
 

1 

 

Evaluating the effects of topography and land use change on 1 

hydrological signatures: a comparative study of two adjacent 2 

watersheds 3 

Haifan Liu1, Haochen Yan1, Mingfu Guan1* 4 
1Department of Civil Engineering, the University of Hong Kong, Hong Kong, China 5 

Correspondence to: Dr. Mingfu Guan (mfguan@hku.hk) 6 

Abstract. Watershed hydrological processes are significantly influenced by land use/land cover change (LULCC) and 7 

watershed characteristics such as topography. This study comparatively investigates the impacts of terrain slope and 8 

urbanization-driven LULCC on hydrological processes in two adjacent subtropical watersheds but with distinct terrain and 9 

land-cover conditions within the Greater Bay Area (GBA) of China. We developed an Integrated Surface-Subsurface 10 

Hydrological Model (ISSHM) using the Simulator for Hydrologic Unstructured Domains (SHUD), which was calibrated using 11 

data from river and groundwater flow monitoring stations in the watersheds. The calibrated model facilitated simulations to 12 

assess how terrain slope and LULCC affect surface runoff, subsurface flow, evapotranspiration (ET), and infiltration. Our 13 

results indicate that slope impacts hydrological processes differently in watersheds with varying characteristics. In 14 

mountainous areas, there are consistent high correlations between slope and annual surface runoff, infiltration, and subsurface 15 

flow across all watersheds. However, at lower elevations, the hydrological responses of steeper watersheds correlate weakly 16 

with local slope. Furthermore, urbanization (increase in impervious areas) has led to significant increases in annual surface 17 

runoff and significant decreases in annual infiltration and ET across all watersheds, especially in those with steeper slopes. On 18 

the other hand, in watersheds with gentler slopes, the annual increase in surface runoff is less than the percentage increase in 19 

impervious area, suggesting a buffering capacity of these flatter watersheds against urbanization. However, this buffering 20 

capacity is diminishing with increasing annual rainfall intensity. 21 

1 Introduction 22 

The effects of land use/land cover change (LULCC) and topographic variability on hydrological processes within a watershed 23 

are widely recognized as critical issues in hydrology (e.g., Bosch and Hewlett, 1982; O'Loughlin, 1986; Costa et al., 2003; 24 

Beven, 2011; Gwak and Kim, 2016; Larson et al., 2022; Sicaud et al., 2024). Urbanization has been demonstrated to 25 

significantly impact hydrological processes such as surface runoff, evapotranspiration (ET), infiltration, and subsurface flow 26 

by altering the conditions of the land surface (Olang and Fürst, 2011; Ayalew et al., 2015; Guan et al., 2015; Bai et al., 2020; 27 
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Yan et al., 2023; Liang and Guan, 2024). Furthermore, it is evident that topographic characteristics have a direct influence on 28 

surface water flow paths and soil moisture, thereby affecting infiltration rates and groundwater recharge (Strahler, 1957; Hopp 29 

and McDonnell, 2009; Mirus and Loague, 2013; Smith et al., 2018; Yang et al., 2019; Zhang et al., 2022a). However, 30 

comprehending the diverse impacts of LULCC and topography on hydrological processes across disparate watersheds persists 31 

as a significant challenge, due to the variability in watershed characteristics and the nonlinear nature of hydrological responses 32 

(Niehoff et al., 2002; Brath et al., 2006; Thanapakpawin et al., 2007; Du et al., 2012; Pang et al., 2022; Yin et al., 2023; Guo 33 

et al., 2023; Yan et al., 2024). In order to address these challenges, researchers employ various methodologies to dissect and 34 

quantify these effects.  35 

 Statistical analysis techniques utilizing long-term monitoring data within a watershed are commonly used to examine the 36 

effects of LULCC (Beven et al., 2008; Liu et al., 2017; Zhang et al., 2021; Zhang et al., 2022b; Kumar et al., 2022). However, 37 

long-term changes in hydrological responses often reflect the combined impacts of climate change and LULCC, making it 38 

complicated to isolate the impacts of LULCC (Beven, 2011). The paired catchments approach is another statistical method 39 

commonly employed (Brown et al., 2005; Detty and McGuire, 2010; Yang et al., 2016; Van Loon et al., 2019), which compares 40 

monitoring data from two watersheds with different land cover but similar physical characteristics (Li et al., 2009; Shao et al., 41 

2020). However, applying this approach in practice can be challenging due to the difficulty in identifying watersheds with 42 

similar physical characteristics. Furthermore, recent studies have indicated that LULCC-induced hydrologic alterations exhibit 43 

considerable spatial variability within watersheds, affecting upstream and downstream regions in disparate ways (Chu et al., 44 

2010; Garg et al., 2017). In this regard, statistical analysis methods that rely on gauging datasets often lack detailed spatial 45 

resolution, employing methods that facilitate studies at finer spatial resolutions is essential for a comprehensive understanding 46 

of these variations.  47 

 Similar challenges exist when investigating the effects of topography on watershed-scale hydrological processes due to 48 

the diversity of geomorphic types and significant spatial variability within watersheds. One area where significant progress 49 

has been made is the prediction of hydrologic connectivity through topographic indices to study rainfall-runoff responses in 50 

watersheds (Jencso and McGlynn 2011). Topographic indices have become valuable tools for predicting soil moisture and 51 

identifying saturated zones.  Two successful examples are topographic wetness index (TWI; Beven and Kirkby, 1979; Sørensen 52 

et al., 2006) and height above the nearest drainage (HAND; Nobre et al., 2011; Gao et al., 2019; Fan et al., 2019). However, 53 

some studies reported TWI and groundwater levels exist distinct relations at different locations (Detty and McGuire, 2010; 54 

Rinderer et al., 2014). Furthermore, the simulation results of HAND are highly depend on the pattern of observed saturated 55 

zones and it perform better at gentler watersheds (Nobre et al., 2011; Gao et al., 2019). In addition, the predictive accuracy of 56 
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these indices decreases under dynamic conditions, such as at the onset of rainfall events (Seibert et al., 2003; Jarecke et al., 57 

