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Abstract. Ecosystem Water Use Efficiency (WUE) is pivotal for understanding the carbon-water cycle interplay. Current 

research seldom addresses how WUE might change under future elevated CO2 concentrations, limiting understanding of 

regional ecohydrological effects. We present a land-atmosphere attribution framework for WUE in the Yellow River Basin 

(YRB), integrating the Budyko model with global climate models (GCMs) to quantify the impacts of climate and underlying 

surface changes induced by CO2. Additionally, we further quantitatively decoupled the direct and secondary impacts of CO2 10 

radiative and biogeochemical effects. Attribution results indicate that WUE in the YRB is projected to increase by 0.36-0.84 

gC·kg-1H2O in the future, with climate change being the predominant factor (relative contribution rate of 77.9-101.4%). How-

ever, as carbon emissions intensify, the relative importance of land surface changes becomes increasingly important (respective 

contribution rates of -1.4%, 14.9%, 16.9%, and 22.1% in SSP126, SSP245, SSP370, SSP585). Typically, WUE is considered 

a reflection of an ecosystem's adaptability to water stress. Thus, we analyzed the response of WUE under different scenarios 15 

and periods and various drought conditions. The results show a distinct "two-stage" response pattern of WUE to drought in 

the YRB, where WUE increases under moderate-severe drought conditions but decreases as drought intensifies across most 

areas. Furthermore, GCM projections suggest that plant adaptability to water stress may improve under higher carbon emission 

scenarios. Our findings enhance understanding of regional ecohydrological processes and provide insights for future 

predictions of drought impacts on terrestrial ecosystems. 20 

1 Introduction 

Ecosystem water use efficiency (WUE) is commonly defined as the ratio of the ecosystem's gross primary productivity (GPP) 

to water evapotranspiration (ET), i.e., 𝑊𝑈𝐸 = 𝐺𝑃𝑃/𝐸𝑇, which reflects the carbon gain per unit of water lost (Keenan et al., 

2013; Li et al., 2023; Naeem et al., 2023). This metric couples the water and carbon cycle processes, serving as a key 

characteristic indicator for ecosystem function (Liu et al., 2020). Investigating the spatiotemporal characteristics and driving 25 

factors of WUE holds substantial practical importance for exploring the response mechanisms of ecosystems under changing 

environmental conditions (Huang et al., 2017; Tan et al., 2023; Zhou et al., 2017). 

The increase in atmospheric CO2 concentrations brings profound impacts on regional WUE, GPP, and ET through radiative 

effects and biogeochemical effects (Naeem et al., 2023; Yang et al., 2022). The interactions between land and atmosphere 
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further complicate the changes associated with rising CO2 levels (De Kauwe et al., 2021; He et al., 2023; Zhan et al., 2022). 30 

Regarding radiative effects, elevated CO2 directly affects hydro-atmospheric processes, altering global and regional 

precipitation and evaporation patterns (Bintanja and Andry, 2017; Gu et al., 2023b; Yin et al., 2018). The biogeochemical 

effects are primarily manifested in the impacts of CO2 fertilization and changes in plant stomatal conductance on the underlying 

vegetation structure. Fertilization effect refers to the increased CO2 concentrations enhancing photosynthesis rates, thereby 

increasing vegetation productivity and promoting plant growth (Chen et al., 2024; Sun et al., 2018). He et al. (2023) 35 

demonstrated that CO2 was the dominant driver of the increase in forest carbon sinks over the past decades. The growth in 

plant biomass can lead to an increase in evapotranspiration (Xie et al., 2020). However, elevated CO2 concentrations can also 

contribute to a reduction in leaf stomatal conductance, potentially resulting in a decrease in transpiration (De Kauwe et al., 

2021; Zhu et al., 2011). Beyond these direct climatic changes through radiative and direct biogeochemical effects on the land 

surface, the climate and land surface are also subject to secondary effects. For example, climate change can further impact 40 

vegetation cover (Berg et al., 2017); changes in the structure of surface vegetation will alter the water-energy exchange process, 

thereby affecting precipitation and other processes (Zhou et al., 2022). Few studies have focused on the relative contributions 

of CO2's direct and secondary effects on WUE. However, understanding these contributions is crucial for exploring the 

mechanisms of WUE changes and accurately predicting future changes in WUE. 

Conducting a joint analysis of hydrological variables using conceptual models and Global Climate Models (GCMs) serves as 45 

an effective method for attributing land-atmosphere processes (Zhou et al., 2023). Since its inception, the Budyko model 

(Budyko, 1974) has been extensively employed to evaluate the relationships between water-energy exchanges and changes in 

surface characteristics under different climate scenarios (Fang et al., 2020; Fathi et al., 2019; Roderick and Farquhar, 2011). 

As a conceptual framework, the Budyko model is characterized by its simplicity and excellent performance, elucidating the 

relationship between ET/P (evapotranspiration/ precipitation) and PET/P (potential evapotranspiration/ precipitation) (Cheng 50 

et al., 2011; Choudhury, 1999; Xu et al., 2022). Yang et al. (2015) applied the Budyko framework to the carbon cycle, revealing 

the relationship between GPP and energy exchange. Fang et al. (2020) explored the relationship between GPP, WUE, and 

water-energy relations in semi-arid basins through the Budyko model, investigating the correlations between WUE and 

underlying surface parameters. Despite previous efforts to extend the scope of the Budyko model from water-energy relations 

to water-carbon-energy relations, there have been little descriptions of how these relationships may change in the future, as 55 

well as the relative contribution of elements to the studied variables. 

The complexity of drought events can have significant impacts on regional economy and environment (Yin et al., 2023; Yuan 

et al., 2023). Variations in WUE under drought conditions have been recognized as an indicator of ecosystems' adaptability to 

drought stress (Huang et al., 2017; Ponce-Campos et al., 2013). Ponce-Campos et al. (2013) suggested that ecosystems 

increased their WUE in response to water stress. However, observations have shown considerable variability in WUE 60 

responses to drought events across different regions (Huang et al., 2017; Lu & Zhuang, 2010; Wang et al., 2021; Xie et al., 

2016; Yang et al., 2021). This indicates the need for more in-depth research into WUE-drought relationship. According to 

Pokhrel et al. (2021), under the context of climate change, the risk of drought in most regions worldwide is expected to continue 
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increasing, which raises the question of how WUE will respond to drought in the future. This study aims to explore the future 

response mechanisms of WUE to drought to better assess the resilience of ecosystems under climate change. The terrestrial 65 

water storage anomaly (TWSA) based drought severity index (TWSA-DSI) has been widely used in drought monitoring and 

analysis (Yin et al., 2022, 2023; Zhao et al., 2017). This index effectively monitors regional drought characteristics and 

development paths (Yin et al., 2022). Compared to other traditional drought indicators such as Palmer drought severity index 

(PDSI), soil moisture drought index (SMI), standardized precipitation index (SPI), standardized runoff index (SRI), etc., 

TWSA-DSI is better able to detect overall regional drought conditions and to explore the effects of drought on hydrological 70 

systems and vegetation growth (A et al., 2017; Du et al., 2019; Zhao et al., 2017) This study chooses to use TWSA-DSI to 

identify regional drought events, allowing for a more nuanced understanding of how WUE may adapt or respond to these 

conditions in various ecosystems. 

The Yellow River Basin (YRB) is an important basin in China, situated in the arid and semi-arid regions. The ecosystem within 

the basin is complex and vulnerable to drought (Huang et al., 2015). Changes in the ecohydrological processes of the YRB in 75 

the future will profoundly impact China's socio-economic development. This paper selects the YRB as the study area, trying 

to deepen the understanding of the spatiotemporal variation mechanisms of WUE in this region. This study aims to answer the 

following three research questions over both historical and future time scales: 

(a) What changes will occur in the spatiotemporal distribution of WUE within the basin? 

(b) How can the impact of elevated atmospheric CO2 concentrations on WUE changes be quantitatively explained? 80 

(c) How does the response mechanism of WUE to drought within the basin evolve under future scenarios? 

The reminder of this paper is organized as follows. Section 2 describes the study area and the data used. Section 3 defines the 

methodology. Section 4 and Section 5 gives the results and discussion of the study, respectively. Finally, Section 6 concludes 

the paper. 

