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16 Abstract

17
18 On-farm reservoirs (OFRs) are essential water bodies to meet global irrigation needs. Farmers

19 use OFRs to store water from precipitation and runoff during the rainy season to irrigate their
20 crops during the dry season. Despite their importance to crop irrigation, OFRs can have a
21 cumulative impact on surface hydrology by decreasing flow and peak flow. Nonetheless,
22 there is limited knowledge on the spatial and temporal variability of the OFRs' impacts.
23 Therefore, to gain novel understanding on the cumulative impact of OFRs on surface
24 hydrology, here we propose a novel framework that integrates a top-down data driven
25 remote sensing-based algorithm with physically-based models by leveraging the latest

26 developments in the Soil Water Assessment Tool+ (SWAT+). We assessed the impact of OFRs
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in a watershed located in eastern Arkansas, the third most irrigated state in the USA. Our
results show that the presence of OFRs in the watershed can decrease annual flow on
average between 14 and 24%, and the mean reduction in peak flow varied between 43 and
60%. In addition, the cumulative impact of the OFRs was not equally distributed across the

watershed, and it varied according to the OFR spatial distribution, and their storage capacity.

32 The results of this study and the proposed framework can support water agencies with
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information on the cumulative impact of OFRs, aiming to support surface water resources
management. This is relevant as the number of OFRs is expected to increase globally as an

adaptation to climate change under severe drought conditions.

37 1 Introduction
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Inland water bodies (e.g., lakes and reservoirs) comprise a small fraction of Earth’'s surface;
however, they are responsible for storing the vast majority of the accessible fresh water
resources available on Earth. In addition, these water bodies are pivotal components of
surface hydrology, having key roles in ecosystem functioning and wildlife habitats (Khazaei et
al,, 2022; Verpoorter et al, 2014). In particular, on-farm reservoirs (OFRs) are essential to meet
global irrigation needs (Dall et al., 2009; Downing, 2010; Van Den Hoek et al,, 2019). Farmers
use OFRs to store water from precipitation and runoff during the rainy season to irrigate their
crops during the dry season (Habets et al,, 2018; Perin et al., 2021; Vanthof & Kelly, 2019; Yaeger
et al, 2017; Yaeger et al, 2018). The number of OFRs is expected to rise worldwide in the
coming decades, and estimates show that there are more than 2.1 million OFRs in the US
alone (Downing, 2010; Renwick et al, 2005). OFRs are often built to manage surface water
resources more efficiently, and to help mitigate the impact of extreme droughts, which are
projected to increase due to climate change (Habets et al,, 2018; Van Der Zaag & Gupta, 2008).
Although OFRs are small water bodies (< 50 ha), they can have cumulative impacts on the

local and remote hydrology in the watersheds where they occur (e.g., decreasing flow and
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53 peak flow) (Habets et al, 2018), and their impact may contribute to worsening the surface
54 water stress already intensified by climate change and population growth (Vérosmarty et al,,
55 2010). Most studies have focused on the cumulative impact of major large reservoirs on
56 downstream flow alteration (Chalise et al, 2021; Mukhopadhyay et al, 2021), but limited
57 analysis has been performed on the impact of OFRs on downstream flow availability.

58 To quantify the impact of OFRs on surface hydrology, it is necessary to understand the
59 spatial and temporal variability of OFRs, as well as how the impacts are related to the OFR
60 networks, as the impacts of OFRs are not the sum of the individual OFR impacts, but rather
61 the sum and their interaction effects (Canter & Kamath, 1995; Habets et al., 2018). By gathering
62 information from several studies conducted in different countries (e.g., USA, France, Brazil),
63 Habets et al,, (2018) did a thorough assessment of the OFRs’ impact on surface hydrology, and
64 the different types of models and ways to represent the OFRs on the watershed. The authors
65 concluded that the modeled OFRs impacts have a wide range, and that most of the studies
66 reported a mean annual reduction in flow, which ranged between 0.2 and 36%. In addition,
67 the variability of the impact as identified in these previous studies was higher when assessing
68 low flows during multiple years, with reductions between 0.3 and 60%. In general, the
69 estimated mean annual reduction in flow was 13.4% + 8.0%, and the mean decrease in peak
70 flow was up to 45% (Habets et al., 2018).

71 The approaches used to quantify the cumulative impact of OFRs can be divided into
72 two classes: data-driven methods, and process based hydrological modeling. The data-driven
73 approaches include three main methods. The first method relies on assessing measured
74 inflows and outflows of selected OFRs aiming to quantify their hydrological functioning with
75 the assumption that the cumulative impacts are the sum of individual impacts (Culler et al,,
76 1961; Dubreuil and Girard, 1973; Kennon, 1966). A variation of the cumulative impact
77 assessment approach has been recently suggested by Hwang et al., (2021) by comparing the
78 naturalized flows and the controlled flows for assessing the impact of large reservoir systems.

79 The second method is based on statistical analysis of the observed discharge time series of a
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watershed as the number of OFRs increased (Galéa et al., 2005; Schreider et al., 2002). This
approach is limited when discriminating the specific impact of OFRs from those of land use
and land cover change, and when explicitly representing the OFRs in the models, given that
OFRs tend to be aggregated within the entire basin (i.e., OFRs surface area and/or storage are
summed and modeled as a unique water impoundment). The third method relies on
conducting a paired-catchment experiment by comparing the flows from two adjacent and
similar catchments, one with OFRs and the other without OFRs (Thompson, 2012). This
technigque requires the catchment properties (e.g., soils, topology, lithology, land cover) to be
spatially homogeneous, which is practically nonexistent at a large scale, hence limiting this
method’s applications.

The second class of methods relate to hydrological modeling, and it is the most widely
used approach for assessing the OFRSs’ impacts. A variety of models have been proposed by
coupling the OFRs' water balance with a quantitative approach to estimate the OFRs’ water
volume change (Fowler et al, 2015; Habets et al., 2014; Jalowska & Yuan, 2019; Yongbo et al,,
2014; Ni & Parajuli, 2018; Perrin, 2012; Zhang et al,, 2012). In general, the models have three
main components: the OFR water balance, the quantitative approach to quantify the OFR
inflows, and the spatial representation of the OFRs network. These different model
components result in different limitations and assumptions—a complete assessment of these
three components and how they impact the hydrological simulations is provided in a recent
review (Habets et al,, 2018). Therefore, when selecting a specific model to assess the impacts
of the OFRs, it is important to account for the model's suitability for the target issue to be
addressed, as well as the model limitations and assumptions. The selected model should also
have capability to incorporate/assimilate varying land-surface conditions (e.g., soil moisture)
and time-varying OFR storages which could be obtained either from local monitoring or
through remote sensing.