2021).  58 

Recent studies have shown that hydrological models based on the Richards equation not only simulate surface-subsurface 59 

water interactions on hillslopes but also accurately describe hydrological processes under varying temporal conditions 60 

(Camporese et al., 2019). The Integrated Surface-Subsurface Hydrological Model (ISSHM) is a type of Richards equation-61 

based fully distributed hydrological model (Shen and Phanikumar, 2010; Maxwell et al., 2014; Fatichi et al., 2016). Despite 62 

being relatively new compared to other hydrological models, the ISSHM has demonstrated significant capabilities in 63 

addressing the whole system of processes at watershed scales (Niu et al., 2017; Yu et al., 2022; Zanetti et al, 2024). By dividing 64 

the land surface into grids, such models can represent the spatial variability of hydrological processes with high spatial accuracy. 65 

They can also be solved with higher temporal accuracy by applying differential solutions to the physical governing equations. 66 

Unlike monitoring data analysis methods, ISSHMs allow hydrologists to assess the impact of specific factors by implementing 67 

designed scenarios and evaluating them across a comprehensive range of spatial and temporal scales. In recent years, ISSHMs 68 

have been proven valuable for assessing LULCC and topographic impacts at the watershed scale. For instance, Im et al. (2009) 69 

used the MIKE SHE model to show that urbanization increased total runoff by 5.5% and overland flow by 24.8% in a watershed. 70 

Zhang et al. (2022a) explored how topography influences subsurface flow with the HydroGeoSphere, revealing that 71 

topography plays a significant role in controlling penetration depths and stagnant zones.    72 

While some studies have investigated the effects of LULCC and topography using the ISSHM approach, they are mainly 73 

based on single and spatially homogeneous watersheds, hindering comparative studies. Herein, we showcase the behavior of 74 

paired watersheds with heterogeneous patterns of both terrains and land cover, but are geographically adjacent to be compared 75 

under the same subtropical climate regime. We simulate the hydrological processes of the two watersheds in the Greater Bay 76 

Area (GBA), a crucial economic zone in China, using the Simulator for Hydrologic Unstructured Domains (SHUD) as an 77 

ISSHM. It examines the influences of terrain slope and urbanization-driven LULCC on the hydrological components of surface 78 

runoff, subsurface flow, ET, and infiltration at both daily and annual scales. 79 

2 Study site 80 

The study focuses on two neighboring watersheds within the Shenzhen River and Bay Basin (SRBB) in the Greater Bay Area 81 

(GBA)—the Ng Tung River Watershed (NTRW) in Hong Kong and the Buji River Watershed (BJRW) in Shenzhen (Figs. 1a 82 

and 1b). The NTRW encompasses an area of 70.7 km², while the BJRW covers 66.3 km². Situated in a subtropical region, the 83 

SRBB experiences an average annual temperature of 23.3°C and receives a substantial amount of precipitation, averaging 1933 84 

mm annually, with significant inter-annual variability. Notably, about 86% of this precipitation falls during the monsoon season 85 
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(April–September), with the region experiencing an average of 130 rainy days per year. The intensity of daily rainfall during 86 

this period can be significant, reaching 289 mm and 382 mm for the 10-year and 50-year return period events, respectively. 87 

Despite their proximity and similar climatic conditions, the NTRW and BJRW exhibit distinct differences in topography 88 

and land use patterns. The NTRW is characterized by steep slopes, with an average gradient of 12.3° and elevation variations 89 

ranging from 0.5 to 611.6 m (average elevation 97.1 m). In contrast, the BJRW features relatively flatter terrain, with an 90 

average slope of 7.5° and elevation ranging from 0.5 to 435.3 m (average elevation 70.6 m) (Fig. 1c). These watersheds reflect 91 

the rapid urbanization occurring in both Shenzhen and Hong Kong since the 1980s; however, urbanization has progressed 92 

more rapidly in the BJRW. Initially, the BJRW had limited construction areas with forests predominating (Cheng et al., 2023). 93 

By 2020, built-up land in the BJRW had increased to 71%, while in the NTRW, forests remain dominant and built-up areas 94 

constitute 37% of the land (Fig. 1d). 95 

 96 

Figure 1. Location and characteristics of the Ng Tung River Watershed (NTRW) and Buji River Watershed (BJRW): (a) location of the 97 
Shenzhen River and Bay Basin (SRBB) within the Greater Bay Area (GBA), (b) location of the NTRW (dark orange) and BJRW (light 98 
orange) within the SRBB (yellow), along with channels (blue), calibration river monitoring stations (numbered 1–7, red circles), and 99 
calibration groundwater monitoring stations (numbered 1–6, black circles), (c) DEM (FABDEM V1-2), (d) land cover map of 2020, (e) 100 
geological map. 101 
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3 Methodology 102 

3.1 Hydrological model 103 

The hydrological model employed in this study is SHUD (Shu et al., 2020), which evolved from the well-known Penn State 104 

Integrated Hydrologic Model (PIHM; Qu and Duffy, 2007; Kumar, 2009; Kumar et al., 2009). SHUD is an open-source model 105 

that incorporates a user-friendly data preprocessing toolkit, rSHUD (Shu et al., 2024), designed to simplify tasks such as grid 106 

partitioning, data integration, and model setup, addressing common challenges faced by hydrologists when working with 107 

ISSHMs. By integrating the parallel programming framework OpenMP, SHUD achieves high computational efficiency and 108 

has demonstrated superior robustness in solving problems at the watershed scale compared to PIHM, thus confirming its 109 

effectiveness in hydrological modeling (Shu et al., 2020). 110 

As illustrated in Fig. 2, the hydrological processes simulated by SHUD include rainfall, surface water ponding storage, 111 

surface water infiltration, surface runoff, ET, changes in unsaturated layer moisture, groundwater flow, and river flow processes. 112 

The model represents the land domain using unstructured triangular elements and trapezoid segments for the river network. 113 

