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Abstract 16 

 17 
On-farm reservoirs (OFRs) are crucial water bodies for meeting global irrigation needs. Farmers 18 

use OFRs to store water from precipitation and runoff during the rainy season, which they then 19 

use to irrigate their crops during the dry season. Despite their importance to crop irrigation, 20 

OFRs can have a cumulative impact on surface hydrology by decreasing flow and peak flow. 21 

Nonetheless, there is limited knowledge on the spatial and temporal variability of the OFRs' 22 

impacts. Therefore, to gain an understanding of the cumulative impact of OFRs on surface 23 

hydrology, we propose a novel framework that integrates a top-down, data-driven, remote 24 

sensing-based algorithm with physically based models, leveraging the latest developments in 25 

the Soil Water Assessment Tool+ (SWAT+). We assessed the impact of OFRs in a watershed 26 



2 

located in eastern Arkansas, the third most irrigated state in the USA. Our results indicate that 27 

the presence of OFRs in the watershed is associated with a decrease in annual flow of 14-24% 28 

and a mean reduction in peak flow of 43-60%. In addition, the cumulative impact of the OFRs 29 

was not equally distributed across the watershed, varying according to the OFR spatial 30 

distribution and their storage capacity. The results of this study and the proposed framework 31 

can support water agencies with information on the cumulative impact of OFRs, aiming to 32 

support surface water resources management. This is relevant because the number of OFRs 33 

is expected to increase globally as a response to climate change under severe drought 34 

conditions. 35 

 36 

1 Introduction 37 

Inland water bodies (e.g., lakes and reservoirs) comprise a small fraction of Earth’s surface; 38 

however, they are responsible for storing the vast majority of the accessible freshwater 39 

resources available on Earth. In addition, these water bodies are pivotal components of surface 40 

hydrology, playing key roles in ecosystem functioning and providing habitats for wildlife 41 

(Khazaei et al., 2022; Verpoorter et al., 2014). In particular, on-farm reservoirs (OFRs) are crucial 42 

for meeting global irrigation needs (Döll et al., 2009; Downing, 2010; Van Den Hoek et al., 2019). 43 

Farmers use OFRs to store water from precipitation and runoff during the rainy season to 44 

irrigate their crops during the dry season (Habets et al., 2018; Perin et al., 2021; Vanthof & Kelly, 45 

2019; Yaeger et al., 2017; Yaeger et al., 2018). The number of OFRs is expected to rise worldwide 46 

in the coming decades, and estimates show that there are more than 2.1 million OFRs in the 47 

US alone (Downing, 2010; Renwick et al., 2005). OFRs are often built to manage surface water 48 

resources more efficiently and to help mitigate the impact of extreme droughts, which are 49 

projected to increase due to climate change (Habets et al., 2018; Van Der Zaag & Gupta, 2008). 50 

Although OFRs are small water bodies (< 50 ha), they can have cumulative impacts on the local 51 

and remote hydrology in the watersheds where they occur (e.g., decreasing flow and peak 52 
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flow) (Habets et al., 2018). Their impact may contribute to worsening the surface water stress 53 

already intensified by climate change and population growth (Vörösmarty et al., 2010). Most 54 

studies have focused on the cumulative impact of major large reservoirs on downstream flow 55 

alteration (Chalise et al., 2021; Mukhopadhyay et al., 2021), but limited analysis has been 56 

performed on the impact of OFRs on downstream flow availability.  57 

To quantify the impact of OFRs on surface hydrology, it is necessary to understand the 58 

spatial and temporal variability of OFRs, as well as how the impacts are related to the OFR 59 

networks, as the impacts of OFRs are not the sum of the individual OFR impacts, but rather 60 

the sum and their interaction effects (Canter & Kamath, 1995; Habets et al., 2018). By gathering 61 

information from several studies conducted in different countries (e.g., the USA, France, Brazil), 62 

Habets et al. (2018) conducted a thorough assessment of the OFRs’ impact on surface 63 

hydrology and the various types of models and methods for representing OFRs within the 64 

watershed. The authors concluded that the modeled OFR impacts have a wide range, and that 65 

most studies reported a mean annual reduction in flow, which ranged from 0.2% to 36%. In 66 

addition, the variability of the impact, as identified in these previous studies, was higher when 67 

assessing low flows over multiple years, with reductions ranging from 0.3 to 60%. In general, 68 

the estimated mean annual reduction in flow was 13.4% ± 8.0%, and the mean decrease in peak 69 

flow was up to 45% (Habets et al., 2018).  70 

The approaches used to quantify the cumulative impact of OFRs can be divided into 71 

two classes: data-driven methods and process-based hydrological modeling. The data-driven 72 

approaches include three primary methods. The first method relies on assessing measured 73 

inflows and outflows of selected OFRs, aiming to quantify their hydrological functioning with 74 

the assumption that the cumulative impacts are the sum of individual impacts (Culler et al., 75 

1961; Dubreuil and Girard, 1973; Kennon, 1966). A variation of the cumulative impact assessment 76 

approach has been recently suggested by Hwang et al. (2021) for comparing naturalized flows 77 

and controlled flows to assess the impact of large reservoir systems. The second method is 78 

based on statistical analysis of the observed discharge time series of a watershed as the 79 
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number of OFRs increased (Galéa et al., 2005; Schreider et al., 2002). This approach is limited 80 

when discriminating the specific impact of OFRs from those of land use and land cover 81 

change, and when explicitly representing the OFRs in the models, given that OFRs tend to be 82 

aggregated within the entire basin (i.e., OFRs surface area and/or storage are summed and 83 

modeled as a unique water impoundment). The third method involves conducting a paired-84 

catchment experiment by comparing the flows from two adjacent and similar catchments: 85 

one with OFRs and the other without OFRs (Thompson, 2012). This technique requires the 86 

catchment properties (e.g., soils, topology, lithology, land cover) to be spatially homogeneous, 87 

which is practically nonexistent at a large scale, hence, this method’s applications are limited.  88 

The second class of methods relates to hydrological modeling, which is the most widely 89 

used approach for assessing the impacts of OFRs. A variety of models have been proposed by 90 

coupling the OFRs’ water balance with a quantitative approach to estimate the OFRs’ water 91 

volume change (Fowler et al., 2015; Habets et al., 2014; Jalowska & Yuan, 2019; Yongbo et al., 92 

2014; Ni & Parajuli, 2018; Perrin, 2012; Zhang et al., 2012). In general, the models have three main 93 

components: the OFR water balance, a quantitative approach to quantify OFR inflows, and a 94 

spatial representation of the OFR’s network. These different model components result in 95 

various limitations and assumptions—a comprehensive assessment of these three 96 

components and their impact on hydrological simulations is provided in a recent review 97 

(Habets et al., 2018). Therefore, when selecting a specific model to assess the impacts of the 98 

OFRs, it is essential to consider the model’s suitability for addressing the target issue, as well 99 

as its limitations and assumptions. The selected model should also have the capability to 100 

incorporate and assimilate varying land-surface conditions (e.g., soil moisture) and time-101 

varying OFR storages, which can be obtained either from local monitoring or through remote 102 

sensing. 103 

Most studies have used remotely-sensed products such as soil moisture (e.g., SMAP; 104 

(Entekhabi et al., 2010), groundwater (e.g., GRACE; (Tapley et al., 2004) and land cover 105 

conditions (e.g., MODIS; (Justice et al., 1998)) for assimilating current conditions into 106 
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hydrological models. Given that OFRs tend to occur in high numbers (e.g., hundreds), multiple 107 

studies leveraged the latest developments and availability of satellite imagery to monitor the 108 

occurrence and dynamics of OFRs (Jones et al., 2017; Ogilvie et al., 2018, 2020; Perin et al., 2022; 109 

Perin et al., 2021a, 2021b; Van Den Hoek et al., 2019; Vanthof & Kelly, 2019), which could provide 110 

helpful information on local storage conditions for predicting downstream streamflow. 111 

Furthermore, these studies enabled the quantification of the number of OFRs and their spatial 112 

and temporal variability in surface water areas and storage within the watershed where they 113 

occur, providing relevant information for modeling the cumulative impact of OFRs. Despite 114 

the complementary information provided by satellite imagery, there are only a few studies that 115 

incorporated remote sensing-derived information (e.g., soil moisture derived from SMAP, 116 

groundwater based on GRACE) with hydrological modeling (Ni and Parajuli, 2018; Yongbo et 117 

al., 2014; Zhang et al., 2012), and these studies are limited to mapping the OFRs occurrence, or 118 

to snapshots of the OFRs conditions (e.g., surface area). To the best of our knowledge, no study 119 

has combined the spatial and temporal variability of the OFRs—derived from multi-year 120 

satellite imagery time series analyses—with a process-based hydrological model.   121 

Therefore, to gain an understanding of the cumulative impact of OFRs on surface 122 

hydrology, this study proposes a new approach that systematically integrates the dynamically 123 

varying conditions of OFRs based on satellite imagery time series (Perin et al., 2022) using a 124 

top-down data-driven approach within the latest SWAT+ model. The Soil and Water 125 

Assessment Tool (SWAT) (Arnold et al., 2012) has been widely used to model the impacts of the 126 

OFRs (Jalowska and Yuan, 2019; Kim and Parajuli, 2014; Ni et al., 2020; Ni and Parajuli, 2018; 127 

Perrin, 2012; Rabelo et al., 2021; Yongbo et al., 2014; Zhang et al., 2012), in part given by a 128 

comprehensive collection of model documentation and guidelines available online 129 

(https://swat.tamu.edu/). Our objectives are to (1) assess the spatial and temporal variability of 130 

the cumulative impact of OFRs at the watershed and subwatershed levels, and (2) to quantify 131 

the intra- and interannual impacts of the OFRs on flow and peak flow at the channel scale. By 132 

integrating the SWAT+ model with a remote sensing assimilation algorithm to account for the 133 
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OFRs spatial variability—which is lacking in most of studies assessing the OFRs impacts—and 134 

leveraging a digitally-mapped OFRs dataset (Yaeger et al., 2017), we are providing a new 135 

approach that can be replicated in watersheds across the world, and used to support water 136 

agencies with information to improve surface water resources management. 137 

2 Methods 138 

2.1 Study region 139 

The study region is located in eastern Arkansas, USA, the third most-irrigated state in the USA 140 