Most studies have used remotely-sensed products such as soil moisture (e.g., SMAP;

(Entekhabi et al, 2010), groundwater (e.g., GRACE; (Tapley et al, 2004) and land cover
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107 conditions (e.g., MODIS; (Justice et al, 1998)) for assimilating current conditions into
108 hydrological models. Given that OFRs tend to occur in high numbers (e.g., hundreds),
109 multiple studies leveraged the latest developments and availability of satellite imagery to
110 monitor the occurrence and dynamics of OFRs (Jones et al., 2017; Ogilvie et al., 2018, 2020;
111 Perin et al,, 2022; Perin et al,, 2021a, 2021b; Van Den Hoek et al,, 2019; Vanthof & Kelly, 2019),
112 which could provide useful information on local storage conditions for predicting
113 downstream streamflow. Further, these studies allowed quantifying the number of OFRs, and
114 their spatial and temporal variability in surface water area and storage in the watershed
115 where they occur, providing relevant information when modeling the cumulative impact of
116 OFRs. Despite the complementary information provided by satellite imagery, there are only a
117 few studies that incorporated remote sensing-derived information (e.g., soil moisture derived
118 from SMAP, groundwater based on GRACE) with hydrological modeling (Ni and Parajuli, 2018;
119 Yongbo et al, 2014; Zhang et al,, 2012), and these studies are limited to mapping the OFRs
120 occurrence, or to snapshots of the OFRs conditions (e.g., surface area). To the best of our
121 knowledge, there is no study that combines the spatial and temporal variability of the
122 OFRs—derived using multi-year satellite imagery time series analyses—with a process-based
123 hydrological model.

124 Therefore, to gain novel understanding of the cumulative impact of OFRs on surface
125 hydrology, in this study, we propose a new approach that systematically integrates the
126 dynamically varying conditions of OFRs based on satellite imagery time series (Perin et al,,
127 2022) using a top-down data driven approach within the latest SWAT+ model. The Soil and
128 Water Assessment Tool (SWAT) (Arnold et al., 2012) has been widely used to model the
129 impacts of the OFRs (Jalowska and Yuan, 2019; Kim and Parajuli, 2014; Ni et al., 2020; Ni and
130 Parajuli, 2018; Perrin, 2012; Rabelo et al.,, 2021; Yongbo et al, 2014; Zhang et al,, 2012), in part
131 given by a comprehensive collection of model documentation and guidelines available online

132 (https://swat.tamu.edu/). Our objectives are to (1) assess the spatial and temporal variability of

133 the cumulative impact of OFRs at the watershed and subwatersheds levels, and (2) to
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134 quantify the intra- and-inter annual impacts of the OFRs on flow and peak flow at the
135 channel scale. By integrating the SWAT+ model with a novel remote sensing assimilation
136 algorithm to account for the OFRs spatial variability—which is lacking in most of studies
137 assessing the OFRs impacts—and leveraging a digitally-mapped OFRs dataset (Yaeger et al,,
138 2017), we are providing a new approach that can be replicated in watersheds across the
139 world, and used to support water agencies with information to improve surface water

140 resources management.

141 2 Methods

142 2.1 Study region

143 The study region is located in eastern Arkansas, USA, the third most-irrigated state in the USA
144 (ERS-USDA, 2017). The area has a humid subtropical climate with a 30-year annual average
145 precipitation of ~1300 mm/year (PRISM Climate Group, 2022). The precipitation is distributed
146 mostly between March and May, receiving an average of ~400 mm during these months
147 (Perin et al,, 2021b). The region has experienced a steady increase in irrigated agriculture, with
148 commonly irrigated crops including corn, rice, and soybeans (NASS-USDA, 2017). A recent
149 study (Yaeger et al., 2017) digitally mapped 330 OFRs located in the study region (Fig. 1) using
150 the high-resolution (1-m) National Agricultural Imagery Program archive in combination with
151 2015 sub-meter spatial resolution Google Earth satellite imagery. Most of the OFRs (95%) have
152 surface area < 50 ha, and they are concentrated in the eastern portion of the study region
153 (Fig. 1). Currently, there is no comprehensive and up-to-date inventory of all OFRs in the basin.
154 This limitation is partly due to the fact that many of these man-made structures are located
155 on private properties, making them difficult to document. As a result, the study only accounts

156 for a fraction of the total OFRs present in the study region.
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158 Figure 1-Study region located in eastern Arkansas, USA, the subwatersheds and surface water

159 streams and channels delineated with SWAT+, the model outlet, the United States Geological
160 Survey (USGS) stations (United States Geological Survey Water Data for the Nation, 2022) used
161 for flow calibration and validation, the digitized OFRs (Yaeger et al.,, 2017), and the Digital

162 Elevation Model (DEM) used in the modeling (Farr et al., 2007).
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163 2.2 SWAT+ model setup

164 2.2.1 The Soil Water Assessment Tool to model the impacts of OFRs on surface hydrology

165 The SWAT model is a time-continuous semi-distributed hydrological model widely used
166 across the globe—more than 5,000 peer reviewed publications since its launch in the early
167 1980s (Publications | Soil & Water Assessment Tool (SWAT), 2022). The large number of SWAT
168 applications globally revealed the model development needs and its limitations. To address
169 the present and future challenges when modeling with SWAT, the model source code has
170 undergone major modifications, and a completely revised version of the model was proposed
171 in SWAT+ (Bieger et al, 2017). SWAT+ uses the same equations as SWAT to simulate the
172 hydrological processes; however, it offers more flexibility to users when configuring the model
173 (e.g., when defining management schedules, routing constituents, and connecting managed
174 flow systems to the natural stream network) (Bieger et al., 2017).

175 The SWAT+ is under constant improvements (Chawanda et al.,, 2020; Molina-Navarro et
176 al, 2018), and a new module (Molina-Navarro et al., 2018) was recently developed to allow the
177 optimal integration of a water body and its drainage area within the simulated hydrological
178 processes. In previous versions of the model, when delineating the watershed area draining
179 into a water body, the users were required to place an outlet in a certain point of the water
180 stream's network, and the areas in-between the rivers’ subwatersheds flowing into the water
181 body were therefore excluded—if these areas are disregarded, important hydrological
182 processes (e.g., evaporation, overland and/or groundwater flow) flowing into the water body
183 are not accounted for (Molina-Navarro et al, 2018). This former approach can lead to
184 inaccuracies when delineating the watershed areas, especially when the results are used as
185 input to an OFR model component. The newest versions of SWAT+ consider the OFRs’ outline
186 (i.e., shape and surface area) when delineating the watersheds; hence, accounting for the
187 entire drainage area flowing into the waterbody (Mollina-Navarro et al,, 2018). In addition, the

188 latest versions allow adding more than one OFR per subwatershed by associating the OFR
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189 with channels—components of the watersheds, and finer divisions and extensions of water
190 stream reaches—enabling the modeling analyses at the channel scale. When simulating the
191 impact of the OFRs at the channel scale, there is a higher level of detail of where and when
192 the OFRs are contributing to changes in surface hydrology, unlike the previous versions of the
193 model, which allowed adding only a single OFR per subwatershed placed at the
194 subwatershed outlet as a point (Arnold et al, 2012), and therefore, the analyses were
195 conducted at the subwatershed scale.

196 We modeled the impact of OFRs on surface hydrology using the QSWAT+ (v.2.1.9)
197 SWAT+ model interface together with SWAT+ Editor (v.2.1.0) to set up the model, to input the
198 required datasets (e.g., DEM, land use and land cover layer, interpolated meteorological
199 climate information), and to run the different modeling scenarios.

