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Abstract

On-farm reservoirs (OFRs) are crucial water bodies for meeting global irrigation needs. Farmers
use OFRs to store water from precipitation and runoff during the rainy season, which they then
use to irrigate their crops during the dry season. Despite their importance to crop irrigation,
OFRs can have a cumulative impact on surface hydrology by decreasing flow and peak flow.
Nonetheless, there is limited knowledge on the spatial and temporal variability of the OFRs'
impacts. Therefore, to gain an understanding of the cumulative impact of OFRs on surface
hydrology, we propose a novel framework that integrates a top-down, data-driven, remote
sensing-based algorithm with physically based models, leveraging the latest developments in

the Soil Water Assessment Tool+ (SWAT+). We assessed the impact of OFRs in a watershed
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located in eastern Arkansas, the third most irrigated state in the USA. Our results indicate that
the presence of OFRs in the watershed is associated with a decrease in annual flow of 14-24%
and a mean reduction in peak flow of 43-60%. In addition, the cumulative impact of the OFRs
was not equally distributed across the watershed, varying according to the OFR spatial
distribution and their storage capacity. The results of this study and the proposed framework
can support water agencies with information on the cumulative impact of OFRs, aiming to
support surface water resources management. This is relevant because the number of OFRs
is expected to increase globally as a response to climate change under severe drought

conditions.

1 Introduction

Inland water bodies (e.g., lakes and reservoirs) comprise a small fraction of Earth’s surface;
however, they are responsible for storing the vast majority of the accessible freshwater
resources available on Earth. In addition, these water bodies are pivotal components of surface
hydrology, playing key roles in ecosystem functioning and providing habitats for wildlife
(Khazaei et al,, 2022; Verpoorter et al., 2014). In particular, on-farm reservoirs (OFRs) are crucial
for meeting global irrigation needs (Doll et al.,, 2009; Downing, 2010; Van Den Hoek et al., 2019).
Farmers use OFRs to store water from precipitation and runoff during the rainy season to
irrigate their crops during the dry season (Habets et al., 2018; Perin et al., 2021, Vanthof & Kelly,
2019; Yaeger et al., 2017; Yaeger et al,, 2018). The number of OFRs is expected to rise worldwide
in the coming decades, and estimates show that there are more than 2.1 million OFRs in the
US alone (Downing, 2010; Renwick et al.,, 2005). OFRs are often built to manage surface water
resources more efficiently and to help mitigate the impact of extreme droughts, which are
projected to increase due to climate change (Habets et al,, 2018; Van Der Zaag & Gupta, 2008).
Although OFRs are small water bodies (< 50 ha), they can have cumulative impacts on the local

and remote hydrology in the watersheds where they occur (e.g., decreasing flow and peak
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flow) (Habets et al., 2018). Their impact may contribute to worsening the surface water stress
already intensified by climate change and population growth (Voérésmarty et al., 2010). Most
studies have focused on the cumulative impact of major large reservoirs on downstream flow
alteration (Chalise et al.,, 2021; Mukhopadhyay et al.,, 2021), but limited analysis has been
performed on the impact of OFRs on downstream flow availability.

To quantify the impact of OFRs on surface hydrology, it is necessary to understand the
spatial and temporal variability of OFRs, as well as how the impacts are related to the OFR
networks, as the impacts of OFRs are not the sum of the individual OFR impacts, but rather
the sum and their interaction effects (Canter & Kamath, 1995; Habets et al., 2018). By gathering
information from several studies conducted in different countries (e.g., the USA, France, Brazil),
Habets et al. (2018) conducted a thorough assessment of the OFRs' impact on surface
hydrology and the various types of models and methods for representing OFRs within the
watershed. The authors concluded that the modeled OFR impacts have a wide range, and that
most studies reported a mean annual reduction in flow, which ranged from 0.2% to 36%. In
addition, the variability of the impact, as identified in these previous studies, was higher when
assessing low flows over multiple years, with reductions ranging from 0.3 to 60%. In general,
the estimated mean annual reduction in flow was 13.4% + 8.0%, and the mean decrease in peak
flow was up to 45% (Habets et al., 2018).

The approaches used to quantify the cumulative impact of OFRs can be divided into
two classes: data-driven methods and process-based hydrological modeling. The data-driven
approaches include three primary methods. The first method relies on assessing measured
inflows and outflows of selected OFRs, aiming to quantify their hydrological functioning with
the assumption that the cumulative impacts are the sum of individual impacts (Culler et al.,
1961; Dubreuil and Girard, 1973; Kennon, 1966). A variation of the cumulative impact assessment
approach has been recently suggested by Hwang et al. (2021) for comparing naturalized flows
and controlled flows to assess the impact of large reservoir systems. The second method is

based on statistical analysis of the observed discharge time series of a watershed as the



80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

number of OFRs increased (Galéa et al., 2005; Schreider et al., 2002). This approach is limited
when discriminating the specific impact of OFRs from those of land use and land cover
change, and when explicitly representing the OFRs in the models, given that OFRs tend to be
aggregated within the entire basin (i.e, OFRs surface area and/or storage are summed and
modeled as a unique water impoundment). The third method involves conducting a paired-
catchment experiment by comparing the flows from two adjacent and similar catchments:
one with OFRs and the other without OFRs (Thompson, 2012). This technique requires the
catchment properties (e.g., soils, topology, lithology, land cover) to be spatially homogeneous,
which is practically nonexistent at a large scale, hence, this method's applications are limited.

The second class of methods relates to hydrological modeling, which is the most widely
used approach for assessing the impacts of OFRs. A variety of models have been proposed by
coupling the OFRs' water balance with a quantitative approach to estimate the OFRs' water
volume change (Fowler et al., 2015; Habets et al.,, 2014; Jalowska & Yuan, 2019; Yongbo et al.,
2014; Ni & Parajuli, 2018; Perrin, 2012; Zhang et al.,, 2012). In general, the models have three main
components: the OFR water balance, a quantitative approach to quantify OFR inflows, and a
spatial representation of the OFR’s network. These different model components result in
various limitations and assumptions—a comprehensive assessment of these three
components and their impact on hydrological simulations is provided in a recent review
(Habets et al., 2018). Therefore, when selecting a specific model to assess the impacts of the
OFRs, it is essential to consider the model’s suitability for addressing the target issue, as well
as its limitations and assumptions. The selected model should also have the capability to
incorporate and assimilate varying land-surface conditions (e.g., soil moisture) and time-
varying OFR storages, which can be obtained either from local monitoring or through remote
sensing.