2 Study area and data 85 

2.1 Study area 

The Yellow River is the second longest river in China and the fifth longest river in the world, with a total length of about 5,464 

kilometers. The YRB (95°E-119°E, 32°N-41°N) is the second largest drainage basin in China (Figure 1), with an approximate 

area of 795,000 km2 (including 42,000 km2 inland flow area). The YRB spans the Tibetan Plateau, the Inner Mongolian Plateau, 

the Loess Plateau and the North China Plain. The average altitude of the basin exceeds 3,000 m, and the terrain becomes 90 

progressively lower from west to east. The sub-basins are characterized by a wide range of climatic and geomorphologic 

variations. Overall, the basin has a largely semi-humid climate in the southeast, an arid/semi-arid climate in the center and the 

northwest. The YRB is one of the earliest origins of human civilization, and the Yellow River is also known as the "Mother 

River" of China. The YRB has a population of more than 120 million people, a gross national product of about eight trillion 

RMB (≈1.1 trillion USD), and a cultivated agricultural area of about 200,000 km2. The YRB has been regarded as one of the 95 
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most important basins in China because of its important role in socio-economic development, ecological resource protection 

and agricultural food production. 

 

Figure 1. Location and topography of the YRB. 

2.2 Data collection 100 

2.2.1 Climate and GPP data 

The monthly precipitation, potential evapotranspiration, evapotranspiration and GPP dataset during 1997-2016 were both 

retrieved from National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/). The precipitation and potential 

evapotranspiration dataset are based on the Climate Research Unit (CRU) TS v.4.02 dataset and WorldClim v.2.0 data to 

generate data with high spatial resolution and accuracy (Ding and Peng, 2020, 2021). The evapotranspiration dataset employed 105 

a calibration-free nonlinear complementary relationship model and the evaluation suggests that the evapotranspiration dataset 

has a good performance (Ma et al., 2019; Ma and Szilagyi, 2019). The GPP dataset was developed based on the satellite-based 

near-infrared reflectance of vegetation (NIRv) (Wang et al., 2021). The accuracy and reliability have been validated by many 

studies (Cai et al., 2023; Feng et al., 2023; Li et al., 2023; Peng et al., 2023; Xing et al., 2023). For consistency, the above data 

were bilinearly interpolated to 0.25°×0.25°. To avoid uncertainties introduced by extremely small values, this study calculated 110 

only grid-point monthly WUE with GPP > 10 gC∙m⁻² and ET > 10 mm, following the approach used by Naeem et al. (2023). 

https://data.tpdc.ac.cn/
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2.2.2 Vegetation indicator 

In this study, the normalized difference vegetation index (NDVI) and the leaf area index (LAI) were selected as vegetation 

indicators to characterize the underlying surface conditions. The GIMMS3g NDVI and GIMMS4g LAI data, acquired from 

the Advanced Very High Resolution Radiometer (AVHRR) sensor of NOAA series of weather satellites, provide high 115 

spatiotemporal resolution and high-accuracy observed vegetation indicators (Pinzon and Tucker, 2014; Cao et al., 2023). These 

data are freely available from the website (https://www.earthdata.nasa.gov/; https://zenodo.org/records/8281930). To match 

the other data, the vegetation data were processed into monthly 0.25°×0.25° gridded data. 

2.2.3 TWSA datasets 

To assess long-term changes in drought conditions in the basin, monthly reconstructed TWSA datasets from 1997-2016 were 120 

used in this study (Humphrey and Gudmundsson, 2019). This dataset is based on two different GRACE/GRACE-FO satellite 

products and three different meteorological forcing datasets, producing six reconstructed TWSA datasets with 100 ensemble 

members each. Its performance is effectively validated (Gu et al., 2023; Yin et al., 2023; Zhong et al., 2023). In this study, we 

calculated the mean results of the six datasets and thus bilinearly interpolated them to 0.25°×0.25°. 

2.2.4 GCM output data 125 

In order to project future climate scenarios, we selected seven GCMs in CMIP6 (Table 1). These models were chosen because 

they encompass most, even all of the variables required for our analysis. Furthermore, they incorporate the experimental 

settings needed for our research and integrate the dynamic response of vegetation to climate change. In comparison to CMIP5, 

CMIP6 uses the matrix framework of the Shared Socioeconomic Pathway (SSP) and the Representative Concentration 

Pathway (RCP). In this study, we utilized simulated monthly data for GPP (gpp), evapotranspiration (evspsbl), precipitation 130 

(pr), and terrestrial water storage (mrtws), where the terms in parentheses represent the variable names within CMIP6. These 

data encompassed the historical period (1985-2014) and projected future scenarios including SSP126 (sustainable 

development, 2015-2100), SSP245 (moderate development, 2015-2100), SSP370 (regional rivalry development, 2015-2100), 

and SSP585 (conventional development, 2015-2100). These scenarios represent a range of possible futures, from sustainable, 

low-emission trajectories to high-emission pathways based on varying degrees of socio-economic development and 135 

environmental policy implementation. To assess the impact of rising CO2 concentration on WUE, we also used data from three 

CO2 sensitivity experiments, namely 1ptCO2, 1ptCO2-bgc, and 1ptCO2-rad. In 1ptCO2, the concentration of CO2 in the 

atmosphere increases by 1% per year. In 1ptCO2-bgc and 1ptCO2-rad, the growth rate of CO2 is the same as that in 1ptCO2, 

but ‘-rad’ only coupled with the atmospheric part (CO2 radiative forcing) while ‘-bgc’ only coupled with the land part (CO2 

biogeochemically forcing), and the other part maintained the fixed CO2 concentration level of pre-industrialization. It is notable 140 

that in all three experiments the CO2 concentration rises at the same rate as in SSP585. 

https://www.earthdata.nasa.gov/


6 

 

To obtain the TWSA series from CMIP6, the common practice is to select the same baseline period (2004-2009) as 

GRACE/GRACE-FO satellite data and deduct the series mean value during this period to obtain the TWSA series (Pokhrel et 

al., 2021; Yin et al., 2022). In this study, we also used this method. Since there is no direct output of potential evapotranspiration 

from CMIP6, we used near-surface air temperature, near-surface wind speed, relative humidity, surface pressure, heat flux, 145 

net surface radiation and other data to calculate potential evapotranspiration with the Penman–Monteith equation (Equation 

1), which is the only standard method proposed by the Food and Agriculture Organization of the United Nations (FAO) (Allan 

et al., 1998). All GCM outputs were bilinearly interpolated to a common spatial resolution of 0.25°×0.25°. 

𝑃𝐸𝑇 =
0.408𝛥(𝑅𝑛−𝐺)+𝛾

900

𝑇+273
𝜇2(𝑒𝑠−𝑒𝑎)

𝛥+𝛾(1+0.34𝜇2)
    (1) 

where 𝑃𝐸𝑇 is the potential evapotranspiration (mm), 𝛥 is the slope of the saturation vapor pressure curve at 𝑇 (kPa ℃-1), 𝑅𝑛 150 

is net surface radiation (MJ m-2), 𝐺 is the soil heat flux (MJ m-2), 𝛾 is the psychrometric constant (kPa ℃-1), 𝑇 is the near-

surface air temperature (℃), 𝑢2 is the near-surface wind speed (m s-1), (𝑒𝑠 − 𝑒𝑎) is the vapor pressure deficit (kPa). 

Table 1．CMIP6 GCM s used in this study. The eighth column shows the model outputs for the three CO2 sensitivity experiments 

(1ptCO2, 1ptCO2-bgc and 1ptCO2-rad). GPP、 ET、PET、P and TWSA are represented by red, blue, orange, green and black 

crosses, respectively. 155 

GCMs Variant Label Historical SSP126 SSP245 SSP370 SSP585 CO2 EX. 

CanESM5 r1i1p1f1 ×××× ×××× ×××× ×××× ×××× ×××× 

CESM2 
r1i1p1f1      ××× 

r4i1p1f1 ××× ××× ××× × ×××  

CMCC-ESM2 r1i1p1f1 ×××× ×××× ××× ××× ×××× ×××× 

CNRM-ESM2-1 r1i1p1f2 ××××× ××××× ××××× ××××× ××××× ××××× 

IPSL-CM6A-LR r1i1p1f1 ××××× ××××× ××××× ××××× ××××× ××××× 

MIROC-ES2L r1i1p1f2 ×××× ×××× ×××× ×××× ×××× ×××× 

NorESM2-LM r1i1p1f1 ××× ××× ××× ××× ××× ××× 

3 Methodology 

3.1 Trend-preserving bias correction 

Bias correction is the adjustment of GCM simulation data to reduce their systematic deviation as compared to observations. 