200 The modeled watershed (710,700 ha, Fig. 1) included 68 subwatersheds and a total of
201 642 Hydrological Response Units (HRUs)—HRUSs are unique portions of the subwatersheds
202 that have unique land use and management, and soil attributes. We set up daily simulations
203 for 30 years (1990-2020), including five years of model warm up to establish the initial soil
204 water conditions and hydrological processes. The watershed was delineated using the Shuttle
205 Radar Topography Mission DEM (30 m) (Farr et al, 2007). In addition, we set the channel
206 length threshold to 6 km? and the stream length threshold to 60 km?2 We placed an outlet in
207 the southern part of the study region—where the lowest part of the watershed is located (Fig.
208 1). We created the HRUs using the dominant option—this option selects the largest HRU
209 within the subwatershed as the general HRU—within QSWAT+ interface, and used the
210 National Land Cover Database (30 m) (Homer et al, 2020), and Gridded Soil Survey
211 Geographic Database (gSSURGO) (Soil Survey Staff, USDA-NRCS, 2021) (100 m) as inputs to
212 the model. The gSSURGO layers were processed according to their guidelines when using
213 them on QSWAT+ (George, 2020). For climate data, we extracted the centroid coordinates of
214 each subwatershed (Muche et al, 2020), and used these centroids to download 30 years of

215 daily precipitation, minimum and maximum temperature, surface downward shortwave
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216 radiation, wind velocity, and relative humidity fromm the GCridded Surface Meteorological
217 Datasets (Abatzoglou, 2013), available in Google Earth Engine (Gorelick et al., 2017). The time
218 series of each subwatershed centroid was added into the SWAT+ Editor as independent

219 weather stations.

220 2.2.2 Model calibration and validation procedures

221 We used monthly measured flow from three USGS stations (Fig. 1 and Table 1) to calibrate and
222 validate the model flow simulations. The USGS flow time series length varied between 14 and
223 25 years, and we used 60% of the timeseries for calibration and 40% for validation for each
224 USGS station (Table 1). We assessed the performance of the model by calculating the
225 Coefficient of determination (r?), Percent bias (PBIAS, %, Equation 1) (Yapo et al., 1996), and the
226 Nash-Sutcliffe model efficiency coefficient (NSE, Equation 2) (Nash and Sutcliffe, 1970). PBIAS
227 is the relative mean difference between the simulated and the measured flow values, and it
228 reflects the ability of the model to simulate monthly flows. The optimal PBIAS is zero, and
229 low-magnitude values indicate better model performance. Positive PBIAS indicates
230 overestimation bias, whereas negative values denote underestimation bias. The NSE
231 expresses how well the model simulates flows, and it ranges from a negative value to one,
232 with one indicating a perfect fit between the simulated and measured flow values. In general,
233 the model simulations of monthly flow are considered satisfactory when r? ranges from 0.60
234 to 0.75, PBIAS ranges from #10% to #15%, and NSE ranges from 0.50 to 0.70 (Moriasi et al., 2015).

235 Table 1-USGS stations, drainage areas, and the periods used for flow calibration and
236 validation.

USGS station Station id Drainage Area (ha) Period (years)
Calibration Validation
07264000 (A) 53,600 1995-2010 2010-2020
07263555 (B) 25,400 2007-2014 2014-2020
07263580 Q) 5,300 1997-201M 2011-2020

237

10
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240 Where X; is the measured flow and Y, is the simulated flow.

241 We conducted a sensitivity analysis using the SWAT+ ToolBox (v.0.7.6) (SWAT+ Toolbox,
242 2022) to reveal the most sensitive parameters when simulating flow—a total of 10 parameters
243 (Table S 1) were tested based on previous studies that used SWAT/SWAT+ to model the impact
244 of water impoundments on surface hydrology (Jalowska & Yuan, 2019; Yongbo et al., 2014; Ni
245 et al.,, 2020; Ni & Parajuli, 2018; Perrin, 2012; Rabelo et al., 2021, Zhang et al., 2012). Following the
246 sensitivity analysis, we selected the five most sensitive parameters (Table 2), and proceeded
247 with a manual calibration using the SWAT+ Toolbox. We aimed to improve the model's
248 monthly flow predictions by testing the parameters one at a time and changing their values
249 between -20% to 20% with 5% increments based on their range values. The final calibrated
250 parameters and their fitted values are shown in Table 2.

251 Table 2-Monthly flow calibration parameters.

Parameter Description Range Value
CN2 SCS runoff curve number 35-95 0.20*
SOL_AWC Available water capacity (mm/mm) 0.01-1 -0.20*
ESCO Soil evaporation compensation coefficient 0.01-1 0.50
PERCO Percolation coefficient (fraction) 0-1 0.60
CANMX Maximum canopy storage (mm) 0-100 75

252 *Denotes relative percentage change.

253 2.3 OFRs representation in SWAT+

254 Multiple OFRs can be added to the same subwatershed by associating them with channels
255 (Dile et al,, 2022). The OFRs need to have at least one outlet channel, and they may have none

256 or multiple inlets. Therefore, most OFR-related processes within the model involve

11
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determining what channels form inflowing and outflowing channels for each OFR. Ideally,
each OFR would interact with a channel, and therefore, have a channel entering, leaving, or
within the OFR. Nonetheless, it is common to have OFRs that do not intersect with any
channel (Dile et al.,, 2022)—this is the case for 93% of the OFRs in our study region. The OFRs
from our study region are not dammed along the streams, but rather they are engineered
water impoundments that are indirectly connected to the main streams via pipes and pumps
(Yaeger et al, 2017). A possible solution would be modifying the OFRs’ shapes by dragging
them to the closest channel (Dile et al, 2022). However, this would require extensive
modifications of the OFRs’ shapes. In addition, when an OFR is added to a channel, this
channel is split into two channels, and the model needs to account for the two newly created
channels during the water routing calculations. For this reason, adding multiple OFRs to the
same channel, or adding multiple OFRs closely located to the same channel, can be a
cumbersome process that leads to numerous routing errors.

To overcome these challenges, we aggregated the OFRs’ surface area, and added
aggregated OFRs to the model. This adaptation involved two steps. First, for each of the 330
OFRs, we searched for the closest channel by calculating the distance between the OFRSs’
centroid and the multiple channels within each subwatershed. Then, we aggregated all the
OFRs that were associated with each channel by summing up their surface area, and adding
a polygon of the aggregated area to represent the aggregated OFR. This approach resulted in
69 aggregated OFRs that were added to 67 different channels located in 16 subwatersheds.
The surface area of the aggregated OFRs varied between 3.05 ha and 165.67 ha, and the
number of OFRs in each aggregated OFR varied between 2 and 12. To avoid confusion, for the
rest of the manuscript, we refer to OFRs as the aggregated OFRs, and not the individual OFRs

shown in Fig. 1.

12
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281 2.4 OFRs water balance

282 We did not have access to water abstraction data from the OFRs, so all abstractions
283 were modeled using Equation 3, which accounts for water flowing out of the OFR, as well as
284 |losses from evaporation and seepage. The total volume of water in the OFR fluctuates with
285 changes in surface area and is also influenced by evaporation losses and the spillway. A
286 reduction in surface area (Equation 4) typically leads to a corresponding decrease in water
287 volume. If inflows are insufficient to fill the OFR, water will not be routed to the downstream

288 channel.

