- Assessing the cumulative impact of on-farm reservoirs on modeled surface hydrology
- 3 Vinicius Perin^{1*}, Mirela G. Tulbure², Shiqi Fang³, Sankarasubramanian Arumugam³, Michele L.
 4 Reba⁴, Mary A. Yaeger⁵
- ⁵ Planet Labs Inc., San Francisco, CA 94107, USA.
- ² Center for Geospatial Analytics, North Carolina State University, 2800 Faucette Drive, 7 Raleigh, NC 27606, USA
- 3 Department of Civil, Construction and Environmental Engineering, North Carolina State
- 9 University, 961 Partners Way, Raleigh 27695, USA
- ⁴ USDA-ARS Delta Water Management Research Unit P.O. Box 2, State University, AR 11 2467-0002, USA.
- 12 ⁵ Center for Applied Earth Science and Engineering Research, The University of Memphis, 13 3675 Alumni Drive, Memphis, TN 38152, USA.
- 14 *Corresponding author: vperin@planet.com

16 Abstract

17

18 On-farm reservoirs (OFRs) are essential water bodies to meet global irrigation needs. Farmers 19 use OFRs to store water from precipitation and runoff during the rainy season to irrigate their 20 crops during the dry season. Despite their importance to crop irrigation, OFRs can have a 21 cumulative impact on surface hydrology by decreasing flow and peak flow. Nonetheless, 22 there is limited knowledge on the spatial and temporal variability of the OFRs' impacts. 23 Therefore, to gain novel understanding on the cumulative impact of OFRs on surface 24 hydrology, here we propose a novel framework that integrates a top-down data driven 25 remote sensing-based algorithm with physically-based models by leveraging the latest 26 developments in the Soil Water Assessment Tool+ (SWAT+). We assessed the impact of OFRs

27 in a watershed located in eastern Arkansas, the third most irrigated state in the USA. Our 28 results show that the presence of OFRs in the watershed can decrease annual flow on 29 average between 14 and 24%, and the mean reduction in peak flow varied between 43 and 30 60%. In addition, the cumulative impact of the OFRs was not equally distributed across the 31 watershed, and it varied according to the OFR spatial distribution, and their storage capacity. 32 The results of this study and the proposed framework can support water agencies with 33 information on the cumulative impact of OFRs, aiming to support surface water resources 34 management. This is relevant as the number of OFRs is expected to increase globally as an 35 adaptation to climate change under severe drought conditions.

36

37 1 Introduction

38 Inland water bodies (e.g., lakes and reservoirs) comprise a small fraction of Earth's surface;
39 however, they are responsible for storing the vast majority of the accessible fresh water
40 resources available on Earth. In addition, these water bodies are pivotal components of
41 surface hydrology, having key roles in ecosystem functioning and wildlife habitats (Khazaei et
42 al., 2022; Verpoorter et al., 2014). In particular, on-farm reservoirs (OFRs) are essential to meet
43 global irrigation needs (Döll et al., 2009; Downing, 2010; Van Den Hoek et al., 2019). Farmers
44 use OFRs to store water from precipitation and runoff during the rainy season to irrigate their
45 crops during the dry season (Habets et al., 2018; Perin et al., 2021; Vanthof & Kelly, 2019; Yaeger
46 et al., 2017; Yaeger et al., 2018). The number of OFRs is expected to rise worldwide in the
47 coming decades, and estimates show that there are more than 2.1 million OFRs in the US
48 alone (Downing, 2010; Renwick et al., 2005). OFRs are often built to manage surface water
49 resources more efficiently, and to help mitigate the impact of extreme droughts, which are
50 projected to increase due to climate change (Habets et al., 2018; Van Der Zaag & Gupta, 2008).
51 Although OFRs are small water bodies (< 50 ha), they can have cumulative impacts on the

53 peak flow) (Habets et al., 2018), and their impact may contribute to worsening the surface 54 water stress already intensified by climate change and population growth (Vörösmarty et al., 55 2010). Most studies have focused on the cumulative impact of major large reservoirs on 56 downstream flow alteration (Chalise et al., 2021; Mukhopadhyay et al., 2021), but limited 57 analysis has been performed on the impact of OFRs on downstream flow availability.

To quantify the impact of OFRs on surface hydrology, it is necessary to understand the spatial and temporal variability of OFRs, as well as how the impacts are related to the OFR networks, as the impacts of OFRs are not the sum of the individual OFR impacts, but rather the sum and their interaction effects (Canter & Kamath, 1995; Habets et al., 2018). By gathering information from several studies conducted in different countries (e.g., USA, France, Brazil), Habets et al., (2018) did a thorough assessment of the OFRs' impact on surface hydrology, and the different types of models and ways to represent the OFRs on the watershed. The authors concluded that the modeled OFRs impacts have a wide range, and that most of the studies reported a mean annual reduction in flow, which ranged between 0.2 and 36%. In addition, the variability of the impact as identified in these previous studies was higher when assessing low flows during multiple years, with reductions between 0.3 and 60%. In general, the estimated mean annual reduction in flow was 13.4% ± 8.0%, and the mean decrease in peak flow was up to 45% (Habets et al., 2018).

The approaches used to quantify the cumulative impact of OFRs can be divided into two classes: data-driven methods, and process based hydrological modeling. The data-driven approaches include three main methods. The first method relies on assessing measured inflows and outflows of selected OFRs aiming to quantify their hydrological functioning with the assumption that the cumulative impacts are the sum of individual impacts (Culler et al., 1961; Dubreuil and Girard, 1973; Kennon, 1966). A variation of the cumulative impact assessment approach has been recently suggested by Hwang et al., (2021) by comparing the naturalized flows and the controlled flows for assessing the impact of large reservoir systems.

watershed as the number of OFRs increased (Galéa et al., 2005; Schreider et al., 2002). This approach is limited when discriminating the specific impact of OFRs from those of land use and land cover change, and when explicitly representing the OFRs in the models, given that OFRs tend to be aggregated within the entire basin (i.e., OFRs surface area and/or storage are summed and modeled as a unique water impoundment). The third method relies on conducting a paired-catchment experiment by comparing the flows from two adjacent and similar catchments, one with OFRs and the other without OFRs (Thompson, 2012). This technique requires the catchment properties (e.g., soils, topology, lithology, land cover) to be spatially homogeneous, which is practically nonexistent at a large scale, hence limiting this method's applications.

The second class of methods relate to hydrological modeling, and it is the most widely 90 91 used approach for assessing the OFRs' impacts. A variety of models have been proposed by 92 coupling the OFRs' water balance with a quantitative approach to estimate the OFRs' water 93 volume change (Fowler et al., 2015; Habets et al., 2014; Jalowska & Yuan, 2019; Yongbo et al., 94 2014; Ni & Parajuli, 2018; Perrin, 2012; Zhang et al., 2012). In general, the models have three 95 main components: the OFR water balance, the quantitative approach to quantify the OFR 96 inflows, and the spatial representation of the OFRs network. These different model 97 components result in different limitations and assumptions—a complete assessment of these 98 three components and how they impact the hydrological simulations is provided in a recent 99 review (Habets et al., 2018). Therefore, when selecting a specific model to assess the impacts 100 of the OFRs, it is important to account for the model's suitability for the target issue to be 101 addressed, as well as the model limitations and assumptions. The selected model should also 102 have capability to incorporate/assimilate varying land-surface conditions (e.g., soil moisture) 103 and time-varying OFR storages which could be obtained either from local monitoring or 104 through remote sensing.

Most studies have used remotely-sensed products such as soil moisture (e.g., SMAP; 106 (Entekhabi et al., 2010), groundwater (e.g., GRACE; (Tapley et al., 2004) and land cover

107 conditions (e.g., MODIS; (Justice et al., 1998)) for assimilating current conditions into 108 hydrological models. Given that OFRs tend to occur in high numbers (e.g., hundreds), 109 multiple studies leveraged the latest developments and availability of satellite imagery to 110 monitor the occurrence and dynamics of OFRs (Jones et al., 2017; Ogilvie et al., 2018, 2020; 111 Perin et al., 2022; Perin et al., 2021a, 2021b; Van Den Hoek et al., 2019; Vanthof & Kelly, 2019), 112 which could provide useful information on local storage conditions for predicting 113 downstream streamflow. Further, these studies allowed quantifying the number of OFRs, and 114 their spatial and temporal variability in surface water area and storage in the watershed 115 where they occur, providing relevant information when modeling the cumulative impact of 116 OFRs. Despite the complementary information provided by satellite imagery, there are only a 117 few studies that incorporated remote sensing-derived information (e.g., soil moisture derived 118 from SMAP, groundwater based on GRACE) with hydrological modeling (Ni and Parajuli, 2018; 119 Yongbo et al., 2014; Zhang et al., 2012), and these studies are limited to mapping the OFRs 120 occurrence, or to snapshots of the OFRs conditions (e.g., surface area). To the best of our 121 knowledge, there is no study that combines the spatial and temporal variability of the 122 OFRs—derived using multi-year satellite imagery time series analyses—with a process-based 123 hydrological model.

Therefore, to gain novel understanding of the cumulative impact of OFRs on surface hydrology, in this study, we propose a new approach that systematically integrates the dynamically varying conditions of OFRs based on satellite imagery time series (Perin et al., 2022) using a top-down data driven approach within the latest SWAT+ model. The Soil and Water Assessment Tool (SWAT) (Arnold et al., 2012) has been widely used to model the impacts of the OFRs (Jalowska and Yuan, 2019; Kim and Parajuli, 2014; Ni et al., 2020; Ni and Parajuli, 2018; Perrin, 2012; Rabelo et al., 2021; Yongbo et al., 2014; Zhang et al., 2012), in part given by a comprehensive collection of model documentation and guidelines available online (https://swat.tamu.edu/). Our objectives are to (1) assess the spatial and temporal variability of the cumulative impact of OFRs at the watershed and subwatersheds levels, and (2) to

134 quantify the intra- and-inter annual impacts of the OFRs on flow and peak flow at the 135 channel scale. By integrating the SWAT+ model with a novel remote sensing assimilation 136 algorithm to account for the OFRs spatial variability—which is lacking in most of studies 137 assessing the OFRs impacts—and leveraging a digitally-mapped OFRs dataset (Yaeger et al., 138 2017), we are providing a new approach that can be replicated in watersheds across the 139 world, and used to support water agencies with information to improve surface water 140 resources management.

141 2 Methods

142 2.1 Study region

143 The study region is located in eastern Arkansas, USA, the third most-irrigated state in the USA 144 (ERS-USDA, 2017). The area has a humid subtropical climate with a 30-year annual average 145 precipitation of ~1300 mm/year (PRISM Climate Group, 2022). The precipitation is distributed 146 mostly between March and May, receiving an average of ~400 mm during these months 147 (Perin et al., 2021b). The region has experienced a steady increase in irrigated agriculture, with 148 commonly irrigated crops including corn, rice, and soybeans (NASS-USDA, 2017). A recent 149 study (Yaeger et al., 2017) digitally mapped 330 OFRs located in the study region (Fig. 1) using 150 the high-resolution (1-m) National Agricultural Imagery Program archive in combination with 151 2015 sub-meter spatial resolution Google Earth satellite imagery. Most of the OFRs (95%) have 152 surface area < 50 ha, and they are concentrated in the eastern portion of the study region 153 (Fig. 1). Currently, there is no comprehensive and up-to-date inventory of all OFRs in the basin. 154 This limitation is partly due to the fact that many of these man-made structures are located 155 on private properties, making them difficult to document. As a result, the study only accounts 156 for a fraction of the total OFRs present in the study region.