Compared to traditional bias correction methods, the trend-preserving bias correction method enables more robust bias 

adjustments for extremes and more accurately maintains trends across quantiles. The main steps of the trend-preserving bias 160 

correction are as below (Lange, 2019). 

Step 1. Detrend observation data (𝑥ℎ𝑖𝑠
𝑜𝑏𝑠), GCM outputs during historical period (𝑥ℎ𝑖𝑠

𝑠𝑖𝑚), GCM outputs during future period 

or CO2 experiment period (𝑥𝑓𝑢𝑡
𝑠𝑖𝑚) to obtain three new series 𝑥ℎ𝑖𝑠

Dobs, 𝑥ℎ𝑖𝑠
𝐷𝑠𝑖𝑚 and 𝑥𝑓𝑢𝑡

𝐷𝑠𝑖𝑚, respectively. 
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Step 2. Transfer the change signals between the simulation series (𝑥ℎ𝑖𝑠
𝐷𝑠𝑖𝑚 and 𝑥𝑓𝑢𝑡

𝐷𝑠𝑖𝑚) to the observation series (𝑥ℎ𝑖𝑠
Dobs) to 

obtain the pseudo-observation series 𝑥𝑓𝑢𝑡
Dobs. 165 

Step 3. Adjust the distribution of 𝑥𝑓𝑢𝑡
𝐷𝑠𝑖𝑚 based on 𝑥𝑓𝑢𝑡

Dobs by quantile mapping. The formula is as follows: 

𝑥𝑓𝑢𝑡
Dobs = 𝑥ℎ𝑖𝑠

Dobs + (𝑥𝑓𝑢𝑡
Dsim − 𝑥𝑓𝑢𝑡

Dsim) 

Step 4. Add the results from Step 3 to the trend values previously subtracted to get the corrected results. 

This study took into account the variations in the frequency distribution functions of TWSA across different periods, thereby 

implementing corrections for individual months separately. The results indicate that this month-specific correction approach 170 

yields better outcomes than a correction approach that does not differentiate by month. 

3.2 WUE attribution framework 

Many studies applied the Budyko model to isolate the effects of climate change and land surface properties on 

evapotranspiration or runoff at the basin/catchment scale (Roderick & Farquhar, 2011; Yang & Yang, 2011; Xu et al., 2022). 

The general Budyko model contemplates the interconnections and feedbacks between water and energy cycles, while also 175 

considering the impact of basin characteristics. The expression of the model is as follows: 

𝐸

𝑃
= 𝑓 (

𝑃𝐸𝑇

𝑃
, 𝑐)            (2) 

where 𝐸  and 𝑃  respectively represent evapotranspiration (mm) and precipitation (mm);  𝑐  is the basin underlying surface 

parameter. 

In this study, we analyzed the relationship between hydrological elements and vegetation structure. After a selection process, 180 

we employed the linear Budyko function structure for WUE as proposed in previous studies (Cheng et al., 2011; Fang et al., 

2020). The formula is expressed as follows: 

𝑊𝑈𝐸

𝑃
= 𝑓 (

𝑃𝐸𝑇

𝑃
, 𝑚, 𝑛) = 𝑚

𝑃𝐸𝑇

𝑃
+ 𝑛          (3) 

where 𝑊𝑈𝐸 is the water use efficiency (g C/kg H2O); 𝑚 and 𝑛 represent the underlying surface conditions of the basin. The 

Spearman correlation coefficient and its significance were used to study the relationships between variables in Equation (3). 185 

The model regression results and the coefficient of determination (R2) were derived from data analysis to evaluate the accuracy 

of the model. 

To avoid the effects of climate variability and seasonal changes of the basin underlying parameters in the Budyko model, this 

study focused on the time scale of about 30 years (Ning et al., 2019). 

In traditional attribution analysis based on the Budyko model, the total differentiation method is widely used. Therefore, based 190 

on Equation (3), it can be formulated as follows: 

𝑑𝑊𝑈𝐸 =
𝜕𝑊𝑈𝐸

𝜕𝑃
𝑑𝑃 +

𝜕𝑊𝑈𝐸

𝜕𝑃𝐸𝑇
𝑑𝑃𝐸𝑇 +

𝜕𝑊𝑈𝐸

𝜕𝑚
𝑑𝑚 +

𝜕𝑊𝑈𝐸

𝜕𝑛
𝑑𝑛       (4) 

𝜕𝑊𝑈𝐸

𝜕𝑃
= 𝑓 (

𝑃𝐸𝑇

𝑃
, 𝑚, 𝑛) −

𝑃𝐸𝑇

𝑃

𝜕𝑓

𝜕(
𝑃𝐸𝑇

𝑃
)
          (5) 
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𝜕𝑊𝑈𝐸

𝜕𝑃𝐸𝑇
=

𝜕𝑓

𝜕(
𝑃𝐸𝑇

𝑃
)
            (6) 

𝜕𝑊𝑈𝐸

𝜕𝑚
+

𝜕𝑊𝑈𝐸

𝜕𝑛
= 𝑃

𝜕𝑓

𝜕𝑚
+ 𝑃

𝜕𝑓

𝜕𝑛
          (7) 195 

In Equation (5) and (6), the terms on the left side of the equality represent the impact of climate change on WUE. 

Meanwhile, in Equation (7), the term on the left represents the influence of land surface changes. According to Zhou et al. 

(2016), we suppose that there is such an equation that holds: 
𝜕𝑊𝑈𝐸

𝜕𝑚
+

𝜕𝑊𝑈𝐸

𝜕𝑛
= 𝑃𝑑(

𝜕𝑊𝑈𝐸

𝜕𝑃
) + 𝑃𝐸𝑇𝑑(

𝜕𝑊𝑈𝐸

𝜕𝑃𝐸𝑇
). In other words, the 

impact of land surface changes can be represented by the calculated result of 𝑃𝑑(
𝜕𝑊𝑈𝐸

𝜕𝑃
) + 𝑃𝐸𝑇𝑑(

𝜕𝑊𝑈𝐸

𝜕𝑃𝐸𝑇
).The proof proceeds 

as follows: 200 

𝑃𝑑
𝜕𝑊𝑈𝐸

𝜕𝑃
+ 𝑃𝐸𝑇𝑑

𝜕𝑊𝑈𝐸

𝜕𝑃𝐸𝑇
= 𝑃𝑑 [𝑓 −

𝑃𝐸𝑇

𝑃

𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

] + 𝑃𝐸𝑇𝑑 [
𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

] 

= 𝑃 (
𝜕𝑓

𝜕𝑃𝐸𝑇
𝑑𝑃𝐸𝑇 +

𝜕𝑓

𝜕𝑃
𝑑𝑃 +

𝜕𝑓

𝜕𝑚
𝑑𝑚 +

𝜕𝑓

𝜕𝑛
𝑑𝑛) − 𝑃𝑑 [

𝑃𝐸𝑇

𝑃

𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

] + 𝑃𝐸𝑇𝑑 [
𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

] 

= 𝑃 [
𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

𝜕 (
𝑃𝐸𝑇

𝑃
)

𝜕𝑃𝐸𝑇
𝑑𝑃𝐸𝑇 +

𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

𝜕 (
𝑃𝐸𝑇

𝑃
)

𝜕𝑃
𝑑𝑃 +

𝜕𝑓

𝜕𝑚
𝑑𝑚 +

𝜕𝑓

𝜕𝑛
𝑑𝑛] − 𝑃𝑑 [

𝑃𝐸𝑇

𝑃

𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

] + 𝑃𝐸𝑇𝑑 [
𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

] 

= 𝑃 [
1

𝑃

𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

𝑑𝑃𝐸𝑇 −
𝑃𝐸𝑇

𝑃2

𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

𝑑𝑃] − 𝑃𝑑 [
𝑃𝐸𝑇

𝑃

𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

] + 𝑃𝐸𝑇𝑑 [
𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

] + 𝑃
𝜕𝑓

𝜕𝑚
𝑑𝑚 + 𝑃

𝜕𝑓

𝜕𝑛
𝑑𝑛 

=
𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

𝑑𝑃𝐸𝑇 + 𝑃𝐸𝑇𝑑 [
𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

] −
𝑃𝐸𝑇

𝑃

𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

𝑑𝑃 − 𝑃𝑑 [
𝑃𝐸𝑇

𝑃

𝜕𝑓

𝜕 (
𝑃𝐸𝑇

𝑃
)

