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Abstract. Watershed hydrological processes are significantly influenced by land use/land cover change (LULCC) and 7 

characteristics such as topography. In economically advanced regions, coordinating land use planning and water resource 8 

management is essential for mitigating flood risks and ensuring sustainable development. This study compares the effects of 9 

terrain slope and urbanization-driven LULCC on hydrological processes in two adjacent subtropical watersheds but with 10 

distinct terrain and land cover in Greater Bay Area (GBA) of China. We developed an Integrated Surface-Subsurface 11 

Hydrological Model (ISSHM) using the Simulator for Hydrologic Unstructured Domains (SHUD) and calibrated it with data 12 

from river and groundwater monitoring stations. The calibrated model simulated hydrological processes including surface 13 

runoff, subsurface flow, evapotranspiration (ET), and infiltration to quantify water movement (measured in meters) and assess 14 

the impacts of slope and LULCC. Results show that slope impacts hydrological processes differently based on watershed 15 

characteristics. In mountainous areas, there are consistent high correlations between slope and annual surface runoff, 16 

infiltration, and subsurface flow across all watersheds. However, at lower elevations, the hydrological responses of steeper 17 

watersheds correlate weakly with local slope. Urbanization, marked by increased impervious surfaces, significantly raises 18 

annual surface runoff and decreases infiltration and ET, especially in steeper watersheds. In flatter watersheds, the rise in 19 

surface runoff is proportionally less than the increase in impervious areas, indicating a buffering capacity against urbanization. 20 

However, this buffering capacity is diminishing with increasing annual rainfall intensity. Overall, ISSHM provides robust 21 

analysis of LULCC effects on watershed hydrology across scales, enabling predictive approaches to optimize urban 22 

management for sustainable development in growing cities.  23 

1 Introduction 24 

The effects of land use/land cover change (LULCC) and topographic variability on hydrological processes within a watershed 25 

are widely recognized as critical issues in hydrology (e.g., Bosch and Hewlett, 1982; O'Loughlin, 1986; Costa et al., 2003; 26 

Beven, 2011; Gwak and Kim, 2016; Larson et al., 2022; Sicaud et al., 2024). Urbanization has been demonstrated to 27 
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significantly impact hydrological processes such as surface runoff, evapotranspiration (ET), infiltration, and subsurface flow 28 

by altering the conditions of the land surface (Olang and Fürst, 2011; Ayalew et al., 2015; Guan et al., 2015; Bai et al., 2020; 29 

Yan et al., 2023; Liang and Guan, 2024). Furthermore, it is evident that topographic characteristics have a direct influence on 30 

surface water flow paths and soil moisture, thereby affecting infiltration rates and groundwater recharge (Strahler, 1957; Hopp 31 

and McDonnell, 2009; Mirus and Loague, 2013; Smith et al., 2018; Yang et al., 2019; Zhang et al., 2022a). However, 32 

comprehending the diverse impacts of LULCC and topography on hydrological processes across disparate watersheds persists 33 

as a significant challenge, due to the variability in watershed characteristics and the nonlinear nature of hydrological responses 34 

(Niehoff et al., 2002; Brath et al., 2006; Thanapakpawin et al., 2007; Du et al., 2012; Pang et al., 2022; Yin et al., 2023; Guo 35 

et al., 2023; Yan et al., 2024). In order to address these challenges, researchers employ various methodologies to dissect and 36 

quantify these effects.  37 

 Statistical analysis techniques utilizing long-term monitoring data within a watershed are commonly used to examine the 38 

effects of LULCC (Beven et al., 2008; Liu et al., 2017; Zhang et al., 2021; Zhang et al., 2022b; Kumar et al., 2022). However, 39 

long-term changes in hydrological responses often reflect the combined impacts of climate change and LULCC, making it 40 

complicated to isolate the impacts of LULCC (Beven, 2011). The paired catchments approach is another statistical method 41 

commonly employed (Brown et al., 2005; Detty and McGuire, 2010; Yang et al., 2016; Van Loon et al., 2019), which compares 42 

monitoring data from two watersheds with different land cover but similar physical characteristics (Li et al., 2009; Shao et al., 43 

2020). However, applying this approach in practice can be challenging due to the difficulty in identifying watersheds with 44 

similar physical characteristics. Furthermore, recent studies have indicated that LULCC-induced hydrologic alterations exhibit 45 

considerable spatial variability within watersheds, affecting upstream and downstream regions in disparate ways (Chu et al., 46 

2010; Garg et al., 2017). In this regard, statistical analysis methods that rely on gauging datasets often lack detailed spatial 47 

resolution, employing methods that facilitate studies at finer spatial resolutions is essential for a comprehensive understanding 48 

of these variations.  49 

 Similar challenges exist when investigating the effects of topography on watershed-scale hydrological processes due to 50 

the diversity of geomorphic types and significant spatial variability within watersheds. One area where significant progress 51 

has been made is the prediction of hydrologic connectivity through topographic indices to study rainfall-runoff responses in 52 

watersheds (Jencso and McGlynn 2011). Topographic indices have become valuable tools for predicting soil moisture and 53 

identifying saturated zones.  Two successful examples are topographic wetness index (TWI; Beven and Kirkby, 1979; Sørensen 54 

et al., 2006) and height above the nearest drainage (HAND; Nobre et al., 2011; Gao et al., 2019; Fan et al., 2019). However, 55 

some studies reported TWI and groundwater levels exist distinct relations at different locations (Detty and McGuire, 2010; 56 

Rinderer et al., 2014). Furthermore, the simulation results of HAND are highly depend on the pattern of observed saturated 57 
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zones and it perform better at gentler watersheds (Nobre et al., 2011; Gao et al., 2019). In addition, the predictive accuracy of 58 

these indices decreases under dynamic conditions, such as at the onset of rainfall events (Seibert et al., 2003; Jarecke et al., 59 

2021).  60 

Recent studies have shown that hydrological models based on the Richards equation not only simulate surface-subsurface 61 

water interactions on hillslopes but also accurately describe hydrological processes under varying temporal conditions 62 

(Camporese et al., 2019). The Integrated Surface-Subsurface Hydrological Model (ISSHM) is a type of Richards equation-63 

based fully distributed hydrological model (Shen and Phanikumar, 2010; Maxwell et al., 2014; Fatichi et al., 2016). Despite 64 

being relatively new compared to other hydrological models, the ISSHM has demonstrated significant capabilities in 65 

addressing the whole system of processes at watershed scales (Niu et al., 2017; Yu et al., 2022; Zanetti et al, 2024). By dividing 66 

the land surface into grids, such models can represent the spatial variability of hydrological processes with high spatial accuracy. 67 

They can also be solved with higher temporal accuracy by applying differential solutions to the physical governing equations. 68 

Unlike monitoring data analysis methods, ISSHMs allow hydrologists to assess the impact of specific factors by implementing 69 

designed scenarios and evaluating them across a comprehensive range of spatial and temporal scales. In recent years, ISSHMs 70 

have been proven valuable for assessing LULCC and topographic impacts at the watershed scale. For instance, Im et al. (2009) 71 

used the MIKE SHE model to show that urbanization increased total runoff by 5.5% and overland flow by 24.8% in a watershed. 72 

Zhang et al. (2022a) explored how topography influences subsurface flow with the HydroGeoSphere, revealing that 73 

topography plays a significant role in controlling penetration depths and stagnant zones.    74 