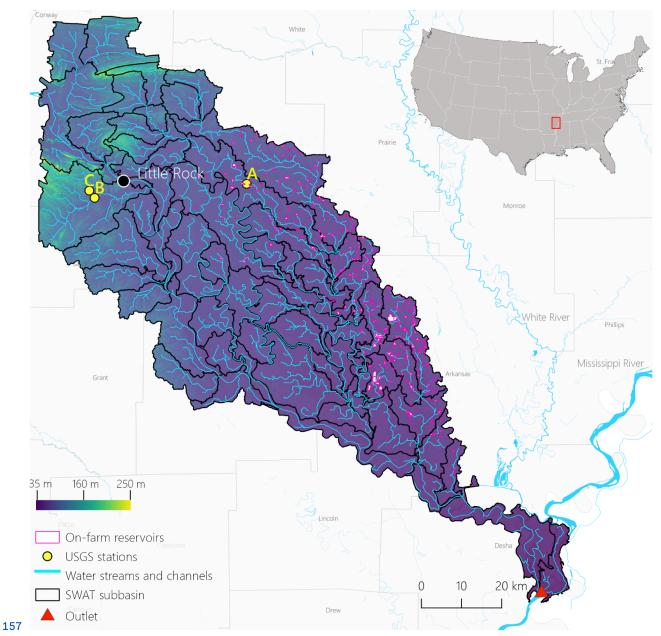


Figure 1–Study region located in eastern Arkansas, USA, the subwatersheds and surface water 159 streams and channels delineated with SWAT+, the model outlet, the United States Geological 160 Survey (USGS) stations (United States Geological Survey Water Data for the Nation, 2022) used 161 for flow calibration and validation, the digitized OFRs (Yaeger et al., 2017), and the Digital 162 Elevation Model (DEM) used in the modeling (Farr et al., 2007).

163 2.2 SWAT+ model setup

164 2.2.1 The Soil Water Assessment Tool to model the impacts of OFRs on surface hydrology

165 The SWAT model is a time-continuous semi-distributed hydrological model widely used 166 across the globe—more than 5,000 peer reviewed publications since its launch in the early 167 1980s (Publications | Soil & Water Assessment Tool (SWAT), 2022). The large number of SWAT 168 applications globally revealed the model development needs and its limitations. To address 169 the present and future challenges when modeling with SWAT, the model source code has 170 undergone major modifications, and a completely revised version of the model was proposed 171 in SWAT+ (Bieger et al., 2017). SWAT+ uses the same equations as SWAT to simulate the 172 hydrological processes; however, it offers more flexibility to users when configuring the model 173 (e.g., when defining management schedules, routing constituents, and connecting managed 174 flow systems to the natural stream network) (Bieger et al., 2017).

The SWAT+ is under constant improvements (Chawanda et al., 2020; Molina-Navarro et 176 al., 2018), and a new module (Molina-Navarro et al., 2018) was recently developed to allow the 177 optimal integration of a water body and its drainage area within the simulated hydrological 178 processes. In previous versions of the model, when delineating the watershed area draining 179 into a water body, the users were required to place an outlet in a certain point of the water 180 stream's network, and the areas in-between the rivers' subwatersheds flowing into the water 181 body were therefore excluded—if these areas are disregarded, important hydrological 182 processes (e.g., evaporation, overland and/or groundwater flow) flowing into the water body 183 are not accounted for (Molina-Navarro et al., 2018). This former approach can lead to 184 inaccuracies when delineating the watershed areas, especially when the results are used as 185 input to an OFR model component. The newest versions of SWAT+ consider the OFRs' outline 186 (i.e., shape and surface area) when delineating the watersheds; hence, accounting for the 187 entire drainage area flowing into the waterbody (Mollina-Navarro et al., 2018). In addition, the 188 latest versions allow adding more than one OFR per subwatershed by associating the OFR

189 with channels—components of the watersheds, and finer divisions and extensions of water 190 stream reaches—enabling the modeling analyses at the channel scale. When simulating the 191 impact of the OFRs at the channel scale, there is a higher level of detail of where and when 192 the OFRs are contributing to changes in surface hydrology, unlike the previous versions of the 193 model, which allowed adding only a single OFR per subwatershed placed at the 194 subwatershed outlet as a point (Arnold et al., 2012), and therefore, the analyses were 195 conducted at the subwatershed scale.

We modeled the impact of OFRs on surface hydrology using the QSWAT+ (v.2.1.9) 197 SWAT+ model interface together with SWAT+ Editor (v.2.1.0) to set up the model, to input the 198 required datasets (e.g., DEM, land use and land cover layer, interpolated meteorological 199 climate information), and to run the different modeling scenarios.

The modeled watershed (710,700 ha, Fig. 1) included 68 subwatersheds and a total of 200 201 642 Hydrological Response Units (HRUs)—HRUs are unique portions of the subwatersheds 202 that have unique land use and management, and soil attributes. We set up daily simulations 203 for 30 years (1990-2020), including five years of model warm up to establish the initial soil 204 water conditions and hydrological processes. The watershed was delineated using the Shuttle 205 Radar Topography Mission DEM (30 m) (Farr et al., 2007). In addition, we set the channel 206 length threshold to 6 km², and the stream length threshold to 60 km². We placed an outlet in 207 the southern part of the study region—where the lowest part of the watershed is located (Fig. 208 1). We created the HRUs using the dominant option—this option selects the largest HRU 209 within the subwatershed as the general HRU—within QSWAT+ interface, and used the 210 National Land Cover Database (30 m) (Homer et al., 2020), and Gridded Soil Survey 211 Geographic Database (gSSURGO) (Soil Survey Staff, USDA-NRCS, 2021) (100 m) as inputs to 212 the model. The gSSURGO layers were processed according to their guidelines when using 213 them on QSWAT+ (George, 2020). For climate data, we extracted the centroid coordinates of 214 each subwatershed (Muche et al., 2020), and used these centroids to download 30 years of 215 daily precipitation, minimum and maximum temperature, surface downward shortwave 216 radiation, wind velocity, and relative humidity from the Gridded Surface Meteorological 217 Datasets (Abatzoglou, 2013), available in Google Earth Engine (Gorelick et al., 2017). The time 218 series of each subwatershed centroid was added into the SWAT+ Editor as independent 219 weather stations.

220 2.2.2 Model calibration and validation procedures

221 We used monthly measured flow from three USGS stations (Fig. 1 and Table 1) to calibrate and 222 validate the model flow simulations. The USGS flow time series length varied between 14 and 223 25 years, and we used 60% of the timeseries for calibration and 40% for validation for each 224 USGS station (Table 1). We assessed the performance of the model by calculating the 225 Coefficient of determination (r²), Percent bias (PBIAS, %, Equation 1) (Yapo et al., 1996), and the 226 Nash-Sutcliffe model efficiency coefficient (NSE, Equation 2) (Nash and Sutcliffe, 1970). PBIAS 227 is the relative mean difference between the simulated and the measured flow values, and it 228 reflects the ability of the model to simulate monthly flows. The optimal PBIAS is zero, and 229 low-magnitude values indicate better model performance. Positive PBIAS indicates 230 overestimation bias, whereas negative values denote underestimation bias. The NSE 231 expresses how well the model simulates flows, and it ranges from a negative value to one, 232 with one indicating a perfect fit between the simulated and measured flow values. In general, 233 the model simulations of monthly flow are considered satisfactory when r² ranges from 0.60 234 to 0.75, PBIAS ranges from ±10% to ±15%, and NSE ranges from 0.50 to 0.70 (Moriasi et al., 2015). 235 Table 1-USGS stations, drainage areas, and the periods used for flow calibration and 236 validation.

USGS station	Station id	Drainage Area (ha)	Period (years)	
			Calibration	Validation
07264000	(A)	53,600	1995–2010	2010–2020
07263555	(B)	25,400	2007–2014	2014–2020
07263580	(C)	5,300	1997–2011	2011–2020

238 PBIAS =
$$\frac{\sum_{i=1}^{n} (Yi - Xi)}{\sum_{i=1}^{n} Xi}$$
 (1)

239 NSE =
$$1 - \frac{\sum\limits_{i=1}^{n} (Xi - Yi)^2}{\sum\limits_{i=1}^{n} (Xi - \overline{Xi})^2}$$
 (2)

240 Where X_i is the measured flow and Y_i is the simulated flow.

We conducted a sensitivity analysis using the SWAT+ ToolBox (v.0.7.6) (SWAT+ Toolbox, 2022) to reveal the most sensitive parameters when simulating flow—a total of 10 parameters (Table S I) were tested based on previous studies that used SWAT/SWAT+ to model the impact of water impoundments on surface hydrology (Jalowska & Yuan, 2019; Yongbo et al., 2014; Ni et al., 2020; Ni & Parajuli, 2018; Perrin, 2012; Rabelo et al., 2021; Zhang et al., 2012). Following the sensitivity analysis, we selected the five most sensitive parameters (Table 2), and proceeded with a manual calibration using the SWAT+ Toolbox. We aimed to improve the model's monthly flow predictions by testing the parameters one at a time and changing their values between -20% to 20% with 5% increments based on their range values. The final calibrated parameters and their fitted values are shown in Table 2.

251 **Table 2**-Monthly flow calibration parameters.

Parameter	Description	Range	Value
CN2	SCS runoff curve number	35–95	0.20*
SOL_AWC	Available water capacity (mm/mm)	0.01–1	-0.20*
ESCO	Soil evaporation compensation coefficient	0.01–1	0.50
PERCO	Percolation coefficient (fraction)	0–1	0.60
CANMX	Maximum canopy storage (mm)	0–100	75

^{252 *}Denotes relative percentage change.

253 2.3 OFRs representation in SWAT+

254 Multiple OFRs can be added to the same subwatershed by associating them with channels 255 (Dile et al., 2022). The OFRs need to have at least one outlet channel, and they may have none 256 or multiple inlets. Therefore, most OFR-related processes within the model involve 257 determining what channels form inflowing and outflowing channels for each OFR. Ideally, 258 each OFR would interact with a channel, and therefore, have a channel entering, leaving, or 259 within the OFR. Nonetheless, it is common to have OFRs that do not intersect with any 260 channel (Dile et al., 2022)—this is the case for 93% of the OFRs in our study region. The OFRs 261 from our study region are not dammed along the streams, but rather they are engineered 262 water impoundments that are indirectly connected to the main streams via pipes and pumps 263 (Yaeger et al., 2017). A possible solution would be modifying the OFRs' shapes by dragging 264 them to the closest channel (Dile et al., 2022). However, this would require extensive 265 modifications of the OFRs' shapes. In addition, when an OFR is added to a channel, this 266 channel is split into two channels, and the model needs to account for the two newly created 267 channels during the water routing calculations. For this reason, adding multiple OFRs to the 268 same channel, or adding multiple OFRs closely located to the same channel, can be a 269 cumbersome process that leads to numerous routing errors.

To overcome these challenges, we aggregated the OFRs' surface area, and added aggregated OFRs to the model. This adaptation involved two steps. First, for each of the 330 PRS, we searched for the closest channel by calculating the distance between the OFRs' centroid and the multiple channels within each subwatershed. Then, we aggregated all the OFRs that were associated with each channel by summing up their surface area, and adding a polygon of the aggregated area to represent the aggregated OFR. This approach resulted in G9 aggregated OFRs that were added to G7 different channels located in 16 subwatersheds. The surface area of the aggregated OFRs varied between 3.05 ha and 165.67 ha, and the number of OFRs in each aggregated OFR varied between 2 and 12. To avoid confusion, for the rest of the manuscript, we refer to OFRs as the aggregated OFRs, and not the individual OFRs shown in Fig. 1.