Each triangular element is vertically discretized into three layers: the top layer represents the land surface, the middle layer 114 

represents the unsaturated zone, and the bottom layer represents the saturated aquifer. The model employs the finite volume 115 

method to spatially discretize the partial differential equations of hydrological states into ordinary differential equations, 116 

enabling detailed simulation of hydrological dynamics. 117 

For a more comprehensive understanding of the four hydrological processes analyzed in this study, we provide the 118 

relevant assumptions and computational formulas used in SHUD in Appendix A. Further details on the mathematical and 119 

algorithmic structure of SHUD are available in the referenced papers (Shu et al., 2020; Shu et al., 2024) and on the SHUD 120 

Book website (SHUD Book, 2024). 121 

 122 
Figure 2. Model schematic of hydrological processes in the SHUD model. 123 
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3.2 Data collection and model setup 124 

We set up the model domain as the entire SRBB, rather than focusing solely on its smaller two watersheds. This decision was 125 

driven by two strategic considerations. Firstly, the limited availability of monitoring data within the two watersheds 126 

necessitated a broader spatial framework to ensure a comprehensive dataset for robust hydrological analysis. Secondly, the 127 

similar characteristics of geology (Fig. 1e), soil (Fig. 3d), and vegetation (Fig. 3e) across the SRBB and its subbasins supported 128 

the feasibility of this extensive modeling approach. The SRBB, covering an area of 596 km², was discretized into 6,602 129 

triangular meshes. Specifically, the NTRW and the BJRW were represented by 819 and 793 triangular grids, respectively (Fig. 130 

3a). In the model, the outer boundary of the SRBB was designated as a zero-flow boundary, meaning no water flows across 131 

this boundary. Additionally, the land and river boundaries along the concave boundary in the southwestern part of the basin 132 

were set as a fixed head value, corresponding to the local sea level. This fixed-head boundary was established at 1.5 m, based 133 

on annual tidal observations from the Hong Kong Observatory (HKO). While this fixed-head approximation does not account 134 

for the precise daily tidal fluctuations, it represents a reasonable compromise for hydrological modeling purposes. Given that 135 

the two watersheds are situated significantly inland from the ocean, their hydrological processes are minimally affected by 136 

tidal variations. 137 

 138 

Figure 3. Map of meteorological site locations and triangular meshes of two watersheds, black circles (numbered 1-16) represent rainfall 139 
sites located in Hong Kong, and yellow star represent the Shenzhen Meteorological Station (SMS), (a) three zones delineated for BJRW (b) 140 
three zones delineated for NTRW (c), soil map (d), and vegetation map (e). 141 

The Digital Elevation Model (DEM) for the study area was sourced from the FABDEM V1-2 dataset (Neal and Hawker, 142 

2023) and offers a resolution of 30 meters. Land cover data for 2020, with a spatial resolution of 10 meters, were acquired 143 

from the Dynamic World Project via Google Earth Engine (Brown et al., 2022). Data on soil types and vegetation were obtained 144 
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from the Data Center for Resources and Environmental Sciences at the Chinese Academy of Sciences (RESDC, 2024), and 145 

geological information was sourced from the China Geological Survey (GeoCloud, 2024). Satellite imagery was utilized to 146 

determine river channel widths. Determining the appropriate soil depth remains a significant challenge, and as highlighted by 147 

Fan et al. (2019), weathering fractures notably influence hydrological activities. Based on the geological data from the study 148 

site, extensive weathering is noted in the mountainous regions. Consequently, the aquifer depth was modeled to vary gradually 149 

from 18 meters in the upslope areas to 9 meters downstream. 150 

 Additionally, driving force data were collected for two distinct periods. The first period, from 2020 to 2021, included 151 

hourly meteorological data from the Shenzhen Meteorological Station (SMS), provided by the Meteorological Bureau of the 152 

Shenzhen Municipality. This dataset included records of precipitation, temperature, relative humidity, and wind speed. Hourly 153 

precipitation data for the same period were also gathered from 16 additional gauging sites in Hong Kong, sourced from the 154 

HKO (Fig. 2a). The second period, from 1993 to 2021, involved collecting precipitation data from the R29 station via the 155 

HKO. Moreover, monitoring data of daily river discharge from seven stations and daily or weekly groundwater table depths 156 

from six stations were gathered from the Water Authority of the Shenzhen Municipality for the period of 2020–2021. A 157 

comprehensive summary of all datasets and related information is provided in Table 1. 158 

Table 1. Summary of collected datasets and related information. 159 

Data Source Resolution 
Time 

period 

Purpose 

DEM FABDEM V1-2 30 m  

Model mesh grid attributes 

set up 

Land cover type Dynamic World Project 10 m 2020 

Soil type RESDC 1000 m  

Geology 
China Geological Survey 

(GeoCloud) 
100 m  

River characteristics Google Earth   

Meteorological data of the Shenzhen 

Meteorological Station (SMS) 

Meteorological Bureau of the 

Shenzhen Municipality 
Hourly 2020–2021 

(1) Model calibration phase 

driving force inputs; 

(2) Model scenarios 1 and 2 

driving force inputs 

Precipitation of 16 Hong Kong stations Hong Kong Observatory (HKO) Hourly 2020–2021 
Model calibration phase 

driving force inputs 

Precipitation of the R29 station Hong Kong Observatory (HKO) Hourly 1993–2021 
Model scenarios 3 and 4 

driving force inputs 

Streamflow monitoring data of 7 sites 
Water Authority of the Shenzhen 

Municipality 
Daily 2020–2021 

Model calibration 
Groundwater table depth monitoring 

data of 6 sites 

Water Authority of the Shenzhen 

Municipality 

Daily or 

weekly 
2020–2021 
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3.3 Model calibration 160 

We employed rainfall data from 17 sites covering the period from 2020 to 2021 to drive the model during the calibration 161 

process. To distribute the rainfall data effectively across all 17 sites, we utilized the Thiessen multi-polygon method, allocating 162 

the data to corresponding triangular grids. Due to limitations in data availability, meteorological parameters such as 163 

temperature, relative humidity, and wind speed were sourced solely from the SMS for the entire basin. The initial setup of the 164 

model parameters was informed by field data, the general features of the model structure, and past modeling experience. The 165 

model underwent multiple spin-up sessions using 2020 meteorological data to establish an initial condition that closely mirrors 166 

the monitoring datasets. Given the heterogeneity of the basin, effective auto-calibration was challenging, leading to a 167 

preference for manual calibration as a common practice for ISSHMs (Shi et al., 2014; Thornton et al., 2022; Brandhorst and 168 