While some studies have investigated the effects of LULCC and topography using the ISSHM approach, they are 75 

primarily based on the single watershed (Chu et al., 2010; Im et al., 2009; Thanapakpawin et al., 2007), hindering comparative 76 

analyses. Herein, we showcase the behavior of paired watersheds with heterogeneous patterns of both terrains and land cover, 77 

but are geographically adjacent to be compared under the same subtropical climate regime. We simulate the hydrological 78 

processes of two watersheds in the Greater Bay Area (GBA), a critical economic zone in China that encompasses major cities 79 

such as Guangzhou, Shenzhen, Hong Kong, and Macao. According to official data, the GDP of the GBA exceeded 14 trillion 80 

yuan in 2023 (Greater Bay Area, 2024). Despite this economic success, the region faces significant challenges in achieving 81 

sustainable growth under rapid urbanization, making it an ideal case study for investigating the impacts of development on 82 

hydrological processes. For this study, we use the Simulator for Hydrologic Unstructured Domains (SHUD) as an ISSHM. It 83 

examines the influences of terrain slope and urbanization-driven LULCC on the hydrological components of surface runoff, 84 

subsurface flow, ET, and infiltration at both daily and annual scales.  85 
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2 Study site 86 

The study focuses on two neighboring watersheds within the Shenzhen River and Bay Basin (SRBB) in the GBA—the Ng 87 

Tung River Watershed (NTRW) in Hong Kong and the Buji River Watershed (BJRW) in Shenzhen (Figs. 1a and 1b). The 88 

NTRW encompasses an area of 70.7 km², while the BJRW covers 66.3 km². Situated in a subtropical region, the SRBB 89 

experiences an average annual temperature of 23.3°C and receives a substantial amount of precipitation, averaging 1933 mm 90 

annually, with significant inter-annual variability. Notably, about 86% of this precipitation falls during the monsoon season 91 

(April–September), with the region experiencing an average of 130 rainy days per year. The intensity of daily rainfall during 92 

this period can be significant, reaching 289 mm and 382 mm for the 10-year and 50-year return period events, respectively. 93 

Despite their proximity and similar climatic conditions, the NTRW and BJRW exhibit distinct differences in topography 94 

and land use patterns. The NTRW is characterized by steep slopes, with an average gradient of 12.3° and elevation variations 95 

ranging from 0.5 to 611.6 m (average elevation 97.1 m). In contrast, the BJRW features relatively flatter terrain, with an average 96 

slope of 7.5° and elevation ranging from 0.5 to 435.3 m (average elevation 70.6 m) (Fig. 1c). These watersheds demonstrate 97 

the rapid urbanization of Shenzhen and Hong Kong since the 1980s; however, urbanization has progressed more rapidly in the 98 

BJRW. Initially, the BJRW had limited construction areas with forests predominating (Cheng et al., 2023). By 2020, built-up 99 

land in the BJRW had increased to 71%, while in the NTRW, forests remain dominant and built-up areas constitute 37% of the 100 

land (Fig. 1d). 101 
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 102 

Figure 1. Location and characteristics of the Ng Tung River Watershed (NTRW) and Buji River Watershed (BJRW): (a) location of the 103 

Shenzhen River and Bay Basin (SRBB) within the Greater Bay Area (GBA), (b) location of the NTRW (dark orange) and BJRW (light 104 

orange) within the SRBB (yellow), along with channels (blue), calibration river monitoring stations (numbered 1–7, red circles), and 105 

calibration groundwater monitoring stations (numbered 1–6, black circles), (c) DEM (FABDEM V1-2), (d) land cover map of 2020, (e) 106 

geological map. 107 

3 Methodology 108 

3.1 Hydrological model 109 

The hydrological model employed in this study is SHUD (Shu et al., 2020), which evolved from the well-known Penn State 110 

Integrated Hydrologic Model (PIHM; Qu and Duffy, 2007; Kumar, 2009; Kumar et al., 2009). SHUD is an open-source model 111 

that incorporates a user-friendly data preprocessing toolkit, rSHUD (Shu et al., 2024), designed to simplify tasks such as grid 112 

partitioning, data integration, and model setup, addressing common challenges faced by hydrologists when working with 113 

ISSHMs. By integrating the parallel programming framework OpenMP, SHUD achieves high computational efficiency and 114 

has demonstrated superior robustness in solving problems at the watershed scale compared to PIHM, thus confirming its 115 

effectiveness in hydrological modeling (Shu et al., 2020). 116 
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As illustrated in Fig. 2, the hydrological processes simulated by SHUD include rainfall, surface water ponding storage, 117 

surface water infiltration, surface runoff, ET, changes in unsaturated layer moisture, groundwater flow, and river flow processes. 118 

The model represents the land domain using unstructured triangular elements and trapezoid segments for the river network. 119 

Each triangular element is vertically discretized into three layers: the top layer represents the land surface, the middle layer 120 

represents the unsaturated zone, and the bottom layer represents the saturated aquifer. The model employs the finite volume 121 

method to spatially discretize the partial differential equations of hydrological states into ordinary differential equations, 122 

enabling detailed simulation of hydrological dynamics. 123 

For a more comprehensive understanding of the four hydrological processes analyzed in this study, we provide the 124 

relevant assumptions and computational formulas used in SHUD in Appendix A. Further details on the mathematical and 125 

algorithmic structure of SHUD are available in the referenced papers (Shu et al., 2020; Shu et al., 2024) and on the SHUD 126 

Book website (SHUD Book, 2024). 127 

 128 
Figure 2. Model schematic of hydrological processes in the SHUD model. 129 

3.2 Data collection and model setup 130 

We set up the model domain as the entire SRBB, rather than focusing solely on its smaller two watersheds. This decision was 131 

driven by two strategic considerations. Firstly, the limited availability of monitoring data within the two watersheds 132 

necessitated a broader spatial framework to ensure a comprehensive dataset for robust hydrological analysis. Secondly, the 133 

similar characteristics of geology (Fig. 1e), soil (Fig. 3d), and vegetation (Fig. 3e) across the SRBB and its subbasins supported 134 

the feasibility of this extensive modeling approach. The SRBB, covering an area of 596 km², was discretized into 6,602 135 

triangular meshes. Specifically, the NTRW and the BJRW were represented by 819 and 793 triangular grids, respectively (Fig. 136 

3a). In the model, the outer boundary of the SRBB was designated as a zero-flow boundary, meaning no water flows across 137 

this boundary. Additionally, the land and river boundaries along the concave boundary in the southwestern part of the basin 138 
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were set as a fixed head value, corresponding to the local sea level. This fixed-head boundary was established at 1.5 m, based 139 

on annual tidal observations from the Hong Kong Observatory (HKO). While this fixed-head approximation does not account 140 

for the precise daily tidal fluctuations, it represents a reasonable compromise for hydrological modeling purposes. Given that 141 

the two watersheds are situated significantly inland from the ocean, their hydrological processes are minimally affected by 142 

tidal variations. 143 

 144 

Figure 3. Map of meteorological site locations and triangular meshes of two watersheds. Black circles (numbered 1-16) represent rainfall 145 

sites located in Hong Kong, and the yellow star represents the Shenzhen Meteorological Station (SMS) (a), soil map (b), and vegetation map 146 

(c). 147 

The Digital Elevation Model (DEM) for the study area was sourced from the FABDEM V1-2 dataset (Neal and Hawker, 148 

2023) and offers a resolution of 30 meters. Land cover data for 2020, with a spatial resolution of 10 meters, were acquired 149 

from the Dynamic World Project via Google Earth Engine (Brown et al., 2022). Data on soil types and vegetation were obtained 150 

from the Data Center for Resources and Environmental Sciences at the Chinese Academy of Sciences (RESDC, 2024), and 151 

geological information was sourced from the China Geological Survey (GeoCloud, 2024). Satellite imagery was utilized to 152 

determine river channel widths. Determining the appropriate soil depth remains a significant challenge, and as highlighted by 153 