] + 𝑃
𝜕𝑓

𝜕𝑚
𝑑𝑚 + 𝑃

𝜕𝑓

𝜕𝑛
𝑑𝑛 205 

= 𝑑𝑃𝐸𝑇
∂𝑓

∂ (
𝑃𝐸𝑇

𝑃
)

− 𝑑𝑃
𝑃𝐸𝑇

𝑃

∂𝑓

∂ (
𝑃𝐸𝑇

𝑃
)

+ 𝑃
∂𝑓

∂𝑚
𝑑𝑚 + 𝑃

∂𝑓

∂𝑛
𝑑𝑛 

= 𝑃
𝜕𝑓

𝜕𝑚
𝑑𝑚 + 𝑃

𝜕𝑓

𝜕𝑛
𝑑𝑛           (8) 

In practical applications, Equation (4) is commonly expressed as the first-order Taylor approximation for attribution analysis: 

𝛥𝑊𝑈𝐸 =
𝜕𝑊𝑈𝐸

𝜕𝑃
𝛥𝑃 +

𝜕𝑊𝑈𝐸

𝜕𝑃𝐸𝑇
𝛥𝑃𝐸𝑇 +

𝜕𝑊𝑈𝐸

𝜕𝑚
𝛥𝑚 +

𝜕𝑊𝑈𝐸

𝜕𝑛
𝛥𝑛 + 𝑂       (9) 

where 𝛥𝑊𝑈𝐸 , 𝛥𝑃 , 𝛥𝑃𝐸𝑇 , 𝛥𝑚  and 𝛥𝑛  respectively represent the actual changes in WUE, precipitation, potential 210 

evapotranspiration as well as underlying surface parameter, i.e., m  and n . It is noteworthy that in Equation (9), there is 

consistently a residual term 𝑂 which represents the higher-order terms in the Taylor expansion. The value of 𝑂 will affect the 

accuracy of the attribution results. 

Zhou et al. (2015) has proven that if the function structure between a dependent variable 𝑍 and N independent variables (𝑋1, 

𝑋2,…, 𝑋𝑁) is of the following form: 215 

𝑍

𝑋1
= 𝑓(

𝑋2

𝑋1
,

𝑋3

𝑋1
, . . . ,

𝑋𝑁

𝑋1
)           (10) 

then the sum of the elasticity coefficients is unity, i.e. 
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𝜕𝑍/𝑍

𝜕𝑋1/𝑋1
+

𝜕𝑍/𝑍

𝜕𝑋2/𝑋2
+. . . +

𝜕𝑍/𝑍

𝜕𝑋𝑁/𝑋𝑁
= 1          (11) 

It is straightforward to demonstrate that a similar complementary relationship exists in 
𝑊𝑈𝐸

𝑃
= 𝑓(

𝑃𝐸𝑇

𝑃
, 𝑚, 𝑛), namely: 

𝜕𝑊𝑈𝐸/𝑊𝑈𝐸

𝜕𝑃/𝑃
+

𝜕𝑊𝑈𝐸/𝑊𝑈𝐸

𝜕𝑃𝐸𝑇/𝑃𝐸𝑇
= 1          (12) 220 

Therefore, according to previous studies (Zhou et al., 2016; Yang et al., 2023; Zhang et al., 2023), if such a complementary 

relationship (Equation (12)) exists, the difference in dependent variable 𝑍 (𝛥𝑊𝑈𝐸) can be expressed in the form without any 

residual term: 

Δ𝑊𝑈𝐸 = 𝛼 [(
∂𝑊𝑈𝐸

∂𝑃
)

1

Δ𝑃 + (
∂𝑊𝑈𝐸

∂𝑃𝐸𝑇
)

1

Δ𝑃𝐸𝑇 + 𝑃2Δ (
∂𝑊𝑈𝐸

∂𝑃
) + 𝑃𝐸𝑇2Δ (

∂𝑊𝑈𝐸

∂𝑃𝐸𝑇
)] 225 

               + (1 − 𝛼) [(
∂𝑊𝑈𝐸

∂𝑃
)

2
Δ𝑃 + (

∂𝑊𝑈𝐸

∂𝑃𝐸𝑇
)

2
Δ𝑃𝐸𝑇 + 𝑃1Δ (

∂𝑊𝑈𝐸

∂𝑃
) + 𝑃𝐸𝑇1Δ (

∂𝑊𝑈𝐸

∂𝑃𝐸𝑇
)]     (13) 

where the subscripts 1 and 2 respectively represent the initial and final state quantities; Δ denotes the difference between the 

two states; α is the weighting factor, with a value range of 0 to 1. 

Considering Equation (4) and (8), 𝛥𝑊𝑈𝐸 can be further written as changes due to climate (𝛥𝑊𝑈𝐸𝑐) and due to underlying 

surface (𝛥𝑊𝑈𝐸𝑢): 

𝛥𝑊𝑈𝐸 = 𝛥𝑊𝑈𝐸𝑐 + 𝛥𝑊𝑈𝐸𝑢          (14) 230 

𝛥𝑊𝑈𝐸𝑐 = 𝛼 [(
𝜕𝑊𝑈𝐸

𝜕𝑃
)

1
𝛥𝑃 + (

𝜕𝑊𝑈𝐸

𝜕𝑃𝐸𝑇
)

1
𝛥𝑃𝐸𝑇] + (1 − 𝛼) [(

𝜕𝑊𝑈𝐸

𝜕𝑃
)

2
𝛥𝑃 + (

𝜕𝑊𝑈𝐸

𝜕𝑃𝐸𝑇
)

2
𝛥𝑃𝐸𝑇]    (15) 

𝛥𝑊𝑈𝐸𝑢 = 𝛼 [𝑃2𝛥 (
𝜕𝑊𝑈𝐸

𝜕𝑃
) + 𝑃𝐸𝑇2𝛥 (

𝜕𝑊𝑈𝐸

𝜕𝑃𝐸𝑇
)] + (1 − 𝛼) [𝑃1𝛥 (

𝜕𝑊𝑈𝐸

𝜕𝑃
) + 𝑃𝐸𝑇1𝛥 (

𝜕𝑊𝑈𝐸

𝜕𝑃𝐸𝑇
)]    (16) 

From Equation (14-16), the impacts of climate and underlying surface changes on WUE can be precisely decomposed within 

the Budyko model. However, attribution solely through the Budyko model is insufficient to decouple the effects of CO2 on 

land-atmosphere. The CO2 sensitivity experiments of GCM s mentioned in Section 2.2.4 had been applied to explore the 235 

atmospheric-surface interactions caused by elevated CO2 (Piao et al., 2007; Fowler et al., 2019). In the 1ptCO2-rad experiment, 

the increase in CO2 concentration has a direct radiative effect on the climate and an indirect effect on vegetation physiology; 

conversely, in the 1ptCO2-bgc experiment, the increase in CO2 concentration has a direct biogeochemical impact on vegetation 

and then indirectly affects the climate. The difference between the combined results of the ‘-rad’ and ‘-bgc’ experiments and 

the results of the 1ptCO2 experiment is attributed to land-atmosphere interactions. By applying the Budyko attribution method 240 

in the three CO2 experiments (Zhou et al., 2023), the impact of land-atmosphere coupling on WUE can be quantitatively 

interpreted.  

3.3 TWSA-DSI 

The method proposed by Zhao et al. (2017) was employed to identify terrestrial drought conditions using the TWSA-DSI 

index. TWSA-DSI is capable of comparing drought characteristics across regions and periods, and it can also sensitively 245 

capture the available water amount affecting vegetation growth. The calculation formula is as follows: 

𝑇𝑊𝑆𝐴 − 𝐷𝑆𝐼𝑖,𝑗 = (𝑇𝑊𝑆𝐴𝑖,𝑗 − 𝑇𝑊𝑆𝐴𝑗)/𝜎𝑗         (17) 
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where 𝑇𝑊𝑆𝐴 − 𝐷𝑆𝐼𝑖,𝑗 and 𝑇𝑊𝑆𝐴𝑖,𝑗 represent the TWSA-DSI and TWSA data for the 𝑖th year and 𝑗th month; 𝑇𝑊𝑆𝐴𝑗 and 𝜎𝑗 

respectively denote the average and standard deviation of TWSA for the 𝑗th month within the study period. 

In this study, the TWSA-DSI index was calculated for each grid point within the basin for each study period (experiment). 250 

Based on these results, different levels of terrestrial wetness/dryness were classified as shown in Table 2 (Yin et al., 2022). 