281 2.4 OFRs water balance

We did not have access to water abstraction data from the OFRs, so all abstractions were modeled using Equation 3, which accounts for water flowing out of the OFR, as well as losses from evaporation and seepage. The total volume of water in the OFR fluctuates with changes in surface area and is also influenced by evaporation losses and the spillway. A reduction in surface area (Equation 4) typically leads to a corresponding decrease in water volume. If inflows are insufficient to fill the OFR, water will not be routed to the downstream changes.

For each of the aggregated OFR, the initial water volume (V_{stored} , see Equation 3) was 290 calculated using SWAT+ default rule, which is a simple multiplication of the OFR surface area 291 by a factor of 10, similar to other studies based on SWAT+ (Ni and Parajuli, 2018; Zhang et al., 292 2012). For a scenario where the OFR has a surface area of 1 hectare (10,000 m²), the 293 corresponding volume would be 100,000 m³—this is an important limitation of our study, as 294 the assumption was necessary due to the absence of available bathymetry data. In addition, 295 given that we did not have access to the OFRs release rates, we used the model default 296 release rule, which sets the OFRs to release water when the spillway volume is reached—80% 297 of the OFRs capacity (Bieger et al., 2017).

$$V = V_{\text{stored}} + V_{\text{flowin}} - V_{\text{flowout}} + V_{\text{pcp}} - V_{\text{evap}} - V_{\text{seep}}$$
(3)

299 Where V is the volume of water in the OFR at the end of the day (m³), V_{stored} is the volume of 300 water stored at the beginning of the day (m³), V_{flowin} is the volume of water entering the OFR 301 during the day (m³), V_{flowout} is the volume of water flowing out of the OFR (m³), V_{pcp} is the 302 volume of precipitation falling on the water body (m³), V_{evap} is the volume of water removed 303 from the OFR due to evaporation, and V_{seep} is the volume of water lost by seepage (m³).

The OFR surface area is used to calculate the amount of precipitation falling on the water body, and the amount of water lost through evaporation and seepage. Given the initial OFR surface area obtained from one of the three modeling scenarios, the OFR surface area modeled daily. The surface area varied according to the volume of water stored in the reservoir. Equation 4 is used to estimate the surface area:

309 Surface area (ha) =
$$\beta_{sa} * V^{expsa}$$
 (4)

310 expsa =
$$\frac{log10 (Vem) - log10 (Vpr)}{log10 (Surface areaem) - log10 (Surface Areapr)}$$
 (5)

311
$$\beta_{sa} = \left(\frac{Vem}{Surface\ areaem}\right)^{expsa}$$
 (6)

312 Where β_{sa} is a surface area coefficient, V_{em} is the volume of water (m³) at the emergency 313 spillway, V_{pr} is the volume of water (m³) at the principal spillway, *Surface area*_{em} is the surface 314 area (ha) at the emergency spillway, and *Surface area*_{pr} is the surface area at the principal 315 spillway.

316 The volume of precipitation falling into the OFR is calculated using Equation 7:

317
$$V_{pcp} = 10 * R_{day} * Surface Area (ha)$$
 (7)

318 Where R_{day} is the amount of precipitation falling into the OFR on a given day (mm).

319 Evaporation losses are calculated using Equation 8:

320
$$V_{\text{evap}} = 10 * \eta * E_0 * Surface Area (ha)$$
 (8)

321 Where η is an evaporation coefficient (0.6), and E_o is the potential evapotranspiration for a 322 given day (mm).

323 Seepage losses are calculated using Equation 9:

324
$$V_{\text{seep}}$$
 = 240 * K_{sat} * Surface Area (ha) (9)

325 Where K_{sat} is the effective saturated hydraulic conductivity of the reservoir bottom (mm/hr).

326 2.4 Scenario Analysis

327 Given our representation of the OFRs in SWAT+, we assessed the impact of the OFRs on 328 surface hydrology at the channel scale. To do so, we established the model baseline scenario 329 without the presence of the OFRs on the watershed. In addition, we divided the channels into 330 four classes (i.e., low and high flow classes) according to their mean baseline flow. The 331 different class intervals were calculated using the mean flow quartiles accounting for all 332 channels, which resulted in the following baseline flow classes: (1) 0.001–0.25 m³/s, (2) 0.25–0.50 333 m³/s, (3) 0.50–2.11 m³/s, and (4) 2.11–17.50 m³/s.

To account for the OFRs variation in surface area (i.e., change in storage capacity), we 334 335 propose a novel approach that leverages a top-down data-driven model based on satellite 336 imagery (Fig. 2). We used this model to create three modeling scenarios using daily OFRs 337 surface area time series—these scenarios were based on the methodology proposed by Perin 338 et al., (2022). The authors used a multi-sensor satellite imagery approach with the Kalman 339 filter (Kalman, 1960) to derive daily OFRs' surface area change between 2017 and 2020. The 340 proposed algorithm accounts for the uncertainties in both the sensor's observations and the 341 resulting surface areas. By improving the OFRs surface area observations cadence, the 342 algorithm allows further understanding of the OFRs surface area intra- and inter-annual 343 changes, which are key pieces of information that can be used to better assess and manage 344 the water stored by the OFRs (Perin et al., 2022). The daily surface area time series—derived by 345 combining PlanetScope, RapidEye, and Sentinel-2 satellite imagery (Perin et al., 2022)—of 346 each OFR was used to simulate three scenarios (i.e., lower, mean, and upper) representing the 347 OFRs' capacity in terms of surface area. The mean scenario represents the regular condition 348 of the OFRs, and it is the mean of the daily surface area time series derived from the Kalman 349 filter. The lower and upper scenarios represent the lowest and highest capacities of the OFRs, 350 and they are based on the surface area 95% confidence interval limits, calculated using the 351 daily time series. Please refer to Perin et al., 2022 for more details on how the 95% confidence 352 interval was calculated.

353 The SWOT+ model does not allow for direct incorporation of a daily surface area time 354 series because it calculates surface area dynamically (Equation 4) based on changes in water 355 volume through the reservoir water balance equation (Equation 3). It is structured to accept a 356 single surface area value per scenario, which then varies internally. Incorporating time-varying 357 surface area data, such as from the Kalman filter, would require modifications to the model 358 that are currently not supported. Therefore, a single surface area value was assigned to each 359 scenario and OFR, with lower, mean, and upper values used as starting points for the model's 360 water balance simulations. This initial surface area reflects the OFR's maximum surface area 361 at full capacity for each scenario. For example, in the lower scenario, an initial surface area of 362 1.2 ha represents the maximum area for this OFR. As model iterations proceed, the surface 363 area is recalculated based on Equation 4. The initial OFR capacity was surface areawas kept 364 constant during the simulation period (Ni et al., 2020; Ni and Parajuli, 2018; Perrin, 2012). In 365 other words, the OFR surface area varied according to Equation 4, however, the maximum 366 surface area did not exceed the initial value. To assess the impact of the OFRs on surface 367 hydrology, we compared the baseline flow with the flow simulated by each surface area 368 scenario—i.e., comparing the flow changes with and without OFRs, a common approach 369 used by previous studies (Habets et al., 2018).

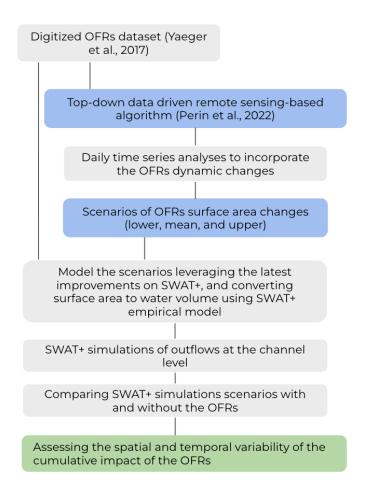


Figure 2–A new approach to integrate a top-down data driven remote sensing-based 372 algorithm, that assesses the OFRs dynamic conditions (Perin et al., 2022), with the latest 373 SWAT+ model developments.

We estimated the impact of the OFRs on surface hydrology by calculating the percent change (Equation 10) of monthly flow between the baseline and the three surface area including all OFRs. The annual impact on flow was calculated by averaging the mean percent change along the months. We also calculated the distribution of the percent change for each baseline flow class. The distribution was assessed using 2-D Kernel Density estimation (KDE) plots. Different from discrete bins (e.g., histograms), the KDE plots show a continuous density estimate of the observations using a Gaussian kernel. In addition, we assessed the percent changes in peak flow. For the purposes of this analysis, peak flow is defined as equal or higher than the 99th flow percentile calculated using the entire flow time

383 series (Equation 10). It is important to keep in mind that the impact of the OFRs on this study
384 is solely based on modeling scenarios and does not account for OFR management practices,
385 which represents a key limitation of this simulation study.

386 Percent change (%) =
$$\left(\frac{Yi - Xi}{Xi}\right)$$
 * 100

387 Where X_i is the baseline flow and Y_i is the simulated flow of each surface area scenario.

388 3 Results

389 3.1 Model calibration and validation

390 The model calibration and validation were done using the three USGS stations presented in 391 Fig. 1 and Table 1, and accounting for all OFRs in study region. When comparing the monthly 392 simulated flow with the measured flow for the calibration period, there was a good 393 agreement (0.71 $\leq r^2 \leq 0.93$), and a satisfactory model efficiency (0.68 \leq NSE \leq 0.90) for all three 394 stations (Fig. 3). In addition, the PBIAS magnitude was < 3% for station A, and < 12% for 395 stations B and C. Meanwhile, the validation period had r² ranging between 0.69 and 0.86, and 396 the NSE between 0.68 and 0.83, with PBIAS magnitude < 10% for stations A and B, and 18.12% 397 for station C. In general, for stations A and C, the model overestimated flow values (i.e., 398 positive PBIAS) mostly during flow events $< 3 \text{ m}^3/\text{s}$, and the model underestimated flow (i.e., 399 negative PBIAS) for station B during flows > 20 m³/s (Fig. 3). These findings are consistent 400 with a previous study conducted in western Mississippi near our study region (Ni and Parajuli, 401 2018). Even though during the validation period the station B had PBIAS magnitude higher 402 than 15%, the r² and NSE values from the calibration and validation periods indicate 403 satisfactory modeling performance when simulating monthly flow (Moriasi et al., 2015). Given 404 that none of the OFRs were directly connected with the streams where the stations were 405 located (Fig. 1), and there were no OFRs nearby stations B and C, the calibration and 406 validation metrics with and without the OFRs were very similar, with differences smaller than 407 1%.