Neuweiler, 2023). We leveraged previous uncertainty analysis and parameter sensitivity studies (Baroni et al., 2010; Song et 169 

al., 2015; Liu et al., 2020) to select the most crucial parameters for this hands-on calibration process. Monitoring data from 170 

the entire period were utilized for calibration, focusing on enhancing model performance. Our calibration efforts concentrated 171 

on both streamflow and groundwater table depths to ensure a comprehensive evaluation of the model. The selected parameters 172 

and the final calibrated results are discussed in Sect. 4.1.  173 

3.4 Scenario design and evaluation methods 174 

We developed four modeling scenarios differentiated by time span and land use pattern (Table 2). Scenarios 1 and 2 analyze 175 

hydrological processes at daily and annual temporal resolutions, respectively, using continuous meteorological data provided 176 

by the SMS for the years 2020–2021. These scenarios aim to determine how watershed topography and urbanization conditions 177 

influence daily and annual hydrological responses. Scenarios 3 and 4 extend the analysis to a 29-year period (1993–2021), 178 

utilizing rainfall data from the R29 station. This approach enriches our understanding of how annual rainfall variability 179 

influences topographic slope and LULCC on hydrological processes. 180 

For the LULCC assessment, we considered two land use patterns: Historical Land Use (HLU) and Current Land Use 181 

(CLU). The HLU pattern involves reverting all built-type land uses in both watersheds to their pre-construction conditions, 182 

corresponding to the forest type evident in the 1979 satellite images from Google Earth. The CLU pattern reflects the land use 183 

as of 2020. 184 

To isolate the impact of slope from LULCC effects, we analyzed slope impacts within the two watersheds exclusively 185 

under the HLU pattern. We conducted a thorough examination of model outputs across three distinct elevation zones within 186 

the watersheds. Zone 1 encompasses low-elevation regions with DEM values below 40 m, primarily consisting of flat areas. 187 
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Zone 2 includes areas with DEM values ranging from 40 m to 120 m, situated at the foothills of the mountains. Zone 3 188 

comprises primarily high-elevation regions with DEM values exceeding 120 m (Figs. 3b and 3c). 189 

Table 2. Designed four scenarios. 190 

Scenario Driving force inputs time span Land use pattern 

1 2020–2021 HLU 

2 2020–2021 CLU 

3 1993–2021 HLU 

4 1993–2021 CLU 

 191 

In this study, the model outputs are exclusively positive, indicating water outflow, and are measured in meters to represent 192 

the depth of outflow over a specified period within each local grid. We used the Spearman rank correlation method (Seibert et 193 

al., 2003; Hauke and Kossowski, 2011) to analyze the results of Scenario 1, quantifying the relationship between the slope and 194 

four model outputs. To assess the impact of LULCC, we applied the Kolmogorov-Smirnov (KS) two-sample test (Lilliefors, 195 

1967) between Scenario 1 and Scenario 2. In all simulations, the output results are recorded at a one-day time interval. When 196 

analyzed on a daily scale, the results can be directly examined. For annual evaluations, the output results are aggregated by 197 

year. Detailed equations used for these assessments are provided in Appendix B to facilitate comprehensive understanding. To 198 

explore potential variations in the impact of slope due to annual rainfall fluctuations, we established a simple linear regression 199 

model. This model was used to examine the correlation between 29-year annual rainfall data and the Spearman correlation 200 

coefficients derived from Scenario 3. Additionally, a separate simple linear regression model was implemented to assess the 201 

relationship between 29-year annual rainfall and KS test values between Scenario 3 and Scenario 4. This approach aims to 202 

evaluate how annual rainfall fluctuations might influence LULCC.  203 

4 Results and discussion 204 

4.1. Model performance  205 

Due to spatial heterogeneity within the watersheds, the calibrated values for each parameter are formed as a matrix. For clarity, 206 

only the median values is displayed (Table 3). The first four parameters, Ks, ߠୱୱ, ߙ and  ߚ, are primarily associated with the 207 

vadose zone and significantly influence the hydraulic processes in the soil layer. The last three parameters Kg, ߠ୥ୱ and ߠ௚௥, 208 

govern the hydraulic processes in the aquifer layer. All these parameters fall within reasonable ranges, as supported by previous 209 

studies (Das, 1990; Freeze and Cherry, 1979; Bear, 2013; Van Genuchten, 1980).  210 

 Figures 4a–c display the hydrographs of daily simulated and observed streamflow at various river gaging stations within 211 

the BJRW (Site 6; Fig. 4c), at the upstream of the watersheds (Site 1; Fig. 4a), and at the downstream of the watersheds (Site 212 
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2; Fig. 4b), respectively. The Nash-Sutcliffe Efficiency (NSE) indices, computed for the entire simulation period, demonstrate 213 

satisfactory model performance, except for Site 2 where the observed dataset shows daily fluctuations in river flow during 214 

rain-free periods due to tidal influences. Therefore, for such sites, we specifically calibrated the discharge during rainy days 215 

and calculated the NSE index using data from those days. The simulation results exhibit satisfactory performance with NSE 216 

indices greater than 0.5, indicating a reasonable accuracy in streamflow predictions.      217 

