
1 

Assessing the cumulative impact of on-farm reservoirs on modeled 1 
surface hydrology 2 

Vinicius Perin1*, Mirela G. Tulbure2(ORCID: https://orcid.org/0000-0003-1456-183X), Shiqi Fang3,  Arumugam 3 
Sankarasubramanian3(ORCID: https://orcid.org/0000-0002-7668-1311), Michele L. Reba4, Mary A. Yaeger5 4 

1 Planet Labs Inc., San Francisco, CA 94107, USA. 5 

2 Center for Geospatial Analytics, North Carolina State University, 2800 Faucette Drive, 6 
Raleigh, NC 27606, USA 7 

3 Department of Civil, Construction and Environmental Engineering, North Carolina State 8 
University, 961 Partners Way, Raleigh 27695, USA  9 

4 USDA-ARS Delta Water Management Research Unit P.O. Box 2, State University, AR 2467-10 
0002, USA. 11 

5 Center for Applied Earth Science and Engineering Research, The University of Memphis, 12 
3675 Alumni Drive, Memphis, TN 38152, USA. 13 

*Corresponding author: vperin@planet.com 14 

 15 

Abstract 16 

 17 
On-farm reservoirs (OFRs) are crucial water bodies for meeting global irrigation needs. Farmers 18 

use OFRs to store water from precipitation and runoff during the rainy season, which they then 19 

use to irrigate their crops during the dry season. Despite their importance to crop irrigation, 20 

OFRs can have a cumulative impact on surface hydrology by decreasing flow and peak flow. 21 

Nonetheless, there is limited knowledge on the spatial and temporal variability of the OFRs' 22 

impacts. Therefore, to gain an understanding of the cumulative impact of OFRs on surface 23 

hydrology, we propose a novel framework that integrates a top-down, data-driven, remote 24 

sensing-based algorithm with physically based models, leveraging the latest developments in 25 

the Soil Water Assessment Tool+ (SWAT+). We assessed the impact of OFRs in a watershed 26 



2 

located in eastern Arkansas, the third most irrigated state in the USA. Our results indicate that 27 

the presence of OFRs in the watershed is associated with a decrease in annual flow of 14-24% 28 

and a mean reduction in peak flow of 43-60%. In addition, the cumulative impact of the OFRs 29 

was not equally distributed across the watershed, varying according to the OFR spatial 30 

distribution and their storage capacity. The results of this study and the proposed framework 31 

can support water agencies with information on the cumulative impact of OFRs, aiming to 32 

support surface water resources management. This is relevant because the number of OFRs 33 

is expected to increase globally as a response to climate change under severe drought 34 

conditions. 35 

 36 

1 Introduction 37 

Inland water bodies (e.g., lakes and reservoirs) comprise a small fraction of Earth’s surface; 38 

however, they are responsible for storing the vast majority of the accessible freshwater 39 

resources available on Earth. In addition, these water bodies are pivotal components of surface 40 

hydrology, playing key roles in ecosystem functioning and providing habitats for wildlife 41 

(Khazaei et al., 2022; Verpoorter et al., 2014). In particular, on-farm reservoirs (OFRs) are crucial 42 

for meeting global irrigation needs (Döll et al., 2009; Downing, 2010; Van Den Hoek et al., 2019). 43 

Farmers use OFRs to store water from precipitation and runoff during the rainy season to 44 

irrigate their crops during the dry season (Habets et al., 2018; Perin et al., 2021; Vanthof & Kelly, 45 

2019; Yaeger et al., 2017; Yaeger et al., 2018). The number of OFRs is expected to rise worldwide 46 

in the coming decades, and estimates show that there are more than 2.1 million OFRs in the 47 

US alone (Downing, 2010; Renwick et al., 2005). OFRs are often built to manage surface water 48 

resources more efficiently and to help mitigate the impact of extreme droughts, which are 49 

projected to increase due to climate change (Habets et al., 2018; Van Der Zaag & Gupta, 2008). 50 

Although OFRs are small water bodies (< 50 ha), they can have cumulative impacts on the local 51 

and remote hydrology in the watersheds where they occur (e.g., decreasing flow and peak 52 
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flow) (Habets et al., 2018). Their impact may contribute to worsening the surface water stress 53 

already intensified by climate change and population growth (Vörösmarty et al., 2010). Most 54 

studies have focused on the cumulative impact of major large reservoirs on downstream flow 55 

alteration (Chalise et al., 2021; Mukhopadhyay et al., 2021), but limited analysis has been 56 

performed on the impact of OFRs on downstream flow availability.  57 

To quantify the impact of OFRs on surface hydrology, it is necessary to understand the 58 

spatial and temporal variability of surface water extent in OFRs, as well as how the impacts are 59 

related to the OFR networks, as the impacts of OFRs are not the sum of the individual OFR 60 

impacts, but rather the sum and their interaction effects (Canter & Kamath, 1995; Habets et al., 61 

2018). By gathering information from several studies conducted in different countries (e.g., the 62 

USA, France, Brazil), Habets et al. (2018) conducted a thorough assessment of the OFRs’ impact 63 

on surface hydrology and the various types of models and methods for representing OFRs 64 

within the watershed. The authors concluded that the modeled OFR impacts have a wide 65 

range, and that most studies reported a mean annual reduction in flow, which ranged from 66 

0.2% to 36%. In addition, the variability of the impact, as identified in these previous studies, 67 

was higher when assessing low flows over multiple years, with reductions ranging from 0.3 to 68 

60%. In general, the estimated mean annual reduction in flow was 13.4% ± 8.0%, and the mean 69 

decrease in peak flow was up to 45% (Habets et al., 2018).  70 

The approaches used to quantify the cumulative impact of OFRs can be divided into 71 

two classes: data-driven methods and process-based hydrological modeling. The data-driven 72 

approaches include three primary methods. The first method relies on assessing measured 73 

inflows and outflows of selected OFRs, aiming to quantify their hydrological functioning with 74 

the assumption that the cumulative impacts are the sum of individual impacts (Culler et al., 75 

1961; Dubreuil and Girard, 1973; Kennon, 1966). A variation of the cumulative impact assessment 76 

approach has been recently suggested by Hwang et al. (2021) for comparing naturalized flows 77 

and controlled flows to assess the impact of large reservoir systems. The second method is 78 

based on statistical analysis of the observed discharge time series of a watershed as the 79 
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number of OFRs increased (Galéa et al., 2005; Schreider et al., 2002). This approach is limited 80 

when discriminating the specific impact of OFRs from those of land use and land cover 81 

change, and when explicitly representing the OFRs in the models, given that OFRs tend to be 82 

aggregated within the entire basin (i.e., OFRs surface area and/or storage are summed and 83 

modeled as a unique water impoundment). The third method involves conducting a paired-84 

catchment experiment by comparing the flows from two adjacent and similar catchments: 85 

one with OFRs and the other without OFRs (Thompson, 2012). This technique requires the 86 

catchment properties (e.g., soils, topology, lithology, land cover) to be spatially homogeneous, 87 

which is practically nonexistent at a large scale, hence, this method’s applications are limited.  88 

The second class of methods relates to hydrological modeling, which is the most widely 89 

used approach for assessing the impacts of OFRs. A variety of models have been proposed by 90 

coupling the OFRs’ water balance with a quantitative approach to estimate the OFRs’ water 91 

volume change (Fowler et al., 2015; Habets et al., 2014; Jalowska & Yuan, 2019; Yongbo et al., 92 

2014; Ni & Parajuli, 2018; Perrin, 2012; Zhang et al., 2012). In general, the models have three main 93 

components: the OFR water balance, a quantitative approach to quantify OFR inflows, and a 94 

spatial representation of the OFR’s network. These different model components result in 95 

various limitations and assumptions—a comprehensive assessment of these three 96 

components and their impact on hydrological simulations is provided in a recent review 97 

(Habets et al., 2018). Therefore, when selecting a specific model to assess the impacts of the 98 

