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Abstract. Urban floods are increasingly threatening cities across China, emphasizing the need to understand their patterns.

Current flood datasets primarily offer provincial-scale insights and lack temporal continuity, which leads to a challenge in

detailed analysis. To address this issue, this study introduces a machine learning framework by applying online news media as

a primary data source to create a county-level dataset of urban flood events from 2000 to 2022. Using the Bidirectional Encoder

Representations from Transformers (BERT) model, we achieved robust performance in information extraction, with an F1 score5

of 0.86 and an exact match score of 0.82. Further, a combined model of Bidirectional Long Short-term Memory (BiLSTM)

networks with a Conditional Random Field (CRF) layer effectively identified flood locations. The dataset documents the

timing and affected county areas of urban floods, revealing that a total of 2,051 county-level regions have been impacted,

with 7,595 occurrences recorded. This coverage represents approximately 46% of China’s total land area. Our analysis reveals

that The temporal trend of flooded cities in our news-based dataset broadly aligns with that in the China Flood and Drought10

Bulletin, despite notable differences in the magnitude of reported events during peak years. This news-derived dataset enables

the analysis of urban floods in China from both natural and societal perspectives. Temporally, flood events predominantly occur

in the summer, accounting for 74% of total flooding events. Excluding the peak year 2010, there is an observable increasing

trend in flood events from 2000 to 2022. Spatially, flood frequency decreases from southeast to northwest, with Guangxi

Province recording the highest number of floods. From a societal perspective, some economically developed regions with high15

population densities, such as Jiangsu and Guangdong, exhibit decreasing flood trends. This study provides a national dataset

on urban flood events in China, highlighting spatiotemporal patterns to support flood management, planning, and strategy

development.

1 Introduction

Floods have been a recurring challenge in China throughout its history, with efforts to manage them spanning four millennia20

(Feng et al., 2023; Jiang et al., 2023). Cao et al. (2022) found that China and the United States were the two countries with

the highest urban flood exposure, together accounting for approximately 61.5% of the global increase in urban flood exposure.

In recent years, Zhengzhou had torrential rainfall and subsequent flooding on 21 July 2021, resulting in 380 deaths and direct
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economic losses of 168 billion dollars (Dong et al., 2022). In another example, Shenzhen experienced short-duration and

extremely heavy precipitation on 11 April 2019, leading to floods and 11 deaths (Zhang et al., 2023b). Thus, urban flooding is25

an important risk factor affecting urban property and public safety in China.

Understanding the evolution of urban flood patterns is crucial for effective planning and management. Analyzing the tem-

poral and spatial distribution of floods can reveal significant trends influenced by both natural and social factors, helping to

identify flood-prone areas, which is essential for developing flood-control strategies (Ahemaitihali and Dong, 2022; Zhang

et al., 2023a). Previous studies have shown that historical flood datasets are vital for understanding these distribution patterns30

(Zhao et al., 2018; Wu et al., 2019; Xu and Tang, 2021).

In China, the primary datasets for flood events are officially aggregated data, as summarized in Table 1. However, each of

these datasets has its own specific applicability and limitations. Notably, the China Flood and Drought Bulletin provides the

most reliable data on economic losses and flooded areas, covering both urban and basin flooding. However, it only includes

the spatial distribution of a accumulated disaster data at the provincial level. The Annual Report of Chinese Hydrology is35

more suitable for basin flooding studies than urban flooding, and it only began publication in 2021. The China Meteorological

Disaster Yearbook only includes records of severe events that result in significant losses, leading to a smaller number of records

of the more frequent urban floods that cause minor damage. Additionally, the information on the website of the China National

Disaster Reduction Center is relatively detailed and similar to news reports, as both are documented at the time of disaster

occurrence. However, the data collected before 2018 became inaccessible due to a change in the website that followed the40

creation of the Emergency Management Department of China in 2018.

In addition to the official Chinese datasets, there are also several natural-hazard datasets recording flood events created by

other governments or organizations (Table 2). Each dataset has a different research perspective, which makes it impossible

to create a long-term statistical analysis of historical urban floods in China. Based on the societal sources of information,

the Emergency Events Database (EM-DAT) includes global disaster events with detailed information like timing, location,45

and losses but focuses only on severe events that meet specific damage criteria (Delforge et al., 2023). The Natural Disaster

Data Book published by the Asian Disaster Reduction Center is an analysis of EM-DAT data specifically for the Asian region

(https://www.adrc.asia/publications/databook/). The Global Flood Monitor website (https://www.globalfloodmonitor.org/) de-

tects flood events by analyzing spikes in Twitter data streams (de Bruijn et al., 2019). However, due to the limited number

of Twitter users in China, its coverage of flood events in the country is insufficient. Floodlist (https://floodlist.com/) identi-50

fies flood events from news texts, extracting information such as timing, location, and damages, but it lacks comprehensive

historical data, making it more suitable for near-real-time studies.

On the other hand, datasets based on remote sensing, such as the Dartmouth Flood Observatory, focus on global flood

events with precise geographic details (latitude and longitude), but it underrepresents floods in China, with fewer than 400

cases since 1985 (https://floodobservatory.colorado.edu/). Both the Global Flood Awareness System in Copernicus Emergency55

Management (https://global-flood.emergency.copernicus.eu/) and the Global Flood Monitoring System (http://flood.umd.edu/)

are excellent for real-time flood forecasting and inundation monitoring but are not suited for long-term historical analyses.
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Additionally, the Global Flood Database (Tellman et al., 2021) presents flood extent and population exposure for 913 large

flood events, but it covers very few events in China.

Existing datasets provide valuable insights into urban flooding; however, they often operate at the provincial level or have60

limited event coverage across China. This broader scale can obscure important local variations in flood characteristics and risk

factors. In China, the administrative structure consists of several levels: the highest is the provincial level, followed by

the prefectural level (i.e., cities in the usual sense), and then county-level. Given China’s vast area of approximately 9.6

million square kilometers, flood characteristics exhibit significant spatial variability across provincial and prefectural

regions (Wang et al., 2013; Wang et al., 2023). With around 2,844 county-level areas, each spanning roughly 1,000-3,00065

square kilometers, this scale offers a more granular perspective for analyzing flood patterns across diverse locations.