 Furthermore, the monthly calibration results reinforce the robust performance of the calibrated model, exhibiting R2 218 

values exceeding 0.6 (Figs. 4d–f; Moriasi et al., 2007). This strong correlation suggests a consistent and reliable model behavior 219 

over a longer time scale. Figures 4g–i present the comparisons between the simulated and observed groundwater data. It is 220 

challenging to evaluate the assessment indices of groundwater calibration for such long durations. However, our calibration 221 

outcomes indicate a marked concordance between the model outputs and observed data trends, and the modeled groundwater 222 

table depth closely aligns with the measured depths, underscoring the model’s accuracy in reflecting actual groundwater 223 

conditions. Overall, the model exhibits satisfactory performance on both surface and subsurface water flows. Additional sites' 224 

calibration results are available in Fig. C1. 225 

Table 3. Refined parameters for the watershed after calibration. 226 

Parameter Description Allowable value range 
Median value after 

calibration  
Unit 

Ks Soil saturated infiltration conductivity 10-3–104 0.045 m day-1 

 - ୱୱ Soil saturated water content 0.25–0.7 0.531ߠ

 van Genuchten parameter >0 5.23 m-1 ߙ

 - van Genuchten parameter >1 1.29 ߚ

Kg Groundwater hydraulic conductivity 10-5–104 2.6 m day-1 

 - ୥ୱ Groundwater saturated water content 0.0–0.5 0.3ߠ

 - ୥୰ Groundwater residual water content 0.0–0.5 0.01ߠ

 227 
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 228 

Figure 4. Calibration performance of SHUD model across daily river discharge in the river monitoring sites 1, 5 and 6 (a)–(c), and monthly 229 
river discharge in the river monitoring sites 1, 5 and 6 (d)–(f), and groundwater table depth in the groundwater monitoring sites 3, 4 and 6 230 
(g)–(i). 231 

4.2 Daily and annual scale hydrological responses 232 

4.2.1 Stronger correlation between slope and daily subsurface flow 233 

Figure 5 depicts the correlation between four hydrological processes and terrain slope on a daily scale, with all depicted 234 

markers being statistically significant (p-value ≤ 0.05). The analysis primarily emphasizes slope, but also explores the influence 235 

of daily rainfall to provide additional insights. The Spearman correlation analysis indicates slight correlation coefficients 236 

between surface runoff, infiltration, and slope, which lie between -0.2 and 0.2 in all zones of the two watersheds. In contrast, 237 

coefficients associated with daily rainfall range from -0.6 to 1. Notably, during rainy days, daily subsurface flow demonstrates 238 

a more pronounced correlation with slope (coefficients between -0.4 and 0.2) than with daily rainfall (coefficients between -239 

0.2 and 0.2). Specifically, in Zone 1, a positive correlation is observed between daily subsurface flow and slope, while Zones 240 

2 and 3 exhibit a negative correlation.  241 
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 Consistent with the findings in existing literature, this result underscores the critical role of topographical factors in 242 

influencing groundwater dynamics during rainfall events (Hopp and McDonnell, 2009; Detty and McGuire, 2010; Jencso and 243 

McGlynn, 2011; Singh et al., 2021). The observed negative correlations between slope and subsurface flow in the middle and 244 

high elevations of the two watersheds can be attributed to the predominantly accretive state of groundwater in these areas. In 245 

these higher elevations, lower slopes contribute to enhanced groundwater retention and accumulation, thus enhancing 246 

subsurface flow. Conversely, in the lower elevations of both watersheds, the positive correlation between slope and subsurface 247 

flow may be explained by the tendency of groundwater to move towards surface water more readily after rainfall events. The 248 

flatter topography in these lower areas facilitates this transferring process, thereby reducing the total amount of subsurface 249 

flow retained within the soil. 250 

  251 
Figure 5. Comparative analysis of slope influence and daily rainfall on four hydrological variables. Marker size denotes the absolute value 252 

of the Spearman correlation coefficients, while marker color indicates the direction of the relationship between slope or rainfall and the four 253 

model outputs. Generally, red represents a positive correlation, whereas blue denotes a negative correlation. 254 

4.2.2 Faint slope-flow relationship in NTRW's lower zone 255 

Figure 6 presents the comparative results of terrain slope at daily and annual scales. The findings suggest that slope has a more 256 

pronounced relationship with annual surface runoff, subsurface flow, and infiltration at higher elevations compared to daily 257 

scales, highlighting the pivotal role of slope in redistributing water post-rainfall events. This aligns with the observations by 258 

Seibert et al. (2003) and Rinderer et al. (2014), who noted that topographic indices more accurately reflect hydrological 259 

responses under steady-state conditions. Specifically, Rinderer et al. (2014) reported from their analysis of data from 51 260 

groundwater wells in a Swiss catchment that the ability of the TWI to predict water table distributions diminishes under 261 

unsteady conditions. 262 
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 Concerning the direction of correlation, surface runoff in mountainous areas exhibits a positive correlation with slope at 263 

both daily and annual scales, whereas subsurface flow shows a negative correlation. On a daily scale, this pattern may be 264 

primarily due to the direct influence of slope on water flow paths. However, on an annual scale, variations in infiltration play 265 

a more substantial role (Table C1). The results indicate that in both watersheds, infiltration rates decrease at higher elevations 266 

as slopes increase, leading to increased surface water runoff and reduced subsurface flow in areas with steeper slopes. 267 

 When examining annual flow processes at lower elevations, a significant correlation between terrain slope and 268 

hydrological behavior is evident in the gently sloping BJRW. In contrast, such correlation is notably faint in the steeper NTRW. 269 

This disparity may be attributed to the fact that water flow in steeper watersheds tends to be quicker (Fan et al., 2019; Singh 270 

et al., 2021), leading to hydrological processes at lower elevations being primarily influenced by rapid upstream inflows rather 271 

than the local topography. On the other hand, the gentler slopes of other watersheds facilitate slower flow processes, allowing 272 

topographic features at lower elevations to continuously influence water flow paths over time, thus maintaining a consistent 273 

hydrological impact. 274 

  275 

Figure 6.  Comparison of hydrological responses to slope variability on annual and daily scales in NTRW and BJRW. 276 

4.2.3 Dominant impact of LULCC on daily infiltration 277 

Figure 7 illustrates the absolute mean differences in hydrologic outputs between the HLU and CLU patterns for each grid cell. 278 

Employing the KS statistic, significant alterations in the cumulative distribution function (CDF) of daily hydrologic outputs 279 

were identified, highlighting the substantial impacts of LULCC. Among the hydrological processes examined, daily infiltration 280 

exhibits the most pronounced and widespread differences, underscoring the dominant influence of LULCC. 281 
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 When considering only absolute mean differences, surface runoff and subsurface flow are identified as the second and 282 

third most influenced processes, respectively. However, when focusing exclusively on the results from the KS statistical test, 283 

