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Abstract. A common feature within coastal cities is small, urbanized watersheds where the time of concentration is short, 16 

leading to vulnerability to flash flooding during coastal storms that can also cause storm surge. While many recent studies 17 

have provided evidence of dependency in these two flood drivers for many coastal areas worldwide, few studies have 18 

investigated their co-occurrence locally in detail, nor the storm types that are involved. Here we present a bivariate statistical 19 

analysis framework with historical rainfall and storm surge and tropical cyclone (TC) and extratropical cyclone (ETC) track 20 

data, using New York City (NYC) as a midlatitude demonstration site where these storm types play different roles. In contrast 21 

to prior studies that focused on daily or longer durations of rain, we apply hourly data and study simultaneous drivers and lags 22 

between them. We quantify characteristics of compound flood drivers including their dependency, magnitude, lag time and 23 

joint return periods, separately for TCs, ETCs, non-cyclone associated events, and merged data from all events. We find TCs 24 

have markedly different driver characteristics from other storm types and dominate the joint probabilities of the most extreme 25 

rain-surge compound events, even though they occur much less frequently. ETCs are the predominant source of more frequent, 26 

moderate compound events. The hourly data also reveal subtle but important spatial differences in lag times between the joint 27 

flood drivers. For Manhattan and southern shores of NYC during top-ranked TC rain events, rain intensity has a strong negative 28 

correlation with lag time to peak surge, promoting pluvial-coastal compound flooding. However, for the Bronx River in 29 

northern NYC, fluvial-coastal compounding is favoured due to a 2-6 hour lag from the time of peak rain to peak surge. 30 

 31 
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1 Introduction 32 

Floods are one of the most catastrophic natural hazards, and frequently threaten human life and property worldwide. They are 33 

normally classified by several types such as coastal, pluvial and fluvial flooding based on their triggering mechanisms, also 34 

known as flood drivers (Pachauri and Reisinger, 2007). These flood drivers can occur at the same time to cause what is referred 35 

to as compound flooding (e.g. Field et al., 2012).  36 

Flood hazard assessments traditionally focus on evaluating the extreme values of coastal and riverine or rainfall drivers 37 

separately (e.g. Arns et al., 2013; Abdelkader et al., 2023; Perica et al., 2013; Ayyad et al., 2023). However, this may 38 

underestimate hazard risk by neglecting co-occurrence of two or more extremes in a single event (Zscheischler et al., 2018). 39 

Beginning after Hurricane Katrina (2005), the joint occurrence of multiple extremes is emphasized and documented in the new 40 

flood protection construction criteria (Resio et al., 2007).  41 

In response to this growing understanding of the risk from compound flood hazards, the topic has been studied in several ways, 42 

including statistical analyses of correlations and joint probabilities of the historical extremes of the compound flood drivers 43 

(e.g. Wahl et al., 2010) hydrologic and hydrodynamic modelling of historical events (e.g. Orton et al., 2012; Mita et al., 2023) 44 

or hybrid approaches using synthetic storms (e.g. Gori et al., 2022).  45 

In statistical analyses of historical compound extreme flood drivers, multivariate statistical models (e.g. Najibi et al., 2023; 46 

Jane et al., 2020; Wahl et al., 2012) and probabilistic modelling frameworks to select the best model (e.g. Bender et al., 2016; 47 

Torre et al., 2019) are developed to improve modelling of the dependency structure of the compound correlated extremes. 48 

Copula theory (Sklar, 1959) is commonly applied as a solution for multivariate probabilistic modelling, since Copulas (e.g. 49 

Joe, 2014; Roch and