(ERS-USDA, 2017). The area has a humid subtropical climate with a 30-year annual average 141 

precipitation of ~1300 mm/year (PRISM Climate Group, 2022). Precipitation is distributed 142 

mainly between March and May, with an average of ~400 mm during these months (Perin et 143 

al., 2021b). The region has experienced a steady increase in irrigated agriculture, with 144 

commonly irrigated crops including corn, rice, and soybeans (NASS-USDA, 2017). A recent 145 

study (Yaeger et al., 2017) digitally mapped 330 OFRs located in the study region (Fig. 1) using 146 

the high-resolution (1-m) National Agricultural Imagery Program archive in combination with 147 

2015 sub-meter spatial resolution Google Earth satellite imagery. Most of the OFRs (95%) have 148 

a surface area < 50 ha, and they are concentrated in the eastern portion of the study region 149 

(Fig. 1). Currently, there is no comprehensive and up-to-date inventory of all OFRs in the basin. 150 

This limitation is partly because many of these man-made structures are located on private 151 

properties, making them difficult to document. As a result, the study only accounts for a 152 

fraction of the total OFRs present in the study region. 153 
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 154 
Figure 1–Study region located in eastern Arkansas, USA, the subwatersheds and surface water 155 

streams and channels delineated with SWAT+, the model outlet, the United States Geological 156 

Survey (USGS) stations (United States Geological Survey Water Data for the Nation, 2022) used 157 

for flow calibration and validation, the digitized OFRs (Yaeger et al., 2017), and the Digital 158 

Elevation Model (DEM) used in the modeling (Farr et al., 2007). 159 
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2.2 SWAT+ model setup 160 

2.2.1 The Soil Water Assessment Tool to model the impacts of OFRs on surface hydrology 161 

The SWAT model is a time-continuous, semi-distributed hydrological model widely used 162 

globally—more than 5,000 peer-reviewed publications have been published since its launch in 163 

the early 1980s (Publications | Soil & Water Assessment Tool (SWAT), 2022). The large number 164 

of SWAT applications globally revealed the model development needs and its limitations. To 165 

address the present and future challenges when modeling with SWAT, the model source code 166 

has undergone significant modifications, and a completely revised version of the model was 167 

proposed in SWAT+ (Bieger et al., 2017). SWAT+ utilizes the same equations as SWAT to 168 

simulate hydrological processes; however, it provides users with greater flexibility when 169 

configuring the model (e.g., defining management schedules, routing constituents, and 170 

connecting managed flow systems to the natural stream network) (Bieger et al., 2017). 171 

 The SWAT+ is undergoing constant improvements (Chawanda et al., 2020; Molina-172 

Navarro et al., 2018), and a new module (Molina-Navarro et al., 2018) has been recently 173 

developed to facilitate the optimal integration of a water body and its drainage area within 174 

simulated hydrological processes. In previous versions of the model, when delineating the 175 

watershed area draining into a water body, users were required to place an outlet at a specific 176 

point in the water stream's network, and areas between the rivers’ subwatersheds flowing into 177 

the water body were therefore excluded. If these areas are disregarded, critical hydrological 178 

processes (e.g., evaporation, overland and/or groundwater flow) flowing into the water body 179 

are not accounted for (Molina-Navarro et al., 2018). This former approach can lead to 180 

inaccuracies when delineating the watershed areas, mainly when the results are used as input 181 

to an OFR model component. The newest versions of SWAT+ consider the OFRs’ outline (i.e., 182 

shape and surface area) when delineating the watersheds; hence, accounting for the entire 183 

drainage area flowing into the waterbody (Mollina-Navarro et al., 2018). In addition, the latest 184 

versions allow for adding more than one OFR per subwatershed by associating the OFR with 185 
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channels—components of the watersheds, as well as finer divisions and extensions of water 186 

stream reaches, enabling modeling analyses at the channel scale. When simulating the impact 187 

of the OFRs at the channel scale, there is a higher level of detail of where and when the OFRs 188 

are contributing to changes in surface hydrology, unlike the previous versions of the model, 189 

which allowed adding only a single OFR per subwatershed placed at the subwatershed outlet 190 

as a point (Arnold et al., 2012), and therefore, the analyses were conducted at the subwatershed 191 

scale. 192 

We modeled the impact of OFRs on surface hydrology using the QSWAT+ (v.2.1.9) 193 

SWAT+ model interface together with SWAT+ Editor (v.2.1.0) to set up the model, to input the 194 

required datasets (e.g., DEM, land use and land cover layer, interpolated meteorological 195 

climate information), and to run the different modeling scenarios.  196 

The modeled watershed (710,700 ha, Fig. 1) comprised 68 subwatersheds and a total of 197 

642 Hydrological Response Units (HRUs)—HRUs are unique portions of the subwatersheds 198 

characterized by distinct land use and management, as well as unique soil attributes. We set 199 

up daily simulations for 30 years (1990–2020), including five years of model warm-up to 200 

establish the initial soil water conditions and hydrological processes. The watershed was 201 

delineated using the Shuttle Radar Topography Mission DEM (30 m) (Farr et al., 2007). 202 

Additionally, we set the channel length threshold to 6 km² and the stream length threshold to 203 

60 km². We placed an outlet in the southern part of the study region—where the lowest part 204 

of the watershed is located (Fig. 1). We created the HRUs using the dominant option—this 205 

option selects the largest HRU within the subwatershed as the general HRU—within QSWAT+ 206 

interface, and used the National Land Cover Database (30 m) (Homer et al., 2020), and Gridded 207 

Soil Survey Geographic Database (gSSURGO) (Soil Survey Staff, USDA-NRCS, 2021) (100 m) as 208 

inputs to the model. The gSSURGO layers were processed according to their guidelines when 209 

using them on QSWAT+ (George, 2020). For climate data, we extracted the centroid 210 

coordinates of each subwatershed. We used these centroids to download 30 years of daily 211 

precipitation, minimum and maximum temperatures, surface downward shortwave radiation, 212 
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wind velocity, and relative humidity from the Gridded Surface Meteorological Datasets 213 

(Abatzoglou, 2013), which are available in Google Earth Engine (Gorelick et al., 2017). The time 214 

series of each subwatershed centroid was added to the SWAT+ Editor as independent weather 215 

stations.  216 

2.2.2 Model calibration and validation procedures 217 

We used monthly measured flow from three USGS stations (Fig. 1 and Table 1) to calibrate and 218 

validate the model flow simulations. The USGS flow time series length varied between 14 and 219 

25 years, and we used 60% of the time series for calibration and 40% for validation for each 220 

USGS station (Table 1). We assessed the performance of the model by calculating the 221 

Coefficient of determination (r2), Percent bias (PBIAS, %, Equation 1) (Yapo et al., 1996), and the 222 

Nash–Sutcliffe model efficiency coefficient (NSE, Equation 2) (Nash and Sutcliffe, 1970). PBIAS 223 

is the relative mean difference between the simulated and measured flow values, reflecting 224 

the model's ability to simulate monthly flows accurately. The optimal PBIAS is zero, and low-225 

magnitude values indicate better model performance. Positive PBIAS indicates 226 

overestimation bias, whereas negative values denote underestimation bias. The NSE indicates 227 

how well the model simulates flows, ranging from a negative value to one, with a value of one 228 

indicating a perfect fit between the simulated and measured flow values. In general, the model 229 

simulations of monthly flow are considered satisfactory when r2 ranges from 0.60 to 0.75, PBIAS 230 

ranges from ±10% to ±15%, and NSE ranges from 0.50 to 0.70 (Moriasi et al., 2015). 231 

Table 1–USGS stations, drainage areas, and the periods used for flow calibration and validation.  232 

USGS station  Station id Drainage Area (ha) Period (years) 

   Calibration Validation 

07264000 (A) 53,600 1995–2010 2010–2020 

07263555 (B) 25,400 2007–2014 2014–2020 

07263580 (C) 5,300 1997–2011 2011–2020 

 233 
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PBIAS = ∑
𝑛
𝑖	=	1 (𝑌𝑖	−	𝑋𝑖)

∑𝑛𝑖	=	1 𝑋𝑖	
                                                                                                                                             234 

(1) 235 

NSE = 1 − ∑
𝑛
𝑖	=	1 (𝑋𝑖	−	𝑌𝑖)2

∑𝑛𝑖	=	1 (𝑋𝑖	−	𝑋𝑖)2
                                                                                   (2) 236 

Where Xi is the measured flow and Yi is the simulated flow.  237 

We conducted a sensitivity analysis using the SWAT+ ToolBox (v.0.7.6) (SWAT+ Toolbox, 238 

2022) to reveal the most sensitive parameters when simulating flow—a total of 10 parameters 239 

(Table S 1) were tested based on previous studies that used SWAT/SWAT+ to model the impact 240 

of water impoundments on surface hydrology (Jalowska & Yuan, 2019; Yongbo et al., 2014; Ni et 241 

al., 2020; Ni & Parajuli, 2018; Perrin, 2012; Rabelo et al., 2021; Zhang et al., 2012). Following the 242 

sensitivity analysis, we selected the five most sensitive parameters (Table 2) and proceeded 243 

with a manual calibration using the SWAT+ Toolbox. We aimed to improve the model's 244 

monthly flow predictions by testing the parameters one at a time and adjusting their values 245 

between -20% and 20% in 5% increments, based on their respective ranges. The final calibrated 246 

parameters and their fitted values are shown in Table 2.  247 

Table 2–Monthly flow calibration parameters. 248 

Parameter Description Range Value 

CN2 SCS runoff curve number 35–95 0.20* 

SOL_AWC Available water capacity (mm/mm) 0.01–1 -0.20* 

ESCO Soil evaporation compensation coefficient 0.01–1 0.50 

PERCO Percolation coefficient (fraction) 0–1 0.60 

CANMX Maximum canopy storage (mm) 0–100 75 

*Denotes relative percentage change.  249 

2.3 OFRs representation in SWAT+ 250 

Multiple OFRs can be added to the same subwatershed by associating them with channels 251 

(Dile et al., 2022). The OFRs must have at least one outlet channel, and they may have none or 252 

multiple inlet channels. Therefore, most OFR-related processes within the model involve 253 
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determining what channels form inflowing and outflowing channels for each OFR. Ideally, 254 

each OFR would interact with a channel, and therefore, have a channel entering, leaving, or 255 

within the OFR. Nonetheless, it is common to have OFRs that do not intersect with any channel 256 

(Dile et al., 2022)—this is the case for 93% of the OFRs in our study region. The OFRs in our study 257 

region are not dams along the streams but instead engineered water impoundments that are 258 

indirectly connected to the main streams via pipes and pumps (Yaeger et al., 2017). A possible 259 

solution would be modifying the OFRs’ shapes by dragging them to the closest channel (Dile 260 

et al., 2022). However, this would require extensive modifications of the OFRs’ shapes. 261 

