430 

(RTM) in CESM1 to MOSART in CESM2. Our analysis implies that CESM1 discharge, runoff, and precipitation should be used 

with caution over the Mississippi River basin, but that temperature, evapotranspiration, soil moisture, and snowmelt perform 

relatively well. We also show significant improvement in runoff simulations from CESM1 to CESM2 over the Mississippi River 

basin, implying that discharge simulations from CESM2 provide a more accurate projection of future hydroclimate conditions in 

the basin, and should thus be prioritized in future analyses.  435 

 

The improvements in surface runoff noted here from a CMIP5 model (CESM1) to a suite of CMIP6 models represents a broader 

progress in the representation of surface water hydrology in earth system models (Pokhrel et al., 2016). Robust simulations of 

hydrologic processes — especially river discharge — in earth system models is of critical importance for effective management 

of water resources. Yet, relatively few CMIP6 models simulate river discharge directly, resulting in the use of other variables 440 

related to discharge (e.g., precipitation, runoff), or in the development of hydrologic models to explicitly simulate river flows 

offline. Ideally, river discharge would be skillfully modeled as part of all CMIP models to provide standardized output that could 

be used by water resource managers and other stakeholders to evaluate projected changes in water resources. As these models 

continue to add complexity in their representation of surface water hydrology, we encourage further inclusion of human 

interventions in hydrologic processes, including large reservoirs, channelization, and agricultural and municipal water use. 445 

Comprehensive and skillful simulations of streamflow for large and economically important river systems, including the 

Mississippi River basin, are of critical importance.  Our study represents a first step towards validation of available earth system 

model simulations of Mississippi River basin hydrology, and provides a foundation from which robust analyses of past and 

projected changes in river discharge can emerge.   

Code Availability 450 

All code necessary for reproducing the results is provided at https://doi.org/10.5281/zenodo.11211748 (O’Donnell, 2024). 

Data Availability 

USGS discharge data is available from https://waterdata.usgs.gov/nwis. CESM1 data can be retrieved from 

https://www.cesm.ucar.edu/community-projects/lme/data-sets. ERA5 reanalysis can be accessed via 
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https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=form, GPCC data via 455 

https://iridl.ldeo.columbia.edu/SOURCES/.WCRP/.GCOS/.GPCC/.FDP/.version2018/.2p5/.prcp/datafiles.html, and the Livneh 

Hydrometeorological dataset via https://psl.noaa.gov/data/gridded/data.livneh.html. CMIP6 data is available from 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/projections-cmip6?tab=form.  
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Appendices 

 660 
Appendix Figure 1: Mean monthly discharge values before and after periods of significant dam construction and river 

engineering for the tributaries a) Arkansas-Red-White, b) Ohio, c) Missouri, d) Upper Mississippi, e) Lower Mississippi 
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Appendix Table 1: Lag Correlation values for each variable in the Eastern, Western, and Entire Mississippi Basin at each 

lag. Maximum correlation values are bolded. 665 

 