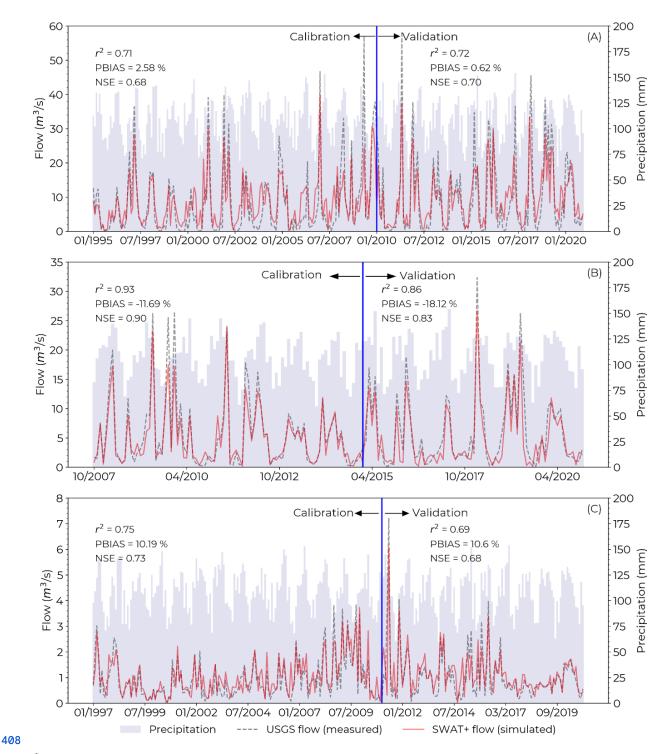
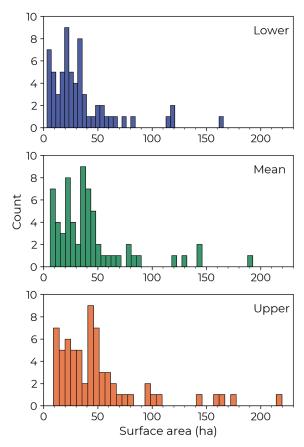


Figure 3–Flow calibration and validation time series for the three USGS stations A (07264000), 410 B (07263555) and C (07263580). See Fig. 1 and Table 1 for more information about the USGS 411 stations. The precipitation time series represents the monthly accumulated precipitation at 412 the watershed scale (i.e., for the entire study region).

413 3.2 Percent change in flow

414 We assessed the impact of the OFRs on flow by comparing the baseline flow (i.e., without the 415 OFRs) with the three surface area scenarios generated from the Kalman filter 416 approach—lower, mean, and upper (see section 2.4, and Fig. 2). The total surface area (i.e., 417 summing all OFRs surface area) was 2.176 ha for the lower, 2.766 ha for the mean, and 3.370 418 ha for the upper, and the three scenarios had a similar OFRs surface area distribution (Fig. 4). 419 In addition, most of the OFRs had surface areas < 50 ha—78%, 71%, and 62% of the OFRs for 420 the lower, mean, and upper scenarios.



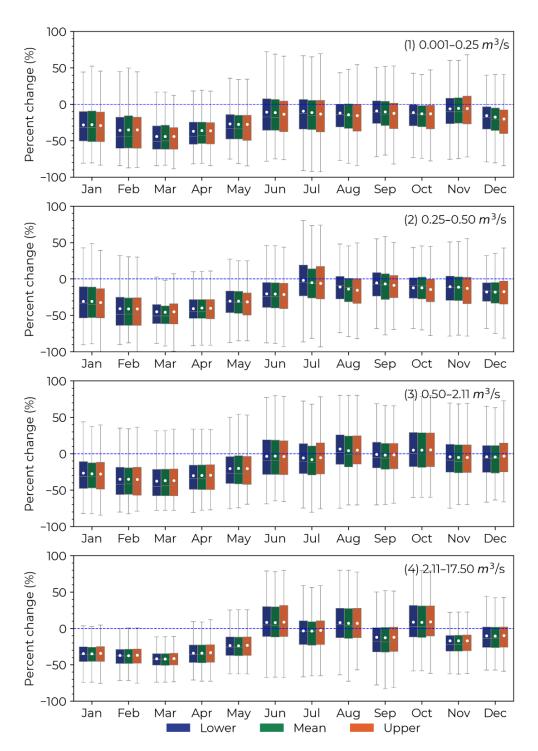
422 **Figure 4**-OFRs surface area distribution for the three surface area scenarios, lower, mean, and 423 upper.

Figure 5 breaks down the channels into four distinct categories, with each category 425 showing percent changes in flow throughout the year, displayed along the x-axis by month. 426 The three bar colors represent different scenarios, while bar heights illustrate variations across

427 channels and years. For example, the bars for January include all January data spanning from 428 1990 to 2020, enabling a thorough comparison of seasonal and year-to-year flow changes. The 429 impact of the OFRs on monthly flow varied throughout the year, and the largest impacts 430 occurred between January and May for all flow classes (Fig. 5). During these months, 431 including all surface area scenarios, the mean decrease in flow (i.e., negative mean percent 432 change) was $-34.4 \pm 6\%$ for class 1, $-37.6 \pm 5\%$ for class 2, $-30.0 \pm 6\%$ for class 3, and $-34.1 \pm 6\%$ for 433 class 4. For all classes, the greatest reduction in flow occurred during the month of March (-434 - 40%). Meanwhile, the impact of the OFRs was smaller during the second half of the year, in 435 which the mean percent change in flow was $-12.0 \pm 3.\%$ for class 1, $-12.5 \pm 5\%$ for class 2, $-1.4 \pm 4\%$ 4% for class 3, and $-2.6 \pm 10\%$ for class 4 (Fig. 5). So we always saw a decrease? It looks like we 437 have some increases too.

When assessing the mean percent change per month, for all surface area scenarios, the lower flow classes (i.e., (1) 0.001–0.25 m 3 /s and (2) 0.25–0.50 m 3 /s) had a negative mean percent change for all months. Nonetheless, we observed a mean positive percent change (i.e., increase in flow) for the months of August (5.0 ± 1%) and October (5.2 ± 0.2%) for class 3, and during June (8.2 ± 0.3%), August (7.3 ± 0.4%), and October (8.7 ± 0.4%) for class 4 (Fig. 5). Furthermore, the different surface area scenarios had similar impacts on flow for all months of the year with differences smaller than 5% for all scenarios. Between January and May, for all flow classes, the mean percent change was -32.0 ± 6% for the lower, -34.6 ± 7% for the mean, and -35.8 ± 5% for the upper. Between June and December, the impact on flow was -5.4 ± 6% for the lower, -7.3 ± 8% for the mean, and -8.9 ± 5% for the upper.

448



451 Figure 5–Monthly percent change in flow between the baseline scenario (vertical dotted blue 452 line) and the three surface area scenarios (lower, mean, and upper), and for the four flow 453 classes (1) 0.001–0.25 m³/s, (2) 0.25–0.50 m³/s, (3) 0.50–2.11 m³/s, and (4) 2.11–17.50 m³/s. This 454 analysis included data from all simulated years (1990–2020).

In general, the OFRs contributed to decreased monthly flow. However, the OFRs' 456 impact on flow had a significant intra- and inter-annual variability, and it varied according to 457 different OFRs and channels—this is highlighted by the boxplots size variability in Fig. 5, in 458 which the variability was lower during the first part of the year, and greater between July and 459 August. In addition, the monthly percent change in flow in the KDE plots (Fig. 6) shows that 460 for the three scenarios, and all flow classes, most of the changes in flow ranged between -40% 461 and 0%. In addition, all KDE plots have a triangular shape with its base on the smaller flows, 462 denoting where most of the changes occur. Even though the majority of the percent change 463 in flow is negative, there are circumstances in which the OFRs could positively impact 464 flow—the increase in flow is represented by faded colors in each surface area scenario (Fig. 6). 465 The positive mean percent change could be as high as 80%—see Fig. 6 for the larger flow 466 classes, (3) 0.50–2.11 m³/s and (4) 2.11–17.50 m³/s. The positive impact on flow for these classes 467 occurred during the months of June, August and October when a mean positive change is 468 observed (Fig. 5 classes 3 and 4).

The annual mean percent change, for all surface area scenarios, was -22.5 \pm 3% for class 470 1, -24.2 \pm 4% for class 2, -14.6 \pm 3% for class 3, and -16.6 \pm 3% for class 4. In addition, the surface 471 area scenarios annual changes were -18.0 \pm 5% for the lower, -19.6 \pm 5% for the mean, and -20.8 472 \pm 6% for the upper, including all flow classes. The differences between the surface area 473 scenarios shown in Fig. 5 and Fig. 6 are related to the variability of the OFRs surface area.

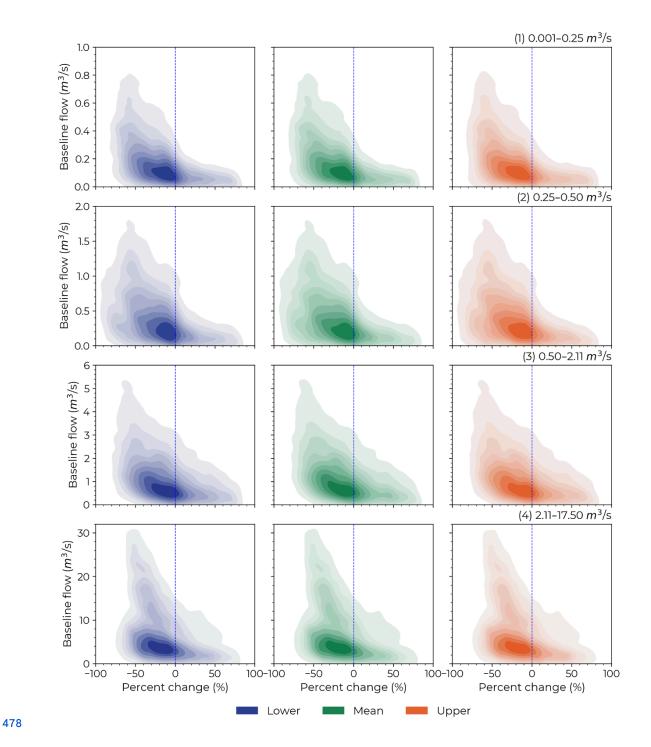


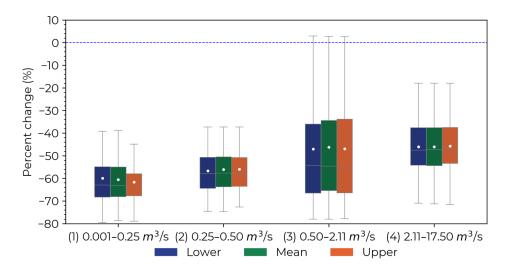
Figure 6-Kernel density estimation plots smoothed using a Gaussian kernel for the monthly 480 percent change in flow between the baseline scenario (vertical dotted blue line) and the 481 three surface area scenarios (lower, mean, and upper) for the four flow classes (1) 0.001–0.25

482 m 3 /s, (2) 0.25–0.50 m 3 /s, (3) 0.50–2.11 m 3 /s, and (4) 2.11–17.50 m 3 /s. Note the different range of 483 values on the y-axis for all four flow classes.

484 3.3 Impact on peak flow

494

485 For each channel, we calculated the impact of the OFRs on peak flow (Fig. 7). The impact on 486 peak flow was -60.7 \pm 13% for class 1, -56.2 \pm 11% for class 2, -46.7 \pm 19% for class 3, and -43.9 \pm 487 12% class 4. When assessing the impact on peak flow based on different surface area 488 scenarios, the mean percent change was -49.4 \pm 18% for the lower, -50.4 \pm 17% for the mean, 489 and -52.7 \pm 18% for the upper. All peak flows occurred between January and May, which is the 490 period of the year when the study region receives most of its precipitation (Perin et al., 2021). 491 With the exception of a few outliers, there was no increase in peak flow, even though the 492 OFRs contributed to a positive mean percent change in flow in certain months of the year 493 (Fig. 5 classes 3 and 4).



495 **Figure 7**–Percent change in peak flow between the baseline scenario (vertical dotted blue 496 line) and the three surface area scenarios (lower, mean, and upper) for the four flow classes (1) 497 0.001–0.25 m³/s, (2) 0.25–0.50 m³/s, (3) 0.50–2.11 m³/s, and (4) 2.11–17.50 m³/s.