289 For each of the aggregated OFR, the initial water volume (Vi .eq, S€€ Equation 3) was
290 calculated using SWAT+ default rule, which is a simple multiplication of the OFR surface area
291 by a factor of 10, similar to other studies based on SWAT+ (Ni and Parajuli, 2018; Zhang et al,,
292 2012). For a scenario where the OFR has a surface area of 1 hectare (10,000 m?Z?), the
293 corresponding volume would be 100,000 m3*—this is an important limitation of our study, as
294 the assumption was necessary due to the absence of available bathymetry data. In addition,
295 given that we did not have access to the OFRs release rates, we used the model default
296 release rule, which sets the OFRs to release water when the spillway volume is reached—80%

297 of the OFRs capacity (Bieger et al., 2017).

298 V= Vstored + Vflowin - Vflowout + Vpcp - Vevap - Vseep (3)

299 Where V is the volume of water in the OFR at the end of the day (m?), Viorweq IS the volume of
300 water stored at the beginning of the day (m?3), Viowin IS the volume of water entering the OFR
301 during the day (m?), Viewou is the volume of water flowing out of the OFR (m?), V., is the
302 volume of precipitation falling on the water body (m?), V..., is the volume of water removed

303 from the OFR due to evaporation, and V.., is the volume of water lost by seepage (m?).
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304 The OFR surface area is used to calculate the amount of precipitation falling on the
305 water body, and the amount of water lost through evaporation and seepage. Given the initial
306 OFR surface area obtained from one of the three modeling scenarios, the OFR surface area
307 was modeled daily. The surface area varied according to the volume of water stored in the

308 reservoir. EQuation 4 is used to estimate the surface area:

309 Surface area (ha) = Be, « V &P »

log10 (Vem)—log10(Vpr) (5)

310 expsa = log10 (Surface areaem) — log10 (Surface Areapr)

311 fi, = (e ——)Ps0 (6)

Surface areaem

312 Where B, is a surface area coefficient, V,,, is the volume of water (m?®) at the emergency
313 spillway, V,, is the volume of water (m®) at the principal spillway, Surface area., is the surface
314 area (ha) at the emergency spillway, and Surface area,, is the surface area at the principal

315 spillway.

316 The volume of precipitation falling into the OFR is calculated using Equation 7:

317 Viop = 10 * Ry, * Surface Area (ha) (7)
318 Where Ry, is the amount of precipitation falling into the OFR on a given day (mm).

319 Evaporation losses are calculated using Equation 8:

320 Vo.p =10 * 5 * E, * Surface Area (ha) (8)

321 Where 5 is an evaporation coefficient (0.6), and E, is the potential evapotranspiration for a

322 given day (mm).

323 Seepage losses are calculated using Equation 9:
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324 V., = 240 * K, * Surface Area (ha) (9)

325 Where K., is the effective saturated hydraulic conductivity of the reservoir bottom (mm/hr).

326 2.4 Scenario Analysis

327 Given our representation of the OFRs in SWAT+, we assessed the impact of the OFRs on
328 surface hydrology at the channel scale. To do so, we established the model baseline scenario
329 without the presence of the OFRs on the watershed. In addition, we divided the channels into
330 four classes (i.e., low and high flow classes) according to their mean baseline flow. The
331 different class intervals were calculated using the mean flow quartiles accounting for all
332 channels, which resulted in the following baseline flow classes: (1) 0.001-0.25 m?/s, (2) 0.25-0.50
333 m3/s, (3) 0.50-2.11 m3/s, and (4) 2.11-17.50 m?*/s.

334 To account for the OFRs variation in surface area (i.e.,, change in storage capacity), we
335 propose a novel approach that leverages a top-down data-driven model based on satellite
336 imagery (Fig. 2). We used this model to create three modeling scenarios using daily OFRs
337 surface area time series—these scenarios were based on the methodology proposed by Perin
338 et al, (2022). The authors used a multi-sensor satellite imagery approach with the Kalman
339 filter (Kalman, 1960) to derive daily OFRs’' surface area change between 2017 and 2020. The
340 proposed algorithm accounts for the uncertainties in both the sensor's observations and the
341 resulting surface areas. By improving the OFRs surface area observations cadence, the
342 algorithm allows further understanding of the OFRs surface area intra- and inter-annual
343 changes, which are key pieces of information that can be used to better assess and manage
344 the water stored by the OFRs (Perin et al., 2022). The daily surface area time series—derived by
345 combining PlanetScope, RapidEye, and Sentinel-2 satellite imagery (Perin et al., 2022)—of
346 each OFR was used to simulate three scenarios (i.e., lower, mean, and upper) representing the
347 OFRS' capacity in terms of surface area. The mean scenario represents the regular condition

348 of the OFRs, and it is the mean of the daily surface area time series derived from the Kalman
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349 filter. The lower and upper scenarios represent the lowest and highest capacities of the OFRs,
350 and they are based on the surface area 95% confidence interval limits, calculated using the
351 daily time series. Please refer to Perin et al., 2022 for more details on how the 95% confidence
352 interval was calculated.

353 The SWOT+ model does not allow for direct incorporation of a daily surface area time
354 series because it calculates surface area dynamically (Equation 4) based on changes in water
355 volume through the reservoir water balance equation (Equation 3). It is structured to accept a
356 single surface area value per scenario, which then varies internally. Incorporating time-varying
357 surface area data, such as from the Kalman filter, would require modifications to the model
358 that are currently not supported. Therefore, a single surface area value was assigned to each
359 scenario and OFR, with lower, mean, and upper values used as starting points for the model's
360 water balance simulations. This initial surface area reflects the OFR’'s maximum surface area
361 at full capacity for each scenario. For example, in the lower scenario, an initial surface area of
362 1.2 ha represents the maximum area for this OFR. As model iterations proceed, the surface

363 area is recalculated based on Equation 4. The initial OFR capacity was surface area$f

366 seerearosi-ane-Hris-eapeaetty-was kept constant during the simulation period (Ni et al., 2020; Ni

367 and Parajuli, 2018; Perrin, 2012). In other words, the OFR surface area varied according to
368 Equation 4, however, the maximum surface area did not exceed the initial value. To assess the
369 impact of the OFRs on surface hydrology, we compared the baseline flow with the flow
370 simulated by each surface area scenario—i.e.,, comparing the flow changes with and without

371 OFRs, a common approach used by previous studies (Habets et al., 2018).
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Digitized OFRs dataset (Yaeger
et al., 2017)

Top-down data driven remote sensing-based
algorithm (Perin et al,, 2022)

|

Daily time series analyses to incorporate
the OFRs dynamic changes

|

Scenarios of OFRs surface area changes
(lower, mean, and upper)

Model the scenarios leveraging the latest

improvements on SWAT+, and converting

surface area to water volume using SWAT+
empirical model

SWAT+ simulations of outflows at the channel
level

Comparing SWAT+ simulations scenarios with
and without the OFRs

Assessing the spatial and temporal variability of the
cumulative impact of the OFRs

372

373 Figure 2-A new approach to integrate a top-down data driven remote sensing-based
374 algorithm, that assesses the OFRs dynamic conditions (Perin et al, 2022), with the latest
375 SWAT+ model developments.