Most studies have used remotely-sensed products such as soil moisture (e.g., SMAP;
(Entekhabi et al, 2010), groundwater (e.g., GRACE; (Tapley et al, 2004) and land cover

conditions (e.g., MODIS; (Justice et al, 1998)) for assimilating current conditions into
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hydrological models. Given that OFRs tend to occur in high numbers (e.g., hundreds), multiple
studies leveraged the latest developments and availability of satellite imagery to monitor the
occurrence and dynamics of OFRs (Jones et al., 2017; Ogilvie et al., 2018, 2020; Perin et al., 2022;
Perin et al., 2021a, 2021b; Van Den Hoek et al., 2019; Vanthof & Kelly, 2019), which could provide
helpful information on local storage conditions for predicting downstream streamflow.
Furthermore, these studies enabled the quantification of the number of OFRs and their spatial
and temporal variability in surface water areas and storage within the watershed where they
occur, providing relevant information for modeling the cumulative impact of OFRs. Despite
the complementary information provided by satellite imagery, there are only a few studies that
incorporated remote sensing-derived information (e.g., soil moisture derived from SMAP,
groundwater based on GRACE) with hydrological modeling (Ni and Parajuli, 2018; Yongbo et
al., 2014; Zhang et al., 2012), and these studies are limited to mapping the OFRs occurrence, or
to snapshots of the OFRs conditions (e.g., surface area). To the best of our knowledge, no study
has combined the spatial and temporal variability of the OFRs—derived fromm multi-year
satellite imagery time series analyses—with a process-based hydrological model.

Therefore, to gain an understanding of the cumulative impact of OFRs on surface
hydrology, this study proposes a new approach that systematically integrates the dynamically
varying conditions of OFRs based on satellite imagery time series (Perin et al,, 2022) using a
top-down data-driven approach within the latest SWAT+ model. The Soil and Water
Assessment Tool (SWAT) (Arnold et al,, 2012) has been widely used to model the impacts of the
OFRs (Jalowska and Yuan, 2019; Kim and Parajuli, 2014; Ni et al,, 2020; Ni and Parajuli, 2018;
Perrin, 2012; Rabelo et al, 2021; Yongbo et al.,, 2014; Zhang et al.,, 2012), in part given by a
comprehensive collection of model documentation and guidelines available online

(https://swat.tamu.edu/). Our objectives are to (1) assess the spatial and temporal variability of

the cumulative impact of OFRs at the watershed and subwatershed levels, and (2) to quantify
the intra- and interannual impacts of the OFRs on flow and peak flow at the channel scale. By

integrating the SWAT+ model with a remote sensing assimilation algorithm to account for the
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OFRs spatial variability—which is lacking in most of studies assessing the OFRs impacts—and
leveraging a digitally-mapped OFRs dataset (Yaeger et al, 2017), we are providing a new
approach that can be replicated in watersheds across the world, and used to support water

agencies with information to improve surface water resources management.

2 Methods

2.1 Study region

The study region is located in eastern Arkansas, USA, the third most-irrigated state in the USA
(ERS-USDA, 2017). The area has a humid subtropical climate with a 30-year annual average
precipitation of ~1300 mm/year (PRISM Climate Group, 2022). Precipitation is distributed
mainly between March and May, with an average of ~400 mm during these months (Perin et
al, 2021b). The region has experienced a steady increase in irrigated agriculture, with
commonly irrigated crops including corn, rice, and soybeans (NASS-USDA, 2017). A recent
study (Yaeger et al,, 2017) digitally mapped 330 OFRs located in the study region (Fig. 1) using
the high-resolution (1-m) National Agricultural Imagery Program archive in combination with
2015 sub-meter spatial resolution Google Earth satellite imagery. Most of the OFRs (95%) have
a surface area < 50 ha, and they are concentrated in the eastern portion of the study region

(Fig.1). Currently, there is no comprehensive and up-to-date inventory of all OFRs in the basin.

This limitation is partly because_many of these man-made structures are located on private

properties, making them difficult to document. As a result, the study only accounts for a

fraction of the total OFRs present in the study region.
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Figure 1-Study region located in eastern Arkansas, USA, the subwatersheds and surface water
streams and channels delineated with SWAT+, the model outlet, the United States Geological
Survey (USGS) stations (United States Geological Survey Water Data for the Nation, 2022) used
for flow calibration and validation, the digitized OFRs (Yaeger et al., 2017), and the Digital

Elevation Model (DEM) used in the modeling (Farr et al.,, 2007).
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2.2 SWAT+ model setup

2.2.1 The Soil Water Assessment Tool to model the impacts of OFRs on surface hydrology

The SWAT model is a time-continuous, semi-distributed hydrological model widely used
globally—more than 5,000 peer-reviewed publications have been published since its launch in
the early 1980s (Publications | Soil & Water Assessment Tool (SWAT), 2022). The large number
of SWAT applications globally revealed the model development needs and its limitations. To
address the present and future challenges when modeling with SWAT, the model source code
has undergone significant modifications, and a completely revised version of the model was
proposed in SWAT+ (Bieger et al, 2017). SWAT+ utilizes the same equations as SWAT to
simulate hydrological processes; however, it provides users with greater flexibility when
configuring the model (e.g., defining management schedules, routing constituents, and

connecting managed flow systems to the natural stream network) (Bieger et al., 2017).

The SWAT+ is undergoing constant improvements (Chawanda et al., 2020; Molina-

Navarro et al., 2018), and a new module (Molina-Navarro et al, 2018) has been recently

developed to facilitate the optimal integration of a water body and its drainage area within
simulated hydrological processes. In previous versions of the model, when delineating the
watershed area draining into a water body, users were required to place an outlet at a specific
point in the water stream's network, and areas between the rivers’' subwatersheds flowing into
the water body were therefore excluded. If these areas are disregarded, critical hydrological
processes (e.g., evaporation, overland and/or groundwater flow) flowing into the water body
are not accounted for (Molina-Navarro et al, 2018). This former approach can lead to
inaccuracies when delineating the watershed areas, mainly when the results are used as input
to an OFR model component. The newest versions of SWAT+ consider the OFRs’ outline (i.e.,
shape and surface area) when delineating the watersheds; hence, accounting for the entire
drainage area flowing into the waterbody (Mollina-Navarro et al,, 2018). In addition, the latest

versions allow for adding more than one OFR per subwatershed by associating the OFR with
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channels—components of the watersheds, as well as finer divisions and extensions of water
stream reaches, enabling modeling analyses at the channel scale. When simulating the impact
of the OFRs at the channel scale, there is a higher level of detail of where and when the OFRs
are contributing to changes in surface hydrology, unlike the previous versions of the model,
which allowed adding only a single OFR per subwatershed placed at the subwatershed outlet
as a point (Arnold et al., 2012), and therefore, the analyses were conducted at the subwatershed
scale.

We modeled the impact of OFRs on surface hydrology using the QSWAT+ (v.2.1.9)
SWAT+ model interface together with SWAT+ Editor (v.2.1.0) to set up the model, to input the
required datasets (e.g., DEM, land use and land cover layer, interpolated meteorological
climate information), and to run the different modeling scenarios.