Fan et al. (2019), weathering fractures notably influence hydrological activities. Based on the geological data from the study 154 

site, extensive weathering is noted in the mountainous regions. Consequently, the aquifer depth was modeled to vary gradually 155 

from 18 meters in the upslope areas to 9 meters downstream. 156 

 Additionally, driving force data were collected for two distinct periods. The first period, from 2020 to 2021, included 157 

hourly meteorological data from the Shenzhen Meteorological Station (SMS), provided by the Meteorological Bureau of the 158 
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Shenzhen Municipality. This dataset included records of precipitation, temperature, relative humidity, and wind speed. Hourly 159 

precipitation data for the same period were also gathered from 16 additional gauging sites in Hong Kong, sourced from the 160 

HKO (Fig. 2a). The second period, from 1993 to 2021, involved collecting precipitation data from the R29 station via the 161 

HKO. Moreover, monitoring data of daily river discharge from seven stations and daily or weekly groundwater table depths 162 

from six stations were gathered from the Water Authority of the Shenzhen Municipality for the period of 2020–2021. While 163 

urban drainage could affect river discharge in Shenzhen, river rehabilitation projects through 2020 (Buji Sub-district Office, 164 

2024) helped minimize drainage network inflows. Therefore, we assume the monitored river discharge data collected during 165 

2020–2021 can be fully attributed to terrestrial runoff intercepted along the river channels. A comprehensive summary of all 166 

datasets and related information is provided in Table 1. 167 

Table 1. Summary of collected datasets and related information. 168 

Data Source Resolution 
Time 

period 

Purpose 

DEM FABDEM V1-2 30 m  

Model mesh grid attributes 

set up 

Land cover type Dynamic World Project 10 m 2020 

Soil type RESDC 1000 m  

Geology 
China Geological Survey 

(GeoCloud) 
100 m  

River characteristics Google Earth   

Meteorological data of the Shenzhen 

Meteorological Station (SMS) 

Meteorological Bureau of the 

Shenzhen Municipality 
Hourly 2020–2021 

(1) Model calibration phase 

driving force inputs; 

(2) Model scenarios 1 and 2 

driving force inputs 

Precipitation of 16 Hong Kong stations Hong Kong Observatory (HKO) Hourly 2020–2021 
Model calibration phase 

driving force inputs 

Precipitation of the R29 station Hong Kong Observatory (HKO) Hourly 1993–2021 
Model scenarios 3 and 4 

driving force inputs 

Streamflow monitoring data of 7 sites 
Water Authority of the Shenzhen 

Municipality 
Daily 2020–2021 

Model calibration 
Groundwater table depth monitoring 

data of 6 sites 

Water Authority of the Shenzhen 

Municipality 

Daily or 

weekly 
2020–2021 

3.3 Model calibration 169 

We employed rainfall data from 17 sites covering the period from 2020 to 2021 to drive the model during the calibration 170 

process. To distribute the rainfall data effectively across all 17 sites, we utilized the Thiessen multi-polygon method, allocating 171 

the data to corresponding triangular grids. Due to limitations in data availability, meteorological parameters such as 172 

temperature, relative humidity, and wind speed were sourced solely from the SMS for the entire basin. The initial setup of the 173 
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model parameters was informed by field data, the general features of the model structure, and past modeling experience. The 174 

model underwent multiple spin-up sessions using 2020 meteorological data to establish an initial condition that closely mirrors 175 

the monitoring datasets.  176 

 Given the heterogeneity of the basin and the calibration target covering two types and multiple sites of monitoring datasets, 177 

effective automatic calibration becomes extremely difficult. Therefore, manual calibration methods are often preferred for 178 

ISSHMs (Shi et al., 2014; Thornton et al., 2022; Brandhorst and Neuweiler, 2023). Monitoring data from the entire period 179 

were utilized for calibration, focusing on enhancing model performance. Parameter selection was guided by prior ISSHM 180 

calibration experience, insights from the literature (Baroni et al., 2010; Song et al., 2015; Liu et al., 2020), and preliminary 181 

sensitivity analyses. Informed by these combined efforts, we identified seven critical parameters related to unsaturated zone 182 

and aquifer properties for calibration (Table 3).  183 

 As the calibrated parameters were not independent, an iterative adjustment process was required. Initially, all parameters 184 

were coarsely adjusted to match the simulation river flow with monitoring data, emphasizing trends, peak timing, and peak 185 

values, even though consistency in baseflow simulation results was not yet achieved. The next stage focused primarily on 186 

modifying aquifer-related parameters to ensure that the simulated baseflow closely matched the monitoring results. In the final 187 

stage, the groundwater table was calibrated by refining soil and aquifer parameters near the monitoring sites while minimizing 188 

significant changes to previously established parameters. These three stages were repeated until the model met our performance 189 

criteria, defined as achieving a Nash-Sutcliffe Efficiency (NSE) for streamflow greater than 0.5 and simulated groundwater 190 

tables falling within acceptable observational ranges. A detailed discussion of the final calibrated parameters and results is 191 

provided in Sect. 4.1. 192 

3.4 Scenario design and evaluation methods 193 

We developed four modeling scenarios differentiated by time span and land use pattern (Table 2). Scenarios 1 and 2 analyze 194 

hydrological processes at daily and annual temporal resolutions, respectively, using continuous meteorological data provided 195 

by the SMS for the years 2020–2021. These scenarios aim to determine how watershed slope and urbanization conditions 196 

influence daily and annual hydrological responses. Scenarios 3 and 4 extend the analysis to a 29-year period (1993–2021), 197 

utilizing rainfall data from the R29 station. These scenarios enrich our understanding of how annual rainfall variability 198 

influences topographic slope and LULCC on hydrological processes. The overall framework of our assessment methods is 199 

illustrated in Fig. 4, with detailed descriptions of land use pattern settings and statistical methods provided in Sects 3.4.1 and 200 

3.4.2, respectively. 201 

Table 2. Designed four scenarios. 202 
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Scenario Driving force inputs time span Land use pattern 

1 2020–2021 HLU 

2 2020–2021 CLU 

3 1993–2021 HLU 

4 1993–2021 CLU 

 203 

 204 
Figure 4. Framework for assessing the impacts of slope and LULCC on hydrological processes. 205 

3.4.1 Two land use patterns 206 

Among the four scenarios, we implemented two types of land use patterns: Current Land Use (CLU) and Historical Land Use 207 

(HLU). The CLU pattern was derived from 2020 land use data, which was obtained from the Dynamic World project, with a 208 

spatial resolution of 10 meters (Fig. 1d). The CLU pattern was generated by determining the dominant land use type based on 209 

areal coverage for each triangular mesh grid and assigning that classification to the corresponding grid (Fig. 5a). To generate 210 

the HLU pattern, we modified the CLU pattern by reclassifying all mesh grids identified as built-up land to tree cover in both 211 

watersheds, simulating pre-urbanization conditions (Fig. 5b).  212 

 Both the original raster data and our hydrological model incorporate eight land use classifications: bare land, crops, shrubs 213 

and scrubs, grassland, flooded vegetation, trees, built-up land, and water bodies (Fig. 1d and Fig. 5). Each land use type is 214 

parameterized with specific values in the model, including leaf area index (LAI), albedo, surface roughness, root zone depth, 215 

and impervious surface fraction. The impervious surface fraction is set to 94% for built-up land, as these areas represent high-216 

density urban development. All other land use types are assigned an impervious surface fraction of 0%. Under the CLU pattern, 217 
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built-up land comprises 37.6% of the NTRW and 69.8% of the BJRW. Following reclassification in the HLU pattern, the built-218 

up land fraction becomes 0% in both watersheds. 219 

 220 

Figure 5. Model setup of land use patterns for two watersheds: (a) Current Land Use (CLU) pattern showing the present urbanized state 221 

with extensive built-up areas (pink) mixed with other land cover types, and (b) Historical Land Use (HLU) pattern representing pre-222 

urbanization conditions, where all built-up areas have been converted back to trees (dark green) to simulate the historical natural state. 223 