 Lag  Basin Temperature Precipitation Surface 
Runoff 

Subsurface 
Runoff 

Total 
Runoff 

Soil 
Moisture 

Snow 
Melt Evapotranspiration 

-11 Eastern     -0.445 0.071 0.103 0.126 0.125 0.365 0.427 -0.367 
-10 Eastern     -0.606 -0.036 0.299 0.39 0.387 0.547 0.709 -0.49 
-9 Eastern     -0.676 0.252 0.586 0.653 0.661 0.687 0.605 -0.529 
-8 Eastern     -0.692 0.259 0.669 0.791 0.789 0.732 0.038 -0.504 
-7 Eastern     -0.653 0.436 0.714 0.803 0.822 0.675 -0.261 -0.425 
-6 Eastern     -0.538 0.477 0.667 0.717 0.794 0.524 -0.313 -0.289 
-5 Eastern     -0.333 0.648 0.615 0.613 0.748 0.352 -0.315 -0.079 
-4 Eastern     -0.031 0.577 0.51 0.633 0.723 0.159 -0.231 0.226 
-3 Eastern     0.347 0.517 0.435 0.776 0.78 -0.026 0.283 0.589 
-2 Eastern     0.729 0.263 0.265 0.919 0.841 -0.159 0.586 0.884 
-1 Eastern     0.968 0.314 0.193 0.939 0.828 -0.083 0.843 0.978 
0 Eastern     0.945 0.241 0.078 0.748 0.675 0.779 0.947 0.803 
1 Eastern     0.714 -0.227 -0.317 0.278 0.133 -0.267 0.489 0.442 
2 Eastern     0.425 -0.216 -0.545 -0.23 -0.371 -0.538 -0.087 0.076 
3 Eastern     0.182 -0.377 -0.733 -0.639 -0.747 -0.721 -0.457 -0.186 
4 Eastern     -0.005 -0.41 -0.766 -0.871 -0.926 -0.789 -0.525 -0.343 
5 Eastern     -0.146 -0.548 -0.759 -0.917 -0.935 -0.733 -0.526 -0.432 
6 Eastern     -0.253 -0.543 -0.61 -0.811 -0.814 -0.564 -0.519 -0.477 
7 Eastern     -0.33 -0.634 -0.409 -0.644 -0.646 -0.361 -0.469 -0.502 
8 Eastern     -0.37 -0.51 -0.196 -0.503 -0.497 -0.129 -0.304 -0.524 
9 Eastern     -0.388 -0.414 -0.075 -0.38 -0.37 0.106 -0.058 -0.531 
10 Eastern     -0.389 0.023 0.152 -0.244 -0.22 0.302 0.111 -0.473 
11 Eastern     -0.374 0.105 0.177 -0.115 -0.077 0.308 0.194 -0.358 
-11 Western     -0.44 -0.403 -0.359 -0.19 -0.269 0.221 0.037 -0.329 
-10 Western     -0.533 -0.578 -0.465 -0.233 -0.34 0.415 0.297 -0.443 
-9 Western     -0.617 -0.609 -0.437 -0.195 -0.308 0.617 0.765 -0.488 
-8 Western     -0.674 -0.572 -0.363 -0.069 -0.212 0.748 0.696 -0.495 
-7 Western     -0.679 -0.462 -0.204 0.114 -0.052 0.798 0.315 -0.456 
-6 Western     -0.606 -0.335 -0.03 0.37 0.154 0.741 -0.05 -0.361 
-5 Western     -0.421 -0.182 0.118 0.484 0.296 0.515 -0.381 -0.177 
-4 Western     -0.099 0.079 0.32 0.566 0.459 0.279 -0.335 0.132 
-3 Western     0.34 0.424 0.569 0.648 0.651 0.129 -0.012 0.529 
-2 Western     0.764 0.751 0.767 0.706 0.797 0.039 0.381 0.866 
-1 Western     0.981 0.942 0.846 0.719 0.832 0.073 0.807 0.99 
0 Western     0.937 0.883 0.703 0.635 0.656 0.696 0.957 0.834 
1 Western     0.662 0.612 0.406 0.202 0.282 -0.153 0.726 0.466 
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2 Western     0.297 0.324 0.105 -0.084 -0.031 -0.418 0.271 0.062 
3 Western     -0.026 0.071 -0.134 -0.255 -0.249 -0.646 -0.291 -0.235 
4 Western     -0.275 -0.094 -0.284 -0.378 -0.387 -0.779 -0.649 -0.395 
5 Western     -0.458 -0.243 -0.407 -0.481 -0.492 -0.819 -0.762 -0.458 
6 Western     -0.572 -0.345 -0.502 -0.63 -0.595 -0.751 -0.685 -0.48 
7 Western     -0.573 -0.389 -0.502 -0.681 -0.602 -0.51 -0.481 -0.488 
8 Western     -0.361 -0.408 -0.47 -0.635 -0.557 -0.239 -0.286 -0.501 
9 Western     0.146 -0.439 -0.46 -0.529 -0.502 -0.036 -0.163 -0.525 
10 Western     0.428 -0.432 -0.403 -0.391 -0.403 0.109 -0.084 -0.472 
11 Western     0.371 -0.354 -0.32 -0.244 -0.283 0.131 -0.054 -0.338 
-11 Entire     -0.441 -0.385 -0.304 0.009 -0.076 0.258 0.116 -0.34 
-10 Entire     -0.562 -0.566 -0.341 0.171 0.042 0.452 0.401 -0.465 
-9 Entire     -0.637 -0.561 -0.227 0.371 0.221 0.642 0.794 -0.513 
-8 Entire     -0.681 -0.512 -0.108 0.555 0.378 0.755 0.621 -0.488 
-7 Entire     -0.675 -0.369 0.087 0.689 0.531 0.781 0.22 -0.389 
-6 Entire     -0.591 -0.231 0.255 0.762 0.663 0.702 -0.113 -0.233 
-5 Entire     -0.4 -0.07 0.358 0.708 0.712 0.484 -0.391 -0.05 
-4 Entire     -0.082 0.17 0.483 0.69 0.749 0.255 -0.278 0.107 
-3 Entire     0.343 0.473 0.648 0.757 0.811 0.094 0.084 0.306 
-2 Entire     0.761 0.739 0.726 0.841 0.832 -0.008 0.464 0.564 
-1 Entire     0.982 0.909 0.729 0.873 0.768 0.035 0.837 0.807 
0 Entire     0.939 0.854 0.537 0.793 0.551 0.729 0.966 0.934 
1 Entire     0.675 0.568 0.23 0.332 0.082 -0.18 0.695 0.783 
2 Entire     0.326 0.317 -0.039 -0.154 -0.316 -0.451 0.22 0.492 
3 Entire     0.02 0.079 -0.268 -0.559 -0.609 -0.672 -0.331 0.179 
4 Entire     -0.216 -0.064 -0.398 -0.817 -0.772 -0.791 -0.666 -0.086 
5 Entire     -0.39 -0.223 -0.521 -0.92 -0.845 -0.809 -0.781 -0.296 
6 Entire     -0.504 -0.338 -0.604 -0.897 -0.848 -0.717 -0.716 -0.444 
7 Entire     -0.536 -0.407 -0.561 -0.786 -0.762 -0.482 -0.508 -0.51 
8 Entire     -0.42 -0.428 -0.475 -0.661 -0.648 -0.216 -0.287 -0.519 
9 Entire     0.041 -0.46 -0.437 -0.526 -0.537 -0.003 -0.143 -0.527 
10 Entire     0.429 -0.409 -0.317 -0.364 -0.381 0.156 -0.051 -0.475 
11 Entire     0.371 -0.328 -0.241 -0.192 -0.215 0.175 -0.008 -0.344 