The modeled watershed (710,700 ha, Fig. 1) comprised 68 subwatersheds and a total of
642 Hydrological Response Units (HRUs)—HRUs are unique portions of the subwatersheds
characterized by distinct land use and management, as well as unique soil attributes. We set
up daily simulations for 30 years (1990-2020), including five years of model warm-up to
establish the initial soil water conditions and hydrological processes. The watershed was
delineated using the Shuttle Radar Topography Mission DEM (30 m) (Farr et al., 2007).
Additionally, we set the channel length threshold to 6 km® and the stream length threshold to
60 km*. We placed an outlet in the southern part of the study region—where the lowest part
of the watershed is located (Fig. 1). We created the HRUs using the dominant option—this
option selects the largest HRU within the subwatershed as the general HRU—within QSWAT+
interface, and used the National Land Cover Database (30 m) (Homer et al., 2020), and Gridded
Soil Survey Geographic Database (gSSURGO) (Soil Survey Staff, USDA-NRCS, 2021) (100 m) as
inputs to the model. The gSSURGO layers were processed according to their guidelines when
using them on QSWAT+ (George, 2020). For climate data, we extracted the centroid
coordinates of each subwatershed. We used these centroids to download 30 years of daily

precipitation, minimum and maximum temperatures, surface downward shortwave radiation,
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wind velocity, and relative humidity from the Gridded Surface Meteorological Datasets
(Abatzoglou, 2013), which are available in Google Earth Engine (Gorelick et al., 2017). The time
series of each subwatershed centroid was added to the SWAT+ Editor as independent weather

stations.

2.2.2 Model calibration and validation procedures

We used monthly measured flow from three USGS stations (Fig.1and Table 1) to calibrate and
validate the model flow simulations. The USGS flow time series length varied between 14 and
25 years, and we used 60% of the time series for calibration and 40% for validation for each
USGS station (Table 1). We assessed the performance of the model by calculating the
Coefficient of determination (r?), Percent bias (PBIAS, %, Equation 1) (Yapo et al.,, 1996), and the
Nash-Sutcliffe model efficiency coefficient (NSE, Equation 2) (Nash and Sutcliffe, 1970). PBIAS
is the relative mean difference between the simulated and measured flow values, reflecting
the model's ability to simulate monthly flows accurately. The optimal PBIAS is zero, and low-
magnitude values indicate better model performance. Positive PBIAS indicates
overestimation bias, whereas negative values denote underestimation bias. The NSE indicates
how well the model simulates flows, ranging from a negative value to one, with a value of one
indicating a perfect fit between the simulated and measured flow values. In general, the model
simulations of monthly flow are considered satisfactory when r? ranges from 0.60 to 0.75, PBIAS
ranges from +10% to +15%, and NSE ranges from 0.50 to 0.70 (Moriasi et al., 2015).

Table 1-USGS stations, drainage areas, and the periods used for flow calibration and validation.

USGS station Station id Drainage Area (ha) Period (years)
Calibration Validation
07264000 (A) 53,600 1995-2010 2010-2020
07263555 (B) 25,400 2007-2014 2014-2020
07263580 Q) 5,300 1997-2011 20T11-2020

10
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Where X; is the measured flow and Y; is the simulated flow.

We conducted a sensitivity analysis using the SWAT+ ToolBox (v.0.7.6) (SWAT+ Toolbox,
2022) to reveal the most sensitive parameters when simulating flow—a total of 10 parameters
(Table S1) were tested based on previous studies that used SWAT/SWAT+ to model the impact
of water impoundments on surface hydrology (Jalowska & Yuan, 2019; Yongbo et al., 2014; Ni et
al., 2020; Ni & Parajuli, 2018; Perrin, 2012; Rabelo et al,, 2027; Zhang et al., 2012). Following the
sensitivity analysis, we selected the five most sensitive parameters (Table 2) and proceeded
with a manual calibration using the SWAT+ Toolbox. We aimed to improve the model's
monthly flow predictions by testing the parameters one at a time and adjusting their values
between -20% and 20% in 5% increments, based on their respective ranges. The final calibrated
parameters and their fitted values are shown in Table 2.

Table 2-Monthly flow calibration parameters.

Parameter Description Range Value
CN2 SCS runoff curve number 35-95 0.20*
SOL_AWC Available water capacity (mm/mm) 0.01-1 -0.20*
ESCO Soil evaporation compensation coefficient 0.01-1 0.50
PERCO Percolation coefficient (fraction) 0-1 0.60
CANMX Maximum canopy storage (mm) 0-100 75

*Denotes relative percentage change.

2.3 OFRs representation in SWAT+

Multiple OFRs can be added to the same subwatershed by associating them with channels
(Dile et al., 2022). The OFRs must have at least one outlet channel, and they may have none or

multiple inlet channels. Therefore, most OFR-related processes within the model involve

11



254  determining what channels form inflowing and outflowing channels for each OFR. Ideally,
255 each OFR would interact with a channel, and therefore, have a channel entering, leaving, or
256  withinthe OFR. Nonetheless, it is common to have OFRs that do not intersect with any channel
257  (Dile et al, 2022)—this is the case for 93% of the OFRs in our study region. The OFRs in our study
258 region are not dams along the streams but instead engineered water impoundments that are
259 indirectly connected to the main streams via pipes and pumps (Yaeger et al., 2017). A possible
260  solution would be modifying the OFRs’ shapes by dragging them to the closest channel (Dile
261 et al, 2022). However, this would require extensive modifications of the OFRs' shapes.
262 Additionally, when an OFR is added to a channel, it is split into two channels, and the model
263 must account for these two newly created channels during the water routing calculations. For
264  this reason, adding multiple OFRs to the same channel or adding multiple OFRs closely
265 located to the same channel can be a cumbersome process that leads to numerous routing
266  errors.

267 To overcome these challenges, we aggregated the OFRs' surface area and added
268 aggregated OFRs to the model. This adaptation involved two steps. First, for each of the 330
269  OFRs, we searched for the closest channel by calculating the distance between the OFR's
270  centroid and the multiple channels within each subwatershed. Then, we aggregated all the
271 OFRs associated with each channel by summming their surface areas and adding a polygon
272 representing the aggregated area to the OFR. This approach resulted in 69 aggregated OFRs
273  that were added to 67 different channels located in 16 subwatersheds. The surface area of the
274  aggregated OFRs varied between 3.05 ha and 165.67 ha, and the number of OFRs in each
275  aggregated OFR varied between 2 and 12. To avoid confusion, for the rest of the manuscript,

276  we refer to OFRs as the aggregated OFRs, and not the individual OFRs shown in Fig. 1.

P77 2.4 OFR's water balance - CFormatted: Font: (Default) Montserrat Medium
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from evaporation and seepage. The total volume of water in the OFR fluctuates in response to,

changes in surface area and is also influenced by evaporation losses and the operation of the

spillway. A reduction in surface area (Equation 4) typically leads to a corresponding decrease in

water volume. If inflows are insufficient to fill the OFR, water will not be routed to the downstream

channel.