498 3.4 Simulated flow time series

499 We randomly selected a channel within the flow class 3 to demonstrate the baseline and the 500 three surface area scenarios' flow time series between 1995 and 2005 (Fig. 8). For this channel, 501 the annual mean percent changes in flow when comparing the baseline scenario with the 502 lower, mean, and upper surface area scenarios were 0.99 ± 11.8%, -1.9 ± 13%, and -2.0 ± 19%—the 503 high standard deviation for the three scenarios is explained by the interannual variability. The 504 upper surface area scenario resulted in lower flows (i.e., higher impact) when compared to the 505 lower and mean scenarios for the majority of the flow events—67.8% and 57.6% for the lower 506 and mean scenarios. Nonetheless, there are circumstances when the upper scenario yielded 507 higher flows—32.2% and 42.4% of the events for the lower and mean scenarios (e.g., see the 508 two insets 03/1997-08/1998 and 05/2002-02/2004). These findings indicate that the impacts 509 that the OFRs have on flow are not entirely governed by the presence and surface area of the 510 OFRs (i.e., the different surface area scenarios), instead by a combination of the OFRs with 511 different modeling components (e.g., terrain, land use, climate information), and different 512 hydrological processes (e.g., run-off, precipitation, evaporation). In addition, the impact on 513 peak flow for this channel was -45.7 ± 19.7% for all surface area scenarios—this is highlighted 514 on two occasions (08/2002 and 08/2003) during the second inset.

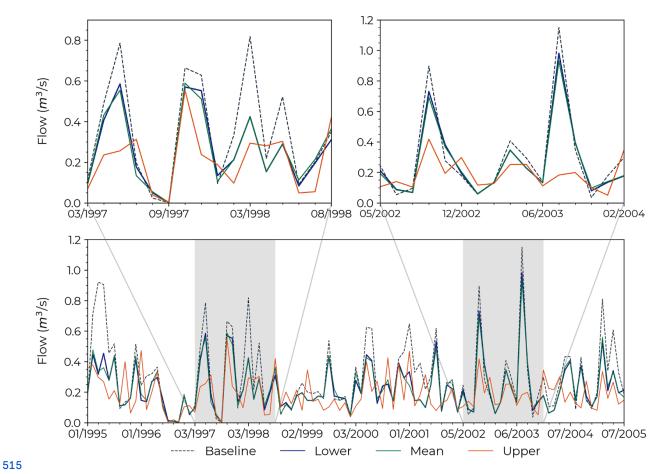


Figure 8–A subset of the time series of simulated flow for baseline and the three surface area 517 scenarios (lower, mean, and upper) between 1995 and 2005 for a selected channel within the 518 flow class 3.

528 3.5 Spatial variability of the OFRs impact on annual flow

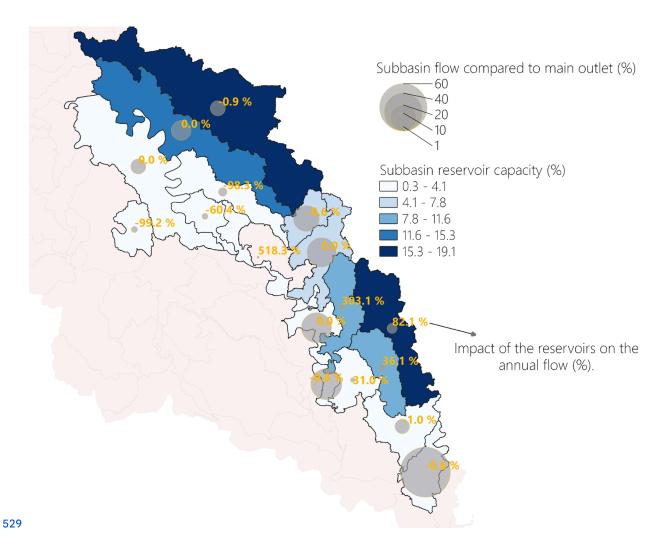


Figure 9–The cumulative impact of OFRs on annual flow for the mean scenario at the subwatersheds where the OFRs occurred. The size of the circles represents the contribution (%) of the subwatershed flow compared to the main outlet (i.e., model outlet). The subwatersheds are color coded according to their reservoir capacity (%), which was calculated by summing the OFRs surface area in each subwatershed and dividing the sum to the total OFRs surface area (i.e., including all OFRs from all subwatersheds), darker color indicating higher reservoir capacity. The percentages highlighted in yellow represent the impact of the OFRs on annual flow.

538 To assess the overall impact of the OFRs at the subwatershed level, we calculated the 539 contribution of each subwatershed flow to the main model outlet, and the subwatersheds' 540 reservoir capacity (i.e., summing the OFRs surface area at each subwatershed and dividing it 541 to the total OFRs surface area, including all OFRs from all subwatersheds) (Fig. 9). In general, 542 the highest impacts on annual flow (e.g., > 100%), with positive or negative magnitude, 543 occurred at the subwatersheds that contributed the least (< 10%) to the main model 544 outlet—these subwatersheds are represented in lighter shades of blue, and the annual 545 impact is highlighted in yellow on Fig. 9. In other words, the highest impacts on flow occurred 546 on the channels with smaller flow magnitudes (e.g., channels that presented mean flow 547 ranging between 0.001–0.25 and 0.25–0.50 m³/s, these channels were classified as class 1 and 548 2 in this study). In addition, the subwatersheds with the highest reservoir capacities (between 549 15.3 and 19.1 %, represented in darker shades of blue) (Fig. 9), had a small (< 10%) contribution 550 to the model outlet, and these subwatersheds did not present the highest impact on annual 551 flow (e.g., the impact on annual flow for the top two subwatersheds in terms of reservoir 552 capacity were -0.9 and 82.1%).

554 4 Discussion

555 Although OFRs will contribute to improve food production resilience—by providing surface 556 water to irrigation during dry periods—to severe drought events, which are expected to have 557 higher occurrence with climate change, OFRS can have cumulative impacts on surface 558 hydrology of the watershed where they occur. Studies have used either data-driven or 559 physically-based hydrological model approaches to estimate OFR impacts on watersheds. 560 However, combining these approaches provides a better understanding of the spatial and 561 temporal variability of OFR impacts, as it incorporates the dynamic changes of OFRs into the 562 hydrological model. To quantify whether the impact of the OFRS on mean and peak flow 563 varied intra- and inter-annually, and which subwatersheds are more impacted, here we 564 combined a data-driven remote sensing-based model with SWAT+ latest improvements to 565 assess the OFR impacts.

566 4.1 Cumulative impact of OFRs

When simulating water impoundments in SWAT/SWAT+, it is common practice to 568 validate and calibrate the model using flow measurements (Evenson et al., 2018; Habets et al., 569 2018; Jalowska & Yuan, 2019; Ni & Parajuli, 2018). In addition, other studies have validated and 570 calibrated the model using alternative variables. For example, Perrin et al., (2012) employed 571 monthly measurements of piezometric variations to assess aquifer recharge processes, and 572 Jalowska & Yuan (2019) used sediment loadings (concentration and budget), from field 573 monitoring reports to evaluate sediment simulations. Ideally, we would calibrate and validate 574 the model by accounting for the parameters governing the OFRs' water budget (e.g., inflows 575 and outflows) (e.g., Kim and Parajuli, 2014). Nonetheless, these measurements were not 576 available for the OFRs in our study region. Furthermore, a thorough calibration and validation 577 of the model would require extra flow data, covering other parts of the study region, as the 578 three USGS stations—the only data available—used in this study are located in the upper part

of the modeled watershed. Similar to Evenson et al., (2018)—who proposed a module to better represent spatially distributed wetlands, and validated their model using a direct (i.e., flow measurement) and an indirect (i.e., the wetlands surface area) approach—our validation and calibration was done using the flow measurements, and the OFRs surface area scenarios were based on an algorithm that was validated with an independent higher spatial resolution dataset (Perin et al., 2022).

585 There is a consensus within the scientific community that the OFRs will have a 586 cumulative impact on surface hydrology by decreasing flow and peak flow, and the impact 587 will vary from watershed to watershed due to the number of OFRs, and the OFRs' different 588 purposes (e.g., different irrigation schedule) (Ayalew et al., 2017; Fowler et al., 2015; Habets et 589 al., 2018; Nathan & Lowe, 2012; Pinhati et al., 2020; Rabelo et al., 2021). As pointed out by Habets 590 et al., (2018) the mean annual decrease in flow from all studies was -13.4% ± 8%. Our results are 591 aligned with this value, which varied between -24.2 ± 4% and -14.6 ± 3% for all flow classes. In 592 addition, OFRs can reduce peak flow on average by 45% (Habets et al., 2018; Nathan and 593 Lowe, 2012; Thompson, 2012), and up to 70% (Ayalew et al., 2017) for certain flow events. 594 Likewise, our results are consistent with these findings, in which the mean impact on peak 595 flow varied between -60.7 ± 12% and -43.9 ± 12%. Furthermore, differently from previous 596 research, our results showed that the OFRs may have a positive (< 9%) impact on flow (Fig. 5, 597 classes 3 and 4). This could be explained by the level of details in our analyses. When 598 evaluating flow changes at the channel scale, it's important to note that flow at this level is 599 several orders of magnitude smaller than at the main basin outlet. Consequently, this scale 600 often exhibits more significant percentage changes, both increases and decreases. This likely 601 explains how OFRs can enhance channel flow, primarily due to the additional water 602 contributed by OFRs, influenced by periods of increased precipitation in certain channels 603 during specific months and years. While we calculated the monthly impact on flow at the 604 channel scale by aggregating the OFRs to the closest channel, previous studies have mostly 605 reported the annual impact on flows (Habets et al., 2018), and they performed their analysis at 606 the subwatershed scale by aggregating the OFRs to a single point at the outlet of each 607 subwatershed in SWAT (Evenson et al., 2018; Kim & Parajuli, 2014; Perrin, 2012; Zhang et al., 608 2012), or they used different modeling approaches (see Habet et al., (2018)).

By leveraging the latest improvements in SWAT+ to simulate water impoundments 609 610 (Molina-Navarro et al., 2018) in combination with a novel algorithm to monitor OFRs (Perin et 611 al., 2022), we modeled the impact of the OFRs on flow at the channel scale. In addition, the 612 surface area scenarios enabled us to account for events when the OFRs were at the lowest, 613 regular, and fullest capacities according to their surface area (see Fig. 2). This is an 614 improvement over previous studies (e.g., Ni et al., 2020; Ni and Parajuli, 2018; Perrin, 2012) that 615 used a single surface area (i.e., one snapshot in time) to represent the OFRs in SWAT. The 616 small differences (< 5%) between the surface area scenarios in terms of mean percent change 617 on monthly flow indicates that the OFRs' surface area variation had a low impact on flow. For 618 instance, during January and May the mean monthly percent change ranged between -35.8 ± 619 6% and -32.0 \pm 7%, and during June and December it varied between -8.8 \pm 5% and -5.4 \pm 6% 620 for the three surface area scenarios. The same was observed for peak flow, with a mean 621 monthly impact ranging between -52.7 ± 17% and -49.4 ± 18%. This small variability on flow 622 impact was observed even though the total OFR surface area increased by 590 ha and 1194 ha 623 when comparing the lower scenario with the mean and upper scenarios (Fig. 5). However, the 624 OFRs represented a small portion (< 1%) of the total area of the modeled watershed (Fig. 1). 625 These findings are related to the fact that flow simulations are governed by several 626 hydrological processes (e.g., run-off, precipitation, evapotranspiration) besides the presence of 627 OFRs on the channel (Bieger et al., 2017; Dile et al., 2022; Arnold et al., 2012). In addition, when 628 assessing the percent change in flow at the channel scale, the differences in surface area 629 between the scenarios occurred at a lower magnitude when compared to the total OFRs 630 surface area. For instance, an OFR with surface area smaller than 10 ha, and with surface area 631 variations between 10 and 20% for the three scenarios, may not lead to differences (e.g., > 10%) 632 between the three scenarios.