3.4.2 Assessment of slope and LULCC effects 224 

To isolate the impact of slope from LULCC effects, we analyzed slope impacts within the two watersheds exclusively under 225 

the HLU pattern. To ensure a coherent assessment of how slope influences hydrological processes, we derived slope values 226 

based on the topographical characteristics of the model instead of the original 30-meter resolution DEM data. We extracted 227 

elevation values for each triangular mesh vertex from the original 30-meter DEM data, re-interpolated these values to create a 228 

new raster DEM, and then calculated the average slope for each mesh grid. 229 

For a more detailed examination of slope impacts across different spatial areas within the watersheds, we divided the 230 

watersheds into three elevation zones. First, we calculated the average elevation of each triangular mesh grid. Using the natural 231 

breaks method, we classified all grids into six elevation groups, with the first and second natural breakpoints at approximately 232 

40 m and 120 m. To ensure sufficient grids for reliable statistical analysis, we grouped the remaining four elevation categories 233 

into a single elevation zone. Based on these criteria, we defined three elevation zones: 234 

 Zone 1 consists of low-elevation grids with DEM values below 40 m, primarily flat regions. 235 

 Zone 2 includes grids with DEM values from 40 m to 120 m, located at mountain foothills. 236 

 Zone 3 comprises high-elevation grids with DEM values above 120 m. 237 
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After classification, the mean slope values for each zone are shown in Fig. 6. Since the NTRW terrain is generally steeper, 238 

the average slope value for each zone is greater in NTRW than in BJRW. 239 

 240 

Figure 6. Elevation-based delineation of three zones in BJRW (a) and NTRW (b), classified using DEM data as Zone 1 (0-40 m), Zone 2 241 

(40-120 m), and Zone 3 (>120 m). Statistical distribution of slopes within these zones illustrated through box plots (c), with mean values 242 

labeled numerically. 243 

The statistical method used to examine the influence of slope on hydrological responses is Spearman's rank correlation 244 

method (Seibert et al., 2003; Hauke and Kossowski, 2011). To analyze how annual rainfall variability affects the correlation 245 

between topographic slope and hydrological processes, we developed a simple linear regression model (Appendix B). 246 

 To evaluate the impacts of LULCC, we compared hydrological outputs between CLU and HLU patterns. We employed 247 

the Kolmogorov-Smirnov (KS) two-sample test (Lilliefors, 1967) to assess the statistical significance of LULCC-induced 248 

changes in hydrological responses. To investigate how annual rainfall variability influences the relationship between LULCC 249 

and hydrological processes, we developed a simple linear regression model, following the slope assessment method (detailed 250 

in Appendix B). 251 

4 Results and discussion 252 

4.1. Model performance  253 

Due to spatial heterogeneity within the watersheds, the calibrated values for each parameter are formed as a matrix. For clarity, 254 

only the median values is displayed (Table 3). The first four parameters, Ks, 𝜃ss, 𝛼 and  𝛽, are primarily associated with the 255 

vadose zone and significantly influence the hydraulic processes in the soil layer. The last three parameters Kg, 𝜃gs and 𝜃𝑔𝑟, 256 

govern the hydraulic processes in the aquifer layer. All these parameters fall within reasonable ranges, as supported by previous 257 

studies (Das, 1990; Freeze and Cherry, 1979; Bear, 2013; Van Genuchten, 1980).  258 
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 Figures 7a–c display the hydrographs of daily simulated and observed streamflow at various river gaging stations within 259 

the BJRW (Site 6; Fig. 7c), at the upstream of the watersheds (Site 1; Fig. 7a), and at the downstream of the watersheds (Site 260 

2; Fig. 7b), respectively. The NSE indices, computed for the entire simulation period, demonstrate satisfactory model 261 

performance, except for Site 2 where the observed dataset shows daily fluctuations in river flow during rain-free periods due 262 

to tidal influences. Therefore, for such sites, we specifically calibrated the discharge during rainy days and calculated the NSE 263 

index using data from those days. The simulation results exhibit satisfactory performance with NSE indices greater than 0.5, 264 

indicating a reasonable accuracy in streamflow predictions.      265 

 Furthermore, the monthly calibration results reinforce the robust performance of the calibrated model, exhibiting R2 266 

values exceeding 0.6 (Figs. 7d–f; Moriasi et al., 2007). This strong correlation suggests a consistent and reliable model behavior 267 

over a longer time scale. Figures 7g–i present the comparisons between the simulated and observed groundwater data. It is 268 

challenging to evaluate the assessment indices of groundwater calibration for such long durations. However, our calibration 269 

outcomes indicate a marked concordance between the model outputs and observed data trends, and the modeled groundwater 270 

table depth closely aligns with the measured depths, underscoring the model’s accuracy in reflecting actual groundwater 271 

conditions. Overall, the model exhibits satisfactory performance on both surface and subsurface water flows. Additional sites' 272 

calibration results are available in Fig. C1. 273 

Table 3. Refined parameters for the watershed after calibration. 274 

Parameter Description Allowable value range 
Median value after 

calibration  
Unit 

Ks Soil saturated infiltration conductivity 10-3–104 0.045 m day-1 

𝜃ss Soil saturated water content 0.25–0.7 0.531 - 

𝛼 van Genuchten parameter >0 5.23 m-1 

𝛽 van Genuchten parameter >1 1.29 - 

Kg Groundwater hydraulic conductivity 10-5–104 2.6 m day-1 

𝜃gs Groundwater saturated water content 0.0–0.5 0.3 - 

𝜃gr Groundwater residual water content 0.0–0.5 0.01 - 

 275 
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 276 

Figure 7. Calibration performance of SHUD model across daily river discharge in the river monitoring sites 1, 5 and 6 (a)–(c), and monthly 277 

river discharge in the river monitoring sites 1, 5 and 6 (d)–(f), and groundwater table depth in the groundwater monitoring sites 3, 4 and 6 278 

(g)–(i). 279 

4.2 Daily and annual scale hydrological responses 280 

4.2.1 Stronger correlation between slope and daily subsurface flow 281 

Figure 8 depicts the Spearman correlation test between four hydrological processes and terrain slope on a daily scale (i.e., on 282 

the rainy days), with all depicted markers being statistically significant (p-value ≤ 0.05). The analysis primarily emphasizes 283 

slope, but also explores the influence of daily rainfall to provide additional insights. The correlation analysis between daily 284 

rainfall and hydrological processes reveals distinct patterns of influence. Infiltration and surface runoff demonstrate the 285 

strongest response to rainfall amounts, with correlation coefficients ranging from -0.6 to 1, while their correlation with terrain 286 

slope remains relatively weak (between -0.2 and 0.2) in all zones of the two watersheds. ET emerges as the third most strongly 287 

correlated process with rainfall. Notably, subsurface flow exhibits a different pattern, showing a stronger correlation with local 288 

slope (coefficients between -0.4 and 0.2) than with rainfall amounts (coefficients between -0.2 and 0.2) during rainy days. This 289 
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finding aligns with existing literature, highlighting the critical role of topography in influencing groundwater dynamics during 290 

rainfall events (Hopp and McDonnell, 2009; Detty and McGuire, 2010; Jencso and McGlynn, 2011; Singh et al., 2021). In 291 