OFRs, it is essential to consider the model’s suitability for addressing the target issue, as well 99 

as its limitations and assumptions. The selected model should also have the capability to 100 

incorporate and assimilate varying land-surface conditions (e.g., soil moisture) and time-101 

varying OFR storages, which can be obtained either from local monitoring or through remote 102 

sensing. 103 

Most studies have used remotely-sensed products such as soil moisture (e.g., SMAP; 104 

(Entekhabi et al., 2010), groundwater (e.g., GRACE; (Tapley et al., 2004) and land cover 105 

conditions (e.g., MODIS; (Justice et al., 1998)) for assimilating current conditions into 106 
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hydrological models. Given that OFRs tend to occur in high numbers (e.g., hundreds), multiple 107 

studies leveraged the latest developments and availability of satellite imagery to monitor the 108 

occurrence and dynamics of OFRs (Jones et al., 2017; Ogilvie et al., 2018, 2020; Perin et al., 2022; 109 

Perin et al., 2021a, 2021b; Van Den Hoek et al., 2019; Vanthof & Kelly, 2019), which could provide 110 

helpful information on local storage conditions for predicting downstream streamflow. 111 

Furthermore, these studies enabled the quantification of the number of OFRs and their spatial 112 

and temporal variability in surface water areas and storage within the watershed where they 113 

occur, providing relevant information for modeling the cumulative impact of OFRs. Despite 114 

the complementary information provided by satellite imagery, there are only a few studies that 115 

incorporated remote sensing-derived information (e.g., soil moisture derived from SMAP, 116 

groundwater based on GRACE) with hydrological modeling (Ni and Parajuli, 2018; Yongbo et 117 

al., 2014; Zhang et al., 2012), and these studies are limited to mapping the OFRs occurrence, or 118 

to snapshots of the OFRs conditions (e.g., surface area). To the best of our knowledge, no study 119 

has combined the spatial and temporal variability of the OFRs—derived from multi-year 120 

satellite imagery time series analyses—with a process-based hydrological model.   121 

Therefore, to gain an understanding of the cumulative impact of OFRs on surface 122 

hydrology, this study proposes a new approach that systematically integrates the dynamically 123 

varying conditions of OFRs based on satellite imagery time series (Perin et al., 2022) using a 124 

top-down data-driven approach within the latest SWAT+ model. The Soil and Water 125 

Assessment Tool (SWAT) (Arnold et al., 2012) has been widely used to model the impacts of the 126 

OFRs (Jalowska and Yuan, 2019; Kim and Parajuli, 2014; Ni et al., 2020; Ni and Parajuli, 2018; 127 

Perrin, 2012; Rabelo et al., 2021; Yongbo et al., 2014; Zhang et al., 2012), in part given by a 128 

comprehensive collection of model documentation and guidelines available online 129 

(https://swat.tamu.edu/). Our objectives are to (1) assess the spatial and temporal variability of 130 

the cumulative impact of OFRs at the watershed and subwatershed levels, and (2) to quantify 131 

the intra- and interannual impacts of the OFRs on flow and peak flow at the channel scale. By 132 

integrating the SWAT+ model with a remote sensing assimilation algorithm to account for the 133 
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OFRs spatial variability—which is lacking in most of studies assessing the OFRs impacts—and 134 

leveraging a digitally-mapped OFRs dataset (Yaeger et al., 2017), we are providing a new 135 

approach that can be replicated in watersheds across the world, and used to support water 136 

agencies with information to improve surface water resources management. 137 

2 Methods 138 

2.1 Study region 139 

The study region is located in eastern Arkansas, USA, the third most-irrigated state in the USA 140 

(ERS-USDA, 2017). The area has a humid subtropical climate with a 30-year annual average 141 

precipitation of ~1300 mm/year (PRISM Climate Group, 2022). Precipitation is distributed 142 

mainly between March and May, with an average of ~400 mm during these months (Perin et 143 

al., 2021b). The region has experienced a steady increase in irrigated agriculture, with 144 

commonly irrigated crops including corn, rice, and soybeans (NASS-USDA, 2017). A recent 145 

study (Yaeger et al., 2017) digitally mapped 330 OFRs located in the study region (Fig. 1) using 146 

the high-resolution (1-m) National Agricultural Imagery Program archive in combination with 147 

2015 sub-meter spatial resolution Google Earth satellite imagery. Most of the OFRs (95%) have 148 

a surface area < 50 ha, and they are concentrated in the eastern portion of the study region 149 

(Fig. 1). Currently, there is no comprehensive and up-to-date inventory of all OFRs in the basin. 150 

This limitation is partly because many of these man-made structures are located on private 151 

properties, making them difficult to document. As a result, the study only accounts for a 152 

fraction of the total OFRs present in the study region. 153 
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 154 
Figure 1–Study region located in eastern Arkansas, USA, the subwatersheds and surface water 155 

streams and channels delineated with SWAT+, the model outlet, the United States Geological 156 

Survey (USGS) stations (United States Geological Survey Water Data for the Nation, 2022) used 157 

for flow calibration and validation, the digitized OFRs (Yaeger et al., 2017), and the Digital 158 

Elevation Model (DEM) used in the modeling (Farr et al., 2007). 159 
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2.2 SWAT+ model setup 160 

2.2.1 The Soil Water Assessment Tool to model the impacts of OFRs on surface hydrology 161 

The SWAT model is a time-continuous, semi-distributed hydrological model widely used 162 

globally—more than 5,000 peer-reviewed publications have been published since its launch in 163 

the early 1980s (Publications | Soil & Water Assessment Tool (SWAT), 2022). The large number 164 

of SWAT applications globally revealed the model development needs and its limitations. To 165 

address the present and future challenges when modeling with SWAT, the model source code 166 

has undergone significant modifications, and a completely revised version of the model was 167 

proposed in SWAT+ (Bieger et al., 2017). SWAT+ utilizes the same equations as SWAT to 168 

simulate hydrological processes; however, it provides users with greater flexibility when 169 

configuring the model (e.g., defining management schedules, routing constituents, and 170 

connecting managed flow systems to the natural stream network) (Bieger et al., 2017). 171 

 The SWAT+ is undergoing constant improvements (Chawanda et al., 2020; Molina-172 

Navarro et al., 2018), and a new module (Molina-Navarro et al., 2018) has been recently 173 

developed to facilitate the optimal integration of a water body and its drainage area within 174 

simulated hydrological processes. In previous versions of the model, when delineating the 175 

watershed area draining into a water body, users were required to place an outlet at a specific 176 

point in the water stream's network, and areas between the rivers’ subwatersheds flowing into 177 

the water body were therefore excluded. If these areas are disregarded, critical hydrological 178 

processes (e.g., evaporation, overland and/or groundwater flow) flowing into the water body 179 

are not accounted for (Molina-Navarro et al., 2018). This former approach can lead to 180 

inaccuracies when delineating the watershed areas, mainly when the results are used as input 181 

to an OFR model component. The newest versions of SWAT+ consider the OFRs’ outline (i.e., 182 

shape and surface area) when delineating the watersheds; hence, accounting for the entire 183 

drainage area flowing into the waterbody (Molina-Navarro et al., 2018). In addition, the latest 184 

versions allow for adding more than one OFR per subwatershed by associating the OFR with 185 
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channels—components of the watersheds, as well as finer divisions and extensions of water 186 

stream reaches, enabling modeling analyses at the channel scale. When simulating the impact 187 

of the OFRs at the channel scale, there is a higher level of detail of where and when the OFRs 188 

are contributing to changes in surface hydrology, unlike the previous versions of the model, 189 

which allowed adding only a single OFR per subwatershed placed at the subwatershed outlet 190 

as a point (Arnold et al., 2012), and therefore, the analyses were conducted at the subwatershed 191 

scale. 192 

We modeled the impact of OFRs on surface hydrology using the QSWAT+ (v.2.1.9) 193 