 
Appendix Table 2: Spectral Angle values for each variable in the Eastern, Western and Entire Mississippi Basin 

Basin Variable 
Spectral 
Angle 

Eastern Mississippi Basin Precipitation 0.388 
Western Mississippi Basin Precipitation 0.378 
Entire Mississippi Basin Precipitation 0.383 

Eastern Mississippi Basin Subsurface Runoff 0.64 
Western Mississippi Basin Subsurface Runoff 0.628 
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Entire Mississippi Basin Subsurface Runoff 0.543 
Eastern Mississippi Basin Surface Runoff 0.681 
Western Mississippi Basin Surface Runoff 0.628 
Entire Mississippi Basin Surface Runoff 0.576 

Eastern Mississippi Basin Total Runoff 0.604 
Western Mississippi Basin Total Runoff 0.578 
Entire Mississippi Basin Total Runoff 0.545 

Eastern Mississippi Basin Temperature 0.266 
Western Mississippi Basin Temperature 0.391 
Entire Mississippi Basin Temperature 0.354 

Eastern Mississippi Basin Soil Moisture 0.098 
Western Mississippi Basin Soil Moisture 0.131 
Entire Mississippi Basin Soil Moisture 0.115 

Eastern Mississippi Basin Evapotranspiration 0.384 
Western Mississippi Basin Evapotranspiration 0.411 
Entire Mississippi Basin Evapotranspiration 0.256 

Eastern Mississippi Basin Snowmelt 0.733 
Western Mississippi Basin Snowmelt 0.484 
Entire Mississippi Basin Snowmelt 0.474 
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