both watersheds, the relationship between slope and subsurface flow varies with elevation, revealing a complex interplay 292 

between topography and groundwater dynamics. A negative correlation exists between slope and subsurface flow in Zones 2 293 

and 3, while a positive correlation is observed in Zone 1. This indicates that in the low-elevation Zone 1, as slope increases, 294 

subsurface outflow also increases, while in the mid- and high-elevation Zones 2 and 3, as slope increases, subsurface flow 295 

decreases. In low-elevation areas, the groundwater table is typically shallow and the soil is relatively saturated. Under these 296 

conditions, increasing slope significantly enhances the lateral hydraulic gradient, thereby facilitating downslope groundwater 297 

flow. In mid- to high-elevation areas, the groundwater table is generally deeper. Steeper slopes tend to boost surface runoff, 298 

reducing infiltration and diminishing groundwater recharge. Consequently, a negative correlation arises between slope and 299 

groundwater outflow in these higher elevation zones. 300 

  301 

Figure 8. Comparative analysis of slope influence and daily rainfall on four hydrological variables. Marker size denotes the absolute value 302 

of the Spearman correlation coefficients, while marker color indicates the direction of the relationship between slope or rainfall and the four 303 

model outputs. Generally, red represents a positive correlation, whereas blue denotes a negative correlation. 304 

4.2.2 Faint slope-flow relationship in NTRW's lower zone 305 

Figure 9 presents the comparative results of terrain slope at daily and annual scales. The findings suggest that slope has a more 306 

pronounced relationship with annual surface runoff, subsurface flow, and infiltration at higher elevations (Zone 3) compared 307 

to daily scales. This pattern emphasizes the pivotal role of slope in redistributing water post-rainfall events in mountainous 308 

regions. Seibert et al. (2003) and Rinderer et al. (2014) noted that topographic indices more accurately reflect hydrological 309 

responses under steady-state conditions. Specifically, Rinderer et al. (2014) reported from their analysis of data from 51 310 
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groundwater wells in a Swiss catchment that the ability of the TWI to predict water table distributions diminishes under 311 

unsteady conditions. These findings from previous studies align with our results, where the stronger correlations observed at 312 

annual (more steady-state) scales compared to daily (unsteady) scales suggest that topographic controls on hydrological 313 

processes are more pronounced and predictable over longer time periods when the system approaches steady-state conditions.  314 

 In mid-elevation regions (Zone 2), the most significant finding is the positive correlation between annual ET and local 315 

slope. This relationship suggests that steeper slopes in mid-elevation zones exhibit higher annual ET amounts. Spearman 316 

correlation analysis (results not shown) between slope and annual average soil moisture across Zone 2 grids revealed a 317 

correlation coefficient of 0.25 (p-value < 0.05), indicating a positive correlation. Areas with steeper slopes have higher soil 318 

moisture, potentially contributing to higher ET amounts. Lee and Kim (2022) reported similar findings in the Sulmachun 319 

watershed, Korea, where they observed a positive correlation between surface (10 cm) soil moisture and surface slope through 320 

April-December monitoring. 321 

 Analysis of annual flow processes at lower elevations (Zone 1) reveals a strong correlation between terrain slope and 322 

hydrological behavior in the gently sloping BJRW. However, this correlation is markedly weak in the steeper NTRW. This 323 

difference can be explained by the rapid water movement in steeper watersheds (Fan et al., 2019; Singh et al., 2021), where 324 

hydrological processes at lower elevations are dominated by swift upstream inflows rather than local topographic features. 325 

Conversely, watersheds with gentler slopes experience slower flow processes, allowing local topography at lower elevations 326 

to persistently influence water flow pathways.  327 

 The comparison between daily and annual scales reveals distinct temporal characteristics in slope and hydrological 328 

process relationships. At the daily scale, surface processes show immediate responses to rainfall with weak slope correlations, 329 

while subsurface flow exhibits stronger topographic control. However, at the annual scale, the influence of slope becomes 330 

more pronounced across all hydrological processes, particularly in higher elevations. This scale-dependent behavior suggests 331 

that while local topography may have limited immediate impact on daily hydrological processes, its cumulative effects become 332 

increasingly significant over longer time periods. This temporal distinction is particularly evident in watersheds with different 333 

slope gradients. In steep watersheds, lower-elevation regions show weak correlation with local slope, while in watersheds with 334 

gentle slopes, local topographic features have a more persistent influence on flow pathways. These findings highlight the 335 

importance of considering both temporal scales and watershed characteristics in understanding topographic controls on 336 

hydrological processes. 337 
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  338 

Figure 9.  Comparison of hydrological responses to slope variability on annual and daily scales in NTRW and BJRW. 339 

4.2.3 Dominant impact of LULCC on daily infiltration 340 

Figure 10a illustrates the absolute mean differences in rainy-day hydrological outputs between the HLU and CLU patterns for 341 

each grid cell. Employing the KS statistic test, significant alterations in the cumulative distribution function (CDF) of daily 342 

hydrologic outputs were identified, highlighting the substantial impacts of LULCC. Among the hydrological processes 343 

examined, daily infiltration exhibits the most pronounced and widespread differences, underscoring the dominant influence of 344 

LULCC. When considering only absolute mean differences, surface runoff is identified as the second most influenced 345 

processes. This finding aligns with the results of Chu et al. (2010) and Diem et al. (2021), which underscore the extensive 346 

impact of urbanization on surface runoff through changes in infiltration.  347 

Regions with a KS statistic greater than 0.5 are considered to be significantly affected by urbanization. The spatial 348 

statistical characteristics of these regions for four hydrological processes are analyzed in Figs. 10b–d. Infiltration exhibits the 349 

most extensive spatial impact, whereas changes in surface runoff, subsurface flow, and ET are confined to more limited areas 350 

(Fig. 10b). Considering the elevation variations, the influenced surface runoff and ET regions are more significant at higher 351 

elevations, while the most influenced subsurface flows are limited to lower elevation regions (Fig. 10c). Notably, areas with 352 

significant ET changes are characterized by steeper slopes (Fig. 10d). Figure 10 demonstrates that hydrological processes most 353 

influenced by urbanization are not uniform but rather concentrated in specific regions. 354 
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 355 

Figure 10. Spatial analysis of urbanization impacts on hydrological processes in NTRW and BJRW. (a) Spatial distribution of KS statistics 356 

and absolute differences between first and second scenarios for four hydrological processes: surface runoff (Surf), subsurface flow (Sub), 357 

evapotranspiration (ET), and infiltration (Infil). The color scale represents the absolute value of differences, with areas outlined in pink and 358 

red indicating KS statistics > 0.5 and > 0.75, respectively. (b) Percentage of significantly affected areas (KS > 0.5) for each hydrological 359 

process. (c) Elevation distribution and (d) slope distribution of significantly affected areas, with blue and red boxes representing NTRW and 360 

BJRW, respectively. Box plots show the median (horizontal line), 25th and 75th percentiles (box boundaries), and the mean value (white dot 361 

with corresponding text above each box). 362 

4.2.4 NTRW shows more sensitivity to LULCC 363 

The KS test indicates statistically significant changes in all four hydrological outputs at an annual scale after urbanization, 364 

with all p-values below 0.05 (Fig. 11). The results depict an increase in annual surface runoff and reductions in subsurface 365 

flow, ET, and infiltration following urbanization. This aligns with findings from Shao et al. (2020), who used a process-based 366 

hydrological model to examine the response of surface runoff to LULCC in two adjacent watersheds in Texas, USA. They 367 

reported that urbanization leads to increased runoff, a finding consistent with our results. Furthermore, the KS test results 368 

reveal relative consistency within each watershed for surface runoff, ET, and infiltration values. Specifically, in the NTRW, 369 

the KS values for surface runoff, ET, and infiltration are recorded at 0.39, 0.395, and 0.377, respectively. The corresponding 370 

values in the BJRW are 0.531, 0.583, and 0.615. However, subsurface flow shows lower KS values of 0.127 in the NTRW and 371 