SWAT+ model interface together with SWAT+ Editor (v.2.1.0) to set up the model, to input the 194 

required datasets (e.g., DEM, land use and land cover layer, interpolated meteorological 195 

climate information), and to run the different modeling scenarios.  196 

The modeled watershed (710,700 ha, Fig. 1) comprised 68 subwatersheds and a total of 197 

642 Hydrological Response Units (HRUs)—HRUs are unique portions of the subwatersheds 198 

characterized by distinct land use and management, as well as unique soil attributes. We set 199 

up daily simulations for 30 years (1990–2020), including five years of model warm-up to 200 

establish the initial soil water conditions and hydrological processes. The watershed was 201 

delineated using the Shuttle Radar Topography Mission DEM (30 m) (Farr et al., 2007). 202 

Additionally, we set the channel length threshold to 6 km² and the stream length threshold to 203 

60 km². We placed an outlet in the southern part of the study region—where the lowest part 204 

of the watershed is located (Fig. 1). We created the HRUs using the dominant option—this 205 

option selects the largest HRU within the subwatershed as the general HRU—within QSWAT+ 206 

interface, and used the National Land Cover Database (30 m) (Homer et al., 2020), and Gridded 207 

Soil Survey Geographic Database (gSSURGO) (Soil Survey Staff, USDA-NRCS, 2021) (100 m) as 208 

inputs to the model. The gSSURGO layers were processed according to their guidelines when 209 

using them on QSWAT+ (George, 2020). For climate data, we extracted the centroid 210 

coordinates of each subwatershed. We used these centroids to download 30 years of daily 211 

precipitation, minimum and maximum temperatures, surface downward shortwave radiation, 212 
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wind velocity, and relative humidity from the Gridded Surface Meteorological Datasets 213 

(Abatzoglou, 2013), which are available in Google Earth Engine (Gorelick et al., 2017). The time 214 

series of each subwatershed centroid was added to the SWAT+ Editor as independent weather 215 

stations.  216 

2.2.2 Model calibration and validation procedures 217 

We used monthly measured flow from three USGS stations (Fig. 1 and Table 1) to calibrate and 218 

validate the model flow simulations. The USGS flow time series length varied between 14 and 219 

25 years, and we used 60% of the time series for calibration and 40% for validation for each 220 

USGS station (Table 1). We assessed the performance of the model by calculating the 221 

Coefficient of determination (r2), Percent bias (PBIAS, %, Equation 1) (Yapo et al., 1996), and the 222 

Nash–Sutcliffe model efficiency coefficient (NSE, Equation 2) (Nash and Sutcliffe, 1970). PBIAS 223 

is the relative mean difference between the simulated and measured flow values, reflecting 224 

the model's ability to simulate monthly flows accurately. The optimal PBIAS is zero, and low-225 

magnitude values indicate better model performance. Positive PBIAS indicates 226 

overestimation bias, whereas negative values denote underestimation bias. The NSE indicates 227 

how well the model simulates flows, ranging from a negative value to one, with a value of one 228 

indicating a perfect fit between the simulated and measured flow values. In general, the model 229 

simulations of monthly flow are considered satisfactory when r2 ranges from 0.60 to 0.75, PBIAS 230 

ranges from ±10% to ±15%, and NSE ranges from 0.50 to 0.70 (Moriasi et al., 2015). 231 

Table 1–USGS stations, drainage areas, and the periods used for flow calibration and validation.  232 

USGS station  Station id Drainage Area (ha) Period (years) 

   Calibration Validation 

07264000 (A) 53,600 1995–2010 2010–2020 

07263555 (B) 25,400 2007–2014 2014–2020 

07263580 (C) 5,300 1997–2011 2011–2020 

 233 
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PBIAS = ∑
𝑛
𝑖	=	1 (𝑌𝑖	−	𝑋𝑖)

∑𝑛𝑖	=	1 𝑋𝑖	
                                                                                                                                             234 

(1) 235 

NSE = 1 − ∑
𝑛
𝑖	=	1 (𝑋𝑖	−	𝑌𝑖)2

∑𝑛𝑖	=	1 (𝑋𝑖	−	𝑋𝑖)2
                                                                                   (2) 236 

Where Xi is the measured flow and Yi is the simulated flow.  237 

We conducted a sensitivity analysis using the SWAT+ ToolBox (v.0.7.6) (SWAT+ Toolbox, 238 

2022) to reveal the most sensitive parameters when simulating flow—a total of 10 parameters 239 

(Table S 1) were tested based on previous studies that used SWAT/SWAT+ to model the impact 240 

of water impoundments on surface hydrology (Jalowska & Yuan, 2019; Yongbo et al., 2014; Ni et 241 

al., 2020; Ni & Parajuli, 2018; Perrin, 2012; Rabelo et al., 2021; Zhang et al., 2012). Following the 242 

sensitivity analysis, we selected the five most sensitive parameters (Table 2) and proceeded 243 

with a manual calibration using the SWAT+ Toolbox. We aimed to improve the model's 244 

monthly flow predictions by testing the parameters one at a time and adjusting their values 245 

between -20% and 20% in 5% increments, based on their respective ranges. The final calibrated 246 

parameters and their fitted values are shown in Table 2.  247 

Table 2–Monthly flow calibration parameters. 248 

Parameter Description Range Value 

CN2 SCS runoff curve number 35–95 0.20* 

SOL_AWC Available water capacity (mm/mm) 0.01–1 -0.20* 

ESCO Soil evaporation compensation coefficient 0.01–1 0.50 

PERCO Percolation coefficient (fraction) 0–1 0.60 

CANMX Maximum canopy storage (mm) 0–100 75 

*Denotes relative percentage change.  249 

2.3 OFRs representation in SWAT+ 250 

Multiple OFRs can be added to the same subwatershed by associating them with channels 251 

(Dile et al., 2022). The OFRs must have at least one outlet channel, and they may have none or 252 

multiple inlet channels. Therefore, most OFR-related processes within the model involve 253 
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determining what channels form inflowing and outflowing channels for each OFR. Ideally, 254 

each OFR would interact with a channel, and therefore, have a channel entering, leaving, or 255 

within the OFR. Nonetheless, it is common to have OFRs that do not intersect with any channel 256 

(Dile et al., 2022)—this is the case for 93% of the OFRs in our study region. The OFRs in our study 257 

region are not dams along the streams but instead engineered water impoundments that are 258 

indirectly connected to the main streams via pipes and pumps (Yaeger et al., 2017). A possible 259 

solution would be modifying the OFRs’ shapes by dragging them to the closest channel (Dile 260 

et al., 2022). However, this would require extensive modifications of the OFRs’ shapes. 261 

Additionally, when an OFR is added to a channel, it is split into two channels, and the model 262 

must account for these two newly created channels during the water routing calculations. For 263 

this reason, adding multiple OFRs to the same channel or adding multiple OFRs closely 264 

located to the same channel can be a cumbersome process that leads to numerous routing 265 

errors.  266 

To overcome these challenges, we aggregated the OFRs’ surface area and added 267 

aggregated OFRs to the model. This adaptation involved two steps. First, for each of the 330 268 

OFRs, we searched for the closest channel by calculating the distance between the OFR’s 269 

centroid and the multiple channels within each subwatershed. Then, we aggregated all the 270 

OFRs associated with each channel by summing their surface areas and adding a polygon 271 

representing the aggregated area to the OFR. This approach resulted in 69 aggregated OFRs 272 

that were added to 67 different channels located in 16 subwatersheds. The surface area of the 273 

aggregated OFRs varied between 3.05 ha and 165.67 ha, and the number of OFRs in each 274 

aggregated OFR varied between 2 and 12. To avoid confusion, for the rest of the manuscript, 275 

we refer to OFRs as the aggregated OFRs, and not the individual OFRs shown in Fig. 1. 276 

