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Abstract 16 

 17 

On-farm reservoirs (OFRs) are essential water bodies to meet global irrigation needs. Farmers 18 

use OFRs to store water from precipitation and runoff during the rainy season to irrigate their 19 

crops during the dry season. Despite their importance to crop irrigation, OFRs can have a 20 

cumulative impact on surface hydrology by decreasing flow and peak flow. Nonetheless, there 21 

is limited knowledge on the spatial and temporal variability of the OFRs' impacts. Therefore, to 22 

gain novel understanding on the cumulative impact of OFRs on surface hydrology, here we 23 

propose a novel framework that integrates a top-down data driven remote sensing-based 24 

algorithm with physically-based models by leveraging the latest developments in the Soil 25 

Water Assessment Tool+ (SWAT+). We assessed the impact of OFRs in a watershed located in 26 
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eastern Arkansas, the third most irrigated state in the USA. Our results show that the presence 27 

of OFRs in the watershed decreased annual flow on average between 14 and 24%, and the 28 

mean reduction in peak flow varied between 43 and 60%. In addition, the cumulative impact 29 

of the OFRs was not equally distributed across the watershed, and it varied according to the 30 

OFR spatial distribution, and their storage capacity. The results of this study and the proposed 31 

framework can support water agencies with information on the cumulative impact of OFRs, 32 

aiming to support surface water resources management. This is relevant as the number of 33 

OFRs is expected to increase globally as an adaptation to climate change under severe 34 

drought conditions. 35 

 36 

1 Introduction 37 

Inland water bodies (e.g., lakes and reservoirs) comprise a small fraction of Earth’s surface; 38 

however, they are responsible for storing the vast majority of the accessible fresh water 39 

resources available on Earth. In addition, these water bodies are pivotal components of surface 40 

hydrology, having key roles in ecosystem functioning and wildlife habitats (Khazaei et al., 2022; 41 

Verpoorter et al., 2014). In particular, on-farm reservoirs (OFRs) are essential to meet global 42 

irrigation needs (Döll et al., 2009; Downing, 2010; Van Den Hoek et al., 2019). Farmers use OFRs 43 

to store water from precipitation and runoff during the rainy season to irrigate their crops 44 

during the dry season (Habets et al., 2018; Perin et al., 2021; Vanthof & Kelly, 2019; Yaeger et al., 45 

2017; Yaeger et al., 2018). The number of OFRs is expected to rise worldwide in the coming 46 

decades, and estimates show that there are more than 2.1 million OFRs in the US alone 47 

(Downing, 2010; Renwick et al., 2005). OFRs are often built to manage surface water resources 48 

more efficiently, and to help mitigate the impact of extreme droughts, which are projected to 49 

increase due to climate change (Habets et al., 2018; Van Der Zaag & Gupta, 2008). Although 50 

OFRs are small water bodies (< 50 ha), they can have cumulative impacts on the local and 51 

remote hydrology in the watersheds where they occur (e.g., decreasing flow and peak flow) 52 
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(Habets et al., 2018), and their impact may contribute to worsening the surface water stress 53 

already intensified by climate change and population growth (Vörösmarty et al., 2010). Most 54 

studies have focused on the cumulative impact of major large reservoirs on downstream flow 55 

alteration (Chalise et al., 2021; Mukhopadhyay et al., 2021), but limited analysis has been 56 

performed on the impact of OFRs on downstream flow availability.  57 

To quantify the impact of OFRs on surface hydrology, it is necessary to understand the 58 

spatial and temporal variability of OFRs, as well as how the impacts are related to the OFR 59 

networks, as the impacts of OFRs are not the sum of the individual OFR impacts, but rather 60 

the sum and their interaction effects (Canter & Kamath, 1995; Habets et al., 2018). By gathering 61 

information from several studies conducted in different countries (e.g., USA, France, Brazil), 62 

Habets et al., (2018) did a thorough assessment of the OFRs’ impact on surface hydrology, and 63 

the different types of models and ways to represent the OFRs on the watershed. The authors 64 

concluded that the modeled OFRs impacts have a wide range, and that most of the studies 65 

reported a mean annual reduction in flow, which ranged between 0.2 and 36%. In addition, the 66 

variability of the impact as identified in these previous studies was higher when assessing low 67 

flows during multiple years, with reductions between 0.3 and 60%. In general, the estimated 68 

mean annual reduction in flow was 13.4% ± 8.0%, and the mean decrease in peak flow was up 69 

to 45% (Habets et al., 2018).  70 

The approaches used to quantify the cumulative impact of OFRs can be divided into 71 

two classes: data-driven methods, and process based hydrological modeling. The data-driven 72 

approaches include three main methods. The first method relies on assessing measured 73 

inflows and outflows of selected OFRs aiming to quantify their hydrological functioning with 74 

the assumption that the cumulative impacts are the sum of individual impacts (Culler et al., 75 

1961; Dubreuil and Girard, 1973; Kennon, 1966). A variation of the cumulative impact assessment 76 

approach has been recently suggested by Hwang et al., (2021) by comparing the naturalized 77 

flows and the controlled flows for assessing the impact of large reservoir systems. The second 78 

method is based on statistical analysis of the observed discharge time series of a watershed as 79 
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the number of OFRs increased (Galéa et al., 2005; Schreider et al., 2002). This approach is limited 80 

when discriminating the specific impact of OFRs from those of land use and land cover 81 

change, and when explicitly representing the OFRs in the models, given that OFRs tend to be 82 

aggregated within the entire basin (i.e., OFRs surface area and/or storage are summed and 83 

modeled as a unique water impoundment). The third method relies on conducting a paired-84 

catchment experiment by comparing the flows from two adjacent and similar catchments, 85 

one with OFRs and the other without OFRs (Thompson, 2012). This technique requires the 86 

catchment properties (e.g., soils, topology, lithology, land cover) to be spatially homogeneous, 87 

which is practically nonexistent at a large scale, hence limiting this method’s applications.  88 

The second class of methods relate to hydrological modeling, and it is the most widely 89 

used approach for assessing the OFRs’ impacts. A variety of models have been proposed by 90 

coupling the OFRs’ water balance with a quantitative approach to estimate the OFRs’ water 91 

volume change (Fowler et al., 2015; Habets et al., 2014; Jalowska & Yuan, 2019; Yongbo et al., 92 

2014; Ni & Parajuli, 2018; Perrin, 2012; Zhang et al., 2012). In general, the models have three main 93 

components: the OFR water balance, the quantitative approach to quantify the OFR inflows, 94 

and the spatial representation of the OFRs network. These different model components result 95 

in different limitations and assumptions—a complete assessment of these three components 96 

and how they impact the hydrological simulations is provided in a recent review (Habets et al., 97 