Additionally, when an OFR is added to a channel, it is split into two channels, and the model 262 

must account for these two newly created channels during the water routing calculations. For 263 

this reason, adding multiple OFRs to the same channel or adding multiple OFRs closely 264 

located to the same channel can be a cumbersome process that leads to numerous routing 265 

errors.  266 

To overcome these challenges, we aggregated the OFRs’ surface area and added 267 

aggregated OFRs to the model. This adaptation involved two steps. First, for each of the 330 268 

OFRs, we searched for the closest channel by calculating the distance between the OFR’s 269 

centroid and the multiple channels within each subwatershed. Then, we aggregated all the 270 

OFRs associated with each channel by summing their surface areas and adding a polygon 271 

representing the aggregated area to the OFR. This approach resulted in 69 aggregated OFRs 272 

that were added to 67 different channels located in 16 subwatersheds. The surface area of the 273 

aggregated OFRs varied between 3.05 ha and 165.67 ha, and the number of OFRs in each 274 

aggregated OFR varied between 2 and 12. To avoid confusion, for the rest of the manuscript, 275 

we refer to OFRs as the aggregated OFRs, and not the individual OFRs shown in Fig. 1. 276 

2.4 OFR’s water balance 277 

We did not have access to water abstraction data from the OFRs, so all abstractions were 278 

modeled using Equation 3, which accounts for water flowing out of the OFR, as well as losses 279 
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from evaporation and seepage. The total volume of water in the OFR fluctuates in response to 280 

changes in surface area and is also influenced by evaporation losses and the operation of the 281 

spillway. A reduction in surface area (Equation 4) typically leads to a corresponding decrease in 282 

water volume. If inflows are insufficient to fill the OFR, water will not be routed to the downstream 283 

channel. 284 

For each of the aggregated OFR, the initial water volume (Vstored, see Equation 3) was 285 

calculated using the SWAT+ default rule, which is a simple multiplication of the OFR surface 286 

area by a factor of 10, similar to other studies based on SWAT+ (Ni and Parajuli, 2018; Zhang et 287 

al., 2012). For a scenario where the OFR has a surface area of 1 hectare (10,000 m²), the 288 

corresponding volume would be 100,000 m³—this is a limitation of our study, as the 289 

assumption was necessary due to the absence of available bathymetry data. In addition, since 290 

we did not have access to the OFRs' release rates, we used the model's default release rule, 291 

which sets the OFRs to release water when the spillway volume is reached—80% of the OFRs' 292 

capacity (Bieger et al., 2017). 293 

                                    V = Vstored + Vflowin − Vflowout + Vpcp − Vevap − Vseep                                                                                            294 

(3) 295 

Where V is the volume of water in the OFR at the end of the day (m3), Vstored is the volume 296 

of water stored at the beginning of the day (m3), Vflowin is the volume of water entering the 297 

OFR during the day (m3), Vflowout is the volume of water flowing out of the OFR (m3), Vpcp 298 

is the volume of precipitation falling on the water body (m3), Vevap is the volume of water 299 

removed from the OFR due to evaporation, and Vseep is the volume of water lost by seepage 300 

(m3). 301 

The OFR surface area is used to calculate the amount of precipitation falling on the 302 

water body and the amount of water lost through evaporation and seepage. Given the initial, 303 
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OFR surface area obtained from one of the three modeling scenarios, the OFR surface area 304 

was modeled daily. The surface area varied according to the volume of water stored in the 305 

reservoir. Equation 4 is used to estimate the surface area: 306 

Surface area (ha) = βsa ∗ V expsa                                                                                                                                                         307 

(4) 308 

expsa =  ()*10	(+,-).()*10(+/0)	
()*10	(120345,	40,4,-)	.	()*10	(120345,	60,4/0)

                                                                                             (5) 309 

βsa = ( +,-
120345,	40,4,-

)expsa                                                                                                                                      (6) 310 

Where βsa is a surface area coefficient, Vem is the volume of water (m3) at the emergency 311 

spillway, Vpr is the volume of water (m3) at the principal spillway, Surface areaem is the 312 

surface area (ha) at the emergency spillway, and Surface areapr is the surface area at the 313 

principal spillway. 314 

The volume of precipitation falling into the OFR is calculated using Equation 7: 315 

Vpcp = 10 * Rday * Surface Area (ha)                                                                                                               (7)  316 

Where Rday is the amount of precipitation falling into the OFR on a given day (mm). 317 

Evaporation losses are calculated using Equation 8: 318 

Vevap = 10 * η * E0 * Surface Area (ha)                                                                                                           (8) 319 

Where η  is an evaporation coefficient (0.6), and E0 is the potential evapotranspiration for a 320 

given day (mm).  321 

Seepage losses are calculated using Equation 9:  322 

Vseep = 240 * Ksat * Surface Area (ha)                                                                                                           (9) 323 
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where Ksat is the effective saturated hydraulic conductivity of the reservoir bottom (mm/hr). 324 

2.4 Scenario Analysis 325 

Given our representation of the OFRs in SWAT+, we assessed the impact of the OFRs on surface 326 

hydrology at the channel scale. To do so, we established a model baseline scenario without the 327 

presence of OFRs in the watershed. Additionally, we divided the channels into four classes (i.e., 328 

low and high flow classes) based on their mean baseline flow. The different class intervals were 329 

calculated using the mean flow quartiles, accounting for all channels, which resulted in the 330 

following baseline flow classes: (1) 0.001–0.25 m3/s, (2) 0.25–0.50 m3/s, (3) 0.50–2.11 m3/s, and (4) 331 

2.11–17.50 m3/s. 332 

To account for the OFRs’ variation in surface area (i.e., change in storage capacity), we 333 

propose a novel approach that leverages a top-down data-driven model based on satellite 334 

imagery (Fig. 2). We used this model to create three modeling scenarios using daily OFRs 335 

surface area time series—these scenarios were based on the methodology proposed by Perin 336 

et al. (2022). The authors employed a multi-sensor satellite imagery approach combined with 337 

the Kalman filter (Kalman, 1960) to calculate the daily OFRs’ surface area change between 2017 338 

and 2020. The proposed algorithm accounts for the uncertainties in both the sensor's 339 

observations and the resulting surface areas. By improving the OFR’s surface area observations 340 

cadence, the algorithm enables a deeper understanding of the OFR’s surface area intra- and 341 

inter-annual changes, which are key pieces of information that can be used to better assess 342 

and manage the water stored by the OFR (Perin et al., 2022). The daily surface area time 343 

series—derived by combining PlanetScope, RapidEye, and Sentinel-2 satellite imagery (Perin 344 

et al., 2022)—of each OFR was used to simulate three scenarios (i.e., lower, mean, and upper) 345 

representing the OFRs’ capacity in terms of surface area. The mean scenario represents the 346 

regular condition of the OFRs, and it is the mean of the daily surface area time series derived 347 

from the Kalman filter. The lower and upper scenarios represent the lowest and highest 348 

capacities of the OFRs, based on the 95% confidence interval limits of the surface area, 349 
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calculated using the daily time series. Please refer to Perin et al. (2022) for more details on how 350 

the 95% confidence interval was calculated.  351 

The SWOT+ model does not allow for direct incorporation of a daily surface area time 352 

series because it calculates surface area dynamically (Equation 4) based on changes in water 353 

volume through the reservoir water balance equation (Equation 3). It is structured to accept a 354 

single surface area value per scenario, which then varies internally. Incorporating time-varying 355 

surface area data, such as from the Kalman filter, would require modifications to the model 356 

that are currently not supported. Therefore, a single surface area value was assigned to each 357 

scenario and OFR, with lower, mean, and upper values used as starting points for the model's 358 

water balance simulations. This initial surface area reflects the OFR’s maximum surface area at 359 

full capacity for each scenario. For example, in the lower scenario, an initial surface area of 1.2 360 

ha represents the maximum area for this OFR. As model iterations proceed, the surface area is 361 

recalculated based on Equation 4. The initial OFR surface area was kept constant during the 362 

simulation period (Ni et al., 2020; Ni and Parajuli, 2018; Perrin, 2012). In other words, the OFR 363 

surface area varied according to Equation 4, however, the maximum surface area did not 364 

exceed the initial value. To assess the impact of the OFRs on surface hydrology, we compared 365 

the baseline flow with the flow simulated by each surface area scenario—i.e., comparing the 366 

flow changes with and without OFRs, a common approach used by previous studies (Habets 367 

et al., 2018).  368 
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 375 

Figure 2–A new approach to integrate a top-down data-driven remote sensing-based 376 

algorithm, that assesses the OFR’s dynamic conditions (Perin et al., 2022), with the latest 377 

SWAT+ model developments.  378 

We estimated the impact of the OFRs on surface hydrology by calculating the percent 379 

change (Equation 10) of monthly flow between the baseline and the three surface area 380 

scenarios, including all OFRs. The annual impact on flow was calculated by averaging the 381 

mean percent change over the months. We also calculated the distribution of the percent 382 

change for each baseline flow class. The distribution was assessed using two-dimensional 383 

kernel density estimation (KDE) plots. Unlike discrete bins (e.g., histograms), KDE plots display 384 

a continuous density estimate of the observations using a Gaussian kernel. Additionally, we 385 

assessed the percentage changes in peak flow. For this analysis, peak flow is defined as equal 386 

to or higher than the 99th flow percentile calculated using the entire flow time series (Equation 387 
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10). It is important to keep in mind that the impact of the OFRs on this study is solely based on 388 

modeling scenarios and does not account for OFR management practices, which represents 389 

a key limitation of this simulation study. 390 

Percent change (%) = !
𝑌𝑖	−	𝑋𝑖

𝑋𝑖 " ∗ 100                                                                                                           (10) 391 

Where Xi is the baseline flow, and Yi is the simulated flow of each surface area scenario.  392 

3 Results 393 

3.1 Model calibration and validation 394 

The model calibration and validation were done using the three USGS stations presented in 395 

Fig. 1 and Table 1, and accounting for all OFRs in the study region. When comparing the 396 

monthly simulated flow with the measured flow for the calibration period, there was a good 397 

agreement (0.71 ≦ r2 ≦ 0.93), and a satisfactory model efficiency (0.68 ≦ NSE ≦ 0.90) for all three 398 

stations (Fig. 3). In addition, the PBIAS magnitude was < 3% for station A, and < 12% for stations 399 

B and C. Meanwhile, the validation period had r2 ranging between 0.69 and 0.86, and the NSE 400 

between 0.68 and 0.83, with PBIAS magnitude < 10% for stations A and B, and 18.12% for station 401 