To create an urban flood dataset, researchers often supplement governmental data with remote-sensing imagery (Huang and

Jin, 2020; Shahabi et al., 2020) and field-survey data (Eini et al., 2020; Darabi et al., 2021). While remote-sensing images have

the potential to infer disaster progression, mapping urban floods presents inherent challenges, such as uncertainties caused

by cloud cover (Datla et al., 2010; Donovan et al., 2019). In contrast, field surveys provide accurate, firsthand data, but the70

process is time-consuming and labor-intensive (Surampudi and Yarrakula, 2020; Feng et al., 2022), complicating the large-

scale collection of historical flood events. Given these limitations, digital news media data emerge as a promising alternative

(Williamson, 2019; Antwi et al., 2022). Studies have shown that news data offer timely, authentic, and extensive coverage

of disaster events. For example, Yang et al. (2023b) analyzed the clustering of multiple natural hazards in China based on

news data, while Liu et al. (2018) used media data to extract characteristics of natural hazards, revealing the coexistence of75

meteorological and geological hazards. Our study aims to extend these efforts by developing a county-level historical flood

dataset based on news data, with a focus on urban floods.

To extract flood events from news data, information extraction techniques in natural language processing are highly effective

(Xiang and Wang, 2019; Olivetti et al., 2020). Machine reading comprehension methods, particularly those using a question-

answer format, have proven especially useful for nuanced information extraction (He et al., 2018; Farooq et al., 2020). Among80

them, pre-trained language models such as Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al.,

2018) demonstrate exceptional proficiency in capturing semantic relationships, making them well-suited for this task (Wang

et al., 2021; Huang et al., 2021). The strength of the BERT model lies in its innovative bidirectional pre-training on large-scale

unlabeled text data, such as Wikipedia and books, allowing it to effectively extract information across diverse fields (Xiong,

2020; Suwaileh et al., 2020). Additionally, employing Named Entity Recognition (NER) methods, such as the bidirectional85

long short-term memory network (BiLSTM) combined with a Conditional Random Field (CRF) layer (Kundzewicz et al., 2019;

Yan et al., 2024), on the outputs of BERT can enhance the efficiency of identifying disaster-affected locations. The output from

the question-answer process typically consists of relatively complete sentences, and NER is effective in identifying entities

such as names and locations, providing direct information about disaster sites.

The capabilities of the natural language processing techniques, combined with the reliability of news data, provide us with90

an opportunity to create a new flood event dataset to address the absence of datasets at the county level. Therefore, this

present study aims to develop a national county-level urban flood dataset from 2000–2022 based on news data through a
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machine-learning framework. The performance of the BERT model in the field of flood disaster knowledge is examined and

the spatiotemporal characteristics of urban floods in China based on news records are analyzed.

Table 1. Summary of official flood disaster statistics reports

Name Period Flood Records
Update

Frequency
Source

China Flood

and Drought

Bulletin

2006–
The population, economic, and

crop losses in each province
Annual

Ministry of

Water

Resources of

the People’s

Republic of

China

Annual Report

of Chinese

Hydrology

2021–
Records of basin/river floods in

various provinces and cities
Annual

Ministry of

Water

Resources of

the People’s

Republic of

China

China

Meteorological

Disaster

Yearbook

2004–

Time, flooded district, damage

of major flood events, the

record criteria as events

causing over 50,000 hectares of

agricultural damage, 10 deaths,

or 14 million USD in direct

economic losses

Annual

China

Meteorological

Administration

Reports on

official website

of China

National

Disaster

Reduction

Center

2011–

Records of the time, location

and damage of flood events

(Data prior to 2018 is not

available)

Real-time

National

Disaster

Reduction

Center of

China
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Table 2. Summary of global natural hazard datasets

Data

Source
Name Period Flood Records

Update

Frequency
Source

Social Sensing

The Emergency

Events

Database

(EM-DAT)

1900–

Time, location, and damage of global

flood events that resulted in a certain

number of deaths or economic losses

Continuously

Centre for

Research on

the

Epidemiology

of Disasters

Natural

Disaster Data

Book

2002–

Statistical and analytical perspectives

of flood events in Asia (data retrieved

from EM-DAT)

Annual

Asian Disaster

Reduction

Center

Global Flood

Monitor
2014-2023

A real-time overview of ongoing flood

events based on filtered Twitter data
Pause

IVM - VU

University

Amsterdam

and FloodTags

FloodList 2016–

Dates, locations, magnitude, and

damages of each flood event based on

news

Real-time

FloodList

(funding from

Copernicus)

Remote Sensing

Dartmouth

Flood

Observatory

(DFO)

1985–
Time, location, and extent of global

flood events using satellite observations
Continuously

University of

Colorado

Boulder

Global Flood

Awareness

System

Ongoing

Ongoing and upcoming flood events

information from satellites to support

flood forecasting at national, regional,

and global levels

Real-time

Copernicus

Emergency

Management

Service

(CEMS)

Global Flood

Monitoring

System

(GFMS)

Every 3

hours

Flood inundation extent and depth

based on precipitation satellite data and

flood model simulation

Real-time

University of

Maryland and

NASA

The Global

Flood Database
2000-2018

Flood extent and population exposure

for 913 large flood events
Unknown Floodbase
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2 Data95

Three kinds of datasets were used in this study. Section 2.1 describes a Chinese machine-reading comprehension data called

CMRC2018 used to train the BERT model. Section 2.2 explains the news data used to extract information on urban flooding.

Section 2.3 interprets the comparative data selected for the comparison of the flood information.