ET emerges as the second most affected process. This indicates that land use changes significantly alter ET patterns on rainy 284 

days, despite the smaller mean differences observed. 285 

This finding aligns with the results of Chu et al. (2010) and Diem et al. (2021), which underscore the extensive impact of 286 

urbanization on surface runoff through changes in infiltration. Notably, the distribution of affected subsurface flow in both 287 

watersheds closely correlates with the areas exhibiting the most significant changes in infiltration. Compared to the steeper 288 

NTRW, the flatter BJRW shows broader changes in subsurface flow as a result of LULCC. This disparity likely stems from 289 

the prolonged water-soil contact in flatter terrains, which enhances infiltration. Consequently, this enhanced infiltration process 290 

leads to a more extensive distribution of soil moisture throughout the watershed, influencing both surface and subsurface 291 

hydrological dynamics.  292 

 293 

Figure 7. Map of absolute mean differences at each grid between HLU and CLU patterns, with significant variations in daily hydrologic 294 
output CDFs marked according to the KS statistic. The color coding represents the absolute value of the differences in these outputs, and the 295 
pink and red circles indicate areas where the KS statistic is significant. 296 
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4.2.4 NTRW shows more sensitivity to LULCC 297 

The KS test indicates statistically significant changes in all four hydrological outputs after urbanization, with all p-values 298 

below 0.05 (refer to Fig. 8). The results depict an increase in annual surface runoff and reductions in subsurface flow, ET, and 299 

infiltration following urbanization. This aligns with findings from Shao et al. (2020), who used a process-based hydrological 300 

model to examine the response of surface runoff to LULCC in two adjacent watersheds in Texas, USA. They reported that 301 

urbanization leads to increased runoff, a finding consistent with our results. 302 

 Furthermore, the KS test results reveal relative consistency within each watershed for surface runoff, ET, and infiltration 303 

values. Specifically, in the NTRW, the KS values for surface runoff, ET, and infiltration are recorded at 0.39, 0.395, and 0.377, 304 

respectively. The corresponding values in the BJRW are 0.531, 0.583, and 0.615. However, subsurface flow shows lower KS 305 

values of 0.127 in the NTRW and 0.263 in the BJRW, suggesting that urbanization has a less impact on the annual subsurface 306 

flow process. 307 

 This minimal impact on subsurface water flow suggests that the slower dynamics of subsurface water may buffer the 308 

direct effects of urbanization at the annual scale. In the BJRW, where impervious surfaces account for 71% of the land cover 309 

change, the response of surface runoff, ET and infiltration is more pronounced (with KS values ranging from 0.531 to 0.615) 310 

compared to the NTRW, where impervious surfaces make up 37% of the change (with KS values ranging from 0.377 to 0.395). 311 

 It is noteworthy that in the BJRW, the KS values for surface runoff, ET, and infiltration are slightly lower than the 312 

percentage increase in impervious surfaces. This suggests that the flatter watershed may possess a natural ability to mitigate 313 

the effects of LULCC. This observation is supported by Zhou et al. (2015), who noted that flatter terrains tend to absorb 314 

changes more effectively due to prolonged water-soil contact times, which enhance infiltration and storage capacities. This 315 

capacity may help mitigate the more severe hydrological alterations typically associated with extensive urbanization. 316 
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  317 

Figure 8. Box plots delineating the impacts of LULCC on the four annual outputs across all meshes within each watershed. The comparison 318 
contrasts the outcomes under the HLU and CLU patterns. The top row displays the results of NTRW, while the second row displays the 319 
results of BJRW. KS test values (C) are annotated, all p-values are less than 0.05. 320 

4.3 Variations with different annual rainfall amounts  321 

4.3.1 Rainfall intensifies subsurface flow-slope relationship in BJRW's lower zone 322 

Figure 9 presents scatterplots and regression equations that analyze the correlation between annual precipitation and Spearman 323 

statistic values from 1993 to 2021, highlighting outcomes that are statistically significant (p-value ≤ 0.05), as identified in Sect. 324 

4.2.2. The analysis shows minimal changes in Spearman statistic values across most study areas; however, a notable variation 325 

was observed in subsurface flow within Zone 1 of the BJRW, where a coefficient of 0.07 indicates that each 100 mm increase 326 

in annual precipitation enhances the correlation between slope and subsurface flow by 0.007. This change corresponds to a 327 

shift in the Spearman coefficient from 0.174 to 0.258 as annual rainfall increases from 1200 mm to 2400 mm. This observation 328 

is supported by findings from Zhang et al. (2022a), who reported that under scenarios of higher precipitation and greater 329 

hydraulic conductivity, the extent and permeation depth of the saturated zones beneath mountains exhibit a stronger correlation 330 

with the terrain. This effect is likely due to increased precipitation levels raising the water table at lower elevations, thus 331 

enhancing the relationship between slope and subsurface flow. 332 
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  333 

Figure 9. Scatter plots of Spearman statistic values of slope and four model outputs under 29 years of different annual rainfall amounts, with 334 
simple regression equations and shade area showing the 95% confident interval.  335 

4.3.2 Rainfall intensifies the changes in groundwater caused by LULCC 336 

Figure 10 presents scatter plots correlating KS test values for four hydrological outputs with 29 years of annual rainfall data, 337 

evaluating how the impacts of LULCC vary under different precipitation intensities. Our analysis highlights significant 338 

variability in the effects of LULCC across various annual rainfall amounts in the BJRW. Here, surface runoff and infiltration 339 

exhibit reduced variations before and after urbanization as annual rainfall increases, whereas variations in subsurface flow 340 

intensify. In the NTRW, significant changes are primarily observed in annual subsurface flow, which also shows increased 341 

variation with higher levels of annual precipitation. In scenarios where all surfaces are pervious, an increase in annual rainfall 342 

leads to gradually saturated soil moisture, thereby enhancing surface runoff and reducing water infiltration. This behavior 343 

mirrors observations on impervious surfaces. However, in environments predominantly composed of impervious surfaces, 344 

surface water cannot effectively infiltrate to form groundwater. This leads to a poor connectivity in saturated zones, thereby 345 

impeding the formation of subsurface flow. As annual rainfall increases, the differences in subsurface flow between land use 346 

patterns become more pronounced. 347 
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  348 