633 4.2 OFRs impacts on flow and peak flow

634 Our findings highlight that the impacts of the OFRs on flow and peak flow have a 635 significant intra- and inter-annual variability (Figs. 5, 6, and 7), and the impacts vary according 636 to different OFRs and channels (Fig. 5). The largest impacts on flow occurred during the first 637 part of the year between January and May, the period of the year when the peak flows occur. 638 In addition, this time of the year also coincides with the period when the region receives most 639 of its precipitation (Perin et al., 2021b), and the OFRs are at their fullest capacity (i.e., OFRs 640 storing their maximum amount of water) (Perin et al., 2022). During the second part of the 641 year, we observed a milder mean percent change in flow for all flow classes and all scenarios, 642 and a greater variability in percent change, notably for the months of July and August (Fig. 5). 643 Moreover, most of the irrigation activities happen between June and September (Perin et al., 644 2021b, Yaeger et al., 2017), and it is when the OFRs are at their lowest capacities (i.e., storing 645 less water) (Perin et al., 2022), which could explain their moderate impact and higher 646 variability during these months—even though we are not accounting for the OFRs inflows 647 and outflows, and not simulating irrigation events. Additionally, the variability of the OFRs 648 impacts is related to the OFRs' physical properties (e.g., surface area and location in the 649 watershed). For example, the OFR surface area will have an impact on flow and peak flow, as 650 shown by the different surface area scenarios, and depending on where the OFR is located in 651 the watershed, given that it may be connected to lower or higher flow channels, which 652 contributes to their impact variability during the year (Figs. 4 and 5). Besides the OFRs' 653 physical properties, the built-in complexity of SWAT—when simulating the presence of the 654 OFRs and the various hydrological processes (e.g., run-off, precipitation, evapotranspiration) 655 governing the water cycle—contributes to the differences in the OFRs impacts. This 656 complexity is illustrated in Fig. 8 showing that the upper scenario can have a higher or lower 657 impact on flow when compared to the lower and mean scenarios.

When assessing the annual impact of the OFRs accounting for each subwatershed flow compared to the main model outlet flow, and each subwatershed reservoir capacity (Fig. 660 9), we found that even though the presence of the OFRs can have a significant impact on flow (Figs. 5, 6, and 7), the highest impacts tend to occur on the subwatersheds that 662 contribute the least (< 10%) to the main model outlet. In general, the highest impacts occurred on the channels with smaller flow magnitudes, and the subwatersheds with the highest reservoir capacities did not have the highest impact on flow. The changes in the OFRs impacts along the year, and between different years, are directly related to the OFRs water balance (Equation 3). The variations are primarily driven by the volume of water stored by the OFRs, which is modeled at a daily scale, and it varies according to total daily precipitation, evaporation, and seepage losses.

669 4.3 Research implications and applications to other study regions

Overall, we presented a new approach to quantitatively analyze the impact of a 671 network of OFRs on mean and peak flow, and we described the various potential reasons 672 behind the variability of the impacts. Our results indicate that OFRs do not have an equally 673 distributed impact on mean and peak flow across the watershed. This variability is primarily 674 influenced by differences in their size, water storage capacity, and their spatial distribution 675 (i.e., their presence). Hence, assessing the OFRs location as well as their numbers across the 676 watershed is important when aiming to manage the construction of new OFRs. In particular, 677 the geospatial variability of the OFRs impacts could be taken into account by water agencies 678 when planning and developing a network of OFRs, given it is possible to identify the areas 679 that are under high pressure (e.g., regions with multiple OFRs that are having a significant 680 impact on flow), and to identify areas that could benefit from the construction of new OFRs, 681 targeting improvements on water resources management and irrigation activities.

Furthermore, even though the OFRs impacts may vary significantly in different watersheds (Habets et al., 2018), our approach could be transferable to other places across the

684 world, as it integrates a top-drown data-driven remote sensing-based algorithm, which is 685 based on freely available and private Earth Observations datasets, with the latest SWAT+ 686 hydrological modeling developments. In addition, the widespread use of SWAT+ and its 687 open-source nature, is yet another factor contributing to the transferability of the novel 688 approach presented in this study. This is relevant as the number of OFRs is expected to 689 increase globally (Althoff et al., 2020; Habets et al., 2014; Habets et al., 2018; Krol et al., 2011; 690 Rodrigues et al., 2012), with a limited knowledge of how the OFRs may impact surface 691 hydrology in different watersheds, and under diverse environmental conditions. Finally, in 692 tandem with the OFRs' key role on irrigated food production, in part to adapt to climate 693 change (Habets et al., 2018) and to alleviate the pressure on surface and groundwater 694 resources (Vanthof & Kelly, 2019; Yaeger et al., 2017; Yaeger et al., 2018), their impacts on 695 surface hydrology need to be considered to avoid exacerbating the surface water stress 696 already intensified by climate change and population growth (Vörösmarty et al., 2010).

697 5 Future improvements

698 Future improvements should focus on how to better represent the OFRs water management 699 (i.e., OFRs inflows and outflows) in SWAT+. Given that each OFR has an independent water 700 balance, accounting for the OFRs water volume change would be a more realistic 701 representation of the OFRs when compared to the three surface area scenarios tested in this 702 study. Estimating the OFRs volume change can be done by combining the OFR surface area 703 time series with area-elevation equations—these equations describe the OFRs' bathymetry, 704 and allow volume estimation by inputting the OFRs' surface area (Liebe et al., 2005; Meigh, 705 1995; Sawunyama et al., 2006). After carefully assessing different methods to derive these 706 equations (Arvor et al., 2018; Avisse et al., 2017; Li et al., 2021; Meigh, 1995; Sawunyama et al., 707 2006; Vanthof & Kelly, 2019; Yao et al., 2018; Zhang et al., 2016), we decided that measured 708 ground-data of the OFRs' depth—which is not available—is required to estimate the 709 equations with an acceptable uncertainty. Estimating the area-elevation equations entails

710 several challenges, including: 1) despite the fact that there are several DEMs available for the 711 study region (Arkansas GIS Office, 2022)—DEMs can be used to estimate the OFRs bottom 712 elevation—the DEMs were collected when most of the OFRs were full (i.e., bathymetry was 713 not exposed), which limits their use in this case; and 2) although the OFRs are located within 714 the same geomorphological region, they have different depth, shape and physical 715 characteristics (Perin et al., 2022; Yaeger et al., 2017). Therefore, even if a generalized 716 area-elevation equation was calculated for our study region—this is a common approach 717 done by other studies (Mady et al., 2020; Vanthof and Kelly, 2019)—that would still lead to high 718 uncertainties of water volume changes. Ideally, each OFR would have its own equation, which 719 was not possible when this study was done.

Efforts should also be made to improve SWAT+ capabilities to receive measured OFRs' receive measured of the model has improved the hydrological inflows and outflows. The latest version of the model has improved the hydrological representation of small water impoundments in SWAT+ (Mollina-Navarro et al., 2018). Nonetheless, at the time of our study, the newest version of the model does not allow users to recommend simulating the OFRs' inflows and outflows. Instead, the model developers recommend simulating the OFRs water balance using decision tables (Arnold et al., 2018; Dile et al., 2022). However, there are very limited guidelines on how to create these decision tables. In addition, the tables would simulate the OFRs water balance instead of using the measured or calculated volume change, which could introduce more uncertainties to the modeling responsible to the modeling scenarios. In addition, future work should integrate data on actual evapotranspiration, ET (Kiptala et al., 2014) to quantify as the balance between water availability and ET determines recommend in large part the irrigation system efficiency and crop productivity in the watersheds where responsible to the modeling of the part the irrigation system efficiency and crop productivity in the watersheds where

733 6 Conclusions

734 We proposed a novel approach that combines a top-down data driven remote sensing-based 735 algorithm with the latest developments in SWAT+ to simulate the cumulative impacts of 736 OFRs. This enabled us to assess the spatial and temporal variability of the OFRs impacts, as 737 well as the intra- and inter-annual impact changes on mean and peak flow, at the watershed 738 and subwatershed levels. Incorporating Earth Observation derived information with a 739 hydrological model, allowed us to capture the dynamic changes of the OFRs, and to simulate 740 their impacts under different OFR capacity scenarios.

Our study showed that the OFRs may have an impact on flow and peak flow, which can have a significant inter- and intra-annual variability. The impact of the OFRs is not equally distributed across the watershed, and it varies according to the OFRs spatial distribution, and their surface area (i.e., water storage capacity). As the number of OFRs is expected to increase globally—partially to adapt to climate change and to alleviate pressure on groundwater resources—and therefore, also increase their relevance to irrigated food production, it is imperative to develop new frameworks to further understand the OFRs impacts on surface hydrology. In this regard, we provided a combination of different methods that can be used in other watersheds, which can support water agencies with information to improve surface water resources management.

751 7 Author contribution

752 VP, MGT planned study, analyzed data and modeling, and wrote and reviewed the

753 manuscript. SF and AS carried out software analyses, wrote and reviewed. MLR and MAY data

754 curation, wrote and reviewed.

755 8 Competing interests

756 The contact author has declared that none of the authors has any competing interests.

757 9 Acknowledgments

758 The first author was supported by NASA through the Future Investigators in NASA Earth and

759 Space Science and Technology fellowship.

760 10 Data Availability

- 761 The Soil Water Assessment Tool (SWAT) hydrological model and all necessary tools to perform
- 762 calibration, validation, and data analyses can be accessed through SWAT's online portal:
- 763 https://swat.tamu.edu/.

- 765 The National Land Cover Database (30 m) (Homer et al., 2020) and the Gridded Soil Survey
- 766 Geographic Database (gSSURGO) (Soil Survey Staff, USDA-NRCS, 2021) (100 m) are accessible
- 767 through the USGS's portal:
- 768 https://www.usgs.gov/centers/eros/science/national-land-cover-database, and here
- 769 https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-survey-geographic-gssurg
- 770 o-database, respectively.

771

- 772 The climate data extracted from the Gridded Surface Meteorological Datasets (Abatzoglou,
- 773 2013) is available in Google Earth Engine (Gorelick et al., 2017), here
- 774 https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET.

775

776 The Kalman filter derived surface area time series is available through Perin et al., (2022).

777 10 References

778

- 779 Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological
- 780 applications and modelling, Int. J. Climatol., 33, 121–131, https://doi.org/10.1002/joc.3413, 2013.

781

- 782 Althoff, D., Rodrigues, L. N., and da Silva, D. D.: Impacts of climate change on the evaporation
- 783 and availability of water in small reservoirs in the Brazilian savannah, Clim. Change, 159,
- 784 215-232, https://doi.org/10.1007/s10584-020-02656-y, 2020.

785

- 786 Arkansas GIS Office: Arkansas GIS Office | Elevation datasets, 2022.
- 787 Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., M. J. White, M. J., Srinivasan, R.,
- 788 Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., and Jha, M. K.: SWAT:
- 789 Model Use, Calibration, and Validation, Trans. ASABE, 55, 1491–1508,
- 790 https://doi.org/10.13031/2013.42256, 2012.

791

- 792 Arnold, J. G., Bieger, K., White, M. J., Srinivasan, R., Dunbar, J. A., and Allen, P. M.: Use of
- 793 Decision Tables to Simulate Management in SWAT+, Water, 10, 713,
- 794 https://doi.org/10.3390/w10060713, 2018.