2.4 OFR’s water balance 277 

We did not have access to water abstraction data from the OFRs; therefore, all 278 

abstractions were modeled using Equation 3, which accounts for water flowing out of the OFR, 279 
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as well as losses due to evaporation and seepage. The volume of water in an OFR, which 280 

changes due to changes in inflows, outflows, or abstractions, is associated with changes in the 281 

surface area of the OFR. A reduction in surface area (Equation 4) typically leads to a 282 

corresponding decrease in water volume. If inflows are insufficient to fill the OFR, water will not 283 

be routed to the downstream channel. 284 

For each of the aggregated OFR, the initial water volume (Vstored, see Equation 3) was 285 

calculated using the SWAT+ default rule, which is a simple multiplication of the OFR surface 286 

area by a factor of 10, similar to other studies based on SWAT+ (Ni and Parajuli, 2018; Zhang et 287 

al., 2012). For a scenario where the OFR has a surface area of 1 hectare (10,000 m²), the 288 

corresponding volume would be 100,000 m³—this is a limitation of our study, as the 289 

assumption was necessary due to the absence of available bathymetry data. In addition, since 290 

we did not have access to the OFRs' release rates, we used the model's default release rule, 291 

which sets the OFRs to release water when the spillway volume is reached—80% of the OFRs' 292 

capacity (Bieger et al., 2017). While farmers may occasionally withdraw water directly from 293 

OFRs, in our study region, most irrigation appropriations are taken from channels and streams. 294 

This is consistent with irrigation practices in Arkansas, where large-scale surface water projects 295 

withdraw directly from rivers and distribute water via canals and pipelines. Similarly, 296 

watershed-scale modeling that incorporates irrigation withdrawals into the river system yields 297 

better flow simulations, especially during low-flow periods (Brochet et al., 2024). Given this, and 298 

in the absence of high-resolution data on reservoir-specific withdrawals, our framework 299 

assumes that inflow to OFRs already reflects upstream irrigation abstractions. Thus, Equation 3 300 

omits an explicit irrigation withdrawal term for OFRs, and our approach focuses on quantifying 301 

the hydrological signal alterations through natural versus reservoir-influenced flow 302 

comparisons. 303 
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                                    V = Vstored + Vflowin − Vflowout + Vpcp − Vevap − Vseep                                                                                            304 

(3) 305 

Where V is the volume of water in the OFR at the end of the day (m3), Vstored is the volume 306 

of water stored at the beginning of the day (m3), Vflowin is the volume of water entering the 307 

OFR during the day (m3), Vflowout is the volume of water flowing out of the OFR (m3), Vpcp 308 

is the volume of precipitation falling on the water body (m3), Vevap is the volume of water 309 

removed from the OFR due to evaporation, and Vseep is the volume of water lost by seepage 310 

(m3). 311 

The OFR surface area is used to calculate the amount of precipitation falling on the 312 

water body and the amount of water lost through evaporation and seepage. Given the initial, 313 

OFR surface area obtained from one of the three modeling scenarios, the OFR surface area 314 

was modeled daily. The surface area varied according to the volume of water stored in the 315 

reservoir. Equation 4 is used to estimate the surface area: 316 

Surface area (ha) = βsa ∗ V expsa                                                                                                                                                         317 

(4) 318 

expsa =  ()*10	(+,-).()*10(+/0)	
()*10	(120345,	40,4,-)	.	()*10	(120345,	60,4/0)

                                                                                             (5) 319 

βsa = ( +,-
120345,	40,4,-

)expsa                                                                                                                                      (6) 320 

Where βsa is a surface area coefficient, Vem is the volume of water (m3) at the emergency 321 

spillway, Vpr is the volume of water (m3) at the principal spillway, Surface areaem is the 322 

surface area (ha) at the emergency spillway, and Surface areapr is the surface area at the 323 

principal spillway. Spillways release the water once it reaches a specific level. Most OFRs have 324 

uncontrolled spillways, implying that there are no gates to control the outflow. The outflow 325 

through the spillway depends on the level above the spillway crest. An emergency spillway, 326 
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whose crest is typically at a higher elevation than the principal spillway, is an additional spillway 327 

designed to release excess water during heavy flooding. The surface area of the OFR 328 

represents the water spread area corresponding to a given level in the reservoir, which typically 329 

increases as the reservoir level rises. 330 

The volume of precipitation falling into the OFR is calculated using Equation 7: 331 

Vpcp = 10 * Rday * Surface Area (ha)                                                                                                               (7)  332 

Where Rday is the amount of precipitation falling into the OFR on a given day (mm). 333 

Evaporation losses are calculated using Equation 8: 334 

Vevap = 10 * η * E0 * Surface Area (ha)                                                                                                           (8) 335 

Where η  is an evaporation coefficient (0.6), and E0 is the potential evapotranspiration for a 336 

given day (mm).  337 

Seepage losses are calculated using Equation 9:  338 

Vseep = 240 * Ksat * Surface Area (ha)                                                                                                           (9) 339 

where Ksat is the effective saturated hydraulic conductivity of the reservoir bottom (mm/hr). 340 

2.4 Scenario Analysis 341 

Given our representation of the OFRs in SWAT+, we assessed the impact of the OFRs on surface 342 

hydrology at the channel scale. To do so, we established a model baseline scenario without the 343 

presence of OFRs in the watershed. Additionally, we divided the channels into four classes (i.e., 344 

low and high flow classes) based on their mean baseline flow. The different class intervals were 345 

calculated using the mean flow quartiles, accounting for all channels, which resulted in the 346 
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following baseline flow classes: (1) 0.001–0.25 m3/s, (2) 0.25–0.50 m3/s, (3) 0.50–2.11 m3/s, and (4) 347 

2.11–17.50 m3/s. 348 

To account for the OFRs’ variation in surface area (i.e., change in storage capacity), we 349 

propose a novel approach that leverages a top-down data-driven model based on satellite 350 

imagery (Fig. 2). We used this model to create three modeling scenarios using daily OFRs 351 

surface area time series—these scenarios were based on the methodology proposed by Perin 352 

et al. (2022). The authors employed a multi-sensor satellite imagery approach combined with 353 

the Kalman filter (Kalman, 1960) to calculate the daily OFRs’ surface area change between 2017 354 

and 2020. The proposed algorithm accounts for the uncertainties in both the sensor's 355 

observations and the resulting surface areas. By improving the OFR’s surface area observations 356 

cadence, the algorithm enables a deeper understanding of the OFR’s surface area intra- and 357 

inter-annual changes, which are key pieces of information that can be used to better assess 358 

and manage the water stored by the OFR (Perin et al., 2022). The daily surface area time 359 

series—derived by combining PlanetScope, RapidEye, and Sentinel-2 satellite imagery (Perin 360 

et al., 2022)—of each OFR was used to simulate three scenarios (i.e., lower, mean, and upper) 361 

representing the OFRs’ capacity in terms of surface area. The mean scenario represents the 362 

regular condition of the OFRs, and it is the mean of the daily surface area time series derived 363 

from the Kalman filter. The lower and upper scenarios represent the lowest and highest 364 

capacities of the OFRs, based on the 95% confidence interval limits of the surface area, 365 

calculated using the daily time series. Please refer to Perin et al. (2022) for more details on how 366 

the 95% confidence interval was calculated.  367 

The SWAT+ model does not allow for direct incorporation of a daily surface area time 368 

series because it calculates surface area dynamically (Equation 4) based on changes in water 369 

volume through the reservoir water balance equation (Equation 3). It is structured to accept a 370 

single surface area value per scenario, which then varies internally. Incorporating time-varying 371 

surface area data, such as from the Kalman filter, would require modifications to the model 372 

that are currently not supported. Therefore, a single surface area value was assigned to each 373 
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scenario and OFR, with lower, mean, and upper values used as starting points for the model's 374 

water balance simulations. This initial surface area reflects the OFR’s maximum surface area at 375 

full capacity for each scenario. For example, in the lower scenario, an initial surface area of 1.2 376 

ha represents the maximum area for this OFR. As model iterations proceed, the surface area is 377 

recalculated based on Equation 4. The initial OFR surface area was kept constant during the 378 

simulation period (Ni et al., 2020; Ni and Parajuli, 2018; Perrin, 2012). In other words, the OFR 379 

surface area varied according to Equation 4, however, the maximum surface area did not 380 

exceed the initial value. To assess the impact of the OFRs on surface hydrology, we compared 381 

the baseline flow with the flow simulated by each surface area scenario—i.e., comparing the 382 

flow changes with and without OFRs, a common approach used by previous studies (Habets 383 

et al., 2018).  384 

 385 
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Figure 2–A new approach to integrate a top-down data-driven remote sensing-based 386 

algorithm, that assesses the OFR’s dynamic conditions (Perin et al., 2022), with the latest 387 