2.1 CMRC2018

The CMRC2018 dataset is a span extraction dataset for Chinese machine reading comprehension, consisting of nearly 20,000100

real-world questions annotated by human experts on Wikipedia paragraphs (Cui et al., 2018). The task of reading comprehen-

sion is to obtain the corresponding answer from the given context and question, and span extraction indicates that the content of

the answer is all in the context, and the length of the span is determined by the distance between the start and end positions of

the answer. The dataset used in this study contains 2282 training samples. Each sample consists of a group (C, Q, A), where C

represents context, Q represents questions, and A represents answers. The answer to each question should be a span extracted105

from context. Figure 1 shows an example including a context describing a model’s resume, as well as a question about the

content of the context and the corresponding answer. In this study, the CMRC2018 dataset was used to fine-tune the BERT

model to adapt to the Chinese machine reading comprehension task.

2.2 News Data

The news used in this study was collected from two Chinese newspaper databases covering the whole of China, including110

WiseNews (https://www.wisers.com/wisesearch) and the newspaper database of the China National Knowledge Infrastructure

(CNKI) website (https://navi.cnki.net/knavi/newspapers/index). WiseNews is a full-text news database providing access to

more than 600 newspapers, magazines, and websites from China, with coverage dating back to 1998 and daily updates. The

CNKI database contains news from over 500 major newspapers in China, spanning from 2000 to the present. A key distinction

between these two databases is that CNKI applies specific selection criteria for academic and informative documents, resulting115

in differences in the volume of search results for the same keywords. The newspaper sources collected by the WiseNews

database could cover the newspaper sources collected by CNKI.

CNKI was chosen as the primary data source for manually extracting the spatiotemporal information of flood events due to

its higher concentration of academic and informative content. A total of 2730 news articles from 2000 to 2021 were gathered

using the subject keywords “flood” OR “flood disaster” and the full-text keywords “city” OR “county” OR “district”.120

Although other meteorology-related terms such as “typhoon,” “cyclone,” or “heavy rainfall” may also be associated

with flood events, there were few cases where flood-related news mentioned only flood-causing terms like typhoon. For

instance, a separate query using the term “heavy rain” yielded only about 7% relevant reports on actual flood events,

with the majority of results being meteorological warnings. To ensure a relevant dataset and improve model efficiency,

this study limited the search terms to those most directly related to flooding.125
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Figure 1. An example in CMRC dataset.

Once the CNKI data was collected, duplicate reports of the same urban flood events from different regional newspapers were

manually removed by the lead author. Articles containing search keywords but focused on flood prevention measures, seasonal

warnings, or other non-flood-related topics were also excluded. Additionally, as the focus of this study is on urban flooding,

reports concerning flash floods and landslides were omitted. The final dataset, following manual review and verification by

researchers in the group, consisted of 253 relevant news articles.130

After successfully applying the method to CNKI data, the WiseNews database was subsequently used to extract flood-

related information. To refine the search and improve data quality, terms “floods and beasts” and “flash flood” were excluded

due to their tendency to retrieve unrelated news based on the experience of processing CNKI news data. “Floods and beasts”

is an idiom in Chinese, which is often used as a metaphor for frightening things. This idiom contains the word “flood”, so

some unrelated news items that used it to describe other disasters or bad phenomena may be included in the search results.135

Therefore, the refined search strategy used was (“flood” OR “flood disaster”) AND (“city” OR “county” OR “district”) NOT

(“flash flood” OR “floods and beasts”). This search produced a total of 46,118 news items spanning the period from 2000 to

2022.
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2.3 Comparative Data

The summary descriptions of flooded cities in the China Flood and Drought Bulletin (Table 1) were used to compare with the140

number of flood events reported in news articles. Although the bulletins provide annual flood loss data at the provincial level,

which is not directly comparable to the county-level flood information extracted in this study, they do include statistics on the

number of cities affected by floods from 2006 to 2018. Given the absence of more proper data, these city-level statistics were

used as a basis for comparison with the flood occurrences identified in our research.

3 Methods145

In this study, a machine-learning framework was adopted to extract spatiotemporal flood event information from news texts

(Figure 2). Section 3.1 describes the data preparation for the model construction. Section 3.2 shows how to build and apply

the BERT model to extract flood information. Section 3.3 explains the flood location recognization methods based on a NER

model. Section 3.4 introduces the evaluation metrics for model performance.

Figure 2. The framework of flood information collection and extraction.

3.1 Data Preparation150

In this study, data pre-processing involved both cleaning and splitting the news texts. Initially, the documents downloaded from

the databases contained irrelevant content, such as copyright notices, web links, and empty lines, which were removed using
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the regular expression (“re”) module in Python. Additionally, since news documents could be lengthy and exceed the input

length limitations of the BERT model, the texts were split into smaller samples.

Once pre-processing was complete, the CNKI news texts were manually annotated following the CMRC2018 data format.155

Each news article was treated as a context, and three questions were developed to extract urban flood-related information: (1)

What natural hazard occurred? (2) When did the hazard occur? (3) Where was the hazard located? The answers were manually

labeled based on the content of each article. While the training samples were fully annotated with both questions and answers,

the test samples retained the question format but did not include the answers, leaving those to be generated by the model.

The CNKI news articles were then divided into 633 distinct samples. Of these, 503 were randomly selected as training160

samples, and the remaining 130 samples were set aside as test samples to evaluate the model performance. For training, 80% of

the samples (402) were combined with the CMRC2018 dataset to fine-tune the BERT model, while 20% (101) were used for

validation to optimize the model’s hyperparameters. During the test phase, the answers generated by the model for the CNKI

test samples were manually reviewed to assess accuracy. Once the model was confirmed to perform effectively, it was applied

to the WiseNews dataset for further analysis.165

For the WiseNews data, it only needs to be formatted as a test set for direct application with the trained model,

without requiring manual answer annotations. Future data will follow the same process, further enhancing analytical

efficiency.