C. In general, for stations A and C, the model overestimated flow values (i.e., positive PBIAS) 402 

mostly during flow events < 3 m3/s, and the model underestimated flow (i.e., negative PBIAS) 403 

for station B during flows > 20 m3/s (Fig. 3). These findings are consistent with a previous study 404 

conducted in western Mississippi near our study region (Ni and Parajuli, 2018). Even though 405 

during the validation period, Station B had a PBIAS magnitude higher than 15%, the r2 and NSE 406 

values from both the calibration and validation periods indicate satisfactory modeling 407 

performance when simulating monthly flow (Moriasi et al., 2015). Given that none of the OFRs 408 

were directly connected with the streams where the stations were located (Fig. 1), and there 409 

were no OFRs near stations B and C, the calibration and validation metrics with and without 410 

the OFRs were very similar, with differences smaller than 1%.  411 
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 412 
Figure 3–Flow calibration and validation time series for the three USGS stations A (07264000), 413 

B (07263555), and C (07263580). See Fig. 1 and Table 1 for more information about the USGS 414 

stations. The precipitation time series represents the monthly accumulated precipitation at 415 

the watershed scale (i.e., for the entire study region).  416 
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3.2 Percent change in flow 417 

We assessed the impact of the OFRs on flow by comparing the baseline flow (i.e., without the 418 

OFRs) with the three surface area scenarios generated from the Kalman filter approach—419 

lower, mean, and upper (see section 2.4, and Fig. 2). The total surface area (i.e., summing all 420 

OFRs surface area) was 2.176 ha for the lower, 2.766 ha for the mean, and 3.370 ha for the upper, 421 

and the three scenarios had a similar OFRs surface area distribution (Fig. 4). In addition, most 422 

of the OFRs had surface areas < 50 ha—78%, 71%, and 62% of the OFRs for the lower, mean, and 423 

upper scenarios. 424 

 425 
Figure 4–OFR’s surface area distribution for the three surface area scenarios, lower, mean, 426 

and upper.  427 

Figure 5 categorizes the channels into four distinct groups, with each category 428 

illustrating the percentage change in flow throughout the year, displayed along the x-axis by 429 

month. The three bar colors represent different scenarios, while bar heights illustrate variations 430 
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across channels and years. For example, the bars for January include all January data spanning 431 

from 1990 to 2020, enabling a thorough comparison of seasonal and year-to-year flow changes. 432 

The impact of the OFRs on monthly flow varied throughout the year. The largest impacts 433 

occurred between January and May for all flow classes (Fig. 5). During these months, including 434 

all surface area scenarios, the mean decrease in flow (i.e., negative mean percent change) was 435 

-34.4 ± 6% for class 1, -37.6 ± 5% for class 2, -30.0 ± 6% for class 3, and -34.1 ± 6% for class 4. For all 436 

classes, the most significant reduction in flow occurred during March (~ -40%). Meanwhile, the 437 

impact of the OFRs was more minor during the second half of the year, in which the mean 438 

percent change in flow was -12.0 ± 3% for class 1, -12.5 ± 5% for class 2, -1.4 ± 4% for class 3, and -439 

2.6 ± 10% for class 4 (Fig. 5).  440 

When assessing the mean percent change per month for all surface area scenarios, the 441 

lower flow classes (i.e., (1) 0.001–0.25 m³/s and (2) 0.25–0.50 m³/s) exhibited a negative mean 442 

percent change for all months. Nonetheless, we observed a mean positive percent change (i.e., 443 

increase in flow) for August (5.0 ± 1%) and October (5.2 ± 0.2%) for class 3, and during June (8.2 444 

± 0.3%), August (7.3 ± 0.4%), and October (8.7 ± 0.4%) for class 4 (Fig. 5). Furthermore, the 445 

different surface area scenarios had similar impacts on flow for all months of the year with 446 

differences smaller than 5% for all scenarios. Between January and May, for all flow classes, the 447 

mean percent change was -32.0 ± 6% for the lower, -34.6 ± 7% for the mean, and -35.8 ± 5% for 448 

the upper. Between June and December, the impact on flow was -5.4 ± 6% for the lower, -7.3 ± 449 

8% for the mean, and -8.9 ± 5% for the upper. 450 

 451 

 452 
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 453 
Figure 5–Monthly percent change in flow between the baseline scenario (vertical dotted blue 454 

line) and the three surface area scenarios (lower, mean, and upper), and for the four flow classes 455 

(1) 0.001–0.25 m3/s, (2) 0.25–0.50 m3/s, (3) 0.50–2.11 m3/s, and (4) 2.11–17.50 m3/s. This analysis 456 

included data from all simulated years (1990–2020). 457 
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 Generally, the OFRs contributed to a decrease in monthly flow. However, the OFRs' 458 

impact on flow exhibited significant intra- and inter-annual variability, varying according to 459 

different OFRs and channels—this is highlighted by the boxplot size variability in Fig. 5, where 460 

the variability was lower during the first part of the year and greater between July and August. 461 

In addition, the monthly percent change in flow in the KDE plots (Fig. 6) shows that for all three 462 

scenarios and flow classes, most changes in flow ranged between -40% and 0%. In addition, all 463 

KDE plots have a triangular shape with its base on the smaller flows, denoting where most of 464 

the changes occur. Even though most of the percent change in flow is negative, there are 465 

circumstances in which the OFRs could positively impact flow—the increase in flow is 466 

represented by faded colors in each surface area scenario (Fig. 6). The positive mean percent 467 

change could be as high as 80%—see Fig. 6 for the larger flow classes, (3) 0.50–2.11 m3/s and (4) 468 

2.11–17.50 m3/s. The positive impact on flow for these classes was observed during June, August, 469 

and October, when a mean positive change was noted (Fig. 5, classes 3 and 4).  470 

 The annual mean percent change, for all surface area scenarios, was -22.5 ± 3% for class 471 

1, -24.2 ± 4% for class 2, -14.6 ± 3% for class 3, and -16.6 ± 3% for class 4. In addition, the surface 472 

area scenarios’ annual changes were -18.0 ± 5% for the lower, -19.6 ± 5% for the mean, and -20.8 473 

± 6% for the upper, including all flow classes. The differences between the surface area 474 

scenarios shown in Fig. 5 and Fig. 6 are related to the variability of the OFR’s surface area.  475 

 476 

 477 

 478 

 479 
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 480 

Figure 6–Kernel density estimation plots smoothed using a Gaussian kernel for the monthly 481 

percent change in flow between the baseline scenario (vertical dotted blue line) and the three 482 

surface area scenarios (lower, mean, and upper) for the four flow classes (1) 0.001–0.25 m3/s, (2) 483 

0.25–0.50 m3/s, (3) 0.50–2.11 m3/s, and (4) 2.11–17.50 m3/s. Note the different range of values on 484 

the y-axis for all four flow classes. 485 
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3.3 Impact on peak flow 486 

For each channel, we calculated the impact of the OFRs on peak flow (Fig. 7). The effect on 487 

peak flow was -60.7 ± 13% for class 1, -56.2 ± 11% for class 2, -46.7 ± 19% for class 3, and -43.9 ± 12% 488 

class 4. When assessing the impact on peak flow based on different surface area scenarios, the 489 

mean percent change was -49.4 ± 18% for the lower, -50.4 ± 17% for the mean, and -52.7 ± 18% 490 

for the upper. All peak flows occurred between January and May, which is the period of the 491 

year when the study region receives most of its precipitation (Perin et al., 2021). Except for a 492 

few outliers, there was no increase in peak flow, despite the OFRs contributing to a positive 493 

mean percent change in flow in certain months of the year (Fig. 5, classes 3 and 4).  494 

  495 

Figure 7–Percent change in peak flow between the baseline scenario (vertical dotted blue line) 496 

and the three surface area scenarios (lower, mean, and upper) for the four flow classes (1) 0.001–497 

0.25 m3/s, (2) 0.25–0.50 m3/s, (3) 0.50–2.11 m3/s, and (4) 2.11–17.50 m3/s.  498 

3.4 Simulated flow time series  499 

We randomly selected a channel within the flow class 3 to demonstrate the baseline and the 500 

three surface area scenarios’ flow time series between 1995 and 2005 (Fig. 8). For this channel, 501 

the annual mean percent changes in flow when comparing the baseline scenario with the 502 

lower, mean, and upper surface area scenarios were 0.99 ± 11.8%, -1.9 ± 13%, and -2.0 ± 19%—the 503 

high standard deviation for the three scenarios is explained by the interannual variability. The 504 
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upper surface area scenario resulted in lower flows (i.e., higher impact) compared to the lower 505 

and mean scenarios for the majority of flow events—67.8% and 57.6% for the lower and mean 506 

scenarios, respectively. Nonetheless, there are circumstances when the upper scenario yielded 507 

higher flows—32.2% and 42.4% of the events for the lower and mean scenarios, respectively 508 

(e.g., see the two insets for the periods 03/1997–08/1998 and 05/2002–02/2004). These findings 509 

indicate that the impacts that the OFRs have on flow are not entirely governed by the presence 510 

and surface area of the OFRs (i.e., the different surface area scenarios), but instead by a 511 

combination of the OFRs with varying components of modeling (e.g., terrain, land use, climate 512 

information), and different hydrological processes (e.g., run-off, precipitation, evaporation). In 513 

addition, the impact on peak flow for this channel was -45.7 ± 19.7% for all surface area 514 

scenarios, as highlighted on two occasions (08/2002 and 08/2003) in the second inset.  515 

 516 
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Figure 8–A subset of the time series of simulated flow for baseline and the three surface area 517 

scenarios (lower, mean, and upper) between 1995 and 2005 for a selected channel within the 518 

flow class 3. 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 
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3.5 Spatial variability of the OFR’s impact on annual flow 529 

 530 

Figure 9–The cumulative impact of OFRs on annual flow for the mean scenario at the 531 

subwatersheds where the OFRs occurred. The size of the circles represents the contribution 532 

(%) of the subwatershed flow compared to the main outlet (i.e., model outlet). The 533 

subwatersheds are color-coded according to their reservoir capacity (%), which was calculated 534 

by summing the OFRs surface area in each subwatershed and dividing the sum by the total 535 