Three main categories of terrestrial wet-dry conditions were investigated in this study: non-drought (TWSA-DSI>-0.8), 

moderate-severe drought (-1.6<TWSA-DSI≤-0.8), and extreme-exceptional drought (TWSA-DSI≤-1.6). 
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Table 2 Classification standards for wetness (W)/dryness (D) levels based on TWSA-DSI. 255 

Category Wet/Dry Level TWSA-DSI 

W4 Exceptionally wet (2.0, +∞) 

W3 Extremely wet (1.60, 2.0] 

W2 Very wet (1.30, 1.60] 

W1 Moderately wet (0.80, 1.30] 

W0 Slightly wet (0.50, 0.80] 

WD Near normal (-0.50, 0.50] 

D0 Abnormally dry (-0.80, -0.50] 

D1 Moderate drought (-1.30, -0.80] 

D2 Severe drought (-1.60, -1.30] 

D3 Extreme drought (-2.0, -1.60] 

D4 Exceptional drought (0, -2.0] 

3.4 Conditional probability 

The impact of different drought levels on WUE can be assessed by considering the conditional probability distribution of the 

drought index. Referring to previous studies (Feng et al., 2019; Wu & Jiang, 2022), WUE is transformed into a standardized 

form using a meta-Gaussian model, specifically as the Standardized Water Use Efficiency Index (SWI). The differences in the 

distribution of SWI under different drought conditions (with TWSA-DSI as the drought index) were used to evaluate the 260 

response of WUE to different drought severity levels. As TWSA-DSI is also a standardized normal random variable (X), the 

bivariate conditional distribution of SWI (Y) given X can be straightforwardly expressed as follows: 

𝑌|𝑋 ∼ 𝑁(𝜇𝑌|𝑋, 𝛴𝑌|𝑋)           (18) 

where 𝜇𝑌|𝑋 is the conditional mean; 𝛴𝑌|𝑋 is the conditional variance. 

4 Results 265 

4.1 Assessment of bias correction performance 

We applied bias correction on the monthly GCM data using the method described in Section 3.1, and compared the correction 

results for the overlapping period (1997-2014) with observation data. It is noteworthy that different GCMs include a varying 

number of variables. As a result, even though we have endeavored to select the same models, the ensemble GCM members 

for different variables are not exactly the same. The performance of correction was presented in the form of Taylor diagrams 270 

(Figure 2). The correction results for GPP and ET were substantially better than those for P, PET, and TWSA. The correlation 

coefficients (CC) for GPP and ET after correction were all above 0.97, with multi-model average RMSE of 9.90 gC·m-2 and 

7.35 mm respectively. The inter-model differences were also small. Thus, it can be assumed that the WUE calculated from the 

corrected output data was credible. For P, PET, and TWSA, the models with the best correction effects were IPSL-CM6A-LR, 
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CMCC-ESM2, and CESM2, respectively. Their CC reaches 0.89, 0.99 and 0.82, with RMSE values of 18.13 mm, 8.35 mm, 275 

and 10.16 mm. In comparison, CMCC-ESM2 performed relatively poor for P with a CC of 0.74. CNRM-ESM2-1 exhibited 

suboptimal correction performance for PET and TWSA, with CC values of 0.78 and 0.70 respectively. Overall, the outputs of 

all GCMs showed good performance after bias correction (CC all greater than or equal to 0.70). The trend-preserving bias 

correction method effectively eliminated systematic errors between GCMs and observation data. The corrected data can be 

used for the assessment and attribution of future climate scenarios. 280 

 

Figure 2. Taylor diagrams for corrected GCMs data of (a) GPP, (b) ET, (c) P, (d) PET, and (e) TWSA. 

4.2 Changes in WUE over YRB 

Figure 3 illustrated the time series of multi-model annual averages for WUE, GPP, and ET under historical and different future 

scenarios. During the historical period, WUE and GPP in the YRB showed an increasing trend, while ET exhibited a slight 285 

rise with fluctuations. From 2015 to 2100, the changes of each indicator varied in different scenarios, but the trend patterns of 

WUE and GPP are relatively similar (Figure 3 (a) and (b)). Under the low emission pathway (SSP126), WUE and GPP first 

experienced a slight increase in the future (peaking around 1.68 gC·kg-1H2O and 675 gC·m-2, respectively), then followed by 

a decline. In the moderate emission scenario (SSP245), WUE and GPP increased before stabilizing at the end of the century 

(2070-2099), with values of 1.55 gC·kg-1H2O and 771 gC·m-2, respectively. Both WUE and GPP exhibited a continuous 290 

upward trend in the high emission scenarios (SSP370 and SSP585), and SSP585 showed a higher growth rate compared to 

SSP370. For ET (Figure 3 (c)), there was a subtle increase under the low emission scenario (SSP126) and a slight decrease 

towards the end of the century. Guo et al. (2022) observed that temperature and precipitation demonstrate similar 

developmental trends in the YRB under SSP126, as the low emission pathway aims to limit global warming. Given that 
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temperature and precipitation are crucial drivers of evapotranspiration, it is logical to see ET following this pattern of 295 

development. In other scenarios, ET showed an overall upward trend, and with increasing carbon emissions, ET in the YRB 

increased more rapidly. Additionally, it could be observed from the box plots that the outputs for WUE, GPP, and ET from 

the multi-model ensemble were more concentrated during the historical period, whereas they were more dispersed in the future 

periods. Furthermore, the degree of dispersion increased with the rise in carbon emission concentrations. 

 300 

Figure 3. Annual averaged time series and box plots during historical (1985-2014) and future (2070-2099) period (a) WUE, (b) GPP, 

and (c) ET from the CMIP6 multi-model ensemble in the YRB. 

The first column in Figure 4 displayed the spatial distribution of annual WUE in the YRB during the historical period (1985-

2014) and the future period (2070-2099) under different SSPs. The multi-model average results indicated that during the 

historical period, the multi-year average WUE in the YRB predominantly exhibited a pattern of ‘higher values in the east and 305 

lower values in the west, with higher values in the south and lower values in the north’. High WUE values were observed in 

the upstream areas and downstream coastal areas, while low values appeared in the northwest part of the basin, specifically 

the Inner Mongolia Plateau. Under different scenarios, the future distribution characteristics of WUE remained similar. As 
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shown in the first column of Figure 5, there was a predominant upward trend in WUE in the middle-downstream region in the 

future, and the relative growth became more with increasing carbon emissions. In some areas, the growth exceeded 200%. 310 

However, the Hetao region in the northwest part of the Yellow River consistently experienced a downward trend in WUE 

under different scenarios, with the greater decline as carbon emissions increase. In the SSP585 scenario, this region 

experienced a negative growth of close to 20%. The upstream areas of the YRB showed relatively consistent changes under 

different scenarios, except for a noticeable decrease in the southwestern of the basin, i.e., Qinghai-Tibet Plateau region, while 

changes in other regions were less evident. 315 

To further investigate the spatial distribution characteristics of WUE, we plotted the spatial distribution and relative changes 

of GPP and ET (different columns in Figure 4 and Figure 5). The spatial distribution characteristics of GPP closely resembled 

those of WUE (the first and second column in Figure 4), with the locations of high and low values aligning well. Under 

different scenarios, the entire YRB experienced an increase in GPP, though the degree varies (the second column in Figure 5). 

Overall, there was relatively little change in GPP in the source area of the YRB while significant growth was observed in the 320 

Loess Plateau and the intra-basin areas. The growth in GPP increased sequentially from SSP126 to SSP585. In SSP585, most 

regions in the basin, including the Loess Plateau and Ningxia Plain, exhibited a 260% growth in GPP. Extremely low values 

ET were observed in the Hetao area, with ET increasing in a radial pattern, indicating higher ET values at locations increasingly 

distant from this region (the third column in Figure 4). Throughout different periods and scenarios, the minimum values 

consistently appeared in the northwest part of the basin, specifically the Inner Mongolia Plateau, all below 60 mm. The 325 

maximum values occurred along the Qinling Mountains (which also serves as the boundary between northern and southern 

China), where ET exceeds 780 mm. The relative changes in ET in the YRB exhibited the opposite trend, increasing from 

southeast to northwest (the third column in Figure 5). In the low-emission scenario (SSP126), ET showed minimal variation 

within the basin. However, with increasing carbon emissions, the growth in ET became more drastic, especially in the Inner 