For each of the aggregated OFR, the initial water volume (Vstored, see Equation 3) was

calculated using the SWAT+ default rule, which is a simple multiplication of the OFR surface

area by a factor of 10, similar to other studies based on SWAT+ (Ni and Parajuli, 2018; Zhang et

al, 2012)._For a scenario where the OFR has a surface area of 1 hectare (10,000 m?2), the

corresponding _volume would be 100,000 m3—this is _a limitation of our study, as the

assumption was necessary due to the absence of available bathymetry data. In addition, since

we did not have access to the OFRs' release rates, we used the model's default release rule,
which sets the OFRs to release water when the spillway volume is reached—80% of the OFRs'

capacity (Bieger et al., 2017).

V_ = Vstored + Vflowin - Vflowout + Vpcp - Vevap - Vseep

(3)

Where V is the volume of water in the OFR at the end of the day (m?), Vstored is the volume

of water stored at the beginning of the day (m?3), Vflowin is the volume of water entering the

OFR during the day (m?), Vflowout is the volume of water flowing out of the OFR (m?3), Vpcp

is the volume of precipitation falling on the water body (m?3), Vevap is the volume of water

removed from the OFR due to evaporation, and Vseep is the volume of water lost by seepage

(m3).

The OFR surface area is used to calculate the amount of precipitation falling on the

water body and the amount of water lost through evaporation and seepage. Given the initial,
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OFR surface area obtained from one of the three modeling scenarios, the OFR surface area

was modeled daily. The surface area varied according to the volume of water stored in the

reservoir. Equation 4 is used to estimate the surface area:

Surface area (ha) = Bsa * \Y expsa
(4)
expsa = log10 (Vem)—loglO(Vpr) (5)

1log10 (Surface areaem) — logl10 (Surface Areapr)

Bsa=(—™ _ yexpsa (6)

Surface areaem

Where Bsa is a surface area coefficient, Vem is the volume of water (m?®) at the emergency

spillway, Vpr is the volume of water (m?®) at the principal spillway, Surface areaem is the

surface area (ha) at the emergency spillway, and Surface areapr is the surface area at the

principal spillway.

The volume of precipitation falling into the OFR is calculated using Equation 7:

Vpcp =10 * Rday * Surface Area (ha) (7)

Where Rday is the amount of precipitation falling into the OFR on a given day (mm).

Evaporation losses are calculated using Equation 8:

Vevap =10 *n * EO * Surface Area (ha) (8)

Where n_is an evaporation coefficient (0.6), and EQO is the potential evapotranspiration for a

given day (mm).

Seepage losses are calculated using Equation 9:

Vseep = 240 * Ksat * Surface Area (ha) (9)

14
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325 2.4 Scenario Analysis

326  Given our representation of the OFRs in SWAT+, we assessed the impact of the OFRs on surface
327  hydrology at the channel scale. To do so, we established a model baseline scenario without the
328 presence of OFRs in the watershed. Additionally, we divided the channels into four classes (i.e.,
329 low and high flow classes) based on their mean baseline flow. The different class intervals were
330 calculated using the mean flow quartiles, accounting for all channels, which resulted in the
331  following baseline flow classes: (1) 0.001-0.25 m?/s, (2) 0.25-0.50 m?%/s, (3) 0.50-2.11 m%/s, and (4)
332 21111750 m¥/s.

333 To account for the OFRSs' variation in surface area (i.e., change in storage capacity), we
334 propose a novel approach that leverages a top-down data-driven model based on satellite
335 imagery (Fig. 2). We used this model to create three modeling scenarios using daily OFRs
336  surface area time series—these scenarios were based on the methodology proposed by Perin
337  etal. (2022). The authors employed a multi-sensor satellite imagery approach combined with
338 the Kalman filter (Kalman, 1960) to calculate the daily OFRs' surface area change between 2017
339 and 2020. The proposed algorithm accounts for the uncertainties in both the sensor's
340 observationsand the resulting surface areas. By improving the OFR'’s surface area observations
341 cadence, the algorithm enables a deeper understanding of the OFR's surface area intra- and
342 inter-annual changes, which are key pieces of information that can be used to better assess
343 and manage the water stored by the OFR (Perin et al, 2022). The daily surface area time
344  series—derived by combining PlanetScope, RapidEye, and Sentinel-2 satellite imagery (Perin
345 et al, 2022)—of each OFR was used to simulate three scenarios (i.e., lower, mean, and upper)
346 representing the OFRs' capacity in terms of surface area. The mean scenario represents the
347 regular condition of the OFRs, and it is the mean of the daily surface area time series derived
348 from the Kalman filter. The lower and upper scenarios represent the lowest and highest

349 capacities of the OFRs, based on the 95% confidence interval limits of the surface area,
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calculated using the daily time series. Please refer to Perin et al. (2022) for more details on how

the 95% confidence interval was calculated.

The SWOT+ model does not allow for direct incorporation of a daily surface area time+

series because it calculates surface area dynamically (Equation 4) based on changes in water

volume through the reservoir water balance equation (Equation 3). It is structured to accept a

single surface area value per scenario, which then varies internally. Incorporating time-varying

surface area data, such as from the Kalman filter, would require modifications to the model

that are currently not supported. Therefore, a single surface area value was assigned to each

scenario and OFR, with lower, mean, and upper values used as starting points for the model's

water balance simulations. This initial surface area reflects the OFR’s maximum surface area at

full capacity for each scenario. For example, in the lower scenario, an initial surface area of 1.2

ha represents the maximum area for this OFR. As model iterations proceed, the surface area is

recalculated based on Equation 4. The initial OFR surface area was kept constant during the

: (Formatted: Space After: 12 pt

simulation period (Ni et al., 2020; Ni and Parajuli, 2018; Perrin, 2012)._In other words, the OFR

surface area varied according to Equation 4, however, the maximum surface area did not

exceed the initial value. To assess the impact of the OFRs on surface hydrology, we compared

the baseline flow with the flow simulated by each surface area scenario—i.e.,, comparing the
flow changes with and without OFRs, a coomnmon approach used by previous studies (Habets

et al, 2018).

16

Deleted: 9|

For each scenario, a single value of the OFRs
surface area was set during the the OFRs were
simulated at full capacity (i.e., maximum storage
at the lower, mean and upper scenarios), and
this capacity ...




375
376

377
378
379
380
381
382
383
384
385
386
387

Digitized OFRs dataset (Yaeger
et al, 2017)
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algorithm (Perin et al., 2022)
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Scenarios of OFRs surface area changes
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empirical model
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level
|
Comparing SWAT+ simulations scenarios with
and without the OFRs

Assessing the spatial and temporal variability of the
cumulative impact of the OFRs

Figure 2-A new approach to integrate a top-down data-driven remote sensing-based
algorithm, that assesses the OFR’s dynamic conditions (Perin et al., 2022), with the latest
SWAT+ model developments.