3.2 BERT Model Construction and Application

BERT, which is designed to pre-train deep bidirectional representations from large unlabeled data sets (Devlin et al., 2018), was170

introduced to extract flood information in this study. The model structure is a multi-layer bidirectional transformer encoder,

which is an attention mechanism that learns contextual relations between words. Unlike other traditional bidirectional language

models where the contextual representation of each token is a concatenation of the forward and reverse representations, the

transformer encoder reads the entire sequence of words at once. There are two procedures for constructing a BERT model:

pre-training and fine-tuning.175

For pre-training, the model is trained on unlabeled text data using two unsupervised training strategies. First, BERT proposes

a masked language model, inspired by the cloze task (Taylor, 1953), in which 15% of the input tokens are randomly replaced by

a special placeholder token called “mask.” The model then attempts to predict the original tokens that were masked. Secondly,

BERT adopts next-sentence prediction as part of the training process. This binary task helps the model understand relationships

between sentences by taking in pairs of sentences as input and determining if the second sentence follows the first one in the180

original text.

Following pre-training, the downstream task for fine-tuning in this study involves extracting answers from the context based

on posed questions. In typical applications, BERT models predict where answers start and end in a text by adding a classification

layer known as softmax. The process begins with tokenization, where the text is divided into smaller units called tokens, which

can represent words, phrases, or punctuation marks. Then, the model calculates the probability of each token being the start185

and end of the answer, separately. This allows the model to identify a continuous text fragment as the answer, which is suited

9



for scenarios where a single optimal answer is required. However, the locations affected by a flood event are generally not

unique, and the descriptions of multiple disaster areas in the news may be scattered in discontinuous statements. This requires

a method that can extract multiple answers for our study.

To enhance the model’s ability to manage multiple answers, a BIEO (Beginning, Inside, End, Outside) tagging layer is190

integrated into the input (Li et al., 2019). This modification enables the model to predict one of four possible tags for each

token: “Beginning” for the starting token of an answer, “Inside” for intermediate tokens within an answer, “End” for the final

token of an answer, and “Outside” for tokens that do not form part of the answer. This approach allows the model to recognize

multiple independent answer fragments within a paragraph, because each answer fragment is marked by an explicit start and

end and connected by an intermediate tag. This enhanced capability makes the model exceptionally suitable for complex,195

multi-answer scenarios like analyzing fragmented disaster reports. Figure 3 shows the overall structure of the model used in

this present study. Here, the context and query processed through the BIEO tagging layer, and their semantic information

is learned via the BERT structure. Finally, the probabilities that each token belongs to BIEO of the answer are determined

through a linear layer and softmax function. The BERT-base model was fine-tuned for three epochs (i.e., the number of

times the entire training dataset is passed through the model during the training process) with a learning rate (i.e., a200

hyperparameter that controls the step size at each iteration while moving toward a minimum of the loss function) of

5× 10−5 and a batch size (i.e., the number of training examples used in one iteration of the model) of 8, which were

determined to be the most effective combination among the tested settings. Results of other combinations can be found in

Table A1 in Appendix.

To build the set of urban flooding events, the output of the BERT model needs to be further confirmed and collated. The first205

step was to check whether the news contained a flooding event. If the answer to Question 1, “What hazard happened,”contains

the keywords “flood” or “flood disaster” and does not contain the words “will,” which indicates the forecast, the news sample

is considered to describe a flood disaster event. As the long text news was split into different samples in the pre-processing

procedure, the news could be confirmed as long as one of the answers of multiple samples belonging to the same news met

the conditions. For time information, once the answer to Question 1 was confirmed to be a urban flood event, then the answer210

to Question 2 was the time of the flood, and the year information is the year of the news release if the answer did not include

the year. For location information, similar to confirming time information, if the answer to Question 1 is confirmed, then the

answer to Question 3 contains the flood locations.

To evaluate the impact of training data selection on model performance, we also conducted several cross-validation

experiments. First, we combined the original training set and validation set to form a comprehensive dataset containing215

all annotated samples, totaling 503 samples. In each iteration of the cross-validation, we randomly shuffled the compre-

hensive dataset using different random seeds to ensure data order diversity and experiment reproducibility. Specifically,

in five iterations, we set different random seeds (from 0 to 4) and used Python’s random module to shuffle the data.

After each random shuffle, we selected the first 402 samples (consistent with the size of the original training set) as

the new training set. By keeping the training set size consistent, the differences in model performance were solely due220

to the selection of training data, rather than changes in data size. Then, the BERT model was fine-tuned on each new
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Figure 3. The structure of the BERT model proposed in this study. [CLS] and [SEP] are special markers that identify the beginning and end

of the input text. [CLS] stands for “classification”, and adding a [CLS] token at the beginning of the input text allows the model to learn a

representation for the whole sentence. [SEP] stands for “separator”, used mainly to separate different sentences or pieces of text. The Trm

inside BERT represents the transformer architecture.

training set and the Friedman test was used to assess the statistical significance of performance differences between

different fine-tuned models.

3.3 Urban Flood Location Recognition

The flood location answers output by the BERT model typically include cities, counties or districts, and in some cases, specific225

streets or buildings. Additionally, in most answers, there is not only the name of the place itself but also the characters before

or after it (e.g., “it occurred in Hangzhou”). Therefore, a BiLSTM–CRF model was adopted to further extract the pure place

names from the answers. BiLSTM is a deep learning model that captures context information from sequence data, while

CRF is a probabilistic graphical model used for sequence labeling that considers dependencies between labels. In the NER

model, a BiLSTM layer is adopted to extract features from the input character vectors. And then, the CRF layer uses the230

output from BiLSTM to compute the most likely sequence of labels considering the dependencies between labels. The model

was trained using the MSRA named entity recognition corpus, a widely used dataset developed by Microsoft Research Asia,

which contains a large amount of annotated Chinese sentences with named entities such as location names, person names,

and organization names. The model framework used in this present study is detailed in Fu et al. (2022). Then, the spatial
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information was standardized by using county/district names (in China, counties and districts are the same administrative level235

and both included in cities).