Mongolia Plateau. In SSP585, the growth in this area and its vicinity reached 52%. In comparison, ET changed in other regions 330 

are not significant, except for the source area, where ET also increased. 
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Figure 4. Spatial distribution of multi-model average results in the YRB under different scenarios. The first to third column 

represents the multi-year average of WUE (the first column), GPP (the second column) and ET (the third column) during the 

historical (the first row) period (1985-2014) and future periods (2070-2099) under the SSP126 (the second row), SSP245 (the third 335 
row), SSP370 (the fourth row), and SSP585 (the fifth row). The second column illustrates the relative changes in WUE compared to 

the historical period under different SSPs. 
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Figure 5. Spatial distribution of the relative changes in WUE (the first column), GPP (the second column) and ET (the third column) 

compared to the historical period under different scenarios. 340 

4.3 Attribution of WUE changes over the YRB 

We constructed a Budyko-type model of water-energy exchange for WUE based on the method outlined in Section 3.2. Figure 

6 (a) illustrated the Spearman correlation coefficients between the underlying surface parameters of the Budyko model, WUE, 

and vegetation indices based on observation data. WUE showed a strong positive correlation with LAI and NDVI, with 

correlation coefficients reaching 0.97 and 0.95 respectively. The correlation with the underlying land surface parameter 𝑚 was 345 

also significant (p < 0.01), with a coefficient of 0.56. Although the negative correlation between WUE and 𝑛 was relatively 

weaker (-0.26), it was still statistically significant (p < 0.01). The basin underlying surface parameters (𝑚 and 𝑛) exhibited 

good correlations with vegetation indices (LAI and NDVI) at 0.53, 0.65, -0.30, and -0.33, respectively. In general, an increase 

in LAI and NDVI will cause an increase in 𝑚 and a decrease in 𝑛, consequently resulting in an increase in WUE.  

Furthermore, we established Budyko models for WUE using the multi-model average data under different periods and 350 

scenarios to assess the combined impacts of climate and vegetation patterns on WUE. As depicted in Figure 6 (b), the selected 

linear Budyko models demonstrated good performance across various periods and scenarios. It exhibited the best fits in SSP370 

and Historical, with R² values of 0.73 and 0.71 respectively, while performing relatively less well in SSP245 with an R² of 

0.60. Overall, the models’ performance had been satisfactorily validated in the YRB (R² consistently exceeding 0.60), 

providing confidence for subsequent attribution analyses. 355 
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Figure 6 Performance of the Budyko model. (a) Cross-correlation coefficients among WUE, Budyko model parameters and 

vegetation indices based on observation data (* indicates significance at p < 0.01). (b) Budyko model performance for WUE in 

historical period (1985-2014) and different SSPs (2070-2099). The shading represents the 95% confidence interval. 

Based on the established Budyko models, we calculated the changes in WUE and the attribution results for the YRB (Figure 360 

7 (a)). The results indicated an increase trend in the multi-year average WUE for the basin in the future period (2070-2099) 

compared to the historical period (1985-2014). Moreover, with intensifying carbon emissions, the increase of WUE became 

more substantial, with average increases of WUE sequentially from SSP126 to SSP585 by 0.36, 0.54, 0.75, and 0.84 

gC·kg⁻¹H₂O. SSP585 exhibited the highest growth in WUE, although we observed a slowdown in the increase from SSP370 

to SSP585. According to the attribution results, climate change consistently remained the predominant factor influencing WUE 365 

changes, especially in SSP126, where almost the entire variation in WUE was attributable to climate change (101.4%). In 

SSP126, SSP245, SSP370, and SSP585, the proportions dominated by underlying change were -1.4%, 14.9%, 16.9%, and 

22.1% respectively. However, we also observed that with increasing carbon emissions, the impacts of underlying surface 

changes on WUE became more significant. In the low-emission scenario (SSP126), the influence of land surface changes in 

the basin was minimal, only playing a slightly negative role (-1.4%). But in SSP245, SSP370, and SSP585, the promoting 370 

effects of land surface factors on WUE became more pronounced. In SSP585, nearly a quarter of the WUE growth was 

attributed to changes in the underlying surface. These phenomena could be explained by the fertilization effect of carbon 

dioxide. In the SSP126 scenario, atmospheric CO2 concentrations for the future period (2070-2099) were projected to be lower 

than in the historical period (1985-2014), which could be detrimental to plant growth, especially GPP. Therefore, under the 

low emission scenario, changes in the land surface might have a slight impact on WUE. With the increase in carbon emissions, 375 

the growth of vegetation was further promoted, and the changes in vegetation productivity due to different carbon emission 

scenarios might be more compared to the impacts of climate change. Thus, the role of underlying land surface changes became 

increasingly important in the variation of WUE. 

Due to the consistent increase in CO2 concentration in the three CO2 sensitivity experiments, with the same rate as in SSP585, 

we combined the CO2 experiments with the attribution in SSP585 to decouple the direct and secondary effects of CO2-induced 380 

radiative and biogeochemical impacts. To ensure the validity of the results, we selected the first 30 years and the subsequent 

30 years of the CO2 experiment, with a time span consistent with SSP585. As shown in Figure 7 (b), compared to the radiative 

effect (-1.3%), the biogeochemical effect of CO2 overwhelmingly dominated the change of WUE (100.6%). This was 
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understandable as the majority of the effects from the biogeochemical experiment directly acted on the land surface (94.5%), 

specifically on the vegetation structure. Climate-induced feedback on changes in vegetation structure also played a positive 385 

role in WUE growth (6.1%). Analyzing the attribution results from the radiative experiment, we found that although the 

radiative effect had a minimal negative impact on WUE (-1.3%), this outcome was due to the significant weakening, or even 

surpassing, of the indirect response of land surface vegetation structure to climate (-56.3%) compared to the direct radiative 

forcing effect of CO2 on climate (55.0%). The mutual offsetting of these two results led to the radiative effect having a very 

small negative impact on WUE changes. However, the direct forcing of the radiative effect on climate (55.0%), the indirect 390 

feedback in the biogeochemical experiment (6.1%), and the interaction between the two experiments (16.8%) ultimately made 

climate change the dominant factor (77.9%) in the growth of the YRB. 

 

Figure 7. Attribution results for WUE changes. (a) Changes in WUE in the YRB under different SSPs, along with the relative 

contributions of climate factors and underlying surface factors. The stacked chart represents the relative contribution rates of 395 
climate change and underlying change to WUE variations under different scenarios. The line graph depicts the average WUE 

changes (between 1985-2014 and 2070-2099) across the basin under various scenarios. (b) Land-atmosphere decoupling attribution 

results based on SSP585 and CO2 experiments. The percentage represents the relative contribution rates. 

4.4 WUE response to drought 

In order to investigate how WUE responds to different levels of drought under various scenarios, we calculated the anomaly 400 

of WUE at each pixel under different drought levels and averaged the anomaly results across different GCMs. To obtain a 

sufficient number of event samples at the grid scale and derive more universally applicable conclusions, we focused only on 

the moderate-severe drought category (-1.6 < TWSA-DSI ≤ -0.8) and extreme-exceptional (TWSA-DSI ≤ -1.6), by treating all 

other conditions as non-drought situations (TWSA-DSI > -0.8) (Yin et. al 2022). In the analysis of future drought responses, 

particular attention was given to the potential influence of long-term trends on the calculated values of WUE and TWSA. To 405 

mitigate this effect, we calculated the mean and standard deviation of WUE and TWSA for the same time spans separately to 

get WUE anomaly and TWSA-DSI, which ensures that our analysis focuses on the specific variations and conditions within 

each period. As shown in Figure 8 (the first and second columns), in the most region of YRB, the response of WUE to drought 

can be divided into two stages: an increase in WUE during moderate-severe drought and a decrease in WUE during extreme-

exceptional drought. The area percentages of the two-stage model in different periods and scenarios are 98.0% in Historical, 410 

96.8% in SSP126, 97.6% in SSP245, 97.0% in SSP370 and 99.2% in SSP585, respectively. The spatial characteristics of WUE 

response patterns were also similar across different periods and scenarios. 
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In the historical period (1985-2014), WUE generally increased during moderate-severe drought, with a widespread increase, 

and only a few areas (specifically, two pixels in the Ningxia Plain) showed a decrease. The middle reaches of the YRB showed 

a relatively small increase, while more significant increases were observed in the upstream source area and downstream 415 

estuary. As drought intensifying to extreme-exceptional levels, there was a large-scale decrease in WUE across the basin. The 

areas with increased WUE compared to the previous stage also experienced a decline in this stage. Similar to moderate-severe 

drought, the middle reaches of the YRB saw a significant decrease in WUE, while the source and downstream areas showed a 

slight increase. 