SWAT+ model developments.  388 

We estimated the impact of the OFRs on surface hydrology by calculating the percent 389 

change (Equation 10) of monthly flow between the baseline and the three surface area 390 

scenarios, including all OFRs. The annual impact on flow was calculated by averaging the 391 

mean percent change over the months. We also calculated the distribution of the percent 392 

change for each baseline flow class. The distribution was assessed using two-dimensional 393 

kernel density estimation (KDE) plots. Unlike discrete bins (e.g., histograms), KDE plots display 394 

a continuous density estimate of the observations using a Gaussian kernel. Additionally, we 395 

assessed the percentage changes in peak flow. For this analysis, peak flow is defined as equal 396 

to or higher than the 99th flow percentile calculated using the entire flow time series (Equation 397 

10). It is important to keep in mind that the impact of the OFRs on this study is solely based on 398 

modeling scenarios and does not account for OFR management practices, which represents 399 

a key limitation of this simulation study. 400 

Percent change (%) = !
𝑌𝑖	−	𝑋𝑖

𝑋𝑖 " ∗ 100                                                                                                           (10) 401 

Where Xi is the baseline flow, and Yi is the simulated flow of each surface area scenario.  402 

3 Results 403 

3.1 Model calibration and validation 404 

The model calibration and validation were done using the three USGS stations presented in 405 

Fig. 1 and Table 1, and accounting for all OFRs in the study region. When comparing the 406 

monthly simulated flow with the measured flow for the calibration period, there was a good 407 

agreement (0.71 ≦ r2 ≦ 0.93), and a satisfactory model efficiency (0.68 ≦ NSE ≦ 0.90) for all three 408 

stations (Fig. 3). In addition, the PBIAS magnitude was < 3% for station A, and < 12% for stations 409 

B and C. Meanwhile, the validation period had r2 ranging between 0.69 and 0.86, and the NSE 410 
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between 0.68 and 0.83, with PBIAS magnitude < 10% for stations A and B, and 18.12% for station 411 

C. In general, for stations A and C, the model overestimated flow values (i.e., positive PBIAS) 412 

mostly during flow events < 3 m3/s, and the model underestimated flow (i.e., negative PBIAS) 413 

for station B during flows > 20 m3/s (Fig. 3). These findings are consistent with a previous study 414 

conducted in western Mississippi near our study region (Ni and Parajuli, 2018). Even though 415 

during the validation period, Station B had a PBIAS magnitude higher than 15%, the r2 and NSE 416 

values from both the calibration and validation periods indicate satisfactory modeling 417 

performance when simulating monthly flow (Moriasi et al., 2015). Given that none of the OFRs 418 

were directly connected with the streams where the stations were located (Fig. 1), and there 419 

were no OFRs near stations B and C, the calibration and validation metrics with and without 420 

the OFRs were very similar, with differences smaller than 1%.  421 
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 422 
Figure 3–Flow calibration and validation time series for the three USGS stations A (07264000), 423 

B (07263555), and C (07263580). See Fig. 1 and Table 1 for more information about the USGS 424 

stations. The precipitation time series represents the monthly accumulated precipitation at 425 

the watershed scale (i.e., for the entire study region).  426 
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3.2 Percent change in flow 427 

We assessed the impact of the OFRs on flow by comparing the baseline flow (i.e., without the 428 

OFRs) with the three surface area scenarios generated from the Kalman filter approach—429 

lower, mean, and upper (see section 2.4, and Fig. 2). The total surface area (i.e., summing all 430 

OFRs surface area) was 2.176 ha for the lower, 2.766 ha for the mean, and 3.370 ha for the upper, 431 

and the three scenarios had a similar OFRs surface area distribution (Fig. 4). In addition, most 432 

of the OFRs had surface areas < 50 ha—78%, 71%, and 62% of the OFRs for the lower, mean, and 433 

upper scenarios. 434 

 435 
Figure 4–OFR’s surface area distribution for the three surface area scenarios, lower, mean, 436 

and upper.  437 

Figure 5 categorizes the channels into four distinct groups, with each category 438 

illustrating the percentage change in flow throughout the year, displayed along the x-axis by 439 

month. The three bar colors represent different scenarios, while bar heights illustrate variations 440 
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across channels and years. For example, the bars for January include all January data spanning 441 

from 1990 to 2020, enabling a thorough comparison of seasonal and year-to-year flow changes. 442 

The impact of the OFRs on monthly flow varied throughout the year. The largest impacts 443 

occurred between January and May for all flow classes (Fig. 5). During these months, including 444 

all surface area scenarios, the mean decrease in flow (i.e., negative mean percent change) was 445 

-34.4 ± 6% for class 1, -37.6 ± 5% for class 2, -30.0 ± 6% for class 3, and -34.1 ± 6% for class 4. For all 446 

classes, the most significant reduction in flow occurred during March (~ -40%). Meanwhile, the 447 

impact of the OFRs was more minor during the second half of the year, in which the mean 448 

percent change in flow was -12.0 ± 3% for class 1, -12.5 ± 5% for class 2, -1.4 ± 4% for class 3, and -449 

2.6 ± 10% for class 4 (Fig. 5).  450 

When assessing the mean percent change per month for all surface area scenarios, the 451 

lower flow classes (i.e., (1) 0.001–0.25 m³/s and (2) 0.25–0.50 m³/s) exhibited a negative mean 452 

percent change for all months. Nonetheless, we observed a mean positive percent change (i.e., 453 

increase in flow) for August (5.0 ± 1%) and October (5.2 ± 0.2%) for class 3, and during June (8.2 454 

± 0.3%), August (7.3 ± 0.4%), and October (8.7 ± 0.4%) for class 4 (Fig. 5). Furthermore, the 455 

different surface area scenarios had similar impacts on flow for all months of the year with 456 

differences smaller than 5% for all scenarios. Between January and May, for all flow classes, the 457 

mean percent change was -32.0 ± 6% for the lower, -34.6 ± 7% for the mean, and -35.8 ± 5% for 458 

the upper. Between June and December, the impact on flow was -5.4 ± 6% for the lower, -7.3 ± 459 

8% for the mean, and -8.9 ± 5% for the upper. 460 

 461 

 462 
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 463 
Figure 5–Monthly percent change in flow between the baseline scenario (vertical dotted blue 464 

line) and the three surface area scenarios (lower, mean, and upper), and for the four flow classes 465 

(1) 0.001–0.25 m3/s, (2) 0.25–0.50 m3/s, (3) 0.50–2.11 m3/s, and (4) 2.11–17.50 m3/s. This analysis 466 

included data from all simulated years (1990–2020). 467 
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 Generally, the OFRs contributed to a decrease in monthly flow. However, the OFRs' 468 

impact on flow exhibited significant intra- and inter-annual variability, varying according to 469 

different OFRs and channels—this is highlighted by the boxplot size variability in Fig. 5, where 470 

the variability was lower during the first part of the year and greater between July and August. 471 