0.263 in the BJRW, suggesting that urbanization has a less impact on the annual subsurface flow process.  372 

  Although urbanized land accounts for 69.8% of the land cover change in the BJRW, resulting in more pronounced 373 

responses in the four hydrological processes compared to the NTRW (where urbanized land comprises only 37.6% of the 374 

change), it is noteworthy that per unit of urbanized area, the flatter watershed demonstrates a greater capacity to mitigate the 375 
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effects of LULCC. This is evidenced by the KS values for surface hydrological processes in the BJRW (ranging from 0.531 to 376 

0.615) being lower than the proportion of urbanized land change (0.698). In the NTRW, the KS values for surface hydrological 377 

processes (ranging from 0.377 to 0.395) are slightly higher than the proportion of urbanized land change (0.376). This 378 

observation is supported by Zhou et al. (2015), who noted that flatter terrains tend to absorb changes more effectively due to 379 

prolonged water-soil contact times, which enhance infiltration and storage capacities. This capacity may help mitigate the more 380 

severe hydrological alterations typically associated with extensive urbanization. 381 

 382 

Figure 11. Box plots delineating the impacts of LULCC on the four annual outputs across all meshes within each watershed. The comparison 383 

contrasts the outcomes under the HLU and CLU patterns. The top row displays the results of NTRW, while the second row displays the 384 

results of BJRW. KS test values (C) are annotated, all p-values are less than 0.05. 385 

4.3 Variations with different annual rainfall amounts  386 

4.3.1 Rainfall intensifies subsurface flow-slope relationship in BJRW's lower zone 387 

Figure 12 presents scatterplots and regression equations that analyze the correlation between annual precipitation and 388 

Spearman statistic values from 1993 to 2021, highlighting outcomes that are statistically significant (p-value ≤ 0.05), as 389 

identified in Sect. 4.2.2. The analysis shows minimal changes in Spearman statistic values across most study areas; however, 390 

a notable variation was observed in subsurface flow within Zone 1 of the BJRW, where a coefficient of 0.07 indicates that each 391 

100 mm increase in annual precipitation enhances the correlation between slope and subsurface flow by 0.007. This change 392 

corresponds to a shift in the Spearman coefficient from 0.174 to 0.258 as annual rainfall increases from 1200 mm to 2400 mm. 393 

This observation is supported by findings from Zhang et al. (2022a), who reported that under scenarios of higher precipitation 394 
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and greater hydraulic conductivity, the extent and permeation depth of the saturated zones beneath mountains exhibit a stronger 395 

correlation with the terrain. This effect is likely due to increased precipitation levels raising the water table at lower elevations, 396 

thus enhancing the relationship between slope and subsurface flow. 397 

 398 

 399 

Figure 12. Scatter plots of Spearman statistic values of slope and four model outputs under 29 years of different annual rainfall amounts, 400 
with statistical significance levels indicated by p-values in plots. Shaded areas indicate 95% confidence intervals. Regression equations for 401 
surface runoff (a) NTRB: Zone3 (y=0.03x+0.08); BJRB: Zone1 (y=-0.02x-0.23), Zone3 (y=0.01x+0.3). Subsurface flow (b) NTRB: Zone3 402 
(y=-0.05x+0.02); BJRB: Zone1 (y=0.07x+0.09), Zone3 (y=-0.01x-0.35). ET (c) NTRB: Zone2 (y=-0.05x+0.16); BJRB: Zone2 403 
(y=0.003x+0.31). Infiltration (d) NTRB: Zone3 (y=0.000x-0.17); BJRB: Zone1 (y=0.02x+0.13), Zone2 (y=-0.03x-0.09), Zone3 (y=-404 
0.005x-0.41).  405 

4.3.2 Rainfall intensifies the changes in groundwater caused by LULCC 406 

Figure 10 presents scatter plots correlating KS test values for four hydrological outputs with 29 years of annual rainfall data, 407 

evaluating how the impacts of LULCC vary under different precipitation intensities. Our analysis highlights significant 408 
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variability in the effects of LULCC across various annual rainfall amounts in the BJRW. Here, surface runoff and infiltration 409 

exhibit reduced variations before and after urbanization as annual rainfall increases, whereas variations in subsurface flow 410 

exhibit greater magnitude with increasing annual rainfall. In the NTRW, the most obvious changes are observed in annual 411 

subsurface flow, which also shows increased variation with higher levels of annual precipitation. In scenarios where all surfaces 412 

are permeable, an increase in annual rainfall leads to progressive soil saturation, consequently enhancing surface runoff and 413 

reducing water infiltration. This pattern is similar to that observed on impervious surfaces. As annual rainfall increases, the 414 

disparities in surface runoff and infiltration between different land use patterns diminish. However, the impact on subsurface 415 

flow differs between permeable and impervious surfaces. In areas with high permeability, increased rainfall promotes soil 416 

saturation, enhancing subsurface flow. However, in areas dominated by impervious surfaces, limited infiltration capacity 417 

restricts groundwater recharge, resulting in poor saturated zone connectivity and reduced subsurface flow. These contrasting 418 

responses lead to more substantial differences in subsurface flow patterns between different land use types as annual rainfall 419 

increases. 420 

 421 
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 422 

Figure 13. Scatter plots of KS test coefficients between LULCC and four model outputs under 29 years of different annual rainfall amounts, 423 
with statistical significance levels indicated by p-values in plots. Shaded areas indicate 95% confidence intervals. Regression equations for 424 
surface runoff (a) NTRW (y=0.36-0.003x); BJRW (y=0.62-0.06x). Subsurface flow (b) NTRW (y=-0.03+0.08x); BJRW (y=0.06+0.09x). 425 
ET (c) NTRW (y=0.35+0.01x); BJRW (y=0.55-0.01x). Infiltration (d) NTRW (y=0.35+0.001x); BJRW (y=0.63-0.03x).  426 

4.4 Further discussion 427 

4.4.1 Patterns of surface and subsurface hydrological behavior 428 

Surface and subsurface hydrological processes exhibit distinct differences in their temporal responses and controlling factors. 429 

Surface runoff and infiltration respond rapidly and intensely to rainfall events, primarily driven by precipitation at daily 430 

timescales, making it difficult to identify stable topographic controls. However, when extending to annual timescales, these 431 

quick-response processes gradually reveal their sensitivity to slope and elevation patterns. In contrast, subsurface hydrological 432 

processes show weaker direct responses to rainfall, instead relying more heavily on topographic features and upstream water 433 

contributions to determine flow patterns. 434 
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 This research further demonstrates that integrated indicators like the TWI exhibit more pronounced predictive 435 

significance for soil moisture patterns at longer (annual) timescales (Seibert et al., 2003; Rinderer et al., 2014; Kopecký et al., 436 

2021). At this temporal scale, soil moisture and groundwater distribution reach a relatively stable state, making topographic 437 

influences on both surface and subsurface hydrological processes more evident. 438 

 Additionally, urbanization-induced expansion of impervious surfaces has significantly altered surface hydrological 439 

processes, with impacts varying across regions and topographic conditions. In contrast to surface processes, urbanization's 440 

effects on subsurface flow are less pronounced (Fig. 11), with the most significant changes occurring in low-elevation regions 441 