OFRs surface area (i.e., including all OFRs from all subwatersheds), with a darker color 536 

indicating a higher reservoir capacity. The percentages highlighted in yellow represent the 537 

impact of the OFRs on annual flow.  538 
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To assess the overall impact of the OFRs at the subwatershed level, we calculated the 540 

contribution of each subwatershed flow to the main model outlet, and the subwatersheds’ 541 

reservoir capacity (i.e., summing the OFRs surface area at each subwatershed and dividing it 542 

to the total OFRs surface area, including all OFRs from all subwatersheds) (Fig. 9). In general, 543 

the highest impacts on annual flow (e.g., > 100%), with positive or negative magnitude, 544 

occurred at the subwatersheds that contributed the least (< 10%) to the main model outlet—545 

these subwatersheds are represented in lighter shades of blue, and the annual impact is 546 

highlighted in yellow on Fig. 9. In other words, the highest impacts on flow occurred on the 547 

channels with smaller flow magnitudes (e.g., channels that presented mean flow ranging 548 

between 0.001–0.25 and 0.25–0.50 m3/s, these channels were classified as class 1 and 2 in this 549 

study). In addition, the subwatersheds with the highest reservoir capacities (between 15.3 and 550 

19.1 %, represented in darker shades of blue) (Fig. 9) had a small (< 10%) contribution to the 551 

model outlet. These subwatersheds did not present the highest impact on annual flow (e.g., 552 

the effect on annual flow for the top two subwatersheds in terms of reservoir capacity were -553 

0.9 and 82.1%). 554 

 555 
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4 Discussion 556 

Although OFRs will contribute to improving food production resilience by providing surface 557 

water for irrigation during dry periods and severe drought events, which are expected to occur 558 

more frequently due to climate change, OFRs can have cumulative impacts on the surface 559 

hydrology of the watershed where they are located. Studies have employed either data-driven 560 

or physically based hydrological model approaches to estimate the effects of OFRs on 561 

watersheds. However, combining these approaches provides a better understanding of the 562 

spatial and temporal variability of OFR impacts, as it incorporates the dynamic changes of 563 

OFRs into the hydrological model.. To quantify whether the impact of the OFRS on mean and 564 

peak flow varies intra- and inter-annually, and which subwatersheds are more affected, we 565 

combined a data-driven remote sensing-based model with the latest improvements in SWAT+ 566 

to assess the OFR impacts. 567 

4.1 Cumulative impact of OFRs 568 

When simulating water impoundments in SWAT/SWAT+, it is common practice to 569 

validate and calibrate the model using flow measurements (Evenson et al., 2018; Habets et al., 570 

2018; Jalowska & Yuan, 2019; Ni & Parajuli, 2018). In addition, other studies have validated and 571 

calibrated the model using alternative variables. For example, Perrin et al. (2012) employed 572 

monthly measurements of piezometric variations to assess aquifer recharge processes, and 573 

Jalowska & Yuan (2019) used sediment loadings (concentration and budget) from field 574 

monitoring reports to evaluate sediment simulations. Ideally, we would calibrate and validate 575 

the model by accounting for the parameters governing the OFRs’ water budget (e.g., inflows 576 

and outflows) (e.g., Kim and Parajuli, 2014). Nonetheless, these measurements were not 577 

available for the OFRs in our study region. Furthermore, a thorough calibration and validation 578 

of the model would require extra flow data, covering other parts of the study region, as the 579 

three USGS stations—the only data available—used in this study are located in the upper part 580 
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of the modeled watershed. Similar to Evenson et al. (2018), who proposed a module to better 590 

represent spatially distributed wetlands and validated their model using both direct (i.e., flow 591 

measurement) and indirect (i.e., wetlands surface area) approaches, our validation and 592 

calibration were conducted using flow measurements. The OFR’s surface area scenarios were 593 

based on an algorithm that was validated with an independent higher spatial resolution 594 

dataset (Perin et al., 2022).  595 

There is a consensus within the scientific community that the OFRs will have a 596 

cumulative impact on surface hydrology, decreasing both flow and peak flow. The effect will 597 

vary from watershed to watershed due to the number of OFRs and the OFRs’ different 598 

purposes (e.g., different irrigation schedules) (Ayalew et al., 2017; Fowler et al., 2015; Habets et 599 

al., 2018; Nathan & Lowe, 2012; Pinhati et al., 2020; Rabelo et al., 2021). As pointed out by Habets 600 

et al. (2018), the mean annual decrease in flow from all studies was -13.4% ± 8%. Our results align 601 

with this value, which varied between -24.2 ± 4% and -14.6 ± 3% for all flow classes. In addition, 602 

OFRs can reduce peak flow on average by 45% (Habets et al., 2018; Nathan and Lowe, 2012; 603 

Thompson, 2012), and up to 70% (Ayalew et al., 2017) for certain flow events. Likewise, our results 604 

are consistent with these findings, which show a mean impact on peak flow ranging from -605 

60.7 ± 12% to -43.9 ± 12%. Furthermore, unlike previous research, our results indicate that the 606 

OFRs may have a positive (<9%) impact on flow (Fig. 5, classes 3 and 4). This can be attributed 607 

to the level of detail in our analyses. When evaluating flow changes at the channel scale, it is 608 

important to note that flow at this level is several orders of magnitude smaller than at the main 609 

basin outlet. Consequently, this scale often exhibits more significant percentage changes, both 610 

increases and decreases. This likely explains how OFRs can enhance channel flow, primarily 611 

due to the additional water contributed by OFRs, influenced by periods of increased 612 

precipitation in certain channels during specific months and years. While we calculated the 613 

monthly impact on flow at the channel scale by aggregating the OFRs to the closest channel, 614 

previous studies have mainly reported the annual impact on flows (Habets et al., 2018). They 615 

performed their analysis at the subwatershed scale by aggregating the OFRs to a single point 616 
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at the outlet of each subwatershed in SWAT (Evenson et al., 2018; Kim & Parajuli, 2014; Perrin, 617 

2012; Zhang et al., 2012), or they used different modeling approaches (see Habet et al., 2018). 618 

By leveraging the latest improvements in SWAT+ to simulate water impoundments 619 

(Molina-Navarro et al., 2018) and combining them with a novel algorithm based on time series 620 

of satellite data to monitor OFRs (Perin et al., 2022), we modeled the impact of OFRs on flow at 621 

the channel scale. In addition, the surface area scenarios enabled us to account for events 622 

when the OFRs were at the lowest, regular, and fullest capacities according to their surface 623 

area (see Fig. 2). This is an improvement over previous studies (e.g., Ni et al., 2020; Ni and 624 

Parajuli, 2018; Perrin, 2012) that used a single surface area (i.e., one snapshot in time) to 625 

represent the OFRs in SWAT. The small differences (<5%) between the surface area scenarios 626 

in terms of mean percent change in monthly flow indicate that the OFRs’ surface area variation 627 

had a minimal impact on flow. For instance, during January and May, the mean monthly 628 

percent change ranged between -35.8 ± 6% and -32.0 ± 7%, and during June and December, it 629 

varied between -8.8 ± 5% and -5.4 ± 6% for the three surface area scenarios. The same was 630 

observed for peak flow, with a mean monthly impact ranging between -52.7 ± 17% and -49.4 ± 631 

18%. This small variability on flow impact was observed even though the total OFR surface area 632 

increased by 590 ha and 1194 ha when comparing the lower scenario with the mean and upper 633 

scenarios (Fig. 5). However, the OFRs represented a small portion (< 1%) of the total area of the 634 

modeled watershed (Fig. 1). These findings are related to the fact that flow simulations are 635 

governed by several hydrological processes (e.g., run-off, precipitation, evapotranspiration) 636 

besides the presence of OFRs on the channel (Bieger et al., 2017; Dile et al., 2022; Arnold et al., 637 

2012). In addition, when assessing the percent change in flow at the channel scale, the 638 

differences in surface area between the scenarios were of a lower magnitude compared to the 639 

total OFR’s surface area. For instance, an OFR with a surface area smaller than 10 ha, and with 640 

surface area variations between 10 and 20% for the three scenarios, may not lead to differences 641 

(e.g., > 10%) between the three scenarios.   642 
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4.2 OFRs’ impacts on flow and peak flow 643 

Our findings highlight that the impacts of the OFRs on flow and peak flow have a 644 

significant intra- and inter-annual variability (Figs. 5, 6, and 7). The impacts vary according to 645 

different OFRs and channels (Fig. 5). The most significant impacts on flow occurred during the 646 

first part of the year, between January and May, a period when peak flows typically occur. In 647 

addition, this time of the year also coincides with the period when the region receives most of 648 

its precipitation (Perin et al., 2021b), and the OFRs are at their fullest capacity (i.e., OFRs storing 649 

their maximum amount of water) (Perin et al., 2022). During the second part of the year, we 650 

observed a milder mean percent change in flow for all flow classes and all scenarios, and a 651 

greater variability in percent change, notably for July and August (Fig. 5). Moreover, most of 652 

the irrigation activities happen between June and September (Perin et al., 2021b, Yaeger et al., 653 

2017). It is when the OFRs are at their lowest capacities (i.e., storing less water) (Perin et al., 654 

2022), which could explain their moderate impact and higher variability during these months, 655 

even though we are not accounting for the OFRs’ inflows and outflows, and not simulating 656 

irrigation events. 657 

Additionally, the variability of the OFRs’ impacts is related to the OFRs’ physical 658 

properties (e.g., surface area and location in the watershed). For example, the OFR surface area 659 

will have an impact on flow and peak flow, as shown by the different surface area scenarios, 660 

and depending on where the OFR is located in the watershed, given that it may be connected 661 

to lower or higher flow channels, which contributes to their impact variability during the year 662 

(Figs. 4 and 5). Besides the OFRs’ physical properties, the built-in complexity of SWAT—when 663 

simulating the presence of the OFRs and the various hydrological processes (e.g., run-off, 664 

precipitation, evapotranspiration) governing the water cycle—contributes to the differences in 665 

the OFRs’ impacts. This complexity is illustrated in Fig. 8, which shows that the upper scenario 666 

can have a higher or lower impact on flow compared to the lower and mean scenarios. 667 
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When assessing the annual impact of the OFRs accounting for each subwatershed flow 668 

compared to the main model outlet flow, and each subwatershed reservoir capacity (Fig. 9), 669 

we found that even though the presence of the OFRs can have a significant impact on flow 670 

(Figs. 5, 6, and 7), the highest impacts tend to occur on the subwatersheds that contribute the 671 

least (< 10%) to the main model outlet. In general, the highest impacts occurred on the 672 

channels with smaller flow magnitudes, and the subwatersheds with the highest reservoir 673 

capacities did not have the highest impact on flow. The changes in the OFRs’ impacts along 674 

the year, and between different years, are directly related to the OFRs’ water balance (Equation 675 