Additionally, the monthly percent change in flow in the KDE plots (Fig. 6) indicates that for all 472 

three scenarios and flow classes, most changes in flow fall within the range of -40% to 0%. In 473 

addition, all KDE plots have a triangular shape with its base on the smaller flows, denoting 474 

where most of the changes occur. Even though most of the percent change in flow is negative, 475 

there are circumstances in which the OFRs could positively impact flow—the increase in flow 476 

is represented by faded colors in each surface area scenario (Fig. 6). The positive mean percent 477 

change could be as high as 80%—see Fig. 6 for the larger flow classes, (3) 0.50–2.11 m3/s and (4) 478 

2.11–17.50 m3/s. The positive impact on flow for these classes was observed during June, August, 479 

and October, when a mean positive change was noted (Fig. 5, classes 3 and 4).  480 

 The annual mean percent change, for all surface area scenarios, was -22.5 ± 3% for class 481 

1, -24.2 ± 4% for class 2, -14.6 ± 3% for class 3, and -16.6 ± 3% for class 4. In addition, the surface 482 

area scenarios’ annual changes were -18.0 ± 5% for the lower, -19.6 ± 5% for the mean, and -20.8 483 

± 6% for the upper, including all flow classes. The differences between the surface area 484 

scenarios shown in Fig. 5 and Fig. 6 are related to the variability of the OFR’s surface area.  485 

 486 

 487 

 488 

 489 
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 490 

Figure 6–Kernel density estimation plots smoothed using a Gaussian kernel for the monthly 491 

percent change in flow between the baseline scenario (vertical dotted blue line) and the three 492 

surface area scenarios (lower, mean, and upper) for the four flow classes (1) 0.001–0.25 m3/s, (2) 493 

0.25–0.50 m3/s, (3) 0.50–2.11 m3/s, and (4) 2.11–17.50 m3/s. Note the different range of values on 494 

the y-axis for all four flow classes. 495 



26 

3.3 Impact on peak flow 496 

For each channel, we calculated the impact of the OFRs on peak flow (Fig. 7). The effect on 497 

peak flow was -60.7 ± 13% for class 1, -56.2 ± 11% for class 2, -46.7 ± 19% for class 3, and -43.9 ± 12% 498 

class 4. When assessing the impact on peak flow based on different surface area scenarios, the 499 

mean percent change was -49.4 ± 18% for the lower, -50.4 ± 17% for the mean, and -52.7 ± 18% 500 

for the upper. All peak flows occurred between January and May, which is the period of the 501 

year when the study region receives most of its precipitation (Perin et al., 2021). Except for a 502 

few outliers, there was no increase in peak flow, despite the OFRs contributing to a positive 503 

mean percent change in flow in certain months of the year (Fig. 5, classes 3 and 4).  504 

  505 

Figure 7–Percent change in peak flow between the baseline scenario (vertical dotted blue line) 506 

and the three surface area scenarios (lower, mean, and upper) for the four flow classes (1) 0.001–507 

0.25 m3/s, (2) 0.25–0.50 m3/s, (3) 0.50–2.11 m3/s, and (4) 2.11–17.50 m3/s.  508 

3.4 Simulated flow time series  509 

We randomly selected a channel within the flow class 3 to demonstrate the baseline and the 510 

three surface area scenarios’ flow time series between 1995 and 2005 (Fig. 8). For this channel, 511 

the annual mean percent changes in flow when comparing the baseline scenario with the 512 

lower, mean, and upper surface area scenarios were 0.99 ± 11.8%, -1.9 ± 13%, and -2.0 ± 19%—the 513 

high standard deviation for the three scenarios is explained by the interannual variability. The 514 
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upper surface area scenario resulted in lower flows (i.e., higher impact) compared to the lower 515 

and mean scenarios for the majority of flow events—67.8% and 57.6% for the lower and mean 516 

scenarios, respectively. Nonetheless, there are circumstances when the upper scenario yielded 517 

higher flows—32.2% and 42.4% of the events for the lower and mean scenarios, respectively 518 

(e.g., see the two insets for the periods 03/1997–08/1998 and 05/2002–02/2004). These findings 519 

indicate that the impacts that the OFRs have on flow are not entirely governed by the presence 520 

and surface area of the OFRs (i.e., the different surface area scenarios), but instead by a 521 

combination of the OFRs with varying components of modeling (e.g., terrain, land use, climate 522 

information), and different hydrological processes (e.g., run-off, precipitation, evaporation). In 523 

addition, the impact on peak flow for this channel was -45.7 ± 19.7% for all surface area 524 

scenarios, as highlighted on two occasions (08/2002 and 08/2003) in the second inset.  525 

 526 
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Figure 8–A subset of the time series of simulated flow for baseline and the three surface area 527 

scenarios (lower, mean, and upper) between 1995 and 2005 for a selected channel within the 528 

flow class 3. 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 
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3.5 Spatial variability of the OFR’s impact on annual flow 539 

 540 

Figure 9–The cumulative impact of OFRs on annual flow for the mean scenario at the 541 

subwatersheds where the OFRs occurred. The size of the circles represents the contribution 542 

(%) of the subwatershed flow compared to the main outlet (i.e., model outlet). The 543 

subwatersheds are color-coded according to their reservoir capacity (%), which was calculated 544 

by summing the OFRs surface area in each subwatershed and dividing the sum by the total 545 

OFRs surface area (i.e., including all OFRs from all subwatersheds), with a darker color 546 

indicating a higher reservoir capacity. The percentages highlighted in yellow represent the 547 

impact of the OFRs on annual flow.  548 
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To assess the overall impact of the OFRs at the subwatershed level, we calculated the 550 

contribution of each subwatershed flow to the main model outlet, and the subwatersheds’ 551 

reservoir capacity (i.e., summing the OFRs surface area at each subwatershed and dividing it 552 

to the total OFRs surface area, including all OFRs from all subwatersheds) (Fig. 9). In general, 553 

the highest impacts on annual flow (e.g., > 100%), with positive or negative magnitude, 554 

occurred at the subwatersheds that contributed the least (< 10%) to the main model outlet—555 

these subwatersheds are represented in lighter shades of blue, and the annual impact is 556 

highlighted in yellow on Fig. 9. In other words, the highest impacts on flow occurred on the 557 

channels with smaller flow magnitudes (e.g., channels that presented mean flow ranging 558 

between 0.001–0.25 and 0.25–0.50 m3/s, these channels were classified as class 1 and 2 in this 559 

study). In addition, the subwatersheds with the highest reservoir capacities (between 15.3 and 560 

19.1 %, represented in darker shades of blue) (Fig. 9) had a small (< 10%) contribution to the 561 

model outlet. These subwatersheds did not present the highest impact on annual flow (e.g., 562 

the effect on annual flow for the top two subwatersheds in terms of reservoir capacity were -563 

0.9 and 82.1%). 564 

 565 
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4 Discussion 566 

As OFRs will contribute to improving food production resilience by providing surface water for 567 

irrigation during dry periods and severe drought events, which are expected to occur more 568 

frequently due to climate change, OFRs can have cumulative impacts on the surface 569 

hydrology of the watershed where they are located. Studies have employed either data-driven 570 

or physically based hydrological model approaches to estimate the effects of OFRs on 571 

watersheds. However, combining these approaches provides a better understanding of the 572 

spatial and temporal variability of OFR impacts, as it incorporates the dynamic changes of 573 

OFRs into the hydrological model.. To quantify whether the impact of the OFRS on mean and 574 

peak flow varies intra- and inter-annually, and which subwatersheds are more affected, we 575 

combined a data-driven remote sensing-based model with the latest improvements in SWAT+ 576 

to assess the OFR impacts. 577 

4.1 Cumulative impact of OFRs 578 

When simulating water impoundments in SWAT/SWAT+, it is common practice to 579 

validate and calibrate the model using flow measurements (Evenson et al., 2018; Habets et al., 580 

2018; Jalowska & Yuan, 2019; Ni & Parajuli, 2018). In addition, other studies have validated and 581 

calibrated the model using alternative variables. For example, Perrin et al. (2012) employed 582 

monthly measurements of piezometric variations to assess aquifer recharge processes, and 583 