2018). Therefore, when selecting a specific model to assess the impacts of the OFRs, it is 98 

important to account for the model’s suitability for the target issue to be addressed, as well as 99 

the model limitations and assumptions. The selected model should also have capability to 100 

incorporate/assimilate varying land-surface conditions (e.g., soil moisture) and time-varying 101 

OFR storages which could be obtained either from local monitoring or through remote 102 

sensing. 103 

Most studies have used remotely-sensed products such as soil moisture (e.g., SMAP; 104 

(Entekhabi et al., 2010), groundwater (e.g., GRACE; (Tapley et al., 2004) and land cover 105 

conditions (e.g., MODIS; (Justice et al., 1998)) for assimilating current conditions into 106 
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hydrological models. Given that OFRs tend to occur in high numbers (e.g., hundreds), multiple 107 

studies leveraged the latest developments and availability of satellite imagery to monitor the 108 

occurrence and dynamics of OFRs (Jones et al., 2017; Ogilvie et al., 2018, 2020; Perin et al., 2022; 109 

Perin et al., 2021a, 2021b; Van Den Hoek et al., 2019; Vanthof & Kelly, 2019), which could provide 110 

useful information on local storage conditions for predicting downstream streamflow. Further, 111 

these studies allowed quantifying the number of OFRs, and their spatial and temporal 112 

variability in surface water area and storage in the watershed where they occur, providing 113 

relevant information when modeling the cumulative impact of OFRs. Despite the 114 

complementary information provided by satellite imagery, there are only a few studies that 115 

incorporated remote sensing-derived information (e.g., soil moisture derived from SMAP, 116 

groundwater based on GRACE) with hydrological modeling (Ni and Parajuli, 2018; Yongbo et 117 

al., 2014; Zhang et al., 2012), and these studies are limited to mapping the OFRs occurrence, or 118 

to snapshots of the OFRs conditions (e.g., surface area). To the best of our knowledge, there is 119 

no study that combines the spatial and temporal variability of the OFRs—derived using multi-120 

year satellite imagery time series analyses—with a process-based hydrological model.   121 

Therefore, to gain novel understanding of the cumulative impact of OFRs on surface 122 

hydrology, in this study, we propose a new approach that systematically integrates the 123 

dynamically varying conditions of OFRs based on satellite imagery time series (Perin et al., 124 

2022) using a top-down data driven approach within the latest SWAT+ model.  The Soil and 125 

Water Assessment Tool (SWAT) (Arnold et al., 2012) has been widely used to model the impacts 126 

of the OFRs (Jalowska and Yuan, 2019; Kim and Parajuli, 2014; Ni et al., 2020; Ni and Parajuli, 127 

2018; Perrin, 2012; Rabelo et al., 2021; Yongbo et al., 2014; Zhang et al., 2012), in part given by a 128 

comprehensive collection of model documentation and guidelines available online 129 

(https://swat.tamu.edu/). Our objectives are to (1) assess the spatial and temporal variability of 130 

the cumulative impact of OFRs at the watershed and subwatersheds levels, and (2) to quantify 131 

the intra- and-inter annual impacts of the OFRs on flow and peak flow at the channel scale. By 132 

integrating the SWAT+ model with a novel remote sensing assimilation algorithm to account 133 
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for the OFRs spatial variability—which is lacking in most of studies assessing the OFRs 134 

impacts—and leveraging a digitally-mapped OFRs dataset (Yaeger et al., 2017), we are 135 

providing a new approach that can be replicated in watersheds across the world, and used to 136 

support water agencies with information to improve surface water resources management. 137 

2 Methods 138 

2.1 Study region 139 

The study region is located in eastern Arkansas, USA, the third most-irrigated state in the USA 140 

(ERS-USDA, 2017). The area has a humid subtropical climate with a 30-year annual average 141 

precipitation of ~1300 mm/year (PRISM Climate Group, 2022). The precipitation is distributed 142 

mostly between March and May, receiving an average of ~400 mm during these months (Perin 143 

et al., 2021b). The region has experienced a steady increase in irrigated agriculture, with 144 

commonly irrigated crops including corn, rice, and soybeans (NASS-USDA, 2017). A recent 145 

study (Yaeger et al., 2017) digitally mapped 330 OFRs located in the study region (Fig. 1) using 146 

the high-resolution (1-m) National Agricultural Imagery Program archive in combination with 147 

2015 sub-meter spatial resolution Google Earth satellite imagery. Most of the OFRs (95%) have 148 

surface area < 50 ha, and they are concentrated in the eastern portion of the study region (Fig. 149 

1). 150 
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 151 
Figure 1–Study region located in eastern Arkansas, USA, the subwatersheds and surface water 152 

streams and channels delineated with SWAT+, the model outlet, the United States Geological 153 

Survey (USGS) stations (United States Geological Survey Water Data for the Nation, 2022) used 154 

for flow calibration and validation, the digitized OFRs (Yaeger et al., 2017), and the Digital 155 

Elevation Model (DEM) used in the modeling (Farr et al., 2007). 156 
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2.2 SWAT+ model setup 157 

2.2.1 The Soil Water Assessment Tool to model the impacts of OFRs on surface hydrology 158 

The SWAT model is a time-continuous semi-distributed hydrological model widely used across 159 

the globe—more than 5,000 peer reviewed publications since its launch in the early 1980s 160 

(Publications | Soil & Water Assessment Tool (SWAT), 2022). The large number of SWAT 161 

applications globally revealed the model development needs and its limitations. To address 162 

the present and future challenges when modeling with SWAT, the model source code has 163 

undergone major modifications, and a completely revised version of the model was proposed 164 

in SWAT+ (Bieger et al., 2017). SWAT+ uses the same equations as SWAT to simulate the 165 

hydrological processes; however, it offers more flexibility to users when configuring the model 166 

(e.g., when defining management schedules, routing constituents, and connecting managed 167 

flow systems to the natural stream network) (Bieger et al., 2017). 168 

 The SWAT+ is under constant improvements (Chawanda et al., 2020; Molina-Navarro et 169 

al., 2018), and a new module (Molina-Navarro et al., 2018) was recently developed to allow the 170 

optimal integration of a water body and its drainage area within the simulated hydrological 171 

processes. In previous versions of the model, when delineating the watershed area draining 172 

into a water body, the users were required to place an outlet in a certain point of the water 173 

stream's network, and the areas in-between the rivers’ subwatersheds flowing into the water 174 

body were therefore excluded—if these areas are disregarded, important hydrological 175 

processes (e.g., evaporation, overland and/or groundwater flow) flowing into the water body 176 

are not accounted for (Molina-Navarro et al., 2018). This former approach can lead to 177 

inaccuracies when delineating the watershed areas, especially when the results are used as 178 

input to an OFR model component. The newest versions of SWAT+ consider the OFRs’ outline 179 