Looking into the future (2070-2099), WUE's positive response to drought became more prominent under all SSPs. This was 420 

evident in the significantly higher increase in WUE during moderate-severe drought compared to the historical period. 

Moreover, the areas with a decrease in WUE during extreme-exceptional drought became smaller. With increasing carbon 

emissions, the positive response of WUE to drought became more pronounced. This was due to the fact that CO2 not only 

promoted the growth of the plant, but also reduced stomatal conductance allowing water to be better retained in the body 

during dry periods. In SSP126, the WUE response pattern to drought was similar to the historical period. However, in SSP585, 425 

almost all regions within the basin showed a positive response of WUE to moderate-severe drought, with WUE anomalies 

reaching around 1.0 gC·kg-1H2O. Even during extreme-exceptional drought, there were very few areas where WUE decreased 

across the basin. 

Figure 8 (the third column) quantitatively described the conditional probability distribution of SWI under different dry-wet 

conditions. Across different periods and SSPs, the mean (𝜇) of SWI under extreme-exceptional drought conditions was lower 430 

than that under moderate-severe drought. Combining the previously mentioned ‘two-stage response’ characteristics, this is 

understandable because as drought intensified, the WUE response in the basin tended to shift towards negative values. 

However, we also observe that 𝜇 under non-drought conditions was generally higher than that under drought. A reasonable 

explanation was that, compared to the wet season, the basin tended to have lower WUE during seasons or months prone to 

drought. Therefore, even with a positive response during drought, the value of 𝜇 remained lower than in non-drought periods. 435 

Additionally, compared to the historical period, the future 𝜇 under different scenarios showed varying degrees of growth. This 

growth was less in the low emission scenario (SSP126) but became more significant with increasing carbon emissions, reaching 

its maximum in SSP585. This was consistent with the results in Section 4.2. 

Furthermore, we observed that with the increase in carbon emissions, the gap between 𝜇 under non-drought conditions and 

that under drought conditions became more apparent. The differences in 𝜇 (𝛥𝜇) represent the difference in the mean values of 440 

WUE across varying intensities of drought within the same period. This measure, utilized to analyze the differential impacts 

of drought levels, also became larger (from SSP126 to SSP585, 𝛥𝜇 is 0.01, 0.01, 0.02, and 0.12 respectively). This implied 

that a high carbon emission scenario would exacerbate the numerical differences in WUE between dry and wet seasons in the 

YRB, while also amplifying the response differences of WUE to different drought levels. Moreover, in SSP585, these 

differences were significantly greater than in other scenarios. 445 
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Figure 8. Responses of WUE to different levels of drought. The first column shows the anomalies of WUE during moderate-severe 

drought. The second column shows the anomalies of WUE during extreme-exceptional drought. The third column illustrates the 

conditional probability function of SWI under different drought levels. 

5 Discussion 450 

5.1 Spatiotemporal variation characteristics of WUE in the YRB 

Unlike many studies that focus solely on the historical trends of WUE (Kim et al., 2021; Huang et al., 2017; Lu & Zhuang, 

2010), this research systematically projected the development trends of WUE, GPP, and ET in the YRB for both historical and 

future periods. GPP, as a key variablein calculating WUE, exhibits significant differences among various GPP datasets, such 

as NIRv, GMMIS, FLUXCOM (based on upscaled eddy covariance flux tower measurements), LUE (based on light-use-455 

efficiency model), and TRENDY (a recent model intercomparison project) (Wang et al., 2021). Compared to NIRv GPP data, 

GMMIS ignores the impact of CO2 on LUE (De Kauwe et al., 2016), and FLUXCOM GPP lacks consideration of the CO2 
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fertilization effect (Anav et al., 2015), thus underestimating the interannual sensitivity of GPP to climate change. A recent 

study has improved the traditional LUE method which produced a revised global GPP product (EC-LUE GPP) (Zheng et al., 

2019). However, the satellite-based APAR （absorbed photosynthetic radiation）data used may lead to inaccuracies in some 460 

regions due to saturation (Zhang et al., 2020). Furthermore, the GPP trends in TRENDY vary significantly between different 

models and offer lower spatial resolution (Zheng et al., 2020). Considering all these factors, we opted for the advanced GPP 

dataset based on NIRv with high temporal and spatial resolution. Our results also indicate that this data is reasonable and 

accurate. During the historical period, the average results from multiple GCMs closely align with previous findings ( Li et al., 

2023; Sun et al., 2022; Zhao, Ma, et al., 2022), which indirectly demonstrated the excellent performance of bias correction 465 

done in this study. According to Figure 3, WUE, GPP, and ET were projected to increase to varying degrees in the future. The 

growth rate was higher under high emission scenarios, while under the SSP126 scenario, all three showed an initial increase 

followed by a decline. Li et al. (2023) suggested that global WUE had been approaching saturation in recent years and may 

maintain the ‘saturated’ state in the future. According to our results, under SSP245 (which is also most consistent with the 

Chinese context), WUE in the YRB is expected to reach a relatively stable ‘saturated’ state by the end of this century, with a 470 

value around 1.55 gC·kg⁻¹H₂O. The spatial distribution of WUE in the YRB can be summarized as ‘higher in the south and 

lower in the north, higher in the east and lower in the west’ (Figure 4). This spatial pattern and the regions where extreme 

values occur align well with the study of Sun et al. (2022). We also observed that the future spatial distribution of WUE was 

very similar to GPP (Figure 4) (Liu et al., 2020). Combining these results with those in Figure 2, despite the general increase 

in ET, WUE in most regions of the YRB is still on the rise. Therefore, we conclude that in most areas of the YRB, GPP’s 475 

relative contribution to WUE change is higher than that of ET. In other words, GPP dominates the future changes in WUE in 

the basin, which is in well agreement with other scholars’ findings (Naeem et al., 2023; Tan et al., 2023). However, ET remains 

a primary driving factor for WUE in arid regions (Yang et al., 2016), a point especially evident in the Yellow River source 

region. In the upstream source region of the YRB, ET shows an increasing trend under different SSPs, while GPP’s growth is 

relatively slow. This asymmetrical growth between GPP and ET has led to a decline in WUE in the source region. 480 

5.2 Interpretation of Budyko model parameters and attribution results 

In this study, we employed the linear Budyko model to describe the relationship between WUE and the water-energy nexus in 

the YRB. In Equation (2), 𝑚 and 𝑛 were the underlying surface parameters of the basin. To validate the rationality of these 

parameters, we conducted a correlation analysis between 𝑚, 𝑛 and vegetation indices as shown in Figure 7 (a). The results 

indicate good correlations between underlying surface parameters and LAI, NDVI. This suggests that the chosen parameters 485 

can effectively reflect the underlying surface vegetation conditions closely related to WUE, further validating the physical 

significance of the established Budyko model. Additionally, we demonstrated a strong positive correlation between WUE and 

both LAI and NDVI, due to the significant enhancement of the region's GPP by increased vegetation factors. In the mostly 

arid areas of the YRB, the impacts of these vegetation changes on ET is minimal (Liu et al., 2020; Yang et al., 2022). Moreover, 

our results also support the viewpoint that there is a positive correlation between WUE and 𝑚 (Fang et al., 2020). Previous 490 
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studies have shown that WUE is closely related to precipitation, vapor pressure deficit, temperature, wind speed, and humidity, 

et cetera ( Li et al., 2023; Lin et al., 2020; Liu et al., 2020; Yang et al., 2022). This study employed the Penman–Monteith 

equation to calculate PET, incorporating the aforementioned factors, hence, P and the calculated PET can be selected as the 

climatic attribution factors for WUE. 