3). The variations are primarily driven by the volume of water stored by the OFRs, which is 676 

modeled at a daily scale, and it varies according to total daily precipitation, evaporation, and 677 

seepage losses. 678 

4.3 Research implications and applications to other study regions 679 

Overall, we presented a new approach to quantitatively analyze the impact of a network 680 

of OFRs on mean and peak flow, and we described the various potential reasons behind the 681 

variability of the effects of OFRs.  Our results indicate that OFRs have an uneven impact on 682 

mean and peak flow across the watershed. This variability is primarily influenced by differences 683 

in the size, water storage capacity, and the spatial distribution (i.e., their presence) of OFRs. 684 

Hence, assessing the OFR’s location as well as their numbers across the watershed is important 685 

when aiming to manage the construction of new OFRs. In particular, the geospatial variability 686 

of the OFRs impacts could be taken into account by water agencies when planning and 687 

developing a network of OFRs, given it is possible to identify the areas that are under high 688 

pressure (e.g., regions with multiple OFRs that are having a significant impact on flow), and to 689 

identify areas that could benefit from the construction of new OFRs, targeting improvements 690 

on water resources management and irrigation activities. 691 

Furthermore, even though the OFR’s impacts may vary significantly in different 692 

watersheds (Habets et al., 2018), our approach could be transferable to other places across the 693 
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world, as it integrates a top-down data-driven remote sensing-based algorithm, which is based 695 

on freely available and private Earth Observations datasets, with the latest SWAT+ hydrological 696 

modeling developments. In addition, the widespread use of SWAT+ and its open-source nature 697 

are yet another factor contributing to the transferability of the novel approach presented in 698 

this study. This is relevant as the number of OFRs is expected to increase globally (Althoff et al., 699 

2020; Habets et al., 2014; Habets et al., 2018; Krol et al., 2011; Rodrigues et al., 2012), with limited 700 

knowledge of how the OFRs may impact surface hydrology in different watersheds, and under 701 

diverse environmental conditions. Finally, in tandem with the OFRs’ key role in irrigated food 702 

production, in part to adapt to climate change (Habets et al., 2018) and to alleviate the pressure 703 

on surface and groundwater resources (Vanthof & Kelly, 2019; Yaeger et al., 2017; Yaeger et al., 704 

2018), their impacts on surface hydrology need to be considered to avoid exacerbating the 705 

surface water stress already intensified by climate change and population growth (Vörösmarty 706 

et al., 2010). 707 

5 Future improvements 708 

Future improvements should focus on how to better represent OFR's water management (i.e., 709 

OFR’s inflows and outflows) in SWAT+. Given that each OFR has an independent water balance, 710 

accounting for the OFR’s water volume change would be a more realistic representation of the 711 

OFR when compared to the three surface area scenarios tested in this study. Estimating the 712 

OFR’s volume change can be done by combining the OFR surface area time series with area-713 

elevation equations—these equations describe the OFR’s bathymetry, and allow volume 714 

estimation by inputting the OFR’s surface area (Liebe et al., 2005; Meigh, 1995; Sawunyama et 715 

al., 2006). After carefully assessing different methods to derive these equations (Arvor et al., 716 

2018; Avisse et al., 2017; Li et al., 2021; Meigh, 1995; Sawunyama et al., 2006; Vanthof & Kelly, 2019; 717 

Yao et al., 2018; Zhang et al., 2016), we concluded that measured ground data of the OFRs’ 718 

depth—which is not available—is required to estimate the equations with an acceptable 719 

uncertainty. Estimating the area-elevation equations entails several challenges, including: 1) 720 
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even though there are several DEMs available for the study region (Arkansas GIS Office, 2022)—721 

DEMs can be used to estimate the OFRs bottom elevation—the DEMs were collected when 722 

most of the OFRs were full (i.e.,  bathymetry was not exposed), which limits their use in this 723 

case; and 2) although the OFRs are located within the same geomorphological region, they 724 

have different depth, shape and physical characteristics (Perin et al., 2022; Yaeger et al., 2017). 725 

Therefore, even if a generalized area-elevation equation were calculated for our study region—726 

this is a common approach employed by other studies (Mady et al., 2020; Vanthof and Kelly, 727 

2019)—that would still lead to high uncertainties in water volume changes. Ideally, each OFR 728 

would have its own equation, which was not possible when this study was done. Future work 729 

should integrate data on actual evapotranspiration, ET (Kiptala et al., 2014) to quantify as the 730 

balance between water availability and ET determines in large part the irrigation system 731 

efficiency and crop productivity in the watersheds where OFRs occur. 732 

 Efforts should also be made to improve SWAT+ capabilities to receive measured OFRs’ 733 

inflows and outflows. The latest version of the model has improved the hydrological 734 

representation of small water impoundments in SWAT+ (Mollina-Navarro et al., 2018). 735 

Nonetheless, at the time of our study, the newest version of the model does not allow users to 736 

input measured or calculated OFRs’ inflows and outflows. Instead, the model developers 737 

recommend simulating the OFR’s water balance using decision tables (Arnold et al., 2018; Dile 738 

et al., 2022). However, there are very limited guidelines on how to create these decision tables. 739 

In addition, the tables would simulate the OFR’s water balance instead of using the measured 740 

or calculated volume change, which could introduce more uncertainties to the modeling 741 

scenarios.  742 

6 Conclusions 743 

We proposed a novel approach that combines a top-down data-driven remote sensing-based 744 

algorithm with the latest developments in SWAT+ to simulate the cumulative impacts of OFRs. 745 

This enabled us to assess the spatial and temporal variability of the OFR’s impacts, as well as 746 
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the intra- and interannual changes in impact on mean and peak flow at the watershed and 747 

subwatershed levels. Incorporating Earth Observation-derived information with a hydrological 748 

model allowed us to capture the dynamic changes of the OFRs and to simulate their impacts 749 

under different OFR capacity scenarios.    750 

Our study showed that the OFRs may have an impact on flow and peak flow, which 751 

exhibit significant inter- and intra-annual variability. The effect of the OFRs is not equally 752 

distributed across the watershed, varying according to the OFRs’ spatial distribution and their 753 

surface area (i.e., water storage capacity). As the number of OFRs is expected to increase 754 

globally, partially to adapt to climate change and alleviate pressure on groundwater resources, 755 

their relevance to irrigated food production will also increase. It is imperative to develop new 756 

frameworks to further understand the impacts of OFRs on surface hydrology. In this regard, 757 

we provided a combination of different methods that can be applied in other watersheds, 758 

supporting water agencies with information to enhance surface water resource management.   759 
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The National Land Cover Database (30 m) (Homer et al., 2020) and the Gridded Soil Survey 774 
Geographic Database (gSSURGO) (Soil Survey Staff, USDA-NRCS, 2021) (100 m) are accessible 775 
through the USGS’s portal: https://www.usgs.gov/centers/eros/science/national-land-cover-776 
database, and here https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-777 
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 779 
The climate data extracted from the Gridded Surface Meteorological Datasets (Abatzoglou, 780 
2013) is available in Google Earth Engine (Gorelick et al., 2017), here 781 
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET. 782 
 783 
The Kalman filter derived surface area time series is available through Perin et al., (2022).  784 

10 References 785 

 786 
Abatzoglou, J. T.: Development of gridded surface meteorological data for ecological 787 
applications and modelling, Int. J. Climatol., 33, 121–131, https://doi.org/10.1002/joc.3413, 2013. 788 
 789 
Althoff, D., Rodrigues, L. N., and da Silva, D. D.: Impacts of climate change on the evaporation 790 
and availability of water in small reservoirs in the Brazilian savannah, Clim. Change, 159, 215–791 
232, https://doi.org/10.1007/s10584-020-02656-y, 2020. 792 
 793 
Arkansas GIS Office: Arkansas GIS Office | Elevation datasets, 2022. 794 
Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., M. J. White, M. J., Srinivasan, R., 795 
Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., and Jha, M. K.: SWAT: 796 
Model Use, Calibration, and Validation, Trans. ASABE, 55, 1491–1508, 797 
https://doi.org/10.13031/2013.42256, 2012. 798 
 799 
Arnold, J. G., Bieger, K., White, M. J., Srinivasan, R., Dunbar, J. A., and Allen, P. M.: Use of 800 
Decision Tables to Simulate Management in SWAT+, Water, 10, 713, 801 
https://doi.org/10.3390/w10060713, 2018. 802 
 803 
Arvor, D., Daher, F. R. G., Briand, D., Dufour, S., Rollet, A.-J., Simões, M., and Ferraz, R. P. D.: 804 
Monitoring thirty years of small water reservoirs proliferation in the southern Brazilian 805 
Amazon with Landsat time series, ISPRS J. Photogramm. Remote Sens., 145, 225–237, 806 
https://doi.org/10.1016/j.isprsjprs.2018.03.015, 2018. 807 
 808 
Avisse, N., Tilmant, A., Müller, M. F., and Zhang, H.: Monitoring small reservoirs’ storage with 809 
satellite remote sensing in inaccessible areas, Hydrol. Earth Syst. Sci., 21, 6445–6459, 810 
https://doi.org/10.5194/hess-21-6445-2017, 2017. 811 
 812 
Ayalew, T. B., Krajewski, W. F., Mantilla, R., Wright, D. B., and Small, S. J.: Effect of Spatially 813 
Distributed Small Dams on Flood Frequency: Insights from the Soap Creek Watershed, J. 814 
Hydrol. Eng., 22, 04017011, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001513, 2017. 815 
 816 
Bieger, K., Arnold, J. G., Rathjens, H., White, M. J., Bosch, D. D., Allen, P. M., Volk, M., and 817 
Srinivasan, R.: Introduction to SWAT+, A Completely Restructured Version of the Soil and 818 
Water Assessment Tool, JAWRA J. Am. Water Resour. Assoc., 53, 115–130, 819 
https://doi.org/10.1111/1752-1688.12482, 2017. 820 
 821 
Canter, L. W. and Kamath, J.: Questionnaire checklist for cumulative impacts, Environ. Impact 822 
Assess. Rev., 15, 311–339, https://doi.org/10.1016/0195-9255(95)00010-C, 1995. 823 