(i.e., shape and surface area) when delineating the watersheds; hence, accounting for the 180 

entire drainage area flowing into the waterbody (Mollina-Navarro et al., 2018). In addition, the 181 

latest versions allow adding more than one OFR per subwatershed by associating the OFR 182 
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with channels—components of the watersheds, and finer divisions and extensions of water 183 

stream reaches—enabling the modeling analyses at the channel scale. When simulating the 184 

impact of the OFRs at the channel scale, there is a higher level of detail of where and when the 185 

OFRs are contributing to changes in surface hydrology, unlike the previous versions of the 186 

model, which allowed adding only a single OFR per subwatershed placed at the subwatershed 187 

outlet as a point (Arnold et al., 2012), and therefore, the analyses were conducted at the 188 

subwatershed scale.  189 

We modeled the impact of OFRs on surface hydrology using the QSWAT+ (v.2.1.9) 190 

SWAT+ model interface together with SWAT+ Editor (v.2.1.0) to set up the model, to input the 191 

required datasets (e.g., DEM, land use and land cover layer, interpolated meteorological 192 

climate information), and to run the different modeling scenarios.  193 

The modeled watershed (710,700 ha, Fig. 1) included 68 subwatersheds and a total of 194 

642 Hydrological Response Units (HRUs)—HRUs are unique portions of the subwatersheds 195 

that have unique land use and management, and soil attributes. We set up daily simulations 196 

for 30 years (1990–2020), including five years of model warm up to establish the initial soil water 197 

conditions and hydrological processes. The watershed was delineated using the Shuttle Radar 198 

Topography Mission DEM (30 m) (Farr et al., 2007). In addition, we set the channel length 199 

threshold to 6 km2, and the stream length threshold to 60 km2. We placed an outlet in the 200 

southern part of the study region—where the lowest part of the watershed is located (Fig. 1). 201 

We created the HRUs using the dominant option—this option selects the largest HRU within 202 

the subwatershed as the general HRU—within QSWAT+ interface, and used the National Land 203 

Cover Database (30 m) (Homer et al., 2020), and Gridded Soil Survey Geographic Database 204 

(gSSURGO) (Soil Survey Staff, USDA-NRCS, 2021) (100 m) as inputs to the model. The gSSURGO 205 

layers were processed according to their guidelines when using them on QSWAT+ (George, 206 

2020). For climate data, we extracted the centroid coordinates of each subwatershed (Muche 207 

et al., 2020), and used these centroids to download 30 years of daily precipitation, minimum 208 

and maximum temperature, surface downward shortwave radiation, wind velocity, and 209 
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relative humidity from the Gridded Surface Meteorological Datasets (Abatzoglou, 2013), 210 

available in Google Earth Engine (Gorelick et al., 2017). The time series of each subwatershed 211 

centroid was added into the SWAT+ Editor as independent weather stations.  212 

2.2.2 Model calibration and validation procedures 213 

We used monthly measured flow from three USGS stations (Fig. 1 and Table 1) to calibrate and 214 

validate the model flow simulations. The USGS flow time series length varied between 14 and 215 

25 years, and we used 60% of the timeseries for calibration and 40% for validation for each 216 

USGS station (Table 1). We assessed the performance of the model by calculating the 217 

Coefficient of determination (r2), Percent bias (PBIAS, %, Eq. 1) (Yapo et al., 1996), and the Nash–218 

Sutcliffe model efficiency coefficient (NSE, Eq. 2) (Nash and Sutcliffe, 1970). PBIAS is the relative 219 

mean difference between the simulated and the measured flow values, and it reflects the 220 

ability of the model to simulate monthly flows. The optimal PBIAS is zero, and low-magnitude 221 

values indicate better model performance. Positive PBIAS indicates overestimation bias, 222 

whereas negative values denote underestimation bias. The NSE expresses how well the model 223 

simulates flows, and it ranges from a negative value to one, with one indicating a perfect fit 224 

between the simulated and measured flow values. In general, the model simulations of 225 

monthly flow are considered satisfactory when r2 ranges from 0.60 to 0.75, PBIAS ranges from 226 

±10% to ±15%, and NSE ranges from 0.50 to 0.70 (Moriasi et al., 2015). 227 

Table 1–USGS stations, drainage areas, and the periods used for flow calibration and validation.  228 

USGS station  Station id Drainage Area (ha) Period (years) 

   Calibration Validation 

07264000 (A) 53,600 1995–2010 2010–2020 

07263555 (B) 25,400 2007–2014 2014–2020 

07263580 (C) 5,300 1997–2011 2011–2020 

 229 
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PBIAS = 
∑ ⬚𝑛

𝑖 = 1 (𝑌𝑖 − 𝑋𝑖)⬚

∑ ⬚𝑛
𝑖 = 1 𝑋𝑖 ⬚

                                                                                                                                             230 

(1) 231 

NSE = 1 − 
∑ ⬚𝑛

𝑖 = 1 (𝑋𝑖 − 𝑌𝑖)2

∑ ⬚𝑛
𝑖 = 1 (𝑋𝑖 − 𝑋𝑖)2

                                                                                   (2) 232 

Where Xi is the measured flow and Yi is the simulated flow.  233 

We conducted a sensitivity analysis using the SWAT+ ToolBox (v.0.7.6) (SWAT+ Toolbox, 234 

2022) to reveal the most sensitive parameters when simulating flow—a total of 10 parameters 235 

(Table S 1) were tested based on previous studies that used SWAT/SWAT+ to model the impact 236 

of water impoundments on surface hydrology (Jalowska & Yuan, 2019; Yongbo et al., 2014; Ni et 237 

al., 2020; Ni & Parajuli, 2018; Perrin, 2012; Rabelo et al., 2021; Zhang et al., 2012). Following the 238 

sensitivity analysis, we selected the five most sensitive parameters (Table 2), and proceeded 239 

with a manual calibration using the SWAT+ Toolbox. We aimed to improve the model's 240 

monthly flow predictions by testing the parameters one at a time and changing their values 241 

between -20% to 20% with 5% increments based on their range values. The final calibrated 242 

parameters and their fitted values are shown in Table 2.  243 

Table 2–Monthly flow calibration parameters. 244 

Parameter Description Range Value 

CN2 SCS runoff curve number 35–95 0.20* 

SOL_AWC Available water capacity (mm/mm) 0.01–1 -0.20* 

ESCO Soil evaporation compensation coefficient 0.01–1 0.50 

PERCO Percolation coefficient (fraction) 0–1 0.60 

CANMX Maximum canopy storage (mm) 0–100 75 

*Denotes relative percentage change.  245 

2.3 OFRs representation in SWAT+ 246 

Multiple OFRs can be added to the same subwatershed by associating them with channels 247 