376 We estimated the impact of the OFRs on surface hydrology by calculating the percent
377 change (Equation 10) of monthly flow between the baseline and the three surface area
378 scenarios including all OFRs. The annual impact on flow was calculated by averaging the
379 mean percent change along the months. We also calculated the distribution of the percent
380 change for each baseline flow class. The distribution was assessed using 2-D Kernel Density
381 estimation (KDE) plots. Different from discrete bins (e.g., histograms), the KDE plots show a
382 continuous density estimate of the observations using a Gaussian kernel. In addition, we
383 assessed the percent changes in peak flow. For the purposes of this analysis, peak flow is

384 defined as equal or higher than the 99" flow percentile calculated using the entire flow time
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385 series (Equation 10). It is important to keep in mind that the impact of the OFRs on this study
386 is solely based on modeling scenarios and does not account for OFR management practices,
387 which represents a key limitation of this simulation study.

Xi

388 Percent change (%) = (Yi X ) *100 (10)

389 Where X; is the baseline flow and Y; is the simulated flow of each surface area scenario.

390 3 Results

391 3.1 Model calibration and validation

392 The model calibration and validation were done using the three USGS stations presented in
393 Fig. 1 and Table 1, and accounting for all OFRs in study region. When comparing the monthly
394 simulated flow with the measured flow for the calibration period, there was a good
395 agreement (0.71 = r? = 0.93), and a satisfactory model efficiency (0.68 = NSE = 0.90) for all three
396 stations (Fig. 3). In addition, the PBIAS magnitude was < 3% for station A, and < 12% for
397 stations B and C. Meanwhile, the validation period had r? ranging between 0.69 and 0.86, and
398 the NSE between 0.68 and 0.83, with PBIAS magnitude <10% for stations A and B, and 18.12%
399 for station C. In general, for stations A and C, the model overestimated flow values (i.e.,
400 positive PBIAS) mostly during flow events < 3 m?/s, and the model underestimated flow (i.e.,
401 negative PBIAS) for station B during flows > 20 m?®s (Fig. 3). These findings are consistent
402 with a previous study conducted in western Mississippi near our study region (Ni and Parajuli,
403 2018). Even though during the validation period the station B had PBIAS magnitude higher
404 than 15%, the r? and NSE values from the calibration and validation periods indicate
405 satisfactory modeling performance when simulating monthly flow (Moriasi et al.,, 2015). Given
406 that none of the OFRs were directly connected with the streams where the stations were
407 located (Fig. 1), and there were no OFRs nearby stations B and C, the calibration and
408 validation metrics with and without the OFRs were very similar, with differences smaller than

409 1%.
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410
411 Figure 3-Flow calibration and validation time series for the three USGS stations A (07264000),
412 B (07263555) and C (07263580). See Fig. 1 and Table 1 for more information about the USGS

413 stations. The precipitation time series represents the monthly accumulated precipitation at

414 the watershed scale (i.e., for the entire study region).
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415 3.2 Percent change in flow

416 We assessed the impact of the OFRs on flow by comparing the baseline flow (i.e., without the
417 OFRs) with the three surface area scenarios generated from the Kalman filter
418 approach—lower, mean, and upper (see section 2.4, and Fig. 2). The total surface area (i.e,
419 summing all OFRs surface area) was 2.176 ha for the lower, 2.766 ha for the mean, and 3.370
420 ha for the upper, and the three scenarios had a similar OFRs surface area distribution (Fig. 4).
421 In addition, most of the OFRs had surface areas < 50 ha—78%, 71%, and 62% of the OFRs for

422 the lower, mean, and upper scenarios.
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424 Figure 4-OFRs surface area distribution for the three surface area scenarios, lower, mean, and
425 upper.

426 Figure 5 breaks down the channels into four distinct categories, with each category
427 showing percent changes in flow throughout the year, displayed along the x-axis by month.

428 The three bar colors represent different scenarios, while bar heights illustrate variations across
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429 channels and years. For example, the bars for January include all January data spanning from
430 1990 to 2020, enabling a thorough comparison of seasonal and year-to-year flow changes. The
431 impact of the OFRs on monthly flow varied throughout the year, and the largest impacts
432 occurred between January and May for all flow classes (Fig. 5). During these months,
433 including all surface area scenarios, the mean decrease in flow (i.e., negative mean percent
434 change) was -34.4 + 6% for class 1, -37.6 + 5% for class 2, -30.0 + 6% for class 3, and -34.1 + 6% for
435 class 4. For all classes, the greatest reduction in flow occurred during the month of March (~
436 -40%). Meanwhile, the impact of the OFRs was smaller during the second half of the year, in
437 which the mean percent change in flow was -12.0 + 3% for class 1, -12.5 + 5% for class 2, -1.4 *
438 4% for class 3, and -2.6 + 10% for class 4 (Fig. 5). So we always saw a decrease? It looks like we
439 have some increases too.

440 When assessing the mean percent change per month, for all surface area scenarios,
441 the lower flow classes (i.e., (1) 0.001-0.25 m®s and (2) 0.25-0.50 m*/s) had a negative mean
442 percent change for all months. Nonetheless, we observed a mean positive percent change
443 (i.e., increase in flow) for the months of August (5.0 + 1%) and October (5.2 + 0.2%) for class 3,
444 and during June (8.2 + 0.3%), August (7.3 + 0.4%), and October (8.7 + 0.4%) for class 4 (Fig. 5).
445 Furthermore, the different surface area scenarios had similar impacts on flow for all months
446 of the year with differences smaller than 5% for all scenarios. Between January and May, for all
447 flow classes, the mean percent change was -32.0 + 6% for the lower, -34.6 + 7% for the mean,
448 and -35.8 + 5% for the upper. Between June and December, the impact on flow was -5.4 + 6%
449 for the lower, -7.3 + 8% for the mean, and -8.9 + 5% for the upper.

450

451
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452

453 Figure 5-Monthly percent change in flow between the baseline scenario (vertical dotted blue
454 line) and the three surface area scenarios (lower, mean, and upper), and for the four flow

455 classes (1) 0.001-0.25 m3fs, (2) 0.25-0.50 m3/s, (3) 0.50-2.11 m3/s, and (4) 211-17.50 m3/s. This
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456 analysis included data from all simulated years (1990-2020).
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457 In general, the OFRs contributed to decreased monthly flow. However, the OFRSs'
458 impact on flow had a significant intra- and inter-annual variability, and it varied according to
459 different OFRs and channels—this is highlighted by the boxplots size variability in Fig. 5, in
460 which the variability was lower during the first part of the year, and greater between July and
461 August. In addition, the monthly percent change in flow in the KDE plots (Fig. 6) shows that
462 for the three scenarios, and all flow classes, most of the changes in flow ranged between -40%
463 and 0%. In addition, all KDE plots have a triangular shape with its base on the smaller flows,
464 denoting where most of the changes occur. Even though the majority of the percent change
465 in flow is negative, there are circumstances in which the OFRs could positively impact
466 flow—the increase in flow is represented by faded colors in each surface area scenario (Fig. 6).
467 The positive mean percent change could be as high as 80%—see Fig. 6 for the larger flow
468 classes, (3) 0.50-211 m3/s and (4) 211-17.50 m3/s. The positive impact on flow for these classes
469 occurred during the months of June, August and October when a mean positive change is
470 observed (Fig. 5 classes 3 and 4).

471 The annual mean percent change, for all surface area scenarios, was -22.5 + 3% for class
472 1, -24.2 + 4% for class 2, -14.6 + 3% for class 3, and -16.6 + 3% for class 4. In addition, the surface
473 area scenarios annual changes were -18.0 + 5% for the lower, -19.6 + 5% for the mean, and -20.8
474 + 6% for the upper, including all flow classes. The differences between the surface area
475 scenarios shown in Fig. 5 and Fig. 6 are related to the variability of the OFRs surface area.