We estimated the impact of the OFRs on surface hydrology by calculating the percent
change (Equation 10) of monthly flow between the baseline and the three surface area
scenarios, including all OFRs. The annual impact on flow was calculated by averaging the
mean percent change over the months. We also calculated the distribution of the percent
change for each baseline flow class. The distribution was assessed using two-dimensional
kernel density estimation (KDE) plots. Unlike discrete bins (e.g., histograms), KDE plots display
a continuous density estimate of the observations using a Gaussian kernel. Additionally, we
assessed the percentage changes in peak flow. For this analysis, peak flow is defined as equal

to or higher than the 99t flow percentile calculated using the entire flow time series (Equation
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10). It is important to keep in mind that the impact of the OFRs on this study is solely based on

modeling scenarios and does not account for OFR management practices, which represents

a key limitation of this simulation study.

Percent change (%) = (%) *100 (10)

Where X; is the baseline flow, and Y; is the simulated flow of each surface area scenario.

3 Results

3.1 Model calibration and validation

The model calibration and validation were done using the three USGS stations presented in
Fig. 1 and Table 1, and accounting for all OFRs in the study region. When comparing the
monthly simulated flow with the measured flow for the calibration period, there was a good
agreement (0.71 = r?= 0.93), and a satisfactory model efficiency (0.68 = NSE = 0.90) for all three
stations (Fig. 3). In addition, the PBIAS magnitude was < 3% for station A, and < 12% for stations
B and C. Meanwhile, the validation period had r? ranging between 0.69 and 0.86, and the NSE
between 0.68 and 0.83, with PBIAS magnitude <10% for stations A and B, and 18.12% for station
C. In general, for stations A and C, the model overestimated flow values (i.e.,, positive PBIAS)
mostly during flow events < 3 m?/s, and the model underestimated flow (i.e., negative PBIAS)
for station B during flows > 20 m?/s (Fig. 3). These findings are consistent with a previous study
conducted in western Mississippi near our study region (Ni and Parajuli, 2018). Even though
during the validation period, Station B had a PBIAS magnitude higher than 15%, the r? and NSE
values from both the calibration and validation periods indicate satisfactory modeling
performance when simulating monthly flow (Moriasi et al., 2015). Given that none of the OFRs
were directly connected with the streams where the stations were located (Fig. 1), and there
were no OFRs near stations B and C, the calibration and validation metrics with and without

the OFRs were very similar, with differences smaller than 1%.
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Figure 3-Flow calibration and validation time series for the three USGS stations A (07264000),

B (07263555), and C (07263580). See Fig. 1 and Table 1 for more information about the USGS

stations. The precipitation time series represents the monthly accumulated precipitation at

the watershed scale (i.e,, for the entire study region).
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3.2 Percent change in flow

We assessed the impact of the OFRs on flow by comparing the baseline flow (i.e., without the
OFRs) with the three surface area scenarios generated from the Kalman filter approach—
lower, mean, and upper (see section 2.4, and Fig. 2). The total surface area (i.e.,, summing all
OFRs surface area) was 2.176 ha for the lower, 2.766 ha for the mean, and 3.370 ha for the upper,
and the three scenarios had a similar OFRs surface area distribution (Fig. 4). In addition, most
of the OFRs had surface areas < 50 ha—78%, 71%, and 62% of the OFRs for the lower, mean, and

upper scenarios.

10
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8-
6<
4
2.
o TR I
o 50 100 150 200
10
Mean
8.
€ 61
3
§ 41
_an |, L
o 50 100 150 200
Upper
o 50 100 150 200

Surface area (ha)

Figure 4-OFR's surface area distribution for the three surface area scenarios, lower, mean,
and upper.

Figure 5 categorizes_the channels into four distinct groups, with each category

illustrating the percentage change in flow throughout the year, displayed along the x-axis by

month. The three bar colors represent different scenarios, while bar heights illustrate variations
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across channels and years. For example, the bars for January include all January data spanning

from 1990 to 2020, enabling a thorough comparison of seasonal and year-to-year flow changes.

The impact of the OFRs on monthly flow varied throughout the year. The largest impacts
occurred between January and May for all flow classes (Fig. 5). During these months, including
all surface area scenarios, the mean decrease in flow (i.e., negative mean percent change) was
-34.4 + 6% for class 1, -37.6 + 5% for class 2, -30.0 + 6% for class 3, and -34.1 + 6% for class 4. For all
classes, the most significant reduction in flow occurred during March (~ -40%). Meanwhile, the
impact of the OFRs was more minor during the second half of the year, in which the mean
percent change in flow was -12.0 + 3% for class 1, -12.5 + 5% for class 2, -1.4 + 4% for class 3, and -
2.6 £10% for class 4 (Fig. 5).

When assessing the mean percent change per month for all surface area scenarios, the
lower flow classes (i.e,, (1) 0.001-0.25 m3/s and (2) 0.25-0.50 m3/s) exhibited a negative mean
percent change for all months. Nonetheless, we observed a mean positive percent change (i.e.,
increase in flow) for August (5.0 +1%) and October (5.2 + 0.2%) for class 3, and during June (8.2
+ 0.3%), August (7.3 £ 0.4%), and October (8.7 + 0.4%) for class 4 (Fig. 5). Furthermore, the
different surface area scenarios had similar impacts on flow for all months of the year with
differences smaller than 5% for all scenarios. Between January and May, for all flow classes, the
mean percent change was -32.0 + 6% for the lower, -34.6 + 7% for the mean, and -35.8 + 5% for
the upper. Between June and December, the impact on flow was -5.4 + 6% for the lower, -7.3 +

8% for the mean, and -8.9 + 5% for the upper.
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Figure 5-Monthly percent change in flow between the baseline scenario (vertical dotted blue
line) and the three surface area scenarios (lower, mean, and upper), and for the four flow classes

(1) 0.001-0.25 m?/s, (2) 0.25-0.50 mM?/s, (3) 0.50-2.11 M?/s, and (4) 2.11-17.50 m?/s._This analysis

included data from all simulated years (1990-2020).
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Generally, the OFRs contributed to a decrease in monthly flow. However, the OFRs'
impact on flow exhibited significant intra- and inter-annual variability, varying according to
different OFRs and channels—this is highlighted by the boxplot size variability in Fig. 5, where
the variability was lower during the first part of the year and greater between July and August.
In addition, the monthly percent change in flow in the KDE plots (Fig. 6) shows that for all three
scenarios and flow classes, most changes in flow ranged between -40% and 0%. In addition, all
KDE plots have a triangular shape with its base on the smaller flows, denoting where most of
the changes occur. Even though most of the percent change in flow is negative, there are
circumstances in which the OFRs could positively impact flow—the increase in flow is
represented by faded colors in each surface area scenario (Fig. 6). The positive mean percent
change could be as high as 80%—see Fig. 6 for the larger flow classes, (3) 0.50-2.11 m%/s and (4)
2.11-17.50 m?/s. The positive impact on flow for these classes was observed during June, August,
and October, when a mean positive change was noted (Fig. 5, classes 3 and 4).