(Dile et al., 2022). The OFRs need to have at least one outlet channel, and they may have none 248 

or multiple inlets. Therefore, most OFR-related processes within the model involve 249 
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determining what channels form inflowing and outflowing channels for each OFR. Ideally, 250 

each OFR would interact with a channel, and therefore, have a channel entering, leaving, or 251 

within the OFR. Nonetheless, it is common to have OFRs that do not intersect with any channel 252 

(Dile et al., 2022)—this is the case for 93% of the OFRs in our study region. The OFRs from our 253 

study region are not dammed along the streams, but rather they are engineered water 254 

impoundments that are indirectly connected to the main streams via pipes and pumps 255 

(Yaeger et al., 2017). A possible solution would be modifying the OFRs’ shapes by dragging 256 

them to the closest channel (Dile et al., 2022). However, this would require extensive 257 

modifications of the OFRs’ shapes. In addition, when an OFR is added to a channel, this channel 258 

is split into two channels, and the model needs to account for the two newly created channels 259 

during the water routing calculations. For this reason, adding multiple OFRs to the same 260 

channel, or adding multiple OFRs closely located to the same channel, can be a cumbersome 261 

process that leads to numerous routing errors.  262 

To overcome these challenges, we aggregated the OFRs’ surface area, and added 263 

aggregated OFRs to the model. This adaptation involved two steps. First, for each of the 330 264 

OFRs, we searched for the closest channel by calculating the distance between the OFRs’ 265 

centroid and the multiple channels within each subwatershed. Then, we aggregated all the 266 

OFRs that were associated with each channel by summing up their surface area, and adding 267 

a polygon of the aggregated area to represent the aggregated OFR. This approach resulted in 268 

69 aggregated OFRs that were added to 67 different channels located in 16 subwatersheds. 269 

The surface area of the aggregated OFRs varied between 3.05 ha and 165.67 ha, and the 270 

number of OFRs in each aggregated OFR varied between 2 and 12. To avoid confusion, for the 271 

rest of the manuscript, we refer to OFRs as the aggregated OFRs, and not the individual OFRs 272 

shown in Fig. 1. For each of the aggregated OFR, the water volume was calculated using SWAT+ 273 

default rule, which is a simple multiplication of the OFR surface area by a factor of 10, similar 274 

to other studies based on SWAT+ (Ni and Parajuli, 2018; Zhang et al., 2012). In addition, given that 275 

we did not have access to the OFRs release rates, we used the model default release rule, which 276 
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sets the OFRs to release water when the spillway volume is reached—80% of the OFRs capacity 277 

(Bieger et al., 2017). 278 

2.4 Scenario Analysis 279 

Given our representation of the OFRs in SWAT+, we assessed the impact of the OFRs on surface 280 

hydrology at the channel scale. To do so, we established the model baseline scenario without 281 

the presence of the OFRs on the watershed. In addition, we divided the channels into four 282 

classes (i.e., low and high flow classes) according to their mean baseline flow. The different class 283 

intervals were calculated using the mean flow quartiles accounting for all channels, which 284 

resulted in the following baseline flow classes: (1) 0.001–0.25 m3/s, (2) 0.25–0.50 m3/s, (3) 0.50–2.11 285 

m3/s, and (4) 2.11–17.50 m3/s. 286 

To account for the OFRs variation in surface area (i.e., change in storage capacity), we 287 

propose a novel approach that leverages a top-down data-driven model based on satellite 288 

imagery (Fig. 2). We used this model to create three modeling scenarios using daily OFRs 289 

surface area time series—these scenarios were based on the methodology proposed by Perin 290 

et al., (2022). The authors used a multi-sensor satellite imagery approach with the Kalman filter 291 

(Kalman, 1960) to derive daily OFRs’ surface area change between 2017 and 2020. The proposed 292 

algorithm accounts for the uncertainties in both the sensor's observations and the resulting 293 

surface areas. By improving the OFRs surface area observations cadence, the algorithm allows 294 

further understanding of the OFRs surface area intra- and inter-annual changes, which are key 295 

pieces of information that can be used to better assess and manage the water stored by the 296 

OFRs (Perin et al., 2022). The daily surface area time series—derived by combining PlanetScope, 297 

RapidEye, and Sentinel-2 satellite imagery (Perin et al., 2022)—of each OFR was used to 298 

simulate three scenarios (i.e., lower, mean, and upper) representing the OFRs’ capacity in terms 299 

of surface area. The mean scenario represents the regular condition of the OFRs, and it is the 300 

mean of the daily surface area time series derived from the Kalman filter. The lower and upper 301 

scenarios represent the lowest and highest capacities of the OFRs, and they are based on the 302 
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surface area 95% confidence interval limits, calculated using the daily time series. For each 303 

scenario, the OFRs were simulated at full capacity (i.e., maximum storage at the lower, mean 304 

and upper scenarios), and this capacity was kept constant during the simulation period (Ni et 305 

al., 2020; Ni and Parajuli, 2018; Perrin, 2012). To assess the impact of the OFRs on surface 306 

hydrology, we compared the baseline flow with the flow simulated by each surface area 307 

scenario—i.e., comparing the flow changes with and without OFRs, a common approach used 308 

by previous studies (Habets et al., 2018).  309 

 310 

Figure 2–A new approach to integrate a top-down data driven remote sensing-based 311 

algorithm, that assesses the OFRs dynamic conditions (Perin et al., 2022), with the latest SWAT+ 312 

model developments.  313 

 We estimated the impact of the OFRs on surface hydrology by calculating the percent 314 

change (Eq. 3) of monthly flow between the baseline and the three surface area scenarios 315 
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including all OFRs. The annual impact on flow was calculated by averaging the mean percent 316 

change along the months. We also calculated the distribution of the percent change for each 317 

baseline flow class. The distribution was assessed using 2-D Kernel Density estimation (KDE) 318 

plots. Different from discrete bins (e.g., histograms), the KDE plots show a continuous density 319 

estimate of the observations using a Gaussian kernel. In addition, we assessed the percent 320 

changes in peak flow. For the purposes of this analysis, peak flow is defined as equal or higher 321 

than the 99th flow percentile calculated using the entire flow time series (Eq. 3). 322 

Percent change (%) = (
𝑌𝑖 − 𝑋𝑖

𝑋𝑖
) ∗ 100                                                                                                             (3)  323 

Where Xi is the baseline flow and Yi is the simulated flow of each surface area scenario.  324 

3 Results 325 

3.1 Model calibration and validation 326 

The model calibration and validation were done using the three USGS stations presented in 327 

Fig. 1 and Table 1, and accounting for all OFRs in study region. When comparing the monthly 328 

simulated flow with the measured flow for the calibration period, there was a good agreement 329 

(0.71 ≦ r2 ≦ 0.93), and a satisfactory model efficiency (0.68 ≦ NSE ≦ 0.90) for all three stations 330 

(Fig. 3). In addition, the PBIAS magnitude was < 3% for station A, and < 12% for stations B and C. 331 