After identifying the flood locations, it was essential to verify and revise the list of places in accordance with the

latest national administrative divisions. Because the data spans from 2000 to 2022, it includes periods during which

several regions in China underwent administrative adjustments or renaming. To ensure accuracy and relevance when

associating these locations with the administrative division shapefile for spatial visualization in ArcGIS, the changed240

names of districts or counties should be checked to reflect the current administrative divisions. This step was crucial for

maintaining consistency and ensuring that the visualizations accurately represent the latest geographical boundaries.

After that, flood locations were matched with the administrative division shape file and visualized using ArcGIS.

3.4 Evaluation Metrics

In this study, two evaluation metrics were used to assess the effectiveness of (i) flood event detection and (ii) flood information245

extraction. These metrics are common across a number of disciplines, yet use different names (Brooks et al., 2024). Initially,

the identification of flood events was treated as a classification problem, using precision, recall, and the F1 score to evaluate

the accuracy of predictions. The metrics were calculated as:

Precision=
TP

TP +FP
(1)

250

Recall =
TP

TP +FN
(2)

F1score=
2×Precision×Recall

Precision+Recall
(3)

For the computation of these indexes, Table 3 explains the classification outcomes in terms of True Positives (TP), False

Positives (FP), False Negatives (FN), and True Negatives (TN). Among the metrics, precision is defined as the ratio of correctly255

predicted flood news to all predictions labeled as flood events. Recall measures the proportion of correctly predicted flood news

out of all actual flood events. F1 score combines precision and recall scores as the harmonic mean, providing a balanced view

of the model’s performance. A higher F1 score indicates superior model performance.

Furthermore, for the extraction of urban flood event information, two matching criteria were applied (Rajpurkar et al., 2016).

The first index is called exact match (EM), which measures the matching degree between the prediction and ground truths. The260

score is 1 for the EM of both the time and location information extracted. Otherwise, the score is 0. There is usually more

than one disaster location in one flood event and maybe the model can output several but not completely accurate locations.

Therefore, a fuzzy match was used to evaluate the location extraction using precision, recall, and F1 score. Unlike the classical

formula, the precision and recall were calculated as:

Precision=
P

M
, (4)265

12



Table 3. Classification outcomes for flood identification

True

Condition

Prediction

Result
Label

Flood Flood True Positive (TP)

Flood Non-flood False Negative (FN)

Non-flood Flood False Positive (FP)

Non-flood Non-flood True Negative (TN)

Recall =
P

N
, (5)

where P represents the number of accurately extracted flood locations, M is the total number of predicted flood locations, and

N is the total number of actual flood locations observed in the texts. The F1 score was computed using the classical formula as

Equation 3, providing a balanced view of the quality and completeness of the predicted locations.270

4 Results

The results section consists of three primary parts. Section 4.1 evaluates the BERT model’s performance using different metrics.

Section 4.2 shows the comparison between the number of floods extracted from news and the China Flood and Drought Bul-

letin. Section 4.3 presents the content of the news-based urban flood dataset and the analysis of spatiotemporal characteristics

from both natural and societal perspective.275

4.1 The Performance of The BERT Model

The effectiveness of flood-event recognition and flood-information extraction is presented in Table 4. The BERT model demon-

strates excellent performance in identifying whether an event is a flood, achieving an impressive F1 score of 0.98. On the other

hand, the overall performance of flood-information extraction is satisfactory, with an F1 score of 0.86 for location extraction

and an EM of 0.82 for both time and location extraction. The high F1-score and EM values (over 0.80) demonstrate that280

integrating domain-specific knowledge enabled the model to respond to questions about flood information.

The performance of the BERT model in this study is competitive within the broader field of information extraction and

Chinese NLP. For example, Yang et al. (2022) employed a BERT-based model for Chinese named entity recognition (NER)

and achieved F1 scores of 94.78% on the MSRA dataset and 62.06% on the Weibo dataset, a Chinese social media platform. The

stark difference in performance underscores the challenges of semantic understanding in less structured media data compared285

to more formal datasets like MSRA. Similarly, Kim et al. (2022) developed a BERT-based question answering method for

extracting infrastructure damage information from textual data, achieving F1-scores of 90.5% and 83.6% on hurricane and

earthquake datasets, respectively.
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Table 4. The performance of the BERT model (EM index was not applied to evaluate event identification)

Precision Recall F1-score EM

Flood-event identification 0.98 0.98 0.98 N/A

Flood-information extraction 0.96 0.78 0.86 0.82

The cross-validation experiments yielded consistent model performance across different training data selections.

Table 5 summarizes the F1-score and EM of flood-information extraction for each model. To statistically assess the290

differences among the models, we conducted the Friedman test. The test resulted in a p-value of 0.38, indicating that

there are no statistically significant differences in performance among the models (p > 0.05). This suggests that the

model is robust and the training data selection in current study is appropriate.

Table 5. Performance metrics for each cross-validation experiment

Model F1-Score EM

Model 1 85.854 81.121

Model 2 86.870 82.431

Model 3 87.017 83.617

Model 4 85.862 81.280

Model 5 85.933 81.423

4.2 Comparison of The Urban Flood Information

To evaluate the news-based flood dataset, a comparative analysis was conducted using records from the China Flood and295

Drought Bulletin. The comparison of annual flooded cities from the China Flood and Drought Bulletin with those identified

in news sources between 2006 and 2018 is displayed in Figure 4(a). In addition, the year-on-year difference in the number

of flooded cities between the two datasets was visualized to provide a more intuitive representation of interannual variations.

As shown in Figure 4(b), the trend of the news-based dataset closely follows the overall temporal pattern observed in the

China Flood and Drought Bulletin. This suggests that the dataset created in this present study can reliably reflect changes in300

flood events across different regions, though news media consistently underestimate the number of cities affected by floods.