Jalowska & Yuan (2019) used sediment loadings (concentration and budget) from field 584 

monitoring reports to evaluate sediment simulations. Ideally, we would calibrate and validate 585 

the model by accounting for the parameters governing the OFRs’ water budget (e.g., inflows 586 

and outflows) (e.g., Kim and Parajuli, 2014). Nonetheless, these measurements were not 587 

available for the OFRs in our study region. Furthermore, a thorough calibration and validation 588 

of the model would require extra flow data, covering other parts of the study region, as the 589 

three USGS stations—the only data available—used in this study are located in the upper part 590 
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of the modeled watershed. Similar to Evenson et al. (2018), who proposed a module to better 601 

represent spatially distributed wetlands and validated their model using both direct (i.e., flow 602 

measurement) and indirect (i.e., wetlands surface area) approaches, our validation and 603 

calibration were conducted using flow measurements. The OFR’s surface area scenarios were 604 

based on an algorithm that was validated with an independent higher spatial resolution 605 

dataset (Perin et al., 2022).  606 

There is a consensus within the scientific community that the OFRs will have a 607 

cumulative impact on surface hydrology, resulting in decreased flow and peak flow. For 608 

example, previous studies have found that OFRs reduce annual and monthly runoffs in 609 

southeastern China (Yan et al. 2023) and Australia’s Murray-Darling Basin (Robertson et al. 610 

2023). The effect will vary from watershed to watershed due to the number of OFRs and the 611 

OFRs’ different purposes (e.g., different irrigation schedules) (Ayalew et al., 2017; Fowler et al., 612 

2015; Habets et al., 2018; Nathan & Lowe, 2012; Pinhati et al., 2020; Rabelo et al., 2021). As pointed 613 

out by Habets et al. (2018), the mean annual decrease in flow from all studies was -13.4% ± 8%. 614 

Our results align with this value, which varied between -24.2 ± 4% and -14.6 ± 3% for all flow 615 

classes. In addition, OFRs can reduce peak flow on average by 45% (Habets et al., 2018; Nathan 616 

and Lowe, 2012; Thompson, 2012), and up to 70% (Ayalew et al., 2017) for certain flow events. 617 

Likewise, our results are consistent with these findings, which show a mean impact on peak 618 

flow ranging from -60.7 ± 12% to -43.9 ± 12%. Furthermore, unlike previous research, our results 619 

indicate that the OFRs may have a positive (<9%) impact on flow (Fig. 5, classes 3 and 4). This 620 

can be attributed to the level of detail in our analyses. When evaluating flow changes at the 621 

channel scale, it is important to note that flow at this level is several orders of magnitude 622 

smaller than at the main basin outlet. Consequently, this scale often exhibits more significant 623 

percentage changes, both increases and decreases. This likely explains how OFRs can enhance 624 

channel flow, primarily due to the additional water contributed by OFRs, influenced by periods 625 

of increased precipitation in certain channels during specific months and years. While we 626 

calculated the monthly impact on flow at the channel scale by aggregating the OFRs to the 627 
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closest channel, previous studies have mainly reported the annual impact on flows (Habets et 630 

al., 2018). They performed their analysis at the subwatershed scale by aggregating the OFRs to 631 

a single point at the outlet of each subwatershed in SWAT (Evenson et al., 2018; Kim & Parajuli, 632 

2014; Perrin, 2012; Zhang et al., 2012), or they used different modeling approaches (see Habet et 633 

al., 2018). 634 

By leveraging the latest improvements in SWAT+ to simulate water impoundments 635 

(Molina-Navarro et al., 2018) and combining them with a novel algorithm based on time series 636 

of satellite data to monitor OFRs (Perin et al., 2022), we modeled the impact of OFRs on flow at 637 

the channel scale. In addition, the surface area scenarios enabled us to account for events 638 

when the OFRs were at the lowest, regular, and fullest capacities according to their surface 639 

area (see Fig. 2). This is an improvement over previous studies (e.g., Ni et al., 2020; Ni and 640 

Parajuli, 2018; Perrin, 2012) that used a single surface area (i.e., one snapshot in time) to 641 

represent the OFRs in SWAT. The small differences (<5%) between the surface area scenarios 642 

in terms of mean percent change in monthly flow indicate that the OFRs’ surface area variation 643 

had a minimal impact on flow. For instance, during January and May, the mean monthly 644 

percent change ranged between -35.8 ± 6% and -32.0 ± 7%, and during June and December, it 645 

varied between -8.8 ± 5% and -5.4 ± 6% for the three surface area scenarios. The same was 646 

observed for peak flow, with a mean monthly impact ranging between -52.7 ± 17% and -49.4 ± 647 

18%. This small variability on flow impact was observed even though the total OFR surface area 648 

increased by 590 ha and 1194 ha when comparing the lower scenario with the mean and upper 649 

scenarios (Fig. 5). However, the OFRs represented a small portion (< 1%) of the total area of the 650 

modeled watershed (Fig. 1). These findings are related to the fact that flow simulations are 651 

governed by several hydrological processes (e.g., run-off, precipitation, evapotranspiration) 652 

besides the presence of OFRs on the channel (Bieger et al., 2017; Dile et al., 2022; Arnold et al., 653 

2012). In addition, when assessing the percent change in flow at the channel scale, the 654 

differences in surface area between the scenarios were of a lower magnitude compared to the 655 

total OFR’s surface area. For instance, an OFR with a surface area smaller than 10 ha, and with 656 
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surface area variations between 10 and 20% for the three scenarios, may not lead to significant 657 

differences (e.g., > 10%) between the three scenarios.   658 

4.2 OFRs’ impacts on flow and peak flow 659 

Our findings highlight that the impacts of the OFRs on flow and peak flow have a 660 

significant intra- and inter-annual variability (Figs. 5, 6, and 7). The impacts vary according to 661 

different OFRs and channels (Fig. 5). The most significant impacts on flow occurred during the 662 

first part of the year, between January and May, a period when peak flows typically occur. In 663 

addition, this time of the year also coincides with the period when the region receives most of 664 

its precipitation (Perin et al., 2021b), and the OFRs are at their fullest capacity (i.e., OFRs storing 665 

their maximum amount of water) (Perin et al., 2022). During the second part of the year, we 666 

observed a milder mean percent change in flow for all flow classes and all scenarios, and a 667 

greater variability in percent change, notably for July and August (Fig. 5). Moreover, most of 668 

the irrigation activities happen between June and September (Perin et al., 2021b, Yaeger et al., 669 

2017). It is when the OFRs are at their lowest capacities (i.e., storing less water) (Perin et al., 670 

2022), which could explain their moderate impact and higher variability during these months, 671 

even though we are not accounting for the OFRs’ inflows and outflows, and not simulating 672 

irrigation events. 673 

Additionally, the variability of the OFRs’ impacts is related to the OFRs’ physical 674 

properties (e.g., surface area and location in the watershed). For example, the OFR surface area 675 

will have an impact on flow and peak flow, as shown by the different surface area scenarios, 676 

and depending on where the OFR is located in the watershed, given that it may be connected 677 

to lower or higher flow channels, which contributes to their impact variability during the year 678 

(Figs. 4 and 5). Besides the OFRs’ physical properties, the built-in complexity of SWAT—when 679 

simulating the presence of the OFRs and the various hydrological processes (e.g., run-off, 680 

precipitation, evapotranspiration) governing the water cycle—contributes to the differences in 681 
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the OFRs’ impacts. This complexity is illustrated in Fig. 8, which shows that the upper scenario 682 

can have a higher or lower impact on flow compared to the lower and mean scenarios. 683 

When assessing the annual impact of the OFRs accounting for each subwatershed flow 684 

compared to the main model outlet flow, and each subwatershed reservoir capacity (Fig. 9), 685 

we found that even though the presence of the OFRs can have a significant impact on flow 686 