476

aT7

478

479
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481 Figure 6-Kernel density estimation plots smoothed using a Gaussian kernel for the monthly
482 percent change in flow between the baseline scenario (vertical dotted blue line) and the

483 three surface area scenarios (lower, mean, and upper) for the four flow classes (1) 0.001-0.25
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484 m3/s, (2) 0.25-0.50 m?/s, (3) 0.50-2.11 m3/s, and (4) 211-17.50 m?/s. Note the different range of

485 values on the y-axis for all four flow classes.

486 3.3 Impact on peak flow

487 For each channel, we calculated the impact of the OFRs on peak flow (Fig. 7). The impact on
488 peak flow was -60.7 + 13% for class 1, -56.2 + 11% for class 2, -46.7 + 19% for class 3, and -43.9 +
489 12% class 4. When assessing the impact on peak flow based on different surface area
490 scenarios, the mean percent change was -49.4 + 18% for the lower, -50.4 + 17% for the mean,
491 and -52.7 + 18% for the upper. All peak flows occurred between January and May, which is the
492 period of the year when the study region receives most of its precipitation (Perin et al., 2021).
493 With the exception of a few outliers, there was no increase in peak flow, even though the
494 OFRs contributed to a positive mean percent change in flow in certain months of the year

495 (Fig. 5 classes 3 and 4).
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497 Figure 7-Percent change in peak flow between the baseline scenario (vertical dotted blue
498 line) and the three surface area scenarios (lower, mean, and upper) for the four flow classes (1)

499 0.001-0.25 m¥s, (2) 0.25-0.50 m>/s, (3) 0.50-2.11 m%/s, and (4) 2.11-17.50 m>.
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500 3.4 Simulated flow time series

501 We randomly selected a channel within the flow class 3 to demonstrate the baseline and the
502 three surface area scenarios’ flow time series between 1995 and 2005 (Fig. 8). For this channel,
503 the annual mean percent changes in flow when comparing the baseline scenario with the
504 lower, mean, and upper surface area scenarios were 0.99 + 11.8%, -1.9 + 13%, and -2.0 + 19%—the
505 high standard deviation for the three scenarios is explained by the interannual variability. The
506 upper surface area scenario resulted in lower flows (i.e., higher impact) when compared to the
507 lower and mean scenarios for the majority of the flow events—67.8% and 57.6% for the lower
508 and mean scenarios. Nonetheless, there are circumstances when the upper scenario yielded
509 higher flows—32.2% and 42.4% of the events for the lower and mean scenarios (e.g., see the
510 two insets 03/1997-08/1998 and 05/2002-02/2004). These findings indicate that the impacts
511 that the OFRs have on flow are not entirely governed by the presence and surface area of the
512 OFRs (i.e., the different surface area scenarios), instead by a combination of the OFRs with
513 different modeling components (e.g., terrain, land use, climate information), and different
514 hydrological processes (e.g., run-off, precipitation, evaporation). In addition, the impact on
515 peak flow for this channel was -45.7 + 19.7% for all surface area scenarios—this is highlighted

516 on two occasions (08/2002 and 08/2003) during the second inset.
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530 3.5 Spatial variability of the OFRs impact on annual flow©verat-impactof-0FRs
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532 Figure 9-The cumulative impact of OFRs on annual flow for the mean scenario at the
533 subwatersheds where the OFRs occurred. The size of the circles represents the contribution
534 (%) of the subwatershed flow compared to the main outlet (i.e., model outlet). The
535 subwatersheds are color coded according to their reservoir capacity (%), which was calculated
536 by summing the OFRs surface area in each subwatershed and dividing the sum to the total
537 OFRs surface area (i.e., including all OFRs from all subwatersheds), darker color indicating
538 higher reservoir capacity. The percentages highlighted in yellow represent the impact of the

539 OFRs on annual flow.
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540 To assess the overall impact of the OFRs at the subwatershed level, we calculated the
541 contribution of each subwatershed flow to the main model outlet, and the subwatersheds’
542 reservoir capacity (i.e., summing the OFRs surface area at each subwatershed and dividing it
543 to the total OFRs surface area, including all OFRs from all subwatersheds) (Fig. 9). In general,
544 the highest impacts on annual flow (e.g., > 100%), with positive or negative magnitude,
545 occurred at the subwatersheds that contributed the least (< 10%) to the main model
546 outlet—these subwatersheds are represented in lighter shades of blue, and the annual
547 impact is highlighted in yellow on Fig. 9. In other words, the highest impacts on flow occurred
548 on the channels with smaller flow magnitudes (e.g. channels that presented mean flow
549 ranging between 0.001-0.25 and 0.25-0.50 m?/s, these channels were classified as class 1and
550 2 in this study). In addition, the subwatersheds with the highest reservoir capacities (between
551 15.3 and 19.1 %, represented in darker shades of blue) (Fig. 9), had a small (< 10%) contribution
552 to the model outlet, and these subwatersheds did not present the highest impact on annual
553 flow (e.g., the impact on annual flow for the top two subwatersheds in terms of reservoir

554 capacity were -0.9 and 82.1%).

555
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556 4 Discussion

557 Although OFRs will contribute to improve food production resilience—by providing surface
558 water to irrigation during dry periods—to severe drought events, which are expected to have
559 higher occurrence with climate change, OFRS can have cumulative impacts on surface
560 hydrology of the watershed where they occur. Studies have used either data-driven or
561 physically-based hydrological model approaches to estimate OFR impacts on watersheds.
562 However, combining these approaches provides a better understanding of the spatial and
563 temporal variability of OFR impacts, as it incorporates the dynamic changes of OFRs into the

564 hydrological model:

565 Preoere

566

567

568 Hreorporatec—iato=tre—yeretogieatraedetl. To quantify whether the impact of the OFRS on

569 mean and peak flow varied intra- and inter-annually, and which subwatersheds are more
570 impacted, here we combined a data-driven remote sensing-based model with SWAT+ latest

571 improvements to assess the OFR impacts.

572 4.1 Cumulative impact of OFRs

573 When simulating water impoundments in SWAT/SWAT+, it is common practice to
574 validate and calibrate the model using flow measurements (Evenson et al.,, 2018; Habets et al,,
575 2018; Jalowska & Yuan, 2019; Ni & Parajuli, 2018). In addition, other studies have validated and
576 calibrated the model using alternative variables. For example, Perrin et al., (2012) employed
577 monthly measurements of piezometric variations to assess aquifer recharge processes, and
578 Jalowska & Yuan (2019) used sediment loadings (concentration and budget), from field
579 monitoring reports to evaluate sediment simulations. Ideally, we would calibrate and validate

580 the model by accounting for the parameters governing the OFRs’ water budget (e.g., inflows
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581 and outflows) (e.g., Kim and Parajuli, 2014). Nonetheless, these measurements were not
582 available for the OFRs in our study region. Furthermore, a thorough calibration and validation
583 of the model would require extra flow data, covering other parts of the study region, as the
584 three USGS stations—the only data available—used in this study are located in the upper part
585 of the modeled watershed. Similar to Evenson et al., (2018)—who proposed a module to better
586 represent spatially distributed wetlands, and validated their model using a direct (i.e., flow
587 measurement) and an indirect (i.e., the wetlands surface area) approach—our validation and
588 calibration was done using the flow measurements, and the OFRs surface area scenarios
589 were based on an algorithm that was validated with an independent higher spatial resolution
590 dataset (Perin et al., 2022).