Identifying specific biases is challenging because the China Flood and Drought Bulletin provides only the total number

of flooded cities, without listing inventory of specific locations. This limitation makes it impossible to pinpoint which

specific events or regions are underreported in our dataset. However, we can hypothesize that the biases stem from the

intrinsic characteristics of news data.305

Some previous studies have also reflected the bias of developing disaster catalogs with reports (Gall et al., 2009;

Delforge et al., 2023). From the perspective of media communication studies, agenda-setting theory posits that by

choosing which events to report on, the media effectively signals to the public which issues are important (Leidecker-
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Sandmann et al., 2023). Through the quantity and depth of coverage, the media can shape the level of public attention

given to certain events. In the context of disaster reporting, the government may influence the direction of media cover-310

age to control public attention on specific disasters (Bai, 2022). For example, during the COVID-19 pandemic, research

on government crisis communication showed that media agenda-setting was significantly influenced by government

press conferences (Hayek, 2024). Crisis communication theory further explains the government can swiftly steer public

opinion in the aftermath of a disaster, reducing the spread of negative emotions and maintaining social stability (Zhou

et al., 2023). As a result, the variability in disaster reporting by the media may be influenced by multiple factors, in-315

cluding government policies, public interest, and the media’s own resource allocation, leading to a situation where the

volume of media reports is not necessarily consistent with the actual number of disaster events.

Figure 4. The comparison between the number of flooded cities extracted from news and China Flood and Drought Bulletin for each year.

(a) The time series of both datasets; (b) year-over-year changes in both datasets, the y-axis showing the difference in values from the previous

year. Positive bars indicate an increase compared to the prior year, whereas negative bars represent a decrease.
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4.3 The Urban Flood Dataset

After using a mixed strategy on the accuracy evaluation of the news-based flood information, this section introduces the

temporal and spatial distributions of the national urban flood dataset. The dataset records urban flood events reported in320

news articles from 2000 to 2022, including the timing of these events at the day level and the affected areas at the

county level. Currently, the dataset records a total of 2051 counties affected by flood disasters during these years, with a total

occurrence of 7595 times. Section 4.3.1 presents the temporal distribution, which shows the monthly changes in the number

of news articles about urban floods and the number of flood events in county-level regions. Section 4.3.2 shows the spatial

distribution of the total number of floods in county-level regions, along with the trend of floods from natural and societal325

perspectives.

4.3.1 Temporal Distribution of Flood Events

Figure 5 shows the temporal distribution of historical flood locations in China from 2000 to 2022. It displays the flood oc-

currence each month of every year, with darker colors indicating more frequent floods. The comparison of monthly flood

occurrences across different years shows little variation, which reveals an evident seasonal cycle. The summer months (June–330

August) experienced a higher occurrence of flooding, accounting for 74% of total flooding events. In contrast, the winter season

(December–February) which recorded few flood events, only accounted for 1%. This is impacted by the seasonality for precip-

itation to be concentrated in the summer. The seasonal characteristics are consistent with the findings of Xu and Tang (2021)’s

analysis of multi-disaster data from 2011 to 2019 in China, which showed that floods predominantly occurred from April to

September, with the highest frequency in July.335

Over these years, the total number of flood events per year did not show a continuous increase but rather a rise and fall, with a

peak in 2010. This pattern is consistent with the trends observed in the China Flood and Drought Bulletin (Figure 4). Data from

the early 2000s show a notably low occurrence of flood events due to a low volume of news data. Excluding this minimum, the

year 2003 emerges as having the least number of flood events. The year 2010 stood out with the highest occurrence of floods,

significantly impacting 525 counties. After 2010, excluding the impact of peak values, the overall trend shows a slight increase340

again.

4.3.2 Spatial Distribution of Flood Events

Figure 6(a) illustrates the spatial distribution of accumulated flood frequency at the county level across China from 2000 to

2022. Using the natural breaks classification method, flood frequency is divided into five levels (0, 1–5, 5–9, 9–13, 13–22).

Level 2 counties represent the largest proportion (55%), followed by Level 1 (29%) and Level 3 (11%), while Levels 4 and 5345

have notably lower proportions (4% and 1%, respectively). Flood events have occurred in the majority of county areas across

China, with affected areas covering approximately 46% of the nation’s total land area. Regions with the most frequent floods,

represented by Levels 4 and 5, are concentrated in the southwestern interior (e.g., Sichuan Province), the northwest (e.g., Gansu

Province), and the southern coastal regions, including Guangdong, Fujian, and Guangxi provinces. This distribution pattern
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Figure 5. A heat map showing in each cell the number of flood occurrence for each month and each year.

aligns with findings from Liang et al. (2019), whose historical meteorological data analysis identified a higher flood frequency350

in southern provinces, particularly Guangdong, Hainan, Guangxi, and Fujian.

The province with the most floods was Guangxi, with 960 reported flood events. Guangxi is located in the southwest of

China, between 20◦54′–26◦23′N, 104◦29′–112◦04′E, in the South Asian tropical monsoon climate zone (Nie et al., 2012; Gao

et al., 2020b). The region is characterized by high temperatures, a long summer, short winter, and distinct wet and dry seasons.

The annual average temperature is 22.5°C, and the annual average precipitation is 1806 mm (Qiu et al., 2021). Studies indicate355

that Guangxi experienced flood disasters caused by heavy rainfall frequently (Li et al., 2023; Ma et al., 2023). Qin et al. (2021)

found an increase in flood hazards in Guangxi since the 1990s and predicted that future precipitation in the region would be

more intense.