795

- 796 Arvor, D., Daher, F. R. G., Briand, D., Dufour, S., Rollet, A.-J., Simões, M., and Ferraz, R. P. D.:
- 797 Monitoring thirty years of small water reservoirs proliferation in the southern Brazilian
- 798 Amazon with Landsat time series, ISPRS J. Photogramm. Remote Sens., 145, 225-237,
- 799 https://doi.org/10.1016/j.isprsjprs.2018.03.015, 2018.

800

- 801 Avisse, N., Tilmant, A., Müller, M. F., and Zhang, H.: Monitoring small reservoirs' storage with
- 802 satellite remote sensing in inaccessible areas, Hydrol. Earth Syst. Sci., 21, 6445-6459,
- 803 https://doi.org/10.5194/hess-21-6445-2017, 2017.

804

- 805 Ayalew, T. B., Krajewski, W. F., Mantilla, R., Wright, D. B., and Small, S. J.: Effect of Spatially
- 806 Distributed Small Dams on Flood Frequency: Insights from the Soap Creek Watershed, J.
- 807 Hydrol. Eng., 22, 04017011, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001513, 2017.

- 809 Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., Allen, P. M., Volk, M., and
- 810 Srinivasan, R.: Introduction to SWAT+, A Completely Restructured Version of the Soil and

```
811 Water Assessment Tool, JAWRA J. Am. Water Resour. Assoc., 53, 115–130,
```

812 https://doi.org/10.1111/1752-1688.12482, 2017.

813

- 814 Canter, L. W. and Kamath, J.: Questionnaire checklist for cumulative impacts, Environ. Impact
- 815 Assess. Rev., 15, 311-339, https://doi.org/10.1016/0195-9255(95)00010-C, 1995.
- 816 Chalise, D. R., Sankarasubramanian, A., and Ruhi, A.: Dams and Climate Interact to Alter River
- 817 Flow Regimes Across the United States, Earth's Future, 9,
- 818 https://doi.org/10.1029/2020EF001816, 2021.

819

820 SWAT+ Toolbox: https://celray.github.io/docs/swatplus-toolbox/v1.0/index.html, last access: 17 821 June 2022.

000

822

- 823 Chawanda, C. J., Arnold, J., Thiery, W., and van Griensven, A.: Mass balance calibration and
- 824 reservoir representations for large-scale hydrological impact studies using SWAT+, Clim.
- 825 Change, 163, 1307–1327, https://doi.org/10.1007/s10584-020-02924-x, 2020.

826

- 827 Culler, R. C., Hadley, R. F., and Schumm, S. A.: Hydrology of the upper Cheyenne River basin:
- 828 Part A. Hydrology of stock-water reservoirs in upper Cheyenne River basin; Part B. Sediment
- 829 sources and drainage-basin characteristics in upper Cheyenne River basin, U.S. Geological
- 830 Survey, https://doi.org/10.3133/wsp1531, 1961.

831

832 Dile, Y., Srinivasan, R., and George, C.: QGIS Interface for SWAT+: QSWAT+, 2022.

833

- 834 Döll, P., Fiedler, K., and Zhang, J.: Global-scale analysis of river flow alterations due to water
- 835 withdrawals and reservoirs, Hydrol. Earth Syst. Sci., 13, 2413-2432,
- 836 https://doi.org/10.5194/hess-13-2413-2009, 2009.

837

- 838 Downing, J. A.: Emerging global role of small lakes and ponds: little things mean a lot,
- 839 Limnetica, 29, 9–24, https://doi.org/10.23818/limn.29.02, 2010.
- 840 Dubreuil, P. and Girard, G.: Influence of a very large number of small reservoirs on the annual
- 841 flow regime of a tropical stream, Wash. DC Am. Geophys. Union Geophys. Monogr. Ser., 17,
- 842 295-299, 1973.

843

- 844 Irrigation & Water Use:
- 845 https://www.ers.usda.gov/topics/farm-practices-management/irrigation-water-use/, last
- 846 access: 30 October 2021.

847

- 848 Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K.,
- 849 Goodman, S. D., Jackson, T. J., Johnson, J., Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N.,
- 850 McDonald, K. C., Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman, S.
- 851 W., Tsang, L., and Van Zyl, J.: The Soil Moisture Active Passive (SMAP) Mission, Proc. IEEE, 98,
- 852 704–716, https://doi.org/10.1109/JPROC.2010.2043918, 2010.

853

- 854 Evenson, G. R., Jones, C. N., McLaughlin, D. L., Golden, H. E., Lane, C. R., DeVries, B., Alexander,
- 855 L. C., Lang, M. W., McCarty, G. W., and Sharifi, A.: A watershed-scale model for depressional
- 856 wetland-rich landscapes, J. Hydrol. X, 1, 100002, https://doi.org/10.1016/j.hydroa.2018.10.002,
- **857** 2018.

858

- 859 Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M.,
- 860 Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M.,
- 861 Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45,
- 862 https://doi.org/10.1029/2005RG000183, 2007.

```
864 Fowler, K., Morden, R., Lowe, L., and Nathan, R.: Advances in assessing the impact of hillside
```

- 865 farm dams on streamflow, Australas. J. Water Resour., 19, 96–108,
- 866 https://doi.org/10.1080/13241583.2015.1116182, 2015.

- 868 Galéa, G., Vasquez-Paulus, B., Renard, B., and Breil, P.: L'impact des prélèvements d'eau pour
- 869 l'irrigation sur les régimes hydrologiques des sous-bassins du Tescou et de la Séoune (bassin
- 870 Adour-Garonne, France), Rev. Sci. Eau J. Water Sci., 18, 273–305,
- 871 https://doi.org/10.7202/705560ar, 2005.

872

- 873 George, C.: Using SSURGO soil data with QSWAT and QSWAT+, 2020.
- 874 Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth
- 875 Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27,
- 876 https://doi.org/10.1016/j.rse.2017.06.031, 2017.

877

- 878 Habets, F., Philippe, E., Martin, E., David, C. H., and Leseur, F.: Small farm dams: Impact on river
- 879 flows and sustainability in a context of climate change, Hydrol. Earth Syst. Sci., 18, 4207-4222,
- 880 https://doi.org/10.5194/hess-18-4207-2014, 2014.

881

- 882 Habets, F., Molénat, J., Carluer, N., Douez, O., and Leenhardt, D.: The cumulative impacts of
- 883 small reservoirs on hydrology: A review, Sci. Total Environ., 643, 850-867,
- 884 https://doi.org/10.1016/j.scitotenv.2018.06.188, 2018.

885

- 886 Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., Wickham, J.,
- 887 Stehman, S., Auch, R., and Riitters, K.: Conterminous United States land cover change patterns
- 888 2001–2016 from the 2016 National Land Cover Database, ISPRS J. Photogramm. Remote Sens.,
- 889 162, 184–199, https://doi.org/10.1016/j.isprsjprs.2020.02.019, 2020.

890

- 891 Hwang, J., Kumar, H., Ruhi, A., Sankarasubramanian, A., and Devineni, N.: Quantifying
- 892 Dam-Induced Fluctuations in Streamflow Frequencies Across the Colorado River Basin, Water
- 893 Resour. Res., 57, https://doi.org/10.1029/2021WR029753, 2021.

894

- 895 Jalowska, A. M. and Yuan, Y.: Evaluation of SWAT Impoundment Modeling Methods in Water
- 896 and Sediment Simulations, JAWRA J. Am. Water Resour. Assoc., 55, 209–227,
- 897 https://doi.org/10.1111/1752-1688.12715, 2019.

898

- 899 Jones, S. K., Fremier, A. K., DeClerck, F. A., Smedley, D., Pieck, A. O., and Mulligan, M.: Big data
- 900 and multiple methods for mapping small reservoirs: Comparing accuracies for applications in
- 901 agricultural landscapes, Remote Sens., 9, https://doi.org/10.3390/rs9121307, 2017.

902

- 903 Justice, C. O., Vermote, E., Townshend, J. R. G., Defries, R., Roy, D. P., Hall, D. K., Salomonson, V.
- 904 V., Privette, J. L., Riggs, G., Strahler, A., Lucht, W., Myneni, R. B., Knyazikhin, Y., Running, S. W.,
- 905 Nemani, R. R., Zhengming Wan, Huete, A. R., van Leeuwen, W., Wolfe, R. E., Giglio, L., Muller, J.,
- 906 Lewis, P., and Barnsley, M. J.: The Moderate Resolution Imaging Spectroradiometer (MODIS):
- 907 land remote sensing for global change research, IEEE Trans. Geosci. Remote Sens., 36,
- 908 1228-1249, https://doi.org/10.1109/36.701075, 1998.

909

- 910 Kalman, R. E.: A new approach to linear filtering and prediction problems, 1960.
- 911 Kennon, F. W.: Hydrologic effects of small reservoirs in Sandstone Creek Watershed, Beckham
- 912 and Roger Mills Counties, western Oklahoma, U.S. G.P.O., 1966.
- 913 Khazaei, B., Read, L. K., Casali, M., Sampson, K. M., and Yates, D. N.: GLOBathy, the global lakes
- 914 bathymetry dataset, Sci. Data, 9, 36, https://doi.org/10.1038/s41597-022-01132-9, 2022.

915

916 Kiptala, J.K., M.L. Mul, Y. Mohamed and P. van der Zaag, 2014. Modelling stream ow and

```
917 quantifying blue water using modified STREAM model for a heterogeneous, highly utilized
```

- 918 and data-scarce river basin in Africa. Hydrol. Earth Syst. Sci. 18, 2287–2303,
- 919 https://doi:10.5194/hess-10-18-2287-2014

- 921 Kim, H. K. and Parajuli, P. B.: Impacts of Reservoir Outflow Estimation Methods in SWAT Model
- 922 Calibration, Trans. ASABE, 1029-1042, https://doi.org/10.13031/trans.57.10156, 2014.

923

- 924 Krol, M. S., de Vries, M. J., van Oel, P. R., and de Araújo, J. C.: Sustainability of Small Reservoirs
- 925 and Large Scale Water Availability Under Current Conditions and Climate Change, Water

926

- 927 Resour. Manag., 25, 3017–3026, https://doi.org/10.1007/s11269-011-9787-0, 2011.
- 928 Li, Y., Gao, H., Allen, G. H., and Zhang, Z.: Constructing Reservoir Area-Volume-Elevation Curve
- 929 from TanDEM-X DEM Data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 2249–2257,
- 930 https://doi.org/10.1109/JSTARS.2021.3051103, 2021.

931

- 932 Liebe, J., van de Giesen, N., and Andreini, M.: Estimation of small reservoir storage capacities in
- 933 a semi-arid environment, Phys. Chem. Earth, 30, 448-454,
- 934 https://doi.org/10.1016/j.pce.2005.06.011, 2005.

935

- 936 Mady, B., Lehmann, P., Gorelick, S. M., and Or, D.: Distribution of small seasonal reservoirs in
- 937 semi-arid regions and associated evaporative losses, Environ. Res. Commun., 2, 061002,
- 938 https://doi.org/10.1088/2515-7620/ab92af, 2020.

939

- 940 Meigh, J.: The impact of small farm reservoirs on urban water supplies in Botswana, Nat.
- 941 Resour. Forum, 19, 71-83, https://doi.org/10.1111/j.1477-8947.1995.tb00594.x, 1995.

942

- 943 Molina-Navarro, E., Nielsen, A., and Trolle, D.: A QGIS plugin to tailor SWAT watershed
- 944 delineations to lake and reservoir waterbodies, Environ. Model. Softw., 108, 67–71,
- 945 https://doi.org/10.1016/j.envsoft.2018.07.003, 2018.

946

- 947 Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.: Hydrologic and water quality models:
- 948 Performance measures and evaluation criteria, Trans. ASABE, 58, 1763-1785,
- 949 https://doi.org/10.13031/trans.58.10715, 2015.