Meanwhile, the validation period had r2 ranging between 0.69 and 0.86, and the NSE between 332 

0.68 and 0.83, with PBIAS magnitude < 10% for stations A and B, and 18.12% for station C. In 333 

general, for stations A and C, the model overestimated flow values (i.e., positive PBIAS) mostly 334 

during flow events < 3 m3/s, and the model underestimated flow (i.e., negative PBIAS) for 335 

station B during flows  > 20 m3/s (Fig. 3). These findings are consistent with a previous study 336 

conducted in western Mississippi near our study region (Ni and Parajuli, 2018). Even though 337 

during the validation period the station B had PBIAS magnitude higher than 15%, the r2 and 338 

NSE values from the calibration and validation periods indicate satisfactory modeling 339 

performance when simulating monthly flow (Moriasi et al., 2015). Given that none of the OFRs 340 
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were directly connected with the streams where the stations were located (Fig. 1), and there 341 

were no OFRs nearby stations B and C, the calibration and validation metrics with and without 342 

the OFRs were very similar, with differences smaller than 1%.  343 

 344 
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Figure 3–Flow calibration and validation time series for the three USGS stations A (07264000), 345 

B (07263555) and C (07263580). See Fig. 1 and Table 1 for more information about the USGS 346 

stations. The precipitation time series represents the monthly accumulated precipitation at 347 

the watershed scale (i.e., for the entire study region).  348 

3.2 Percent change in flow 349 

We assessed the impact of the OFRs on flow by comparing the baseline flow (i.e., without the 350 

OFRs) with the three surface area scenarios generated from the Kalman filter approach—351 

lower, mean, and upper (see section 2.4, and Fig. 2). The total surface area (i.e., summing all 352 

OFRs surface area) was 2.176 ha for the lower, 2.766 ha for the mean, and 3.370 ha for the upper, 353 

and the three scenarios had a similar OFRs surface area distribution (Fig. 4). In addition, most 354 

of the OFRs had surface areas < 50 ha—78%, 71%, and 62% of the OFRs for the lower, mean, and 355 

upper scenarios. 356 

 357 
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Figure 4–OFRs surface area distribution for the three surface area scenarios, lower, mean, 358 

and upper.  359 

The impact of the OFRs on monthly flow varied throughout the year, and the largest 360 

impacts occurred between January and May for all flow classes (Fig. 5). During these months, 361 

including all surface area scenarios, the mean decrease in flow (i.e., negative mean percent 362 

change) was -34.4 ± 6% for class 1, -37.6 ± 5% for class 2, -30.0 ± 6% for class 3, and -34.1 ± 6% for 363 

class 4. For all classes, the greatest reduction in flow occurred during the month of March (~ -364 

40%). Meanwhile, the impact of the OFRs was smaller during the second half of the year, in 365 

which the mean percent change in flow was -12.0 ± 3.% for class 1, -12.5 ± 5% for class 2, -1.4 ± 4% 366 

for class 3, and -2.6 ± 10% for class 4 (Fig. 5). So we always saw a decrease? It looks like we have 367 

some increases too. 368 

When assessing the mean percent change per month, for all surface area scenarios,  369 

the lower flow classes (i.e., (1) 0.001–0.25 m3/s and (2) 0.25–0.50 m3/s) had a negative mean 370 

percent change for all months. Nonetheless, we observed a mean positive percent change (i.e., 371 

increase in flow) for the months of August (5.0 ± 1%) and October (5.2 ± 0.2%) for class 3, and 372 

during June (8.2 ± 0.3%), August (7.3 ± 0.4%), and October (8.7 ± 0.4%) for class 4 (Fig. 5). 373 

Furthermore, the different surface area scenarios had similar impacts on flow for all months of 374 

the year with differences smaller than 5% for all scenarios. Between January and May, for all 375 

flow classes, the mean percent change was -32.0 ± 6% for the lower, –34.6 ± 7% for the mean, 376 

and -35.8 ± 5% for the upper. Between June and December, the impact on flow was -5.4 ± 6% 377 

for the lower, -7.3 ± 8% for the mean, and -8.9 ± 5% for the upper. 378 

 379 

 380 
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 381 
Figure 5–Monthly percent change in flow between the baseline scenario (vertical dotted blue 382 

line) and the three surface area scenarios (lower, mean, and upper), and for the four flow classes 383 

(1) 0.001–0.25 m3/s, (2) 0.25–0.50 m3/s, (3) 0.50–2.11 m3/s, and (4) 2.11–17.50 m3/s. 384 
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 In general, the OFRs contributed to decreased monthly flow. However, the OFRs' 385 

impact on flow had a significant intra- and inter-annual variability, and it varied according to 386 

different OFRs and channels—this is highlighted by the boxplots size variability in Fig. 5, in 387 

which the variability was lower during the first part of the year, and greater between July and 388 

August. In addition, the monthly percent change in flow in the KDE plots (Fig. 6) shows that 389 

for the three scenarios, and all flow classes, most of the changes in flow ranged between -40% 390 

and 0%. In addition, all KDE plots have a triangular shape with its base on the smaller flows, 391 

denoting where most of the changes occur. Even though the majority of the percent change 392 

in flow is negative, there are circumstances in which the OFRs could positively impact flow—393 

the increase in flow is represented by faded colors in each surface area scenario (Fig. 6). The 394 

positive mean percent change could be as high as 80%—see Fig. 6 for the larger flow classes, 395 

(3) 0.50–2.11 m3/s and (4) 2.11–17.50 m3/s. The positive impact on flow for these classes occurred 396 

during the months of  June, August and October when a mean positive change is observed 397 

(Fig. 5 classes 3 and 4).  398 

 The annual mean percent change, for all surface area scenarios, was -22.5 ± 3% for class 399 

1, -24.2 ± 4% for class 2, -14.6 ± 3% for class 3, and -16.6 ± 3% for class 4. In addition, the surface 400 

area scenarios annual changes were -18.0 ± 5% for the lower, -19.6 ± 5% for the mean, and -20.8 401 

± 6% for the upper, including all flow classes. The differences between the surface area 402 

scenarios shown in Fig. 5 and Fig. 6 are related to the variability of the OFRs surface area.  403 

 404 

 405 

 406 

 407 
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 408 

Figure 6–Kernel density estimation plots smoothed using a Gaussian kernel for the monthly 409 

percent change in flow between the baseline scenario (vertical dotted blue line) and the three 410 

surface area scenarios (lower, mean, and upper) for the four flow classes (1) 0.001–0.25 m3/s, (2) 411 

0.25–0.50 m3/s, (3) 0.50–2.11 m3/s, and (4) 2.11–17.50 m3/s. Note the different range of values on 412 

the y-axis for all four flow classes. 413 
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3.3 Impact on peak flow 414 