The annual mean percent change, for all surface area scenarios, was -22.5 + 3% for class
1, -24.2 + 4% for class 2, -14.6 + 3% for class 3, and -16.6 + 3% for class 4. In addition, the surface
area scenarios’ annual changes were -18.0 + 5% for the lower, -19.6 + 5% for the mean, and -20.8
+ 6% for the upper, including all flow classes. The differences between the surface area

scenarios shown in Fig. 5 and Fig. 6 are related to the variability of the OFR’s surface area.
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Figure 6-Kernel density estimation plots smoothed using a Gaussian kernel for the monthly
percent change in flow between the baseline scenario (vertical dotted blue line) and the three
surface area scenarios (lower, mean, and upper) for the four flow classes (1) 0.001-0.25 m?/s, (2)
0.25-0.50 m?/s, (3) 0.50-2.11 m?/s, and (4) 2.11-17.50 m%/s. Note the different range of values on

the y-axis for all four flow classes.
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3.3 Impact on peak flow

For each channel, we calculated the impact of the OFRs on peak flow (Fig. 7). The effect on
peak flow was -60.7 +13% for class 1, -56.2 + 11% for class 2, -46.7 + 19% for class 3, and -43.9 + 12%
class 4. When assessing the impact on peak flow based on different surface area scenarios, the
mean percent change was -49.4 + 18% for the lower, -50.4 + 17% for the mean, and -52.7 + 18%
for the upper. All peak flows occurred between January and May, which is the period of the
year when the study region receives most of its precipitation (Perin et al,, 2021). Except for a
few outliers, there was no increase in peak flow, despite the OFRs contributing to a positive
mean percent change in flow in certain months of the year (Fig. 5, classes 3 and 4).
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Figure 7-Percent change in peak flow between the baseline scenario (vertical dotted blue line)
and the three surface area scenarios (lower, mean, and upper) for the four flow classes (1) 0.001-

0.25 m?/s, (2) 0.25-0.50 m?/s, (3) 0.50-2.11 m?/s, and (4) 2.11-17.50 m?/s.

3.4 Simulated flow time series

We randomly selected a channel within the flow class 3 to demonstrate the baseline and the
three surface area scenarios’ flow time series between 1995 and 2005 (Fig. 8). For this channel,
the annual mean percent changes in flow when comparing the baseline scenario with the
lower, mean, and upper surface area scenarios were 0.99 + 11.8%, -1.9 + 13%, and -2.0 + 19%—the

high standard deviation for the three scenarios is explained by the interannual variability. The
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upper surface area scenario resulted in lower flows (i.e., higher impact) compared to the lower
and mean scenarios for the majority of flow events—67.8% and 57.6% for the lower and mean
scenarios, respectively. Nonetheless, there are circumstances when the upper scenario yielded
higher flows—32.2% and 42.4% of the events for the lower and mean scenarios, respectively
(e.g., see the two insets for the periods 03/1997-08/1998 and 05/2002-02/2004). These findings
indicate that the impacts that the OFRs have on flow are not entirely governed by the presence
and surface area of the OFRs (i.e, the different surface area scenarios), but instead by a
combination of the OFRs with varying components of modeling (e.g., terrain, land use, climate
information), and different hydrological processes (e.g., run-off, precipitation, evaporation). In
addition, the impact on peak flow for this channel was -45.7 + 19.7% for all surface area

scenarios, as highlighted on two occasions (08/2002 and 08/2003) in the second inset.
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517  Figure 8-A subset of the time series of simulated flow for baseline and the three surface area
518  scenarios (lower, mean, and upper) between 1995 and 2005 for a selected channel within the
519 flowclass 3.
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3.5 Spatial variability of the OFR's impact on annual flow,

Subbasin flow compared to main outlet (%)
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Figure 9-The cumulative impact of OFRs on annual flow for the mean scenario at the
subwatersheds where the OFRs occurred. The size of the circles represents the contribution
(%) of the subwatershed flow compared to the main outlet (i.e, model outlet). The
subwatersheds are color-coded according to their reservoir capacity (%), which was calculated
by summing the OFRs surface area in each subwatershed and dividing the sum by the total
OFRs surface area (i.e., including all OFRs from all subwatersheds), with a darker color
indicating a higher reservoir capacity. The percentages highlighted in yellow represent the

impact of the OFRs on annual flow.
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To assess the overall impact of the OFRs at the subwatershed level, we calculated the
contribution of each subwatershed flow to the main model outlet, and the subwatersheds’
reservoir capacity (i.e, summing the OFRs surface area at each subwatershed and dividing it
to the total OFRs surface area, including all OFRs from all subwatersheds) (Fig. 9). In general,
the highest impacts on annual flow (e.g., > 100%), with positive or negative magnitude,
occurred at the subwatersheds that contributed the least (< 10%) to the main model outlet—
these subwatersheds are represented in lighter shades of blue, and the annual impact is
highlighted in yellow on Fig. 9. In other words, the highest impacts on flow occurred on the
channels with smaller flow magnitudes (e.g., channels that presented mean flow ranging
between 0.001-0.25 and 0.25-0.50 m?/s, these channels were classified as class 1 and 2 in this
study). In addition, the subwatersheds with the highest reservoir capacities (between 15.3 and
19.1 %, represented in darker shades of blue) (Fig. 9) had a small (< 10%) contribution to the
model outlet. These subwatersheds did not present the highest impact on annual flow (e.g.,
the effect on annual flow for the top two subwatersheds in terms of reservoir capacity were -

0.9 and 82.1%).
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4 Discussion

Although OFRs will contribute to improving food production resilience by providing surface
water for irrigation during dry periods and severe drought events, which are expected to occur
more frequently due to climate change, OFRs can have cumulative impacts on the surface

hydrology of the watershed where they are located. Studies have employed either data-driven

or _physically based hydrological model approaches to estimate the effects of OFRs on

watersheds. However, combining these approaches provides a better understanding of the

spatial and temporal variability of OFR impacts, as it incorporates the dynamic changes of

OFRs into the hydrological model, To quantify whether the impact of the OFRS on mean and

peak flow varies intra- and inter-annually, and which subwatersheds are more affected, we
combined a data-driven remote sensing-based model with the latest improvements in SWAT+

to assess the OFR impacts.