Figure 10. Scatter plots of KS test coefficients of LULCC and four model outputs under 29 years of different annual rainfall scenarios, with 349 
simple regression equations and shade area showing the 95% confident interval. 350 

4.4 Limitations and future work 351 

Our study provides valuable insights into the effects of topography and LULCC on hydrological processes across various 352 

spatiotemporal scales in different watersheds. Although the hydrological model used was comprehensively calibrated using 353 

observational data and demonstrated accurate predictive capabilities, several limitations warrant consideration. Firstly, the 354 

calibration of the model parameters was conducted manually using local data, which may not encompass the optimal parameter 355 

sets unidentified in this study. Furthermore, the inherent uncertainties associated with the monitoring data and the model 356 

structure were not thoroughly evaluated. Due to the complexity of ISSHMs and the significant amount of time required to 357 

thoroughly assess all uncertainties, such evaluations remain challenging but are necessary for advancing the field. Secondly, 358 

our study area is located in a subtropical humid region characterized by frequent rainfall and consistently moist soils. This 359 

geographical specificity may limit the generalizability of our findings to regions with different climatic conditions. Thirdly, 360 

the rainfall data utilized in this study only encompassed the typical range of precipitation for the region; extreme rainfall events, 361 

which may induce unique hydrological responses, were not investigated. The impact of such extreme conditions remains to be 362 

explored in future studies. 363 
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5 Conclusions 364 

Utilizing the ISSHM model, SHUD, this study explored the effects of topographical slope and urbanization-induced LULCC 365 

on surface runoff, subsurface flow, ET, and infiltration across various spatiotemporal conditions in two neighboring subtropical 366 

watersheds. In conclusion, this study confirms the complex and variable effects of topography and LULCC on hydrological 367 

processes across various watersheds, spatial locations within watersheds, and temporal scales. On a daily scale, slope is found 368 

to correlate with subsurface flow. However, on an annual scale, slope correlates with all hydrological processes, with the 369 

strongest correlation observed in mountainous regions. In flatter watersheds, prolonged soil-water interactions enhance 370 

infiltration and influence water redistribution, thus increasing the correlation between slope and surface runoff and subsurface 371 

flow, especially as annual precipitation increases. Our findings suggest that urbanization significantly increases surface runoff 372 

while decreasing infiltration and ET, with minimal impact on subsurface flow. Furthermore, watersheds with steeper slopes 373 

show a more pronounced response to urbanization, whereas those with gentler slopes mitigate the effects of LULCC on 374 

increased surface runoff. This phenomenon can be described as a buffering effect of gently sloping watersheds. However, this 375 

buffering effect diminishes as annual rainfall increases. This study underscores the need for hydrologic management strategies 376 

tailored to the specific topography and LULCC characteristics of each watershed. A comprehensive understanding of these 377 

factors is crucial for developing effective water resource management approaches that support sustainable development in 378 

these areas. 379 

Appendix A: SHUD hydrological processes formulas 380 

The comprehensive exposition of the governing equations for the SHUD is provided in Shu et al. (2020). Here, the emphasis 381 

is placed on expounding the equations that are relevant to the processes addressed in this study. 382 

- Infiltration. SHUD adopts the Richards equation like most ISSHMs adopted to describe the infiltration process. While there 383 

are no general analytical solutions to the Richards equation, SHUD adopted the Green-Ampt infiltration equation (Eq. (A1)), 384 

which allows a simple form of Darcy’s law to be used to calculate the infiltration rate ݍ௜ [LT-1],  385 

୧ݍ = ୧ܭ ቀ1 +
௛౩
஽౟౤౜
ቁ                                                                                                                                                                                      (A1) 386 

where ℎୱ [LT-1] is the ponding water height plus precipitation, ܦ୧୬୤ [L] is the infiltration depth representing the top soil layer, 387 

 ௜ [LT-1] is the effective infiltration conductivity, and it is a function of soil saturation ratio, soil properties, and ℎୱ. The Green-388ܭ

Ampt method assumes that the infiltrating wetting front forms a sharp jump from a constant initial moisture content ahead of 389 

the front to saturation at the front. 390 
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-Evapotranspiration. Potential evapotranspiration (PET) is computed using the Penman-Monteith equation (Eq. (A2)), while 391 

actual evapotranspiration (AET) is derived by multiplying PET with a soil moisture stress coefficient, determined by soil 392 

moisture content and groundwater table depth. 393 

ܧߣ = ୼೐ுାఘೌ௖೛(௘ೞ( ೥்)ି௘೥)/௥ೌ
୼೐ାఊ(ଵା௥೎/௥ೌ )

,                            (A2) 394 

where ߣ(=2.47106, Jkg-1) is the latent heat of evaporation, E [LT-1] is the PET rate, Δ௘  is the slope of the saturation vapor 395 

pressure versus temperature curve, ܪ is total available energy, ߩ௔ is the density of the air, ܿ௣ is the specific heat capacity of the 396 

air, ݁௦( ௭ܶ) is the saturated vapor pressure at the height of z, ݁௭ is the vapor pressure at the height of z, ݎ௔ and ݎ௖  are the two 397 

resistance coefficients, ߛ is the psychrometric constant. 398 

- Surface runoff. The kinematic wave equation (Eq. (A3)) is used to approximate the surface runoff in the SHUD, 399 

డ௛
డ௧
= − డ(௩௛)

డ௫
− డ(௩௛)

డ௬
+  400 (A3)                           ,ݎ

where h [L] represents the average depth of flow, v [LT-1] is the flow velocity, and r [LT-1] is a rate of addition or loss of water 401 

caused by precipitation, infiltration and evaporation. The relationship between v and h is represented by the Manning equation 402 

(Eq. (A4)),  403 

ݒ = − ௌబ
భ
మ௛
య
ఱ

௡
,                       (A4) 404 

where ܵ଴ [-] is the surface slope, n [TL-1/3] is the Manning roughness. 405 

- Subsurface flows. The SHUD applies the Richards equation (Eq. (A5)) to describe both saturated and unsaturated flows, and 406 

the water density is assumed to be constant,  407 

డఏ
డ௧
= డ
డ௫
ቂܭ௫(ߠ)