For each channel, we calculated the impact of the OFRs on peak flow (Fig. 7). The impact on 415 

peak flow was -60.7 ± 13% for class 1, -56.2 ± 11% for class 2, -46.7 ± 19% for class 3, and -43.9 ± 12% 416 

class 4. When assessing the impact on peak flow based on different surface area scenarios, the 417 

mean percent change was -49.4 ± 18% for the lower, -50.4 ± 17% for the mean, and -52.7 ± 18% 418 

for the upper. All peak flows occurred between January and May, which is the period of the 419 

year when the study region receives most of its precipitation (Perin et al., 2021). With the 420 

exception of a few outliers, there was no increase in peak flow, even though the OFRs 421 

contributed to a positive mean percent change in flow in certain months of the year (Fig. 5 422 

classes 3 and 4).  423 

  424 

Figure 7–Percent change in peak flow between the baseline scenario (vertical dotted blue line) 425 

and the three surface area scenarios (lower, mean, and upper) for the four flow classes (1) 0.001–426 

0.25 m3/s, (2) 0.25–0.50 m3/s, (3) 0.50–2.11 m3/s, and (4) 2.11–17.50 m3/s.  427 

3.4 Simulated flow time series  428 

We randomly selected a channel within the flow class 3 to demonstrate the baseline and the 429 

three surface area scenarios’ flow time series between 1995 and 2005 (Fig. 8). For this channel, 430 

the annual mean percent changes in flow when comparing the baseline scenario with the 431 

lower, mean, and upper surface area scenarios were 0.99 ± 11.8%, -1.9 ± 13%, and -2.0 ± 19%—the 432 
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high standard deviation for the three scenarios is explained by the interannual variability. The 433 

upper surface area scenario resulted in lower flows (i.e., higher impact) when compared to the 434 

lower and mean scenarios for the majority of the flow events—67.8% and 57.6% for the lower 435 

and mean scenarios. Nonetheless, there are circumstances when the upper scenario yielded 436 

higher flows—32.2% and 42.4% of the events for the lower and mean scenarios (e.g., see the 437 

two insets 03/1997–08/1998 and 05/2002–02/2004). These findings indicate that the impacts 438 

that the OFRs have on flow are not entirely governed by the presence and surface area of the 439 

OFRs (i.e., the different surface area scenarios), instead by a combination of the OFRs with 440 

different modeling components (e.g., terrain, land use, climate information), and different 441 

hydrological processes (e.g., run-off, precipitation, evaporation). In addition, the impact on 442 

peak flow for this channel was -45.7 ± 19.7% for all surface area scenarios—this is highlighted 443 

on two occasions (08/2002 and 08/2003) during the second inset.  444 

 445 
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Figure 8–A subset of the time series of simulated flow for baseline and the three surface area 446 

scenarios (lower, mean, and upper) between 1995 and 2005 for a selected channel within the 447 

flow class 3. 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 
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3.5 Overall impact of OFRs 458 

 459 

Figure 9–The cumulative impact of OFRs on annual flow for the mean scenario at the 460 

subwatersheds where the OFRs occurred. The size of the circles represents the contribution 461 

(%) of the subwatershed flow compared to the main outlet (i.e., model outlet). The 462 

subwatersheds are color coded according to their reservoir capacity (%), which was calculated 463 

by summing the OFRs surface area in each subwatershed and dividing the sum to the total 464 

OFRs surface area (i.e., including all OFRs from all subwatersheds), darker color indicating 465 

higher reservoir capacity. The percentages highlighted in yellow represent the impact of the 466 

OFRs on annual flow.  467 
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To assess the overall impact of the OFRs at the subwatershed level, we calculated the 468 

contribution of each subwatershed flow to the main model outlet, and the subwatersheds’ 469 

reservoir capacity (i.e., summing the OFRs surface area at each subwatershed and dividing it 470 

to the total OFRs surface area, including all OFRs from all subwatersheds) (Fig. 9). In general, 471 

the highest impacts on annual flow (e.g., > 100%), with positive or negative magnitude, 472 

occurred at the subwatersheds that contributed the least (< 10%) to the main model outlet—473 

these subwatersheds are represented in lighter shades of blue, and the annual impact is 474 

highlighted in yellow on Fig. 9. In other words, the highest impacts on flow occurred on the 475 

channels with smaller flow magnitudes (e.g., channels that presented mean flow ranging 476 

between 0.001–0.25 and  0.25–0.50 m3/s, these channels were classified as class 1 and 2 in this 477 

study). In addition, the subwatersheds with the highest reservoir capacities (between 15.3 and 478 

19.1 %, represented in darker shades of blue) (Fig. 9), had a small (< 10%) contribution to the 479 

model outlet, and these subwatersheds did not present the highest impact on annual flow 480 

(e.g., the impact on annual flow for the top two subwatersheds in terms of reservoir capacity 481 

were -0.9 and 82.1%). 482 

 483 
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4 Discussion 484 

Although OFRs will contribute to improve food production resilience—by providing surface 485 

water to irrigation during dry periods—to severe drought events, which are  expected to have 486 

higher occurrence with climate change, OFRS can have cumulative impacts on surface 487 

hydrology of the watershed where they occur. Studies have either used data driven or 488 

physically based hydrological model approaches to estimate OFR impacts on the watersheds, 489 

despite the fact that combining the two approaches leads to better understanding on what is 490 

the spatial and temporal variability of the OFR impacts, given that the dynamic changes of the 491 

OFRs are incorporated into the hydrological model. To quantify whether the impact of the 492 

OFRS on mean and peak flow varied intra- and inter-annually, and which subwatersheds are 493 

more impacted, here we combined a data-driven remote sensing-based model with SWAT+ 494 

latest improvements to assess the OFR impacts. 495 

4.1 Cumulative impact of OFRs 496 

When simulating water impoundments in SWAT/SWAT+, it is common practice to 497 

validate and calibrate the model using flow measurements (Evenson et al., 2018; Habets et al., 498 

2018; Jalowska & Yuan, 2019; Ni & Parajuli, 2018). In addition, other studies have validated and 499 

calibrated the model using alternative variables. For example, Perrin et al., (2012) employed 500 

monthly measurements of piezometric variations to assess aquifer recharge processes, and 501 