(Fig. 10c), consistent with the findings of Siddik et al. (2022).   442 

4.4.2 Suggestions for urban water resource management 443 

Urban hydrology is a highly complex issue (McGrane, 2016; Qi et al., 2021). This research indicates that urban hydrological 444 

processes are influenced not only by local topography but also by the characteristics of the entire watershed. The effects of 445 

urbanization are not uniform but rather distinctly localized, with varying intensities across different spatial areas. 446 

 Cities located in steep and rainy watersheds like Hong Kong face more severe challenges. Due to its steep mountainous 447 

terrain and limited flat regions, Hong Kong has minimal zones suitable for stable water storage (Chen, 2001). Additionally, 448 

with its subtropical monsoon climate bringing intense rainfall during typhoon seasons, Hong Kong faces significant urban 449 

flooding risks in its low-elevation, high-density building regions (He et al., 2021; Yang et al., 2022). Although flat cities like 450 

Shenzhen have the capability of buffering the effects of urbanization through flatter topography, their high level of urbanization 451 

still poses significant challenges for flood management under extreme precipitation conditions. Constrained by space 452 

limitations, development has extended into floodplains, wetlands, and reclaimed coastal zones (Chan et al., 2014). 453 

 Evidence suggests that depending exclusively on hard-engineering infrastructure for urban flood defense is both costly 454 

and impractical (Chan et al., 2022; Cai et al., 2021). The role of non-structural flood control measures should be emphasized, 455 

including public participation and training, the development of comprehensive water resource monitoring networks, and 456 

hydrological models for more precise flood monitoring and prediction. Technology-driven warning systems have demonstrated 457 

their effectiveness in predicting urban flood risks (Yereseme et al., 2021). The experience of sustainable flood risk management 458 

in the UK, Netherlands, USA, and Japan provides useful lessons for developed cities worldwide (Chan et al., 2022). The use 459 

of hydrological modeling to combine flood risk assessment with urban planning leads to more resilient urban water 460 

management systems. In particular, the application of ISSHMs can greatly enhance predictive capabilities before implementing 461 

land-use changes. By calibrating models to reflect current watershed conditions, planners can readily simulate various “what-462 

if” scenarios to evaluate how proposed urban development patterns might alter hydrological processes. 463 
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4.4.3 Limitation and future work 464 

Our study provides valuable insights into the effects of topography and LULCC on hydrological processes across various 465 

spatiotemporal scales in different watersheds. Although the hydrological model used was comprehensively calibrated using 466 

observational data and demonstrated accurate predictive capabilities, several limitations warrant consideration. Firstly, the 467 

calibration of the model parameters was conducted manually using local data, which may not encompass the optimal parameter 468 

sets unidentified in this study. Furthermore, the inherent uncertainties associated with the monitoring data and the model 469 

structure were not thoroughly evaluated. Due to the complexity of ISSHMs and the significant amount of time required to 470 

thoroughly assess all uncertainties, such evaluations remain challenging but are necessary for advancing the field. Secondly, 471 

our study area is located in a subtropical humid region characterized by frequent rainfall and consistently moist soils. This 472 

geographical specificity may limit the generalizability of our findings to regions with different climatic conditions. And the 473 

rainfall data utilized in this study only encompassed the typical range of precipitation for the region; extreme rainfall events, 474 

which may induce unique hydrological responses, were not investigated. The impact of such extreme conditions remains to be 475 

explored in future studies. Finally, the ET process differs from other three processes as it is influenced not only by land cover 476 

but also by climatic factors such as solar radiation, temperature, and humidity (Blyth, 1999). Our findings indicate that 477 

establishing a clear, general relationship between topography and ET is difficult. However, the analysis of LULCC and ET 478 

shows that converting forested areas into built-up land reduces the total ET at the watershed scale (Fig. 11). Since our research 479 

primarily focuses on terrestrial hydrological processes, the discussion of ET remains relatively limited. 480 

5 Conclusions 481 

Utilizing the ISSHM model, SHUD, this study explored the effects of topographical slope and urbanization-induced LULCC 482 

on surface runoff, subsurface flow, ET, and infiltration across various spatiotemporal conditions in two neighboring subtropical 483 

watersheds. Our findings reveal that both local topography (specifically local slope) and overall watershed topography 484 

significantly influence hydrological processes across different temporal and spatial scales. At the daily scale, precipitation 485 

emerges as the dominant control factor for rapid hydrological processes (infiltration and surface runoff), with local slope 486 

having limited influence. However, for slower processes like subsurface flow, local slope demonstrates a notable impact. At 487 

the annual scale, local slope correlates with both fast and slow hydrological processes in high-elevation areas. In low-elevation 488 

regions, the relationship between local slope and hydrological processes is more complex: flat watersheds show clear 489 

correlations between local slope and hydrological processes, while in steep watersheds, low-elevation hydrological processes 490 

might be more influenced by upstream contributions rather than local terrain slope. 491 
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 The varying influences of local and overall watershed topography lead to spatially differentiated impacts of LULCC. 492 

Urbanization significantly increases surface runoff while decreasing infiltration and ET, with minimal impact on subsurface 493 

flow. Per unit of urbanized area, watersheds with gentler slopes demonstrate a greater capacity to mitigate LULCC effects, 494 

particularly in reducing the magnitude of increased surface runoff. However, this buffering capacity diminishes as annual 495 

precipitation increases.  Additionally, the difference in subsurface flow between pre- and post-urbanization conditions becomes 496 

more pronounced with increased annual precipitation. This study underscores the importance of incorporating non-structural 497 

approaches in urban water management. Well-calibrated ISSHM models have demonstrated their practical value in land-use 498 

scenario design, enabling rapid simulation of how different development patterns affect hydrological processes across temporal 499 

and spatial scales. The integration of such hydrological modeling with urban planning will help build more resilient cities. 500 

Appendix A: SHUD hydrological processes formulas 501 

The comprehensive exposition of the governing equations for the SHUD is provided in Shu et al. (2020). Here, the emphasis 502 

is placed on expounding the equations that are relevant to the processes addressed in this study. 503 

- Infiltration. SHUD adopts the Richards equation like most ISSHMs adopted to describe the infiltration process. While there 504 

are no general analytical solutions to the Richards equation, SHUD adopted the Green-Ampt infiltration equation (Eq. (A1)), 505 

which allows a simple form of Darcy’s law to be used to calculate the infiltration rate 𝑞𝑖 [LT-1],  506 

𝑞i = 𝐾i (1 +
ℎs

𝐷inf
)                                                                                                                                                                                      (A1) 507 

where ℎs [LT-1] is the ponding water height plus precipitation, 𝐷inf [L] is the infiltration depth representing the top soil layer, 508 

𝐾𝑖 [LT-1] is the effective infiltration conductivity, and it is a function of soil saturation ratio, soil properties, and ℎs. The Green-509 

Ampt method assumes that the infiltrating wetting front forms a sharp jump from a constant initial moisture content ahead of 510 

the front to saturation at the front. 511 

-Evapotranspiration. Potential evapotranspiration (PET) is computed using the Penman-Monteith equation (Eq. (A2)), while 512 

actual evapotranspiration (AET) is derived by multiplying PET with a soil moisture stress coefficient, determined by soil 513 

moisture content and groundwater table depth. 514 

𝜆𝐸 =
Δ𝑒𝐻+𝜌𝑎𝑐𝑝(𝑒𝑠(𝑇𝑧)−𝑒𝑧)/𝑟𝑎

Δ𝑒+𝛾(1+𝑟𝑐/𝑟𝑎)
,                            (A2) 515 

where 𝜆(=2.47106, Jkg-1) is the latent heat of evaporation, E [LT-1] is the PET rate, Δ𝑒  is the slope of the saturation vapor 516 

pressure versus temperature curve, 𝐻 is total available energy, 𝜌𝑎 is the density of the air, 𝑐𝑝 is the specific heat capacity of the 517 
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air, 𝑒𝑠(𝑇𝑧) is the saturated vapor pressure at the height of z, 𝑒𝑧 is the vapor pressure at the height of z, 𝑟𝑎 and 𝑟𝑐  are the two 518 

resistance coefficients, 𝛾 is the psychrometric constant. 519 

- Surface runoff. The kinematic wave equation (Eq. (A3)) is used to approximate the surface runoff in the SHUD, 520 