To further explore the spatial characteristics of urban floods in China from a natural perspective, an analysis was conducted

on their distribution across different climate zones, incorporating the Theil-Sen estimator for robust trend detection. The Theil–360

Sen estimator is a non-parametric method that calculates the slope among points, offering a robust way to track changes in flood

occurrences over time (Kemter et al., 2023). Figure 6(b) offers the spatial distribution and trend of flood occurrence concerning

China’s diverse climate zones. The subtropical zones, specifically the South Subtropical Zone (IV), North Subtropical Zone

(V), and Central Subtropical Zone (III), are characterized by a higher frequency of flooding, with 1336, 1597, and 3222,

respectively. These zones, which endure the bulk of flood events, exhibit contrasting trends. Whereas the South Subtropical365

Zone (IV) indicates a trend towards an increase in flood events, the Central Subtropical Zone (III) and the North Subtropical

Zone (V) show a slight decrease, highlighting the non-monotonic nature of flood trends across climatic gradients. In addition,

the South Temperate Zone (I) displays a relatively higher frequency and an increasing trend of flood events. Conversely, the
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North Temperate Zone (VII), the Central Tropical Zone (IX), and the Plateau Climate Zone (II) experience a minimal frequency

of flood events and a near-zero trend coefficient, suggesting a relatively lower impact of flooding.370

In addition, to analyze the relationship between flood changes and societal characteristics, Figure 7 uses average an-

nual Gross Regional Product (GRP) in billion USD and population density in people per square kilometer as base maps

to display the distribution of flood trends across different regions, with darker shades indicating higher values. Overall,

most provinces exhibit an increasing trend in flood events, particularly in the northern, and western regions of China.

These areas, including provinces such as Heilongjiang, Shandong, and Chongqing, are characterized by varying levels375

population density, both higher and lower, according to Figure 7(a). The provinces that exhibit a decreasing trend in

flood events are primarily located in the central and southeastern regions, particularly in provinces like Jiangsu, Fujian,

and Guangdong, which are notable for their higher population densities. This suggests that the rising flood events are

not strictly tied to population density.

As for the trends in relation to economic output in Figure 7(b), the provinces with increasing flood trends are mostly380

those with lower to moderate GRP, such as those in the northern and western parts of China, despite Shandong and

Zhejiang. These regions may not have received the same level of economic investment in flood control infrastructure

as the more developed eastern provinces, which might explain the rising trend in flood events. On the other hand, the

central and eastern provinces showing a decreasing trend, such as Jiangsu, Guangdong, and Sichuan, are among the

most economically developed in China. This suggests that the availability of economic resources has allowed for more385

comprehensive flood management strategies, reducing the frequency of flood events in these areas.

(a) (b)

Figure 6. Spatial distribution of flood occurrences and trends in China (2000–2022) (a) The accumulated flood occurrences at the county

level. (b) The accumulated flood occurrences and trends across different climate zones, where Roman numerals denote the climate zones.

Triangles indicate trends: downward triangles represent decreases, and upward triangles represent increases, with the size corresponding to

the trend value.
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(a) (b)

Figure 7. The analysis of flood event trends across Chinese provinces from 2000 to 2022, shown in relation to (a) population density and (b)

Gross Regional Product (GRP). Triangles indicate trends: downward triangles represent decreases, and upward triangles represent increases,

with the size corresponding to the trend value.

5 Discussion

The discussion section consists of two primary parts. Section 5.1 summarizes the main findings of our study, and Section 5.2

explains the limitations and outlines potential directions for future research.

5.1 Main Findings390

The dataset created in this study serves as the first county-level urban flood inventory across China from 2000, addressing

a gap in existing datasets that often fail to provide county-level flood distributions or coverage across the country. While

China Flood and Drought Bulletin offers authoritative data on flood disasters, focusing on economic losses, casualties, and

agricultural damages at the provincial level, it lacks detailed inventories for specific cities. Our dataset shows trends that are

largely consistent with those reported in the China Flood and Drought Bulletin, indicating that it can reliably reflect changes395

in flood events across different regions. This dataset’s county-level granularity also allows for resampling and aggregation to

city or provincial levels, facilitating deeper analyses of flood dynamics and influencing factors at different spatial scales.

Understanding flood patterns derived from media information reveals both natural and social dimensions. The temporal

trends observed in our dataset are influenced not only by environmental factors, such as the increase in extreme rainfall events

(Wu et al., 2021; Kong et al., 2021; Kundzewicz et al., 2019) and urbanization (Huong and Pathirana, 2013; Luo and Zhang,400

2022; Rentschler et al., 2023), but also by the evolving nature of news media. According to Kron et al. (2012), creating a

comprehensive hazard dataset is challenging due to inconsistent definitions and varying scales of reporting. The framing of

news reports can significantly affect the perceived frequency and types of flood events (Bohensky and Leitch, 2014). Thus,
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while floods are natural phenomena, the reporting and societal perception of flood disasters introduce complexities that can

lead to distinct trends.405

From a spatial perspective, our study discusses flood trends in relation to both natural and societal features. Overall, the

southern and eastern regions of China are more affected by flooding, which is consistent with previous findings in flood risk

and peak precipitation distribution (Sun et al., 2024; Gao et al., 2020a). Specifically, subtropical regions received the most

frequent flood events in this study. Subtropical regions with their high temperatures and high humidity, particularly during

summer and autumn, are especially prone to short-term heavy precipitation caused by convective activities (Li et al., 2022;410

Kotz et al., 2023). These climatic conditions make subtropical zones the primary contributors to the overall flood event count

in China.

Regarding the societal aspects, several provinces with high population densities and significant economic development,

specifically Jiangsu and Guangdong, exhibit a decreasing trend in flood events. These regions have experienced a high number

of flood events over these years, with a notable peak around 2010. The decrease in floods since may be related to this peak.415

Additionally, as regions frequently affected by flooding and characterized by high economic output and population density,

substantial investments in flood management infrastructure and policies may have been made, also contributing to the ob-

served decline in flood events. Jia et al. (2022) have highlighted the investments in flood management infrastructure in China’s

economically developed regions. They compared the 1998 and 2020 floods in the Yangtze River Basin regions, which are eco-

nomically developed regions in China. Their analysis reveals that improvements in risk management, including engineering420

defenses, environmental recovery, forecasting and early warning, and emergency response have led to a substantial reduction

in flood disaster losses in Yangtze River Basin regions.

5.2 Limitations and Future work

Despite the valuable insights provided by the spatial and temporal analysis in this study, there are several notable limitations.