Jalowska & Yuan (2019) used sediment loadings (concentration and budget), from field 502 

monitoring reports to evaluate sediment simulations. Ideally, we would calibrate and validate 503 

the model by accounting for the parameters governing the OFRs’ water budget (e.g., inflows 504 

and outflows) (e.g., Kim and Parajuli, 2014). Nonetheless, these measurements were not 505 

available for the OFRs in our study region. Furthermore, a thorough calibration and validation 506 

of the model would require extra flow data, covering other parts of the study region, as the 507 

three USGS stations—the only data available—used in this study are located in the upper part 508 
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of the modeled watershed. Similar to Evenson et al., (2018)—who proposed a module to better 509 

represent spatially distributed wetlands, and validated their model using a direct (i.e., flow 510 

measurement) and an indirect (i.e., the wetlands surface area) approach—our validation and 511 

calibration was done using the flow measurements, and the OFRs surface area scenarios were 512 

based on an algorithm that was validated with an independent higher spatial resolution 513 

dataset (Perin et al., 2022).  514 

There is a consensus within the scientific community that the OFRs will have a 515 

cumulative impact on surface hydrology by decreasing flow and peak flow, and the impact will 516 

vary from watershed to watershed due to the number of OFRs, and the OFRs’ different 517 

purposes (e.g., different irrigation schedule) (Ayalew et al., 2017; Fowler et al., 2015; Habets et al., 518 

2018; Nathan & Lowe, 2012; Pinhati et al., 2020; Rabelo et al., 2021). As pointed out by Habets et 519 

al., (2018) the mean annual decrease in flow from all studies was -13.4% ± 8%. Our results are 520 

aligned with this  value, which varied between -24.2 ± 4% and -14.6 ± 3% for all flow classes. In 521 

addition, OFRs can reduce peak flow on average by 45% (Habets et al., 2018; Nathan and Lowe, 522 

2012; Thompson, 2012), and up to 70% (Ayalew et al., 2017) for certain flow events. Likewise, our 523 

results are consistent with these findings, in which the mean impact on peak flow varied 524 

between -60.7 ± 12% and -43.9 ± 12%. Furthermore, differently from previous research, our 525 

results showed that the OFRs may have a positive (< 9%) impact on flow (Fig. 5, classes 3 and 526 

4). This could be explained by the level of details in our analyses. While we calculated the 527 

monthly impact on flow at the channel scale by aggregating the OFRs to the closest channel, 528 

previous studies have mostly reported the annual impact on flows (Habets et al., 2018), and 529 

they performed their analysis at the subwatershed scale by aggregating the OFRs to a single 530 

point at the outlet of each subwatershed in SWAT (Evenson et al., 2018; Kim & Parajuli, 2014; 531 

Perrin, 2012; Zhang et al., 2012), or they used different modeling approaches (see Habet et al., 532 

(2018)). 533 

By leveraging the latest improvements in SWAT+ to simulate water impoundments 534 

(Molina-Navarro et al., 2018) in combination with a novel algorithm to monitor OFRs (Perin et 535 
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al., 2022), we modeled the impact of the OFRs on flow at the channel scale. In addition, the 536 

surface area scenarios enabled us to account for events when the OFRs were at the lowest, 537 

regular, and fullest capacities according to their surface area (see Fig. 2). This is an 538 

improvement over previous studies (e.g., Ni et al., 2020; Ni and Parajuli, 2018; Perrin, 2012) that 539 

used a single surface area (i.e., one snapshot in time) to represent the OFRs in SWAT. The small 540 

differences (< 5%) between the surface area scenarios in terms of mean percent change on 541 

monthly flow indicates that the OFRs’ surface area variation had a low impact on flow. For 542 

instance, during January and May the mean monthly percent change ranged between -35.8 ± 543 

6% and -32.0 ± 7%, and during June and December it varied between -8.8 ± 5% and -5.4 ± 6% 544 

for the three surface area scenarios. The same was observed for peak flow, with a mean 545 

monthly impact ranging between -52.7 ± 17% and -49.4 ± 18%. This small variability on flow 546 

impact was observed even though the total OFR surface area increased by 590 ha and 1194 ha 547 

when comparing the lower scenario with the mean and upper scenarios (Fig. 5). However, the 548 

OFRs represented a small portion (< 1%) of the total area of the modeled watershed (Fig. 1). 549 

These findings are related to the fact that flow simulations are governed by several 550 

hydrological processes (e.g., run-off, precipitation, evapotranspiration) besides the presence of 551 

OFRs on the channel (Bieger et al., 2017; Dile et al., 2022; Arnold et al., 2012). In addition, when 552 

assessing the percent change in flow at the channel scale, the differences in surface area 553 

between the scenarios occurred at a lower magnitude when compared to the total OFRs 554 

surface area. For instance, an OFR with surface area smaller than 10 ha, and with surface area 555 

variations between 10 and 20% for the three scenarios, may not lead to differences (e.g., > 10%) 556 

between the three scenarios.   557 

4.2 OFRs impacts on flow and peak flow 558 

Our findings highlight that the impacts of the OFRs on flow and peak flow have a 559 

significant intra- and inter-annual variability (Figs. 5, 6, and 7), and the impacts vary according 560 

to different OFRs and channels (Fig. 5). The largest impacts on flow occurred during the first 561 
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part of the year between January and May, the period of the year when the peak flows occur. 562 

In addition, this time of the year also coincides with the period when the region receives most 563 

of its precipitation (Perin et al., 2021b), and the OFRs are at their fullest capacity (i.e., OFRs 564 

storing their maximum amount of water) (Perin et al., 2022). During the second part of the year, 565 

we observed a milder mean percent change in flow for all flow classes and all scenarios, and a 566 

greater variability in percent change, notably for the months of July and August (Fig. 5). 567 

Moreover, most of the irrigation activities happen between June and September (Perin et al., 568 

2021b, Yaeger et al., 2017), and it is when the OFRs are at their lowest capacities (i.e., storing less 569 

water) (Perin et al., 2022), which could explain their moderate impact and higher variability 570 

during these months—even though we are not accounting for the OFRs inflows and outflows, 571 

and not simulating irrigation events. Additionally, the variability of the OFRs impacts is related 572 

to the OFRs’ physical properties (e.g., surface area and location in the watershed). For example, 573 

the OFR surface area will have an impact on flow and peak flow, as shown by the different 574 

surface area scenarios, and depending on where the OFR is located in the watershed, given 575 

that it may be connected to lower or higher flow channels, which contributes to their impact 576 

variability during the year (Figs. 4 and 5). Besides the OFRs’ physical properties, the built-in 577 

complexity of SWAT—when simulating the presence of the OFRs and the various hydrological 578 

processes (e.g., run-off, precipitation, evapotranspiration) governing the water cycle—579 

contributes to the differences in the OFRs impacts. This complexity is illustrated in Fig. 8 580 

showing that the upper scenario can have a higher or lower impact on flow when compared 581 

to the lower and mean scenarios. 582 

When assessing the annual impact of the OFRs accounting for each subwatershed flow 583 

compared to the main model outlet flow, and each subwatershed reservoir capacity (Fig. 9), 584 

we found that even though the presence of the OFRs can have a significant impact on flow 585 