39 

Chalise, D. R., Sankarasubramanian, A., and Ruhi, A.: Dams and Climate Interact to Alter River 824 
Flow Regimes Across the United States, Earth's Future, 9, 825 
https://doi.org/10.1029/2020EF001816, 2021. 826 
 827 
SWAT+ Toolbox: https://celray.github.io/docs/swatplus-toolbox/v1.0/index.html, last access: 17 828 
June 2022. 829 
 830 
Chawanda, C. J., Arnold, J., Thiery, W., and van Griensven, A.: Mass balance calibration and 831 
reservoir representations for large-scale hydrological impact studies using SWAT+, Clim. 832 
Change, 163, 1307–1327, https://doi.org/10.1007/s10584-020-02924-x, 2020. 833 
 834 
Culler, R. C., Hadley, R. F., and Schumm, S. A.: Hydrology of the upper Cheyenne River basin: 835 
Part A. Hydrology of stock-water reservoirs in upper Cheyenne River basin; Part B. Sediment 836 
sources and drainage-basin characteristics in upper Cheyenne River basin, U.S. Geological 837 
Survey, https://doi.org/10.3133/wsp1531, 1961. 838 
 839 
Dile, Y., Srinivasan, R., and George, C.: QGIS Interface for SWAT+: QSWAT+, 2022. 840 
 841 
Döll, P., Fiedler, K., and Zhang, J.: Global-scale analysis of river flow alterations due to water 842 
withdrawals and reservoirs, Hydrol. Earth Syst. Sci., 13, 2413–2432, https://doi.org/10.5194/hess-843 
13-2413-2009, 2009. 844 
 845 
Downing, J. A.: Emerging global role of small lakes and ponds: little things mean a lot, 846 
Limnetica, 29, 9–24, https://doi.org/10.23818/limn.29.02, 2010. 847 
Dubreuil, P. and Girard, G.: Influence of a very large number of small reservoirs on the annual 848 
flow regime of a tropical stream, Wash. DC Am. Geophys. Union Geophys. Monogr. Ser., 17, 849 
295–299, 1973. 850 
 851 
Irrigation & Water Use: https://www.ers.usda.gov/topics/farm-practices-852 
management/irrigation-water-use/, last access: 30 October 2021. 853 
 854 
Entekhabi, D., Njoku, E. G., O’Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., 855 
Goodman, S. D., Jackson, T. J., Johnson, J., Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., 856 
McDonald, K. C., Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman, S. 857 
W., Tsang, L., and Van Zyl, J.: The Soil Moisture Active Passive (SMAP) Mission, Proc. IEEE, 98, 858 
704–716, https://doi.org/10.1109/JPROC.2010.2043918, 2010. 859 
 860 
Evenson, G. R., Jones, C. N., McLaughlin, D. L., Golden, H. E., Lane, C. R., DeVries, B., Alexander, 861 
L. C., Lang, M. W., McCarty, G. W., and Sharifi, A.: A watershed-scale model for depressional 862 
wetland-rich landscapes, J. Hydrol. X, 1, 100002, https://doi.org/10.1016/j.hydroa.2018.10.002, 863 
2018. 864 
 865 
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., 866 
Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., 867 
Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, 868 
https://doi.org/10.1029/2005RG000183, 2007. 869 
 870 
Fowler, K., Morden, R., Lowe, L., and Nathan, R.: Advances in assessing the impact of hillside 871 
farm dams on streamflow, Australas. J. Water Resour., 19, 96–108, 872 
https://doi.org/10.1080/13241583.2015.1116182, 2015. 873 
 874 
Galéa, G., Vasquez-Paulus, B., Renard, B., and Breil, P.: L’impact des prélèvements d’eau pour 875 
l’irrigation sur les régimes hydrologiques des sous-bassins du Tescou et de la Séoune (bassin 876 



40 

Adour-Garonne, France), Rev. Sci. Eau J. Water Sci., 18, 273–305, 877 
https://doi.org/10.7202/705560ar, 2005. 878 
 879 
George, C.: Using SSURGO soil data with QSWAT and QSWAT+, 2020. 880 
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth 881 
Engine: Planetary-scale geospatial analysis for everyone, Remote Sens. Environ., 202, 18–27, 882 
https://doi.org/10.1016/j.rse.2017.06.031, 2017. 883 
 884 
Habets, F., Philippe, E., Martin, E., David, C. H., and Leseur, F.: Small farm dams: Impact on river 885 
flows and sustainability in a context of climate change, Hydrol. Earth Syst. Sci., 18, 4207–4222, 886 
https://doi.org/10.5194/hess-18-4207-2014, 2014. 887 
 888 
Habets, F., Molénat, J., Carluer, N., Douez, O., and Leenhardt, D.: The cumulative impacts of 889 
small reservoirs on hydrology: A review, Sci. Total Environ., 643, 850–867, 890 
https://doi.org/10.1016/j.scitotenv.2018.06.188, 2018. 891 
 892 
Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., Wickham, J., 893 
Stehman, S., Auch, R., and Riitters, K.: Conterminous United States land cover change 894 
patterns 2001–2016 from the 2016 National Land Cover Database, ISPRS J. Photogramm. 895 
Remote Sens., 162, 184–199, https://doi.org/10.1016/j.isprsjprs.2020.02.019, 2020. 896 
 897 
Hwang, J., Kumar, H., Ruhi, A., Sankarasubramanian, A., and Devineni, N.: Quantifying Dam‐898 
Induced Fluctuations in Streamflow Frequencies Across the Colorado River Basin, Water 899 
Resour. Res., 57, https://doi.org/10.1029/2021WR029753, 2021. 900 
 901 
Jalowska, A. M. and Yuan, Y.: Evaluation of SWAT Impoundment Modeling Methods in Water 902 
and Sediment Simulations, JAWRA J. Am. Water Resour. Assoc., 55, 209–227, 903 
https://doi.org/10.1111/1752-1688.12715, 2019. 904 
 905 
Jones, S. K., Fremier, A. K., DeClerck, F. A., Smedley, D., Pieck, A. O., and Mulligan, M.: Big data 906 
and multiple methods for mapping small reservoirs: Comparing accuracies for applications in 907 
agricultural landscapes, Remote Sens., 9, https://doi.org/10.3390/rs9121307, 2017. 908 
 909 
Justice, C. O., Vermote, E., Townshend, J. R. G., Defries, R., Roy, D. P., Hall, D. K., Salomonson, V. 910 
V., Privette, J. L., Riggs, G., Strahler, A., Lucht, W., Myneni, R. B., Knyazikhin, Y., Running, S. W., 911 
Nemani, R. R., Zhengming Wan, Huete, A. R., van Leeuwen, W., Wolfe, R. E., Giglio, L., Muller, J., 912 
Lewis, P., and Barnsley, M. J.: The Moderate Resolution Imaging Spectroradiometer (MODIS): 913 
land remote sensing for global change research, IEEE Trans. Geosci. Remote Sens., 36, 1228–914 
1249, https://doi.org/10.1109/36.701075, 1998. 915 
 916 
Kalman, R. E.: A new approach to linear filtering and prediction problems, 1960. 917 
Kennon, F. W.: Hydrologic effects of small reservoirs in Sandstone Creek Watershed, 918 
Beckham and Roger Mills Counties, western Oklahoma, U.S. G.P.O., 1966. 919 
Khazaei, B., Read, L. K., Casali, M., Sampson, K. M., and Yates, D. N.: GLOBathy, the global lakes 920 
bathymetry dataset, Sci. Data, 9, 36, https://doi.org/10.1038/s41597-022-01132-9, 2022. 921 
 922 
Kim, H. K. and Parajuli, P. B.: Impacts of Reservoir Outflow Estimation Methods in SWAT 923 
Model Calibration, Trans. ASABE, 1029–1042, https://doi.org/10.13031/trans.57.10156, 2014. 924 
 925 
Kiptala, J.K., M.L. Mul, Y. Mohamed and P. van der Zaag, 2014. Modelling stream flow and 926 
quantifying blue water using modified STREAM model for a heterogeneous, highly utilized 927 



41 

and data-scarce river basin in Africa. Hydrol. Earth Syst. Sci. 18, 2287–2303 doi:10.5194/hess-10-928 
18-2287-2014 929 
 930 
Krol, M. S., de Vries, M. J., van Oel, P. R., and de Araújo, J. C.: Sustainability of Small Reservoirs 931 
and Large Scale Water Availability Under Current Conditions and Climate Change, Water  932 
 933 
Resour. Manag., 25, 3017–3026, https://doi.org/10.1007/s11269-011-9787-0, 2011. 934 
Li, Y., Gao, H., Allen, G. H., and Zhang, Z.: Constructing Reservoir Area–Volume–Elevation Curve 935 
from TanDEM-X DEM Data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14, 2249–2257, 936 
https://doi.org/10.1109/JSTARS.2021.3051103, 2021. 937 
 938 
Liebe, J., van de Giesen, N., and Andreini, M.: Estimation of small reservoir storage capacities 939 
in a semi-arid environment, Phys. Chem. Earth, 30, 448–454, 940 
https://doi.org/10.1016/j.pce.2005.06.011, 2005. 941 
 942 
Mady, B., Lehmann, P., Gorelick, S. M., and Or, D.: Distribution of small seasonal reservoirs in 943 
semi-arid regions and associated evaporative losses, Environ. Res. Commun., 2, 061002, 944 
https://doi.org/10.1088/2515-7620/ab92af, 2020. 945 
 946 
Meigh, J.: The impact of small farm reservoirs on urban water supplies in Botswana, Nat. 947 
Resour. Forum, 19, 71–83, https://doi.org/10.1111/j.1477-8947.1995.tb00594.x, 1995. 948 
 949 
Molina-Navarro, E., Nielsen, A., and Trolle, D.: A QGIS plugin to tailor SWAT watershed 950 
delineations to lake and reservoir waterbodies, Environ. Model. Softw., 108, 67–71, 951 
https://doi.org/10.1016/j.envsoft.2018.07.003, 2018. 952 
 953 
Moriasi, D. N., Gitau, M. W., Pai, N., and Daggupati, P.: Hydrologic and water quality models:  954 
Performance measures and evaluation criteria, Trans. ASABE, 58, 1763–1785, 955 
https://doi.org/10.13031/trans.58.10715, 2015. 956 
 957 
Muche, M. E., Sinnathamby, S., Parmar, R., Knightes, C. D., Johnston, J. M., Wolfe, K., Purucker, 958 
S. T., Cyterski, M. J., and Smith, D.: Comparison and Evaluation of Gridded Precipitation 959 
Datasets in a Kansas Agricultural Watershed Using SWAT, JAWRA J. Am. Water Resour. 960 
Assoc., 56, 486–506, https://doi.org/10.1111/1752-1688.12819, 2020. 961 
 962 
Mukhopadhyay, S., Sankarasubramanian, A., and de Queiroz, A. R.: Performance Comparison 963 
of Equivalent Reservoir and Multireservoir Models in Forecasting Hydropower Potential for 964 
Linking Water and Power Systems, J. Water Resour. Plan. Manag., 147, 04021005, 965 
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001343, 2021. 966 
 967 
Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I — A 968 
discussion of principles, J. Hydrol., 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 969 
1970. 970 
 971 
Nathan, R. and Lowe, L.: The Hydrologic Impacts of Farm Dams, Australas. J. Water Resour., 16, 972 
75–83, https://doi.org/10.7158/13241583.2012.11465405, 2012. 973 
Census of agriculture: https://www.nass.usda.gov/AgCensus/index.php, last access: 10 974 
February 2021. 975 
 976 
Ni, X. and Parajuli, P. B.: Evaluation of the impacts of BMPs and tailwater recovery system on 977 
surface and groundwater using satellite imagery and SWAT reservoir function, Agric. Water 978 
Manag., 210, 78–87, https://doi.org/10.1016/j.agwat.2018.07.027, 2018. 979 