డ஍
డ௫
ቃ + డ

డ௬
ቂܭ௬(ߠ)

డ஍
డ௬
ቃ + డ

డ௭
ቂܭ௭(ߠ)

డ஍
డ௭
ቃ,                (A5) 408 

where ߠ  [-] is volumetric moisture content,  ܭ௫(ߠ)  [LT-1], ܭ௬(ߠ)  [LT-1], and ܭ௭(ߠ)  [LT-1] indicate hydraulic conductivity 409 

depends on direction and is treated as a function of ߠ, Φ [L] is the total potential (Φ = ߰ +  where ߰ [L] is the capillary 410 ݖ

potential and z is the elevation above the datum). The SHUD utilizes the van Genuchten functions to solve the relationship for 411 

soil moisture content, capillary potential, and hydraulic conductivity. 412 

Appendix B: Assessment equations 413 

The Spearman rank correlation method evaluates the strength and monotonic nature of relationships between two variables 414 

without relying on assumptions regarding data distribution or residuals. The KS two-sample test compares two samples to 415 
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determine if they are drawn from the same distribution, without assumptions about the underlying distribution. The KS statistic 416 

is the maximum absolute difference between the CDFs of the two data vectors. 417 

For the daily scale analysis, we focused on positive model outputs during rainy days (precipitation ≥ 0.1 mm per day). 418 

We employed matrix D for each zone (Zone 1 to Zone 3) to assess daily outputs related to slope angle for each grid (Eqs. (B1) 419 

and (B2)). 420 

۲ = ൥
ଵ܅
⋮
ே܅

൩,                                                                                                                                            (B1) 421 

௡܅ = ൥
ଵ௡ݕ ଵ݌ ௡ݏ
⋮ ⋮ ⋮
௜௡ݕ ௜݌ ௡ݏ

൩                                                                                                                                        (B2) 422 

In matrix D, each row Wn (n=1, 2, …, N) corresponds to the model outputs associated with a specific hydrological process 423 

of the nth grid. Within Wn, each row represents a rainy day under consideration, with i denoting the total number of rainy days 424 

analyzed. Each row comprises three values: the daily model output ykn (k=1, 2, …, i), the corresponding rainfall amount pk 425 

(k=1, 2, …, i), and the grid's slope angle sn. Consequently, the Spearman correlation coefficient was computed between the 426 

transpose vectors ࢟ே×௜ࢀ  and ࢙ே×௜ࢀ . 427 

To analyze LULCC effects, vectors Hd (Eq. (B3)) and Cd (Eq.(B4)) were generated for each grid under HLU and CLU 428 

patterns, and the KS test value was computed between these two vectors for each grid, 429 

ࢊࡴ = ,ଵ|ୌ୐୙ݕൣ ⋯,ଶ|ୌ୐୙ݕ ,  ௜|ୌ୐୙൧,                   (B3) 430ݕ

ࢊ࡯ = ,ଵ|େ୐୙ݕൣ ⋯,ଶ|େ୐୙ݕ ,  ௜|େ୐୙൧,                   (B4) 431ݕ

where i denotes the total number of rainy days,  ݕ௞|ୌ୐୙ and ݕ௞|େ୐୙ (k=1, 2, …, i) represent the model daily output of this grid 432 

under the HLU pattern and the CLU pattern on the kth rainy day, respectively. We also calculated the absolute difference in 433 

mean values of these two vectors to quantify the magnitude of change between the two land use patterns in terms of their 434 

effects on the model outputs.  435 

To evaluate the effects of slope on an annual scale, a new matrix A is constructed as following Eq. (B5): 436 

ۯ = ൥
ଵݕ ଵݏ
⋮ ⋮
ேݕ ேݏ

൩,                            (B5) 437 

where N represents the number of grids within each zone, yn and sn (n=1, 2, …, N) denote the annual output and slope angle 438 

for the nth grid, respectively. Only grids with annual volumes exceeding 10 mm were considered for surface runoff and 439 

subsurface flow analysis to concentrate on pronounced flows. Subsequently, the Spearman correlation coefficient was 440 

calculated between the transpose vectors ࢟ே୘  and ࢙ே୘ . 441 
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The KS test was also applied at the annual scale to compare model outputs between HLU and CLU patterns across the 442 

entire subbasin range. Vectors Hy (Eq. (B6)) and Cy (Eq. (B7)) represent the annual model outputs under the HLU pattern and 443 

the CLU pattern, respectively.  444 

୷ࡴ = ,ଵ|ୌ୐୙ݕൣ ⋯,ଶ|ୌ୐୙ݕ ,  ௝|ୌ୐୙൧,                   (B6) 445ݕ

୷࡯ = ,ଵ|େ୐୙ݕൣ ⋯,ଶ|େ୐୙ݕ ,  ௝|େ୐୙൧,                   (B7) 446ݕ

Here z denotes the number of grids across each subbasin,  ݕ௞|ୌ୐୙ and ݕ௞|େ୐୙ (k=1, 2, …, z) represent the model annual 447 

output of the kth grid under the HLU pattern and the CLU pattern, respectively. Then the KS test was carried out between these 448 

two vectors. 449 

Appendix C: Supplementary calibration results 450 

 451 

Figure C1. Other sites calibration results across daily river discharge (a)–(d), and monthly river discharge (e)–(h), and groundwater table 452 
depth (i)–(k). 453 
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Table C1. Spearman coefficients between infiltration and subsurface flow. 454 

 Zone 1 Zone 2 Zone 3 
Daily scale    

NTRW - - 0.20 
BJRW 0.19 - - 

Annual scale    
NTRW 0.67 0.68 0.72 
BJRW 0.82 0.66 0.77 

 455 

Code and data availability. The source code of the SHUD model can be downloaded from https://github.com/SHUD-456 

System/SHUD. The model spatial input data are freely available from the described source listed in Table 1. The 457 

meteorological data and monitoring data in this study can be obtained upon request.  458 
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