591 There is a consensus within the scientific community that the OFRs will have a
592 cumulative impact on surface hydrology by decreasing flow and peak flow, and the impact
593 will vary from watershed to watershed due to the number of OFRs, and the OFRs’ different
594 purposes (e.g., different irrigation schedule) (Ayalew et al,, 2017; Fowler et al., 2015; Habets et
595 al., 2018; Nathan & Lowe, 2012; Pinhati et al., 2020; Rabelo et al,, 2021). As pointed out by Habets
596 et al., (2018) the mean annual decrease in flow from all studies was -13.4% *+ 8%. Our results are
597 aligned with this value, which varied between -24.2 + 4% and -14.6 + 3% for all flow classes. In
598 addition, OFRs can reduce peak flow on average by 45% (Habets et al., 2018; Nathan and
599 Lowe, 2012; Thompson, 2012), and up to 70% (Ayalew et al, 2017) for certain flow events.
600 Likewise, our results are consistent with these findings, in which the mean impact on peak
601 flow varied between -60.7 + 12% and -439 * 12%. Furthermore, differently from previous
602 research, our results showed that the OFRs may have a positive (< 9%) impact on flow (Fig. 5,
603 classes 3 and 4). This could be explained by the level of details in our analyses. When
604 evaluating flow changes at the channel scale, it's important to note that flow at this level is
605 several orders of magnitude smaller than at the main basin outlet. Consequently, this scale
606 often exhibits more significant percentage changes, both increases and decreases. This likely

607 explains how OFRs can enhance channel flow, primarily due to the additional water

31


https://www.zotero.org/google-docs/?sXHdnP
https://www.zotero.org/google-docs/?T1bcx5
https://www.zotero.org/google-docs/?Dx1DWb
https://www.zotero.org/google-docs/?Dx1DWb

608 contributed by OFRs, influenced by periods of increased precipitation in certain channels
609 during specific months and years. While we calculated the monthly impact on flow at the
610 channel scale by aggregating the OFRs to the closest channel, previous studies have mostly
611 reported the annual impact on flows (Habets et al., 2018), and they performed their analysis at
612 the subwatershed scale by aggregating the OFRs to a single point at the outlet of each
613 subwatershed in SWAT (Evenson et al, 2018; Kim & Parajuli, 2014, Perrin, 2012; Zhang et al,,
614 2012), or they used different modeling approaches (see Habet et al., (2018)).

615 By leveraging the latest improvements in SWAT+ to simulate water impoundments
616 (Molina-Navarro et al., 2018) in combination with a novel algorithm to monitor OFRs (Perin et
617 al,, 2022), we modeled the impact of the OFRs on flow at the channel scale. In addition, the
618 surface area scenarios enabled us to account for events when the OFRs were at the lowest,
619 regular, and fullest capacities according to their surface area (see Fig. 2). This is an
620 improvement over previous studies (e.g., Ni et al., 2020; Ni and Parajuli, 2018; Perrin, 2012) that
621 used a single surface area (i.e., one snapshot in time) to represent the OFRs in SWAT. The
622 small differences (< 5%) between the surface area scenarios in terms of mean percent change
623 on monthly flow indicates that the OFRs' surface area variation had a low impact on flow. For
624 instance, during January and May the mean monthly percent change ranged between -35.8 +
625 6% and -32.0 + 7%, and during June and December it varied between -8.8 + 5% and -5.4 + 6%
626 for the three surface area scenarios. The same was observed for peak flow, with a mean
627 monthly impact ranging between -52.7 + 17% and -49.4 * 18%. This small variability on flow
628 impact was observed even though the total OFR surface area increased by 590 ha and 1194 ha
629 when comparing the lower scenario with the mean and upper scenarios (Fig. 5). However, the
630 OFRs represented a small portion (< 1%) of the total area of the modeled watershed (Fig. 1).
631 These findings are related to the fact that flow simulations are governed by several
632 hydrological processes (e.g., run-off, precipitation, evapotranspiration) besides the presence of
633 OFRs on the channel (Bieger et al,, 2017; Dile et al,, 2022; Arnold et al., 2012). In addition, when

634 assessing the percent change in flow at the channel scale, the differences in surface area
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635 between the scenarios occurred at a lower magnitude when compared to the total OFRs
636 surface area. For instance, an OFR with surface area smaller than 10 ha, and with surface area
637 variations between 10 and 20% for the three scenarios, may not lead to differences (e.g., > 10%)

638 between the three scenarios.

639 4.2 OFRs impacts on flow and peak flow

640 Our findings highlight that the impacts of the OFRs on flow and peak flow have a
641 significant intra- and inter-annual variability (Figs. 5, 6, and 7), and the impacts vary according
642 to different OFRs and channels (Fig. 5). The largest impacts on flow occurred during the first
643 part of the year between January and May, the period of the year when the peak flows occur.
644 In addition, this time of the year also coincides with the period when the region receives most
645 of its precipitation (Perin et al,, 2021b), and the OFRs are at their fullest capacity (i.e., OFRs
646 storing their maximum amount of water) (Perin et al,, 2022). During the second part of the
647 year, we observed a milder mean percent change in flow for all flow classes and all scenarios,
648 and a greater variability in percent change, notably for the months of July and August (Fig. 5).
649 Moreover, most of the irrigation activities happen between June and September (Perin et al,,
650 2021b, Yaeger et al, 2017), and it is when the OFRs are at their lowest capacities (i.e., storing
651 less water) (Perin et al, 2022), which could explain their moderate impact and higher
652 variability during these months—even though we are not accounting for the OFRs inflows
653 and outflows, and not simulating irrigation events. Additionally, the variability of the OFRs
654 impacts is related to the OFRs' physical properties (e.g., surface area and location in the
655 watershed). For example, the OFR surface area will have an impact on flow and peak flow, as
656 shown by the different surface area scenarios, and depending on where the OFR is located in
657 the watershed, given that it may be connected to lower or higher flow channels, which
658 contributes to their impact variability during the year (Figs. 4 and 5). Besides the OFRS'
659 physical properties, the built-in complexity of SWAT—when simulating the presence of the

660 OFRs and the various hydrological processes (e.g., run-off, precipitation, evapotranspiration)
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661 governing the water cycle—contributes to the differences in the OFRs impacts. This
662 complexity is illustrated in Fig. 8 showing that the upper scenario can have a higher or lower
663 impact on flow when compared to the lower and mean scenarios.

664 When assessing the annual impact of the OFRs accounting for each subwatershed
665 flow compared to the main model outlet flow, and each subwatershed reservoir capacity (Fig.
666 9), we found that even though the presence of the OFRs can have a significant impact on
667 flow (Figs. 5, 6, and 7), the highest impacts tend to occur on the subwatersheds that
668 contribute the least (< 10%) to the main model outlet. In general, the highest impacts
669 occurred on the channels with smaller flow magnitudes, and the subwatersheds with the
670 highest reservoir capacities did not have the highest impact on flow. The changes in the
671 OFRs impacts along the year, and between different years, are directly related to the OFRs
672 water balance (Equation 3). The variations are primarily driven by the volume of water stored
673 by the OFRs, which is modeled at a daily scale, and it varies according to total daily

674 precipitation, evaporation, and seepage losses.