42 

 980 
Ni, X., Parajuli, P. B., and Ouyang, Y.: Assessing Agriculture Conservation Practice Impacts on 981 
Groundwater Levels at Watershed Scale, Water Resour. Manag., 34, 1553–1566, 982 
https://doi.org/10.1007/s11269-020-02526-3, 2020. 983 
 984 
Ogilvie, A., Belaud, G., Massuel, S., Mulligan, M., Le Goulven, P., Malaterre, P.-O., and Calvez, R.: 985 
Combining Landsat observations with hydrological modelling for improved surface water 986 
monitoring of small lakes, J. Hydrol., 566, 109–121, https://doi.org/10.1016/j.jhydrol.2018.08.076, 987 
2018. 988 
 989 
Ogilvie, A., Poussin, J.-C., Bader, J.-C., Bayo, F., Bodian, A., Dacosta, H., Dia, D., Diop, L., Martin, 990 
D., and Sambou, S.: Combining Multi-Sensor Satellite Imagery to Improve Long-Term 991 
Monitoring of Temporary Surface Water Bodies in the Senegal River Floodplain, Remote 992 
Sens., 12, 3157, https://doi.org/10.3390/rs12193157, 2020. 993 
 994 
Perin, V., Roy, S., Kington, J., Harris, T., Tulbure, M. G., Stone, N., Barsballe, T., Reba, M., and 995 
Yaeger, M. A.: Monitoring Small Water Bodies Using High Spatial and Temporal Resolution 996 
Analysis Ready Datasets, Remote Sens., 13, 5176, https://doi.org/10.3390/rs13245176, 2021a. 997 
 998 
Perin, V., Tulbure, M. G., Gaines, M. D., Reba, M. L., and Yaeger, M. A.: On-farm reservoir 999 
monitoring using Landsat inundation datasets, Agric. Water Manag., 246, 106694, 1000 
https://doi.org/10.1016/j.agwat.2020.106694, 2021b. 1001 
 1002 
Perin, V., Tulbure, M. G., Gaines, M. D., Reba, M. L., and Yaeger, M. A.: A multi-sensor satellite 1003 
imagery approach to monitor on-farm reservoirs, Remote Sens. Environ., 1004 
https://doi.org/10.1016/j.rse.2021.112796, 2022. 1005 
 1006 
Perrin, J.: Assessing water availability in a semi-arid watershed of southern India using a semi-1007 
distributed model, J. Hydrol., 13, 2012. 1008 
 1009 
Pinhati, F. S. C., Rodrigues, L. N., and Aires de Souza, S.: Modelling the impact of on-farm 1010 
reservoirs on dry season water availability in an agricultural catchment area of the Brazilian 1011 
savannah, Agric. Water Manag., 241, 106296, https://doi.org/10.1016/j.agwat.2020.106296, 2020. 1012 
 1013 
PRISM Gridded Climate Data: https://prism.oregonstate.edu/, last access: 2 January 2022. 1014 
Rabelo, U. P., Dietrich, J., Costa, A. C., Simshäuser, M. N., Scholz, F. E., Nguyen, V. T., and Lima 1015 
Neto, I. E.: Representing a dense network of ponds and reservoirs in a semi-distributed 1016 
dryland catchment model, J. Hydrol., 603, 127103, https://doi.org/10.1016/j.jhydrol.2021.127103, 1017 
2021. 1018 
 1019 
Renwick, W. H., Smith, S. V., Bartley, J. D., and Buddemeier, R. W.: The role of impoundments 1020 
in the sediment budget of the conterminous United States, Geomorphology, 71, 99–111, 1021 
https://doi.org/10.1016/j.geomorph.2004.01.010, 2005. 1022 
 1023 
Rodrigues, L. N., Sano, E. E., Steenhuis, T. S., and Passo, D. P.: Estimation of Small Reservoir 1024 
Storage Capacities with Remote Sensing in the Brazilian Savannah Region, Water Resour. 1025 
Manag., 26, 873–882, https://doi.org/10.1007/s11269-011-9941-8, 2012. 1026 
 1027 
Sawunyama, T., Senzanje, A., and Mhizha, A.: Estimation of small reservoir storage capacities 1028 
in Limpopo River Basin using geographical information systems (GIS) and remotely sensed 1029 
surface areas: Case of Mzingwane catchment, Phys. Chem. Earth Parts ABC, 31, 935–943, 1030 
https://doi.org/10.1016/j.pce.2006.08.008, 2006. 1031 
 1032 



43 

Schreider, S. Yu., Jakeman, A. J., Letcher, R. A., Nathan, R. J., Neal, B. P., and Beavis, S. G.: 1033 
Detecting changes in streamflow response to changes in non-climatic catchment conditions: 1034 
farm dam development in the Murray–Darling basin, Australia, J. Hydrol., 262, 84–98, 1035 
https://doi.org/10.1016/S0022-1694(02)00023-9, 2002. 1036 
 1037 
Soil Survey Staff, USDA-NRCS: Gridded Soil Survey Geographic (gSSURGO) Database for the 1038 
Conterminous United States. United States Department of Agriculture, Natural Resources 1039 
Conservation Service., 2021. 1040 
 1041 
Publications | Soil & Water Assessment Tool (SWAT): https://swat.tamu.edu/publications/, last 1042 
access: 17 June 2022. 1043 
 1044 
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.: The gravity recovery and climate 1045 
experiment: Mission overview and early results, Geophys. Res. Lett., 31, n/a-n/a, 1046 
https://doi.org/10.1029/2004GL019920, 2004. 1047 
 1048 
Thompson, J. C.: Impact and Management of Small Farm Dams in Hawke’s Bay, New Zealand, 1049 
thesis, Open Access Te Herenga Waka-Victoria University of Wellington, 1050 
https://doi.org/10.26686/wgtn.16997929.v1, 2012. 1051 
 1052 
United States Geological Survey Water Data for the Nation: https://waterdata.usgs.gov/nwis, 1053 
last access: 22 June 2022. 1054 
 1055 
Van Den Hoek, J., Getirana, A., Jung, H., Okeowo, M., and Lee, H.: Monitoring Reservoir 1056 
Drought Dynamics with Landsat and Radar/Lidar Altimetry Time Series in Persistently Cloudy 1057 
Eastern Brazil, Remote Sens., 11, 827, https://doi.org/10.3390/rs11070827, 2019. 1058 
 1059 
Van Der Zaag, P. and Gupta, J.: Scale issues in the governance of water storage projects, 1060 
Water Resour. Res., 44, https://doi.org/10.1029/2007WR006364, 2008. 1061 
 1062 
Vanthof, V. and Kelly, R.: Water storage estimation in ungauged small reservoirs with the 1063 
TanDEM-X DEM and multi-source satellite observations, Remote Sens. Environ., 235, 111437, 1064 
https://doi.org/10.1016/j.rse.2019.111437, 2019. 1065 
 1066 
Verpoorter, C., Kutser, T., Seekell, D. A., and Tranvik, L. J.: A global inventory of lakes based on 1067 
high-resolution satellite imagery, Geophys. Res. Lett., 41, 6396–6402, 1068 
https://doi.org/10.1002/2014GL060641, 2014. 1069 
 1070 
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, 1071 
S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M.: Global threats to human water 1072 
security and river biodiversity, Nature, 467, 555–561, https://doi.org/10.1038/nature09440, 2010. 1073 
 1074 
Yaeger, M. A., Reba, M. L., Massey, J. H., and Adviento-Borbe, M. A. A.: On-farm irrigation 1075 
reservoirs in two Arkansas critical groundwater regions: A comparative inventory, Appl. Eng. 1076 
Agric., 33, 869–878, https://doi.org/10.13031/aea.12352, 2017. 1077 
 1078 
Yaeger, M. A., Massey, J. H., Reba, M. L., and Adviento-Borbe, M. A. A.: Trends in the 1079 
construction of on-farm irrigation reservoirs in response to aquifer decline in eastern, Agric. 1080 
Water Manag., 208, 373–383, https://doi.org/10.1016/j.agwat.2018.06.040, 2018. 1081 
 1082 
Yao, F., Wang, J., Yang, K., Wang, C., Walter, B. A., and Crétaux, J. F.: Lake storage variation on 1083 
the endorheic Tibetan Plateau and its attribution to climate change since the new 1084 
millennium, Environ. Res. Lett., 13, https://doi.org/10.1088/1748-9326/aab5d3, 2018. 1085 



44 

 1086 
Yapo, P. O., Gupta, H. V., and Sorooshian, S.: Automatic calibration of conceptual rainfall-runoff 1087 
models: sensitivity to calibration data, J. Hydrol., 181, 23–48, https://doi.org/10.1016/0022-1088 
1694(95)02918-4, 1996. 1089 
 1090 
Yongbo, L., Wanhong, Y., Zhiqiang, Y., Ivana, L., Jim, Y., Jane, E., and Kevin, T.: Assessing Effects 1091 
of Small Dams on Stream Flow and Water Quality in an Agricultural Watershed, J. Hydrol. 1092 
Eng., 19, 05014015, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001005, 2014. 1093 
 1094 
Zhang, C., Peng, Y., Chu, J., Shoemaker, C. A., and Zhang, A.: Integrated hydrological modelling 1095 
of small- and medium-sized water storages with application to the upper Fengman Reservoir 1096 
Basin of China, Hydrol Earth Syst Sci, 15, https://doi.org/10.5194/hess-16-4033-2012, 2012. 1097 
 1098 
Zhang, S., Foerster, S., Medeiros, P., de Araújo, J. C., Motagh, M., and Waske, B.: Bathymetric 1099 
survey of water reservoirs in north-eastern Brazil based on TanDEM-X satellite data, Sci. Total 1100 
Environ., 571, 575–593, https://doi.org/10.1016/j.scitotenv.2016.07.024, 2016. 1101 