To further elucidate the attribution results shown in Figure 7 (d), we plotted the relative changes in WUE, GPP, and ET across 495 

different CO2 sensitivity experiments (Figure 9). Over the same time span, the spatial distribution pattern of relative changes 

in WUE, GPP, and ET within the 1ptCO2 scenario aligns substantially with that of the SSP585. In the 1ptCO2-rad experiment, 

WUE showed a declining trend in the peripheral areas of the YRB but an increase in the central region, thus presenting a slight 

negative contribution overall (-1.3%) as depicted in Figure 7 (d). Conversely, in the 1ptCO2-bgc experiment, WUE exhibited 

a comprehensive upward trend across the basin, serving as the primary driving factor for the increase in WUE observed in the 500 

comprehensive experiment (1ptCO2) (100.6%). To explain the difference in WUE performance, we further analyzed the 

relative changes in GPP and ET across different CO2 sensitivity experiments. In the 1ptCO2-rad experiment, due to the absence 

of CO2's direct biogeochemical effect on plants, the change of GPP was not as sharp as that in the 1ptCO2-bgc. Moreover, the 

radiative effects of CO2 increase atmospheric evaporative demand, i.e. PET (Milly and Dunne, 2016, 2017), which is the most 

likely reason for the widespread increase in ET and the broad decline in WUE within the YRB. However, combining the 505 

analysis with Figure 7 (d), such changes encompass CO2's direct impact on climate and the indirect feedback from the 

underlying surface, with the latter possibly exerting a greater influence on ET and GPP variations. However, due to the minimal 

numerical changes in variables in 1ptCO2-rad, the uncertainty is also higher. Under the 1ptCO2-bgc experiment conditions, 

owing to the fertilization effect of CO2, plant growth was stimulated (He et al., 2023; Zhao, et al., 2022), resulting in a 

significant widespread increase in GPP across the basin. The increased plant biomass also led to a rise in ET (Mankin et al., 510 

2019; Piao et al., 2007; Zhan et al., 2022), while the elevated CO2 concentrations further reduced plant stomatal conductance, 

potentially diminishing transpiration (Guerrieri et al., 2019; Li et al., 2023; Mathias & Thomas, 2021; Zhang et al., 2022). We 

found that under the combined effects of these factors, changes in ET within the YRB are minimal, generally ranging between 

-5% to 5% in 1ptCO2-bgc experiment. Consequently, in 1ptCO2-bgc, WUE across various regions of the basin exhibits 

varying degrees of increase. 515 
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Figure 9. Spatial distribution of the relative changes in WUE (the first column), GPP (the second column) and ET (the third column) 

across different CO2 sensitivity experiments. 

5.3 Two-stage response pattern of WUE to drought 

WUE can reflect the impacts of local water availability on the ecosystem's carbon sequestration capacity to a certain extent, 520 

and can serve as one of the reference indicators for measuring ecosystem resilience (Ponce-Campos et al., 2013). Therefore, 

we considered the response of WUE in the YRB to drought stress. Many scholars have suggested that WUE will continue to 

increase or decrease under drought conditions in most regions of the world (Liu et al., 2023; Ponce-Campos et al., 2013; Xie 

et al., 2016). However, these studies have not considered the differential responses of WUE to various drought intensities. Our 

results (Figure 8) illustrate that WUE exhibits a two-stage response pattern during drought, i.e., it increases under moderate-525 

severe drought but begins to decrease as the drought intensifies. This finding is similar to the phenomenon observed by Lu & 

Zhuang (2010) over most of the US. This means that under moderate-severe drought condition, plants physiologically adapt 

to water stress, thereby maintaining a certain level of GPP under limited water conditions (Vicente-Serrano et al., 2010). 

However, as drought intensifies, plant physiology is damaged, thereby reducing WUE, which is consistent with findings by 

Yang et al. (2021) in semi-arid/semi-humid regions of the world. As mentioned before, the increase in atmospheric CO2 530 

concentration directly leads to a reduction in plant leaf stomatal conductance. In Table 3, it is evident that although different 

GCMs employ various models for stomatal conductance, the physical implications across these models consistently align with 

this principle. It is the change in stomatal conductance that is suggested to help alleviate the stress of drought on plants (De 

Kauwe et al., 2021; Leakey et al., 2006; Swann, 2018). Additionally, we note that with the intensification of carbon emission 

scenarios (from SSP126 to SSP585), the future response of WUE in the basin to drought becomes more positive, indicating an 535 

enhanced adaptability of plants to water stress. The result also indirectly prove that plants are more likely to benefit from 

drought stress in the future (De Kauwe et al., 2021). 

 



24 

 

 

Table 3 Model parameter settings for simulating stomatal conductance in the GCMs. 540 

GCM Land surface model Stomatal conductance REF. 

CanESM5 CLASS-CTEM 𝑔𝑠 = 𝑔0 +
𝑔1𝐴

(1 + 𝐷/𝐷0)(𝑐𝑠 − 𝜏）
 Leuning, 1995 

CESM2 CLM5 𝑔𝑠 = 𝑔0 +
1 + 𝑔1√𝐷

𝑐𝑎
𝐴 Lawrence et al., 2019 

CMCC-ESM2 CLM4.5 𝑔𝑠 = 𝑚
𝐴ℎ𝑟

𝑐𝑠/𝑃𝑎𝑡𝑚
+ 𝛽𝑔0 Oleson et al., 2013 

CNRM-ESM2-1 SURFEXv8.0 𝑔𝑠 =
1.6𝐴

𝑐𝑠 − 𝑐𝑖
 

Jacobs et al., 1996; 

Séférian et al., 2019 

IPSL-CM6A-LR ORCHIDEE 𝑔𝑠 = 𝑛
𝐴ℎ𝑟

𝑐𝑎
+ 𝑏 Krinner et al., 2005 

NorESM2-LM CLM5 𝑔𝑠 = 𝑔0 +
1 + 𝑔1√𝐷

𝑐𝑎
𝐴 Lawrence et al., 2019 

Notes: CLASS-CETM: coupled Canadian Land Surface Scheme and the Canadian Terrestrial Ecosystem Model. CLM5: 

Community Land Model version 5. CLM4.5: Community Land Model version 4.5. SURFEXv8.0: Surface Externalisée version 

8.0. ORCHIDEE: Organizing Carbon and Hydrology in Dynamic Ecosystems Land Surface Model. 𝑔𝑠  is the stomatal 

conductance; 𝑔0 is the minimum stomatal conductance as assimilation rate reaches zero; 𝑔1, 𝐷0, 𝑏, 𝑚, 𝑛 and 𝛽 are empirical 

coefficients; 𝐴 is the net photosynthesis rate; 𝐷 is the humidity deficit; 𝑐𝑠 is the CO2 concentration at the leaf surface; 𝜏 is the 545 

CO2 compensation point;𝑐𝑎  is atmospheric CO2 concentration; ℎ𝑟  is the relative air humidity; 𝑃𝑎𝑡𝑚  is the atmospheric 

pressure; 𝑐𝑖 is the CO2 concentration in the intercellular spaces. 

6 Conclusion 

WUE, due to its unique connotation, has become an important indicator for ecosystem health, reflecting the trade-off between 

regional carbon assimilation and water loss. In this study, after applying trend-preserving bias correction to CMIP6 data, 550 

informed by satellite-monitored reanalysis datasets, we investigated spatiotemporal variations of WUE, GPP, and ET spanning 

from 1985 to 2100. Our construction of a Budyko model, underpinned by GCMs, offers a robust framework for dissecting the 

intricacies of WUE evolution, revealing a predominantly climate-driven narrative, albeit with an escalating influence from 

underlying surface modifications under severe carbon emission trajectories. 

The spatial dynamics of WUE across the YRB have historically been characterized by higher values in the east and the south, 555 

contrasted with lower values in the west and the north. Looking forward, our analysis projects a universal uptick in WUE under 

varying future climate scenarios, with increases ranging from 0.36 to 0.84 gC·kg-1 H2O across SSP126 to SSP585. The 
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constructed Budyko model displays strong performance under different periods and scenarios (R2 = 0.60-0.73). The land-

atmosphere attribution framework underscores the pivotal role of climate change as the primary driver of WUE alterations, 

overshadowing underlying surface changes. Nevertheless, the impact of biogeochemical CO2 effects emerges as a dominant 560 

force, illustrating the complex interplay of carbon dioxide in shaping WUE trajectories. Besides, our findings delineate a 

distinctive "two-stage" response pattern of WUE to drought conditions in the YRB and forecast enhanced ecosystem resilience 

to drought stress in future scenarios, particularly under heightened carbon emissions. 

While this study advances our understanding of ecohydrological processes in the YRB, it is not without its constraints. The 

reliance on reanalysis datasets, despite their robust performance, introduces a layer of uncertainty against actual measurements. 565 

Moreover, the complexity of vegetation responses to elevated CO2 levels, coupled with the variability in Dynamic Global 

Vegetation Models (DGVMs) across different GCMs, calls for a deeper exploration into the quantification and assessment of 

uncertainties surrounding CO2's impact on WUE. 

By charting the interdependencies of CO2 dynamics, climate change, and land surface alterations, this study concerns the future 

of eco-hydrological sustainability in the YRB, inviting further inquiry into the resilience of terrestrial ecosystems under 570 

anthropogenic stress. 
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