4.1 Cumulative impact of OFRs

When simulating water impoundments in SWAT/SWAT+, it is common practice to
validate and calibrate the model using flow measurements (Evenson et al., 2018; Habets et al.,
2018; Jalowska & Yuan, 2019; Ni & Parajuli, 2018). In addition, other studies have validated and
calibrated the model using alternative variables. For example, Perrin et al. (2012) employed
monthly measurements of piezometric variations to assess aquifer recharge processes, and
Jalowska & Yuan (2019) used sediment loadings (concentration and budget) from field
monitoring reports to evaluate sediment simulations. Ideally, we would calibrate and validate
the model by accounting for the parameters governing the OFRs’ water budget (e.g., inflows
and outflows) (e.g., Kim and Parajuli, 2014). Nonetheless, these measurements were not
available for the OFRs in our study region. Furthermore, a thorough calibration and validation
of the model would require extra flow data, covering other parts of the study region, as the

three USGS stations—the only data available—used in this study are located in the upper part
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of the modeled watershed. Similar to Evenson et al. (2018), who proposed a module to better
represent spatially distributed wetlands and validated their model using both direct (i.e., flow
measurement) and indirect (i.e., wetlands surface area) approaches, our validation and
calibration were conducted using flow measurements. The OFR'’s surface area scenarios were
based on an algorithm that was validated with an independent higher spatial resolution
dataset (Perin et al,, 2022).

There is a consensus within the scientific community that the OFRs will have a
cumulative impact on surface hydrology, decreasing both flow and peak flow. The effect will
vary from watershed to watershed due to the number of OFRs and the OFRs' different
purposes (e.g., different irrigation schedules) (Ayalew et al., 2017; Fowler et al., 2015; Habets et
al., 2018; Nathan & Lowe, 2012; Pinhati et al., 2020; Rabelo et al., 2021). As pointed out by Habets
et al. (2018), the mean annual decrease in flow from all studies was -13.4% + 8%. Our results align
with this value, which varied between -24.2 + 4% and -14.6 + 3% for all flow classes. In addition,
OFRs can reduce peak flow on average by 45% (Habets et al.,, 2018; Nathan and Lowe, 2012;
Thompson, 2012), and up to 70% (Ayalew et al., 2017) for certain flow events. Likewise, our results
are consistent with these findings, which show a mean impact on peak flow ranging from -
60.7 £ 12% to -43.9 + 12%. Furthermore, unlike previous research, our results indicate that the
OFRs may have a positive (<9%) impact on flow (Fig. 5, classes 3 and 4). This can be attributed

to the level of detail in our analyses. When evaluating flow changes at the channel scale, it is

important to note that flow at this level is several orders of magnitude smaller than at the main

basin outlet. Consequently, this scale often exhibits more significant percentage changes, both

increases and decreases. This likely explains how OFRs can enhance channel flow, primarily

due to the additional water contributed by OFRs, influenced by periods of increased

precipitation in certain channels during specific months and years. While we calculated the

monthly impact on flow at the channel scale by aggregating the OFRs to the closest channel,
previous studies have mainly reported the annual impact on flows (Habets et al,, 2018). They

performed their analysis at the subwatershed scale by aggregating the OFRs to a single point
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at the outlet of each subwatershed in SWAT (Evenson et al.,, 2018; Kim & Parajuli, 2014; Perrin,
2012; Zhang et al., 2012), or they used different modeling approaches (see Habet et al., 2018).
By leveraging the latest improvements in SWAT+ to simulate water impoundments
(Molina-Navarro et al., 2018) and combining them with a novel algorithm based on time series
of satellite data to monitor OFRs (Perin et al., 2022), we modeled the impact of OFRs on flow at
the channel scale. In addition, the surface area scenarios enabled us to account for events
when the OFRs were at the lowest, regular, and fullest capacities according to their surface
area (see Fig. 2). This is an improvement over previous studies (e.g.,, Ni et al,, 2020; Ni and
Parajuli, 2018; Perrin, 2012) that used a single surface area (i.e, one snapshot in time) to
represent the OFRs in SWAT. The small differences (<5%) between the surface area scenarios
in terms of mean percent change in monthly flow indicate that the OFRs' surface area variation
had a minimal impact on flow. For instance, during January and May, the mean monthly
percent change ranged between -35.8 + 6% and -32.0 + 7%, and during June and December, it
varied between -88 + 5% and -5.4 + 6% for the three surface area scenarios. The same was
observed for peak flow, with a mean monthly impact ranging between -52.7 + 17% and -49.4 +
18%. This small variability on flow impact was observed even though the total OFR surface area
increased by 590 ha and 1194 ha when comparing the lower scenario with the mean and upper
scenarios (Fig. 5). However, the OFRs represented a small portion (< 1%) of the total area of the
modeled watershed (Fig. 1). These findings are related to the fact that flow simulations are
governed by several hydrological processes (e.g., run-off, precipitation, evapotranspiration)
besides the presence of OFRs on the channel (Bieger et al., 2017; Dile et al,, 2022; Arnold et al,,
2012). In addition, when assessing the percent change in flow at the channel scale, the
differences in surface area between the scenarios were of a lower magnitude compared to the
total OFR's surface area. For instance, an OFR with a surface area smaller than 10 ha, and with
surface area variations between 10 and 20% for the three scenarios, may not lead to differences

(e.g., > 10%) between the three scenarios.
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4.2 OFRs' impacts on flow and peak flow

Our findings highlight that the impacts of the OFRs on flow and peak flow have a
significant intra- and inter-annual variability (Figs. 5, 6, and 7). The impacts vary according to
different OFRs and channels (Fig. 5). The most significant impacts on flow occurred during the
first part of the year, between January and May, a period when peak flows typically occur. In
addition, this time of the year also coincides with the period when the region receives most of
its precipitation (Perin et al., 2021b), and the OFRs are at their fullest capacity (i.e., OFRs storing
their maximum amount of water) (Perin et al., 2022). During the second part of the year, we
observed a milder mean percent change in flow for all flow classes and all scenarios, and a
greater variability in percent change, notably for July and August (Fig. 5). Moreover, most of
the irrigation activities happen between June and September (Perin et al.,, 2021b, Yaeger et al.,
2017). It is when the OFRs are at their lowest capacities (i.e., storing less water) (Perin et al.,
2022), which could explain their moderate impact and higher variability during these months,
even though we are not accounting for the OFRs’ inflows and outflows, and not simulating
irrigation events.

Additionally, the variability of the OFRs' impacts is related to the OFRs' physical
properties (e.g., surface area and location in the watershed). For example, the OFR surface area
will have an impact on flow and peak flow, as shown by the different surface area scenarios,
and depending on where the OFR is located in the watershed, given that it may be connected
to lower or higher flow channels, which contributes to their impact variability during the year
(Figs. 4 and 5). Besides the OFRSs' physical properties, the built-in complexity of SWAT—when
simulating the presence of the OFRs and the various hydrological processes (e.g., run-off,
precipitation, evapotranspiration) governing the water cycle—contributes to the differences in
the OFRs’ impacts. This complexity is illustrated in Fig. 8, which shows that the upper scenario

can have a higher or lower impact on flow compared to the lower and mean scenarios.
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When assessing the annual impact of the OFRs accounting for each subwatershed flow
compared to the main model outlet flow, and each subwatershed reservoir capacity (Fig. 9),
we found that even though the presence of the OFRs can have a significant impact on flow
(Figs. 5, 6, and 7), the highest impacts tend to occur on the subwatersheds that contribute the
least (< 10%) to the main model outlet. In general, the highest impacts occurred on the
channels with smaller flow magnitudes, and the subwatersheds with the highest reservoir

capacities did not have the highest impact on flow. The changes in the OFRs’ impacts along

the year, and between different years, are directly related to the OFRs’ water balance (Equation

3). The variations are primarily driven by the volume of water stored by the OFRs, which is

modeled at a daily scale, and it varies according to total daily precipitation, evaporation, and

seepage losses.