(Figs. 5, 6, and 7), the highest impacts tend to occur on the subwatersheds that contribute the 586 

least (< 10%) to the main model outlet. In general, the highest impacts occurred on the 587 
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channels with smaller flow magnitudes, and the subwatersheds with the highest reservoir 588 

capacities did not have the highest impact on flow.  589 

4.3 Research implications and applications to other study regions 590 

Overall, we presented a new approach to quantitatively analyze the impact of a network 591 

of OFRs on mean and peak flow, and we described the various potential reasons behind the 592 

variability of the impacts.  Our results indicate that OFRs do not have an equally distributed 593 

impact on mean and peak flow across the watershed. Hence, assessing the OFRs location as 594 

well as their numbers across the watershed is important when aiming to manage the 595 

construction of new OFRs. In particular, the geospatial variability of the OFRs impacts could be 596 

taken into account by water agencies when planning and developing a network of OFRs, given 597 

it is possible to identify the areas that are under high pressure (e.g., regions with multiple OFRs 598 

that are having a significant impact on flow), and to identify areas that could benefit from the 599 

construction of new OFRs, targeting improvements on water resources management and 600 

irrigation activities. 601 

Furthermore, even though the OFRs impacts may vary significantly in different 602 

watersheds (Habets et al., 2018), our approach could be transferable to other places across the 603 

world, as it integrates a top-drown data-driven remote sensing-based algorithm, which is 604 

based on freely available and private Earth Observations datasets, with the latest SWAT+ 605 

hydrological modeling developments. In addition, the widespread use of SWAT+ and its open-606 

source nature, is yet another factor contributing to the transferability of the novel approach 607 

presented in this study. This is relevant as the number of OFRs is expected to increase globally 608 

(Althoff et al., 2020; Habets et al., 2014; Habets et al., 2018; Krol et al., 2011; Rodrigues et al., 2012), 609 

with a limited knowledge of how the OFRs may impact surface hydrology in different 610 

watersheds, and under diverse environmental conditions. Finally, in tandem with the OFRs’ 611 

key role on irrigated food production, in part to adapt to climate change (Habets et al., 2018) 612 

and to alleviate the pressure on surface and groundwater resources (Vanthof & Kelly, 2019; 613 
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Yaeger et al., 2017; Yaeger et al., 2018), their impacts on surface hydrology need to be 614 

considered to avoid exacerbating the surface water stress already intensified by climate 615 

change and population growth (Vörösmarty et al., 2010). 616 

5 Future improvements 617 

Future improvements should focus on how to better represent the OFRs water management 618 

(i.e., OFRs inflows and outflows) in SWAT+. Given that each OFR has an independent water 619 

balance, accounting for the OFRs water volume change would be a more realistic 620 

representation of the OFRs when compared to the three surface area scenarios tested in this 621 

study. Estimating the OFRs volume change can be done by combining the OFRs surface area 622 

time series with area-elevation equations—these equations describe the OFRs’ bathymetry, 623 

and allow volume estimation by inputting the OFRs’ surface area (Liebe et al., 2005; Meigh, 624 

1995; Sawunyama et al., 2006). After carefully assessing different methods to derive these 625 

equations (Arvor et al., 2018; Avisse et al., 2017; Li et al., 2021; Meigh, 1995; Sawunyama et al., 2006; 626 

Vanthof & Kelly, 2019; Yao et al., 2018; Zhang et al., 2016), we decided that measured ground-627 

data of the OFRs’ depth—which is not available—is required to estimate the equations with an 628 

acceptable uncertainty. Estimating the area-elevation equations entails several challenges, 629 

including: 1) despite the fact that there are several DEMs available for the study region 630 

(Arkansas GIS Office, 2022)—DEMs can be used to estimate the OFRs bottom elevation—the 631 

DEMs were collected when most of the OFRs were full (i.e.,  bathymetry was not exposed), 632 

which limits their use in this case; and 2) although the OFRs are located within the same 633 

geomorphological region, they have different depth, shape and physical characteristics (Perin 634 

et al., 2022; Yaeger et al., 2017). Therefore, even if a generalized area-elevation equation was 635 

calculated for our study region—this is a common approach done by other studies (Mady et 636 

al., 2020; Vanthof and Kelly, 2019)—that would still lead to high uncertainties of water volume 637 

changes. Ideally, each OFR would have its own equation, which was not possible when this 638 

study was done.  639 
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 Efforts should also be made to improve SWAT+ capabilities to receive measured OFRs’ 640 

inflows and outflows. The latest version of the model has improved the hydrological 641 

representation of small water impoundments in SWAT+ (Mollina-Navarro et al., 2018). 642 

Nonetheless, at the time of our study, the newest version of the model does not allow users to 643 

input measured or calculated OFRs’ inflows and outflows. Instead, the model developers 644 

recommend simulating the OFRs water balance using decision tables (Arnold et al., 2018; Dile 645 

et al., 2022). However, there are very limited guidelines on how to create these decision tables. 646 

In addition, the tables would simulate the OFRs water balance instead of using the measured 647 

or calculated volume change, which could introduce more uncertainties to the modeling 648 

scenarios.  649 

6 Conclusions 650 

We proposed a novel approach that combines a top-down data driven remote sensing-based 651 

algorithm with the latest developments in SWAT+ to simulate the cumulative impacts of OFRs. 652 

This enabled us to assess the spatial and temporal variability of the OFRs impacts, as well as 653 

the intra- and inter-annual impact changes on mean and peak flow, at the watershed and 654 

subwatershed levels. Incorporating Earth Observation derived information with a hydrological 655 

model, allowed us to capture the dynamic changes of the OFRs, and to simulate their impacts 656 

under different OFR capacity scenarios.    657 

Our study showed that the OFRs may have an impact on flow and peak flow, which can 658 

have a significant inter- and intra-annual variability. The impact of the OFRs is not equally 659 

distributed across the watershed, and it varies according to the OFRs spatial distribution, and 660 

their surface area (i.e., water storage capacity). As the number of OFRs is expected to increase 661 

globally—partially to adapt to climate change and to alleviate pressure on groundwater 662 

resources—and therefore, also increase their relevance to irrigated food production, it is 663 

imperative to develop new frameworks to further understand the OFRs impacts on surface 664 

hydrology. In this regard, we provided a combination of different methods that can be used in 665 
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other watersheds, which can support water agencies with information to improve surface 666 

water resources management.   667 
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 681 
The National Land Cover Database (30 m) (Homer et al., 2020) and the Gridded Soil Survey 682 
Geographic Database (gSSURGO) (Soil Survey Staff, USDA-NRCS, 2021) (100 m) are accessible 683 
through the USGS’s portal: https://www.usgs.gov/centers/eros/science/national-land-cover-684 
database, and here https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-685 
survey-geographic-gssurgo-database, respectively.  686 
 687 
The climate data extracted from the Gridded Surface Meteorological Datasets (Abatzoglou, 688 
2013) is available in Google Earth Engine (Gorelick et al., 2017), here 689 
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET. 690 
 691 
The Kalman filter derived surface area time series is available through Perin et al., (2022).  692 
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