950

- 951 Muche, M. E., Sinnathamby, S., Parmar, R., Knightes, C. D., Johnston, J. M., Wolfe, K., Purucker,
- 952 S. T., Cyterski, M. J., and Smith, D.: Comparison and Evaluation of Gridded Precipitation
- 953 Datasets in a Kansas Agricultural Watershed Using SWAT, JAWRA J. Am. Water Resour. Assoc.,
- 954 56, 486–506, https://doi.org/10.1111/1752-1688.12819, 2020.

955

- 956 Mukhopadhyay, S., Sankarasubramanian, A., and de Queiroz, A. R.: Performance Comparison
- 957 of Equivalent Reservoir and Multireservoir Models in Forecasting Hydropower Potential for
- 958 Linking Water and Power Systems, J. Water Resour. Plan. Manag., 147, 04021005,
- 959 https://doi.org/10.1061/(ASCE)WR.1943-5452.0001343, 2021.

960

- 961 Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I A
- 962 discussion of principles, J. Hydrol., 10, 282-290, https://doi.org/10.1016/0022-1694(70)90255-6,
- **963** 1970.

964

- 965 Nathan, R. and Lowe, L.: The Hydrologic Impacts of Farm Dams, Australas. J. Water Resour., 16,
- 966 75-83, https://doi.org/10.7158/13241583.2012.11465405, 2012.
- 967 Census of agriculture: https://www.nass.usda.gov/AgCensus/index.php, last access: 10
- 968 February 2021.

```
970 Ni, X. and Parajuli, P. B.: Evaluation of the impacts of BMPs and tailwater recovery system on
```

- 971 surface and groundwater using satellite imagery and SWAT reservoir function, Agric. Water
- 972 Manag., 210, 78–87, https://doi.org/10.1016/j.agwat.2018.07.027, 2018.

- 974 Ni, X., Parajuli, P. B., and Ouyang, Y.: Assessing Agriculture Conservation Practice Impacts on
- 975 Groundwater Levels at Watershed Scale, Water Resour. Manag., 34, 1553–1566,
- 976 https://doi.org/10.1007/s11269-020-02526-3, 2020.

977

- 978 Ogilvie, A., Belaud, G., Massuel, S., Mulligan, M., Le Goulven, P., Malaterre, P.-O., and Calvez, R.:
- 979 Combining Landsat observations with hydrological modelling for improved surface water
- 980 monitoring of small lakes, J. Hydrol., 566, 109–121, https://doi.org/10.1016/j.jhydrol.2018.08.076,

981 2018.

982

- 983 Ogilvie, A., Poussin, J.-C., Bader, J.-C., Bayo, F., Bodian, A., Dacosta, H., Dia, D., Diop, L., Martin,
- 984 D., and Sambou, S.: Combining Multi-Sensor Satellite Imagery to Improve Long-Term
- 985 Monitoring of Temporary Surface Water Bodies in the Senegal River Floodplain, Remote Sens.,
- 986 12, 3157, https://doi.org/10.3390/rs12193157, 2020.

987

- 988 Perin, V., Roy, S., Kington, J., Harris, T., Tulbure, M. G., Stone, N., Barsballe, T., Reba, M., and
- 989 Yaeger, M. A.: Monitoring Small Water Bodies Using High Spatial and Temporal Resolution
- 990 Analysis Ready Datasets, Remote Sens., 13, 5176, https://doi.org/10.3390/rs13245176, 2021a.

991

- 992 Perin, V., Tulbure, M. G., Gaines, M. D., Reba, M. L., and Yaeger, M. A.: On-farm reservoir
- 993 monitoring using Landsat inundation datasets, Agric. Water Manag., 246, 106694,
- 994 https://doi.org/10.1016/j.agwat.2020.106694, 2021b.

995

- 996 Perin, V., Tulbure, M. G., Gaines, M. D., Reba, M. L., and Yaeger, M. A.: A multi-sensor satellite
- 997 imagery approach to monitor on-farm reservoirs, Remote Sens. Environ.,
- 998 https://doi.org/10.1016/j.rse.2021.112796, 2022.

999

1000 Perrin, J.: Assessing water availability in a semi-arid watershed of southern India using a

1001 semi-distributed model, J. Hydrol., 13, 2012.

1002

- 1003 Pinhati, F. S. C., Rodrigues, L. N., and Aires de Souza, S.: Modelling the impact of on-farm
- 1004 reservoirs on dry season water availability in an agricultural catchment area of the Brazilian
- 1005 savannah, Agric. Water Manag., 241, 106296, https://doi.org/10.1016/j.agwat.2020.106296, 2020.

1006

- 1007 PRISM Gridded Climate Data: https://prism.oregonstate.edu/, last access: 2 January 2022.
- 1008 Rabelo, U. P., Dietrich, J., Costa, A. C., Simshäuser, M. N., Scholz, F. E., Nguyen, V. T., and Lima
- 1009 Neto, I. E.: Representing a dense network of ponds and reservoirs in a semi-distributed
- 1010 dryland catchment model, J. Hydrol., 603, 127103, https://doi.org/10.1016/j.jhydrol.2021.127103,

1011 2021.

1012

- 1013 Renwick, W. H., Smith, S. V., Bartley, J. D., and Buddemeier, R. W.: The role of impoundments in
- 1014 the sediment budget of the conterminous United States, Geomorphology, 71, 99-111,
- 1015 https://doi.org/10.1016/j.geomorph.2004.01.010, 2005.

1016

- 1017 Rodrigues, L. N., Sano, E. E., Steenhuis, T. S., and Passo, D. P.: Estimation of Small Reservoir
- 1018 Storage Capacities with Remote Sensing in the Brazilian Savannah Region, Water Resour.
- 1019 Manag., 26, 873–882, https://doi.org/10.1007/s11269-011-9941-8, 2012.

- 1021 Sawunyama, T., Senzanje, A., and Mhizha, A.: Estimation of small reservoir storage capacities in
- 1022 Limpopo River Basin using geographical information systems (GIS) and remotely sensed

```
1023 surface areas: Case of Mzingwane catchment, Phys. Chem. Earth Parts ABC, 31, 935–943,
```

1024 https://doi.org/10.1016/j.pce.2006.08.008, 2006.

1025

- 1026 Schreider, S. Yu., Jakeman, A. J., Letcher, R. A., Nathan, R. J., Neal, B. P., and Beavis, S. G.:
- 1027 Detecting changes in streamflow response to changes in non-climatic catchment conditions:
- 1028 farm dam development in the Murray-Darling basin, Australia, J. Hydrol., 262, 84-98,
- 1029 https://doi.org/10.1016/S0022-1694(02)00023-9, 2002.

1030

- 1031 Soil Survey Staff, USDA-NRCS: Gridded Soil Survey Geographic (gSSURGO) Database for the
- 1032 Conterminous United States. United States Department of Agriculture, Natural Resources
- 1033 Conservation Service., 2021.

1034

- 1035 Publications | Soil & Water Assessment Tool (SWAT): https://swat.tamu.edu/publications/, last
- 1036 access: 17 June 2022.

1037

- 1038 Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity recovery and climate
- 1039 experiment: Mission overview and early results, Geophys. Res. Lett., 31, n/a-n/a,
- 1040 https://doi.org/10.1029/2004GL019920, 2004.

1041

- 1042 Thompson, J. C.: Impact and Management of Small Farm Dams in Hawke's Bay, New Zealand,
- 1043 thesis, Open Access Te Herenga Waka-Victoria University of Wellington,
- 1044 https://doi.org/10.26686/wgtn.16997929.v1, 2012.

1045

- 1046 United States Geological Survey Water Data for the Nation: https://waterdata.usgs.gov/nwis,
- 1047 last access: 22 June 2022.

1048

- 1049 Van Den Hoek, J., Getirana, A., Jung, H., Okeowo, M., and Lee, H.: Monitoring Reservoir Drought
- 1050 Dynamics with Landsat and Radar/Lidar Altimetry Time Series in Persistently Cloudy Eastern
- 1051 Brazil, Remote Sens., 11, 827, https://doi.org/10.3390/rs11070827, 2019.

1052

- 1053 Van Der Zaag, P. and Gupta, J.: Scale issues in the governance of water storage projects, Water
- 1054 Resour. Res., 44, https://doi.org/10.1029/2007WR006364, 2008.

1055

- 1056 Vanthof, V. and Kelly, R.: Water storage estimation in ungauged small reservoirs with the
- 1057 TanDEM-X DEM and multi-source satellite observations, Remote Sens. Environ., 235, 111437,
- 1058 https://doi.org/10.1016/j.rse.2019.111437, 2019.

1059

- 1060 Verpoorter, C., Kutser, T., Seekell, D. A., and Tranvik, L. J.: A global inventory of lakes based on
- 1061 high-resolution satellite imagery, Geophys. Res. Lett., 41, 6396–6402,
- 1062 https://doi.org/10.1002/2014GL060641, 2014.

1063

- 1064 Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden,
- 1065 S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M.: Global threats to human water
- 1066 security and river biodiversity, Nature, 467, 555–561, https://doi.org/10.1038/nature09440, 2010.

1067

- 1068 Yaeger, M. A., Reba, M. L., Massey, J. H., and Adviento-Borbe, M. A. A.: On-farm irrigation
- 1069 reservoirs in two Arkansas critical groundwater regions: A comparative inventory, Appl. Eng.
- 1070 Agric., 33, 869–878, https://doi.org/10.13031/aea.12352, 2017.

1071

- 1072 Yaeger, M. A., Massey, J. H., Reba, M. L., and Adviento-Borbe, M. A. A.: Trends in the
- 1073 construction of on-farm irrigation reservoirs in response to aquifer decline in eastern, Agric.
- 1074 Water Manag., 208, 373-383, https://doi.org/10.1016/j.agwat.2018.06.040, 2018.

- 1076 Yao, F., Wang, J., Yang, K., Wang, C., Walter, B. A., and Crétaux, J. F.: Lake storage variation on
- 1077 the endorheic Tibetan Plateau and its attribution to climate change since the new
- 1078 millennium, Environ. Res. Lett., 13, https://doi.org/10.1088/1748-9326/aab5d3, 2018.

- 1080 Yapo, P.O., Gupta, H.V., and Sorooshian, S.: Automatic calibration of conceptual rainfall-runoff
- 1081 models: sensitivity to calibration data, J. Hydrol., 181, 23–48,
- 1082 https://doi.org/10.1016/0022-1694(95)02918-4, 1996.

1083

- 1084 Yongbo, L., Wanhong, Y., Zhiqiang, Y., Ivana, L., Jim, Y., Jane, E., and Kevin, T.: Assessing Effects
- 1085 of Small Dams on Stream Flow and Water Quality in an Agricultural Watershed, J. Hydrol.
- 1086 Eng., 19, 05014015, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001005, 2014.

1087

- 1088 Zhang, C., Peng, Y., Chu, J., Shoemaker, C. A., and Zhang, A.: Integrated hydrological modelling
- 1089 of small- and medium-sized water storages with application to the upper Fengman Reservoir
- 1090 Basin of China, Hydrol Earth Syst Sci, 15, https://doi.org/10.5194/hess-16-4033-2012, 2012.

- 1092 Zhang, S., Foerster, S., Medeiros, P., de Araújo, J. C., Motagh, M., and Waske, B.: Bathymetric
- 1093 survey of water reservoirs in north-eastern Brazil based on TanDEM-X satellite data, Sci. Total
- 1094 Environ., 571, 575-593, https://doi.org/10.1016/j.scitotenv.2016.07.024, 2016.