4.3 Research implications and applications to other study regions

Overall, we presented a new approach to quantitatively analyze the impact of a network
of OFRs on mean and peak flow, and we described the various potential reasons behind the
variability of the effects of OFRs. Our results indicate that OFRs have an uneven impact on

mean and peak flow across the watershed. This variability is primarily influenced by differences

in the_size, water storage capacity, and the_spatial distribution (i.e., their presence) of OFRs,

Hence, assessing the OFR’s location as well as their numbers across the watershed is important
when aiming to manage the construction of new OFRs. In particular, the geospatial variability
of the OFRs impacts could be taken into account by water agencies when planning and
developing a network of OFRs, given it is possible to identify the areas that are under high
pressure (e.g., regions with multiple OFRs that are having a significant impact on flow), and to
identify areas that could benefit from the construction of new OFRs, targeting improvements
on water resources management and irrigation activities.

Furthermore, even though the OFR's impacts may vary significantly in different

watersheds (Habets et al., 2018), our approach could be transferable to other places across the
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world, as it integrates a top-down data-driven remote sensing-based algorithm, which is based
on freely available and private Earth Observations datasets, with the latest SWAT+ hydrological
modeling developments. In addition, the widespread use of SWAT+ and its open-source nature
are yet another factor contributing to the transferability of the novel approach presented in
this study. This is relevant as the number of OFRs is expected to increase globally (Althoff et al.,
2020; Habets et al,, 2014; Habets et al., 2018; Krol et al., 2011; Rodrigues et al., 2012), with limited
knowledge of how the OFRs may impact surface hydrology in different watersheds, and under
diverse environmental conditions. Finally, in tandem with the OFRs’ key role in irrigated food
production, in part to adapt to climate change (Habets et al., 2018) and to alleviate the pressure
on surface and groundwater resources (Vanthof & Kelly, 2019; Yaeger et al., 2017; Yaeger et al,,
2018), their impacts on surface hydrology need to be considered to avoid exacerbating the
surface water stress already intensified by climate change and population growth (Vérésmarty

et al,, 2010).

5 Future improvements

Future improvements should focus on how to better represent OFR's water management (i.e.,
OFR's inflows and outflows) in SWAT+. Given that each OFR has an independent water balance,
accounting for the OFR’s water volume change would be a more realistic representation of the
OFR when compared to the three surface area scenarios tested in this study. Estimating the
OFR's volume change can be done by combining the OFR surface area time series with area-
elevation equations—these equations describe the OFR’'s bathymetry, and allow volume
estimation by inputting the OFR’s surface area (Liebe et al,, 2005; Meigh, 1995; Sawunyama et
al,, 2006). After carefully assessing different methods to derive these equations (Arvor et al,,
2018; Avisse et al., 2017, Li et al., 2021; Meigh, 1995; Sawunyama et al., 2006; Vanthof & Kelly, 2019;
Yao et al., 2018; Zhang et al., 2016), we concluded that measured ground data of the OFRs'
depth—which is not available—is required to estimate the equations with an acceptable

uncertainty. Estimating the area-elevation equations entails several challenges, including: 1)
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even though there are several DEMs available for the study region (Arkansas GIS Office, 2022)—
DEMSs can be used to estimate the OFRs bottom elevation—the DEMs were collected when
most of the OFRs were full (i.e,, bathymetry was not exposed), which limits their use in this
case; and 2) although the OFRs are located within the same geomorphological region, they
have different depth, shape and physical characteristics (Perin et al., 2022; Yaeger et al.,, 2017).
Therefore, even if a generalized area-elevation equation were calculated for our study region—
this is a common approach employed by other studies (Mady et al., 2020; Vanthof and Kelly,
2019)—that would still lead to high uncertainties in water volume changes. Ideally, each OFR
would have its own equation, which was not possible when this study was done. Future work
should integrate data on actual evapotranspiration, ET (Kiptala et al., 2014) to quantify as the
balance between water availability and ET determines in large part the irrigation system
efficiency and crop productivity in the watersheds where OFRs occur.

Efforts should also be made to improve SWAT+ capabilities to receive measured OFRs’
inflows and outflows. The latest version of the model has improved the hydrological
representation of small water impoundments in SWAT+ (Mollina-Navarro et al, 2018).
Nonetheless, at the time of our study, the newest version of the model does not allow users to
input measured or calculated OFRs' inflows and outflows. Instead, the model developers
recommend simulating the OFR’s water balance using decision tables (Arnold et al., 2018; Dile
et al,, 2022). However, there are very limited guidelines on how to create these decision tables.
In addition, the tables would simulate the OFR’s water balance instead of using the measured
or calculated volume change, which could introduce more uncertainties to the modeling

scenarios.

6 Conclusions

We proposed a novel approach that combines a top-down data-driven remote sensing-based
algorithm with the latest developments in SWAT+ to simulate the cumulative impacts of OFRs.

This enabled us to assess the spatial and temporal variability of the OFR’s impacts, as well as
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the intra- and interannual changes in impact on mean and peak flow at the watershed and
subwatershed levels. Incorporating Earth Observation-derived information with a hydrological
model allowed us to capture the dynamic changes of the OFRs and to simulate their impacts
under different OFR capacity scenarios.

Our study showed that the OFRs may have an impact on flow and peak flow, which
exhibit significant inter- and intra-annual variability. The effect of the OFRs is not equally
distributed across the watershed, varying according to the OFRs’ spatial distribution and their
surface area (i.e, water storage capacity). As the number of OFRs is expected to increase
globally, partially to adapt to climate change and alleviate pressure on groundwater resources,
their relevance to irrigated food production will also increase. It is imperative to develop new
frameworks to further understand the impacts of OFRs on surface hydrology. In this regard,
we provided a combination of different methods that can be applied in other watersheds,

supporting water agencies with information to enhance surface water resource management.
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The National Land Cover Database (30 m) (Homer et al,, 2020) and the Gridded Soil Survey
Geographic Database (gSSURGO) (Soil Survey Staff, USDA-NRCS, 2021) (100 m) are accessible
through the USGS's portal: https;//www.usgs.gov/centers/eros/science/national-land-cover-
database, and here https://www.nrcs.usda.gov/resources/data-and-reports/gridded-soil-
survey-geographic-gssurgo-database, respectively.

The climate data extracted from the Gridded Surface Meteorological Datasets (Abatzoglou,
2013) is available in Google Earth Engine (Gorelick et al., 2017), here
https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET.

The Kalman filter derived surface area time series is available through Perin et al., (2022).
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