Although thorough double-checking was conducted during the data preparation phase, the possibility of biases remains due to425

subjective differences in interpretation. Future research could incorporate language models for correlation analysis or involve

more domain experts to cross-validate the accuracy of the results. On the other hand, our dataset contains information solely on

the timing and names of the affected areas, lacking critical details such as the spatial extent, water volume, flood types, causes,

damages, or multi-hazard information. This limitation arises from the nature of our data source, as we relied on news reports

rather than scientific papers, which typically include such quantitative details. To address this limitation, additional data sources430

should be introduced, such as disaster yearbooks from each province or city, to enrich the dataset with more comprehensive

flood event details, particularly multi-hazard information.

Recognizing that urban flooding often occurs in conjunction with other disasters, recent studies have attempted to extract

multi-hazard information from news media reports. However, most of these studies use rule-based methods for classification,

rather than analyzing causal relationships between disasters or subdividing floods into specific types. For instance,Yang et al.435

(2023a) applied a rule-based approach to extract 15 types of disaster information from news texts, categorizing reports based

on specific disaster terms and matching location information using prefecture-level administrative names. Similarly, Liu et al.
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(2018) used keyword positioning and rule-based named entity recognition (NER) to identify disaster types and locations in

news reports. In both cases, a report mentioning multiple disaster types is considered indicative of multi-disaster co-occurrence,

but this approach can introduce biases if the mentioned hazards are unrelated. Future research should explore the use of lan-440

guage models to enhance extraction of diverse flood types and related hazards from news data, potentially increasing accuracy

by identifying causal links.

Furthermore, the approach used in the present study also has its limitations. We employed a BERT model fine-tuned by a

Chinese corpus for question-answering tasks, which has proven efficient in information extraction. However, with the rapid

advancement of large language models (LLMs), newer models such as GPT series offer significant improvements in natural445

language processing tasks. For example, Colverd et al. (2023) successfully used several LLMs, including GPT-3.5, GPT-4, and

PaLM-Text-Bison, to generate flood disaster impact reports by extracting information from the web, finding strong correla-

tions between LLM-generated and human-authored reports. Additionally, Hu et al. (2023) proposed a method that combines

geospatial knowledge with GPT models to extract location descriptions from disaster-related social media posts, achieving

a 40% improvement over traditional NER approaches. Given these advancements, future research should explore the use of450

LLMs to extract nuanced information from flood-related text data, which includes distinguishing flood types, causes, and the

specific losses associated with each flooding event. On the other hand, BERT models require language-specific fine-tuning,

which can limit adaptability across languages. In contrast, LLMs that adopt a zero-shot strategy (i.e., direct application

without the need for fine-tuning) may solve the transferability problem.

6 Conclusions455

This study developed the first county-level urban flood inventory across China from 2000 to 2022 by leveraging news reports

and employing a fine-tuned BERT model for flood-event recognition and information extraction. The BERT model demon-

strated excellent performance, achieving an F1 score of 0.98 in flood-event identification and an F1 score of 0.86 in flood-

information extraction. Although the model we trained cannot be directly transferred to regions with different languages, the

developed technical approach can be applied in any region and serves as a reference.460

The established dataset consists of records from 2048 counties affected by flood disasters between 2000 and 2022, with

a total number of 7559 events, covering approximately 46% of China’s total land area. Our dataset shows trends largely

consistent with those reported in the China Flood and Drought Bulletin, indicating that it can reliably reflect changes in flood

events across different regions, despite some underestimation due to biases inherent in news reporting.

Building on the insights from the dataset, this study further examines the temporal and spatial patterns of urban flood465

occurrence in China. Temporally, the total flood occurrence from 2000 to 2022, excluding the influence of peak year, shows an

upward trend. The peak in flood occurrence was identified in 2010, when 525 counties were affected. In addition, the seasonal

characteristics shows that the rainy climate in summer leads to summer floods accounting for 74% of the total.

Spatially, urban flood occurrence was decreased from southeast to northwest and most of the provinces exhibit an increasing

trend. The southeastern coastal regions like Guangdong Province, Fujian Province, and Guangxi Province and the southwest470
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of interior China like Sichuan Province, are the most frequently flooded areas. Additionally, most of the subtropical zones

across China experienced more floods than other climate zones. From the societal perspective, some economically developed

provinces with high population densities, such as Jiangsu and Guangdong, show a decreasing trend in flood events, possibly

due to investments in flood management infrastructure.

In summary, this study provides critical insights into urban flooding patterns, though limitations remain. Our dataset lacks475

detailed quantitative data on flood extent and damages due to the reliance on news reports. Integrating additional sources, such

as provincial disaster yearbooks, could enrich this dataset. Furthermore, future research should explore advanced language

models like LLMs to enhance accuracy in extracting flood types, causes, and impacts, offering improved adaptability and

insights for multi-hazard analysis.

Data availability. The national flood dataset created in this present study is accessible on Zenodo and the DOI is 10.5281/zenodo.14000094.480

The BERT model used in this study was based on pre-trained weights from Google’s BERT repository (https://storage.googleapis.com/

bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip). The following key libraries and tools were used: TensorFlow (v1.12), NumPy,

Pandas and Scikit-Learn. Readers can retrieve the news using the query as we described in Section News data and download the data

according to the data management rules of the WiseNews platform. The population used in this study was provided by Landscan (https:

//doi.org/10.48690/1529167) and the GRP data was from China Statistical Yearbook. The code, trained model and the annotated flood-related485

corpora is available from the corresponding author upon request.

Appendix A: Appendix

Table A1 shows the F1 score values used to evaluate BERT model performance during the hyperparameter tuning process, with

a different calculation method from the main text. Precision and recall are calculated as:

Precision=
O

L
(A1)490

Recall =
O

S
(A2)

O is defined as the maximum overlapping character length between the model’s output and the standard annotated answer, L is

the length of the output answer and S is the length of the standard answer. Finally, the F1 score is refer to Formula 3 in Section

3.495
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Table A1. The performance of BERT model with different hyperparameters during fine-tuning process

Learning rate Batch size F1 score

1× 10−5 4 83.35

1× 10−5 8 81.86

5× 10−5 4 83.81

5× 10−5 8 84.82
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