(Figs. 5, 6, and 7), the highest impacts tend to occur on the subwatersheds that contribute the 687 

least (< 10%) to the main model outlet. In general, the highest impacts occurred on the 688 

channels with smaller flow magnitudes, and the subwatersheds with the highest reservoir 689 

capacities did not have the highest impact on flow. The changes in the OFRs’ impacts along 690 

the year, and between different years, are directly related to the OFRs’ water balance (Equation 691 

3). The variations are primarily driven by the volume of water stored by the OFRs, which is 692 

modeled at a daily scale, and it varies according to total daily precipitation, evaporation, and 693 

seepage losses. 694 

4.3 Research implications and applications to other study regions 695 

Overall, we presented a new approach to quantitatively analyze the impact of a network 696 

of OFRs on mean and peak flow, and we described the various potential reasons behind the 697 

variability of the effects of OFRs.  Our results indicate that OFRs have an uneven impact on 698 

mean and peak flow across the watershed. This variability is primarily influenced by differences 699 

in the size, water storage capacity, and the spatial distribution (i.e., their presence) of OFRs. 700 

Hence, assessing the OFR’s location as well as their numbers across the watershed is important 701 

when aiming to manage the construction of new OFRs. In particular, the geospatial variability 702 

of the OFRs impacts could be taken into account by water agencies when planning and 703 

developing a network of OFRs, given it is possible to identify the areas that are under high 704 

pressure (e.g., regions with multiple OFRs that are having a significant impact on flow), and to 705 

identify areas that could benefit from the construction of new OFRs, targeting improvements 706 

on water resources management and irrigation activities. 707 
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Furthermore, even though the OFR’s impacts may vary significantly in different 709 

watersheds (Habets et al., 2018), our approach could be transferable to other places across the 710 

world, as it integrates a top-down data-driven remote sensing-based algorithm, which is based 711 

on freely available and private Earth Observations datasets, with the latest SWAT+ hydrological 712 

modeling developments. In addition, the widespread use of SWAT+ and its open-source nature 713 

are yet another factor contributing to the transferability of the novel approach presented in 714 

this study. This is relevant as the number of OFRs is expected to increase globally (Althoff et al., 715 

2020; Habets et al., 2014; Habets et al., 2018; Krol et al., 2011; Rodrigues et al., 2012), with limited 716 

knowledge of how the OFRs may impact surface hydrology in different watersheds, and under 717 

diverse environmental conditions. Finally, in tandem with the OFRs’ key role in irrigated food 718 

production, in part to adapt to climate change (Habets et al., 2018) and to alleviate the pressure 719 

on surface and groundwater resources (Vanthof & Kelly, 2019; Yaeger et al., 2017; Yaeger et al., 720 

2018), their impacts on surface hydrology need to be considered to avoid exacerbating the 721 

surface water stress already intensified by climate change and population growth (Vörösmarty 722 

et al., 2010). 723 

5 Future improvements 724 

Future improvements should focus on how to better represent OFR's water management (i.e., 725 

OFR’s inflows and outflows) in SWAT+. Given that each OFR has an independent water balance, 726 

accounting for the OFR’s water volume change would be a more realistic representation of the 727 

OFR when compared to the three surface area scenarios tested in this study. Estimating the 728 

OFR’s volume change can be done by combining the OFR surface area time series with area-729 

elevation equations—these equations describe the OFR’s bathymetry, and allow volume 730 

estimation by inputting the OFR’s surface area (Liebe et al., 2005; Meigh, 1995; Sawunyama et 731 

al., 2006). After carefully assessing different methods to derive these equations (Arvor et al., 732 

2018; Avisse et al., 2017; Li et al., 2021; Meigh, 1995; Sawunyama et al., 2006; Vanthof & Kelly, 2019; 733 

Yao et al., 2018; Zhang et al., 2016), we concluded that measured ground data of the OFRs’ 734 
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depth—which is not available—is required to estimate the equations with an acceptable 735 

uncertainty. Estimating the area-elevation equations entails several challenges, including: 1) 736 

even though there are several DEMs available for the study region (Arkansas GIS Office, 2022)—737 

DEMs can be used to estimate the OFRs bottom elevation—the DEMs were collected when 738 

most of the OFRs were full (i.e.,  bathymetry was not exposed), which limits their use in this 739 

case; and 2) although the OFRs are located within the same geomorphological region, they 740 

have different depth, shape and physical characteristics (Perin et al., 2022; Yaeger et al., 2017). 741 

Therefore, even if a generalized area-elevation equation were calculated for our study region—742 

this is a common approach employed by other studies (Mady et al., 2020; Vanthof and Kelly, 743 

2019)—that would still lead to high uncertainties in water volume changes. Ideally, each OFR 744 

would have its own equation, which was not possible when this study was done. Future work 745 

should integrate data on actual evapotranspiration, ET (Kiptala et al., 2014) to quantify as the 746 

balance between water availability and ET determines in large part the irrigation system 747 

efficiency and crop productivity in the watersheds where OFRs occur. 748 

 Efforts should also be made to improve SWAT+ capabilities to receive measured OFRs’ 749 

inflows and outflows. The latest version of the model has improved the hydrological 750 

representation of small water impoundments in SWAT+ (Molina-Navarro et al., 2018). 751 

Nonetheless, at the time of our study, the newest version of the model does not allow users to 752 

input measured or calculated OFRs’ inflows and outflows. Instead, the model developers 753 

recommend simulating the OFR’s water balance using decision tables (Arnold et al., 2018; Dile 754 

et al., 2022). However, there are very limited guidelines on how to create these decision tables. 755 

In addition, the tables would simulate the OFR’s water balance instead of using the measured 756 

or calculated volume change, which could introduce more uncertainties to the modeling 757 

scenarios.  758 
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6 Conclusions 760 

We proposed a novel approach that combines a top-down data-driven remote sensing-based 761 

algorithm with the latest developments in SWAT+ to simulate the cumulative impacts of OFRs. 762 

This enabled us to assess the spatial and temporal variability of the OFR’s impacts, as well as 763 

the intra- and interannual changes in impact on mean and peak flow at the watershed and 764 

subwatershed levels. Incorporating Earth Observation-derived information with a hydrological 765 

model allowed us to capture the dynamic changes of the OFRs and to simulate their impacts 766 

under different OFR capacity scenarios.    767 

Our study showed that the OFRs may have an impact on flow and peak flow, which 768 

exhibit significant inter- and intra-annual variability. The effect of the OFRs is not equally 769 

distributed across the watershed, varying according to the OFRs’ spatial distribution and their 770 

surface area (i.e., water storage capacity). As the number of OFRs is expected to increase 771 

globally, partially to adapt to climate change and alleviate pressure on groundwater resources, 772 

their relevance to irrigated food production will also increase. It is imperative to develop new 773 

frameworks to further understand the impacts of OFRs on surface hydrology. In this regard, 774 

we provided a combination of different methods that can be applied in other watersheds, 775 

supporting water agencies with information to enhance surface water resource management.   776 
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10 Data Availability 786 

The Soil Water Assessment Tool (SWAT) hydrological model, along with all necessary tools for 787 
calibration, validation, and data analysis, can be accessed through SWAT’s online portal: 788 
https://swat.tamu.edu/. 789 
 790 
The National Land Cover Database (30 m) (Homer et al., 2020) and the Gridded Soil Survey 791 
Geographic Database (gSSURGO) (Soil Survey Staff, USDA-NRCS, 2021) (100 m) are accessible 792 
through the USGS’s portal: https://www.usgs.gov/centers/eros/science/national-land-cover-793 
database, and here https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-794 
survey-geographic-gssurgo-database, respectively.  795 
 796 
The climate data extracted from the Gridded Surface Meteorological Datasets (Abatzoglou, 797 
2013) is available in Google Earth Engine (Gorelick et al., 2017), here 798 
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET. 799 
 800 
The Kalman filter derived surface area time series is available through Perin et al., (2022).  801 
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