𝜕ℎ

𝜕𝑡
= −

𝜕(𝑣ℎ)

𝜕𝑥
−

𝜕(𝑣ℎ)

𝜕𝑦
+ 𝑟,                           (A3) 521 

where h [L] represents the average depth of flow, v [LT-1] is the flow velocity, and r [LT-1] is a rate of addition or loss of water 522 

caused by precipitation, infiltration and evaporation. The relationship between v and h is represented by the Manning equation 523 

(Eq. (A4)),  524 

𝑣 = −
𝑆0

1
2ℎ

3
5

𝑛
,                       (A4) 525 

where 𝑆0 [-] is the surface slope, n [TL-1/3] is the Manning roughness. 526 

- Subsurface flows. The SHUD applies the Richards equation (Eq. (A5)) to describe both saturated and unsaturated flows, and 527 

the water density is assumed to be constant,  528 

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑥
[𝐾𝑥(𝜃)

𝜕Φ

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝐾𝑦(𝜃)

𝜕Φ

𝜕𝑦
] +

𝜕

𝜕𝑧
[𝐾𝑧(𝜃)

𝜕Φ

𝜕𝑧
],                (A5) 529 

where 𝜃  [-] is volumetric moisture content,  𝐾𝑥(𝜃)  [LT-1], 𝐾𝑦(𝜃)  [LT-1], and 𝐾𝑧(𝜃)  [LT-1] indicate hydraulic conductivity 530 

depends on direction and is treated as a function of 𝜃, Φ [L] is the total potential (Φ = 𝜓 + 𝑧 where 𝜓 [L] is the capillary 531 

potential and z is the elevation above the datum). The SHUD utilizes the van Genuchten functions to solve the relationship for 532 

soil moisture content, capillary potential, and hydraulic conductivity. 533 

Appendix B: Assessment equations 534 

The Spearman’s rank correlation method evaluates the strength and monotonic nature of relationships between two variables 535 

without relying on assumptions regarding data distribution or residuals. The KS two-sample test compares two samples to 536 

determine if they are drawn from the same distribution, without assumptions about the underlying distribution. The KS statistic 537 

is the maximum absolute difference between the CDFs of the two data vectors. 538 

For the daily scale analysis, we focused on positive model outputs during rainy days (precipitation ≥ 0.1 mm per day). 539 

We employed matrix D for each zone (Zone 1 to Zone 3) to assess daily outputs related to slope angle for each grid (Eqs. (B1) 540 

and (B2)). Model outputs for surface runoff and subsurface flow (m³ d⁻¹) represent net flow amounts per mesh grid. For daily 541 

analysis, these outputs were summed to total flow volumes (m³) and divided by grid area to obtain flow depths (m). Infiltration 542 
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and ET outputs (m d⁻¹) were similarly summed to daily depths (m). These standardized depths were used to analyze impacts 543 

of slope and LULCC. 544 

𝐃 = [
𝐖1

⋮
𝐖𝑁

],                                                                                                                                            (B1) 545 

𝐖𝑛 = [

𝑦1𝑛 𝑝1 𝑠𝑛
⋮ ⋮ ⋮
𝑦𝑖𝑛 𝑝𝑖 𝑠𝑛

]                                                                                                                                        (B2) 546 

In matrix D, each row Wn (n=1, 2, …, N) corresponds to the model outputs associated with a specific hydrological process 547 

of the nth grid. Within Wn, each row represents a rainy day under consideration, with i denoting the total number of rainy days 548 

analyzed. Each row comprises three values: the daily model output ykn (k=1, 2, …, i), the corresponding rainfall amount pk 549 

(k=1, 2, …, i), and the grid's slope angle sn. Consequently, the Spearman correlation coefficient was computed between the 550 

transpose vectors 𝒚𝑁×𝑖
𝑻  and 𝒔𝑁×𝑖

𝑻 . 551 

To analyze LULCC effects, vectors Hd (Eq. (B3)) and Cd (Eq.(B4)) were generated for each grid under HLU and CLU 552 

patterns, and the KS test value was computed between these two vectors for each grid, 553 

𝑯𝒅 = [𝑦1|HLU, 𝑦2|HLU, ⋯ , 𝑦𝑖|HLU],                   (B3) 554 

𝑪𝒅 = [𝑦1|CLU, 𝑦2|CLU, ⋯ , 𝑦𝑖|CLU],                   (B4) 555 

where i denotes the total number of rainy days,  𝑦𝑘|HLU and 𝑦𝑘|CLU (k=1, 2, …, i) represent the model daily output of this grid 556 

under the HLU pattern and the CLU pattern on the kth rainy day, respectively. We also calculated the absolute difference in 557 

mean values of these two vectors to quantify the magnitude of change between the two land use patterns in terms of their 558 

effects on the model outputs.  559 

To evaluate the effects of slope on an annual scale, a new matrix A is constructed as following Eq. (B5): 560 

𝐀 = [

𝑦1 𝑠1
⋮ ⋮
𝑦𝑁 𝑠𝑁

],                            (B5) 561 

where N represents the number of grids within each zone, yn and sn (n=1, 2, …, N) denote the annual output and slope angle 562 

for the nth grid, respectively. Only grids with annual volumes exceeding 10 mm were considered for surface runoff and 563 

subsurface flow analysis to concentrate on pronounced flows. Subsequently, the Spearman correlation coefficient was 564 

calculated between the transpose vectors 𝒚𝑁
T  and 𝒔𝑁

T . 565 

The KS test was also applied at the annual scale to compare model outputs between HLU and CLU patterns across the 566 

entire subbasin range. Vectors Hy (Eq. (B6)) and Cy (Eq. (B7)) represent the annual model outputs under the HLU pattern and 567 

the CLU pattern, respectively.  568 

𝑯y = [𝑦1|HLU, 𝑦2|HLU, ⋯ , 𝑦𝑗|HLU],                   (B6) 569 
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𝑪y = [𝑦1|CLU, 𝑦2|CLU, ⋯ , 𝑦𝑗|CLU],                   (B7) 570 

Here z denotes the number of grids across each subbasin,  𝑦𝑘|HLU and 𝑦𝑘|CLU (k=1, 2, …, z) represent the model annual 571 

output of the kth grid under the HLU pattern and the CLU pattern, respectively. Then the KS test was carried out between these 572 

two vectors. 573 

Appendix C: Supplementary calibration results 574 

 575 

Figure C1. Other sites calibration results across daily river discharge (a)–(d), and monthly river discharge (e)–(h), and groundwater table 576 

depth (i)–(k). 577 

 578 

Code and data availability. The source code of the SHUD model can be downloaded from https://github.com/SHUD-579 

System/SHUD. The model spatial input data are freely available from the described source listed in Table 1. The 580 

https://github.com/SHUD-System/SHUD
https://github.com/SHUD-System/SHUD


 

29 

 

meteorological data and monitoring data in this study can be obtained upon request. Other related data supporting this study 581 

have been uploaded to the Zenodo repository and are accessible via the provided DOI link (10.5281/zenodo.14539888). 582 
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