675 4.3 Research implications and applications to other study regions

676 Overall, we presented a new approach to quantitatively analyze the impact of a
677 network of OFRs on mean and peak flow, and we described the various potential reasons
678 behind the variability of the impacts. Our results indicate that OFRs do not have an equally
679 distributed impact on mean and peak flow across the watershed. This variability is primarily
680 influenced by differences in their size, water storage capacity, and their spatial distribution
681 (i.e., their presence)= Hence, assessing the OFRs location as well as their numbers across the
682 watershed is important when aiming to manage the construction of new OFRs. In particular,
683 the geospatial variability of the OFRs impacts could be taken into account by water agencies
684 when planning and developing a network of OFRs, given it is possible to identify the areas

685 that are under high pressure (e.g., regions with multiple OFRs that are having a significant
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impact on flow), and to identify areas that could benefit from the construction of new OFRs,
targeting improvements on water resources management and irrigation activities.
Furthermore, even though the OFRs impacts may vary significantly in different
watersheds (Habets et al., 2018), our approach could be transferable to other places across the
world, as it integrates a top-drown data-driven remote sensing-based algorithm, which is
based on freely available and private Earth Observations datasets, with the latest SWAT+
hydrological modeling developments. In addition, the widespread use of SWAT+ and its
open-source nature, is yet another factor contributing to the transferability of the novel
approach presented in this study. This is relevant as the number of OFRs is expected to
increase globally (Althoff et al.,, 2020; Habets et al.,, 2014, Habets et al., 2018; Krol et al., 2017;
Rodrigues et al.,, 2012), with a limited knowledge of how the OFRs may impact surface
hydrology in different watersheds, and under diverse environmental conditions. Finally, in
tandem with the OFRs' key role on irrigated food production, in part to adapt to climate
change (Habets et al, 2018) and to alleviate the pressure on surface and groundwater
resources (Vanthof & Kelly, 2019; Yaeger et al, 2017; Yaeger et al, 2018), their impacts on
surface hydrology need to be considered to avoid exacerbating the surface water stress

already intensified by climate change and population growth (Vorésmarty et al., 2010).

5 Future improvements

Future improvements should focus on how to better represent the OFRs water management
(i.e., OFRs inflows and outflows) in SWAT+. Given that each OFR has an independent water
balance, accounting for the OFRs water volume change would be a more realistic
representation of the OFRs when compared to the three surface area scenarios tested in this
study. Estimating the OFRs volume change can be done by combining the OFR surface area
time series with area-elevation equations—these equations describe the OFRs' bathymetry,
and allow volume estimation by inputting the OFRs' surface area (Liebe et al.,, 2005; Meigh,

1995; Sawunyama et al.,, 2006). After carefully assessing different methods to derive these
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equations (Arvor et al., 2018; Avisse et al, 2017; Li et al,, 2021; Meigh, 1995; Sawunyama et al.,
2006; Vanthof & Kelly, 2019; Yao et al, 2018; Zhang et al,, 2016), we decided that measured
ground-data of the OFRs' depth—which is not available—is required to estimate the
equations with an acceptable uncertainty. Estimating the area-elevation equations entails
several challenges, including: 1) despite the fact that there are several DEMs available for the
study region (Arkansas GIS Office, 2022)—DEMs can be used to estimate the OFRs bottom
elevation—the DEMs were collected when most of the OFRs were full (i.e., bathymetry was
not exposed), which limits their use in this case; and 2) although the OFRs are located within
the same geomorphological region, they have different depth, shape and physical
characteristics (Perin et al, 2022; Yaeger et al, 2017). Therefore, even if a generalized
area-elevation equation was calculated for our study region—this is a common approach
done by other studies (Mady et al,, 2020; Vanthof and Kelly, 2019)—that would still lead to high
uncertainties of water volume changes. Ideally, each OFR would have its own equation, which
was not possible when this study was done.

Efforts should also be made to improve SWAT+ capabilities to receive measured OFRSs’
inflows and outflows. The latest version of the model has improved the hydrological
representation of small water impoundments in SWAT+ (Mollina-Navarro et al, 2018).
Nonetheless, at the time of our study, the newest version of the model does not allow users to
input measured or calculated OFRs' inflows and outflows. Instead, the model developers
recommend simulating the OFRs water balance using decision tables (Arnold et al., 2018; Dile
et al,, 2022). However, there are very limited guidelines on how to create these decision tables.
In addition, the tables would simulate the OFRs water balance instead of using the measured
or calculated volume change, which could introduce more uncertainties to the modeling
scenarios. In addition, future work should integrate data on actual evapotranspiration, ET
(Kiptala et al., 2014) to quantify as the balance between water availability and ET determines
in large part the irrigation system efficiency and crop productivity in the watersheds where

OFRs occur.
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739 6 Conclusions

740 We proposed a novel approach that combines a top-down data driven remote sensing-based
741 algorithm with the latest developments in SWAT+ to simulate the cumulative impacts of
742 OFRs. This enabled us to assess the spatial and temporal variability of the OFRs impacts, as
743 well as the intra- and inter-annual impact changes on mean and peak flow, at the watershed
744 and subwatershed levels. Incorporating Earth Observation derived information with a
745 hydrological model, allowed us to capture the dynamic changes of the OFRs, and to simulate
746 their impacts under different OFR capacity scenarios.

747 Our study showed that the OFRs may have an impact on flow and peak flow, which
748 can have a significant inter- and intra-annual variability. The impact of the OFRs is not equally
749 distributed across the watershed, and it varies according to the OFRs spatial distribution, and
750 their surface area (i.e., water storage capacity). As the number of OFRs is expected to increase
751 globally—partially to adapt to climate change and to alleviate pressure on groundwater
752 resources—and therefore, also increase their relevance to irrigated food production, it is
753 imperative to develop new frameworks to further understand the OFRs impacts on surface
754 hydrology. In this regard, we provided a combination of different methods that can be used in
755 other watersheds, which can support water agencies with information to improve surface

756 water resources management.
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766 10 Data Availability

767 The Soil Water Assessment Tool (SWAT) hydrological model and all necessary tools to perform
768 calibration, validation, and data analyses can be accessed through SWAT's online portal:

769 https://swat.tamu.eduy/.

770

771 The National Land Cover Database (30 m) (Homer et al., 2020) and the Gridded Soil Survey
772 Geographic Database (QSSURGO) (Soil Survey Staff, USDA-NRCS, 2021) (100 m) are accessible
773 through the USGS's portal:

774 https://www.usgs.gov/centers/eros/science/national-land-cover-database, and here

775 https://Mww.nrcs.usda.gov/resources/data-and-reports/gridded-soil-survey-geographic-gssurg
776 o-database, respectively.

777

778 The climate data extracted from the Gridded Surface Meteorological Datasets (Abatzoglou,
779 2013) is available in Google Earth Engine (Gorelick et al., 2017), here

780 https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET.

781

782 The Kalman filter derived surface area time series is available through Perin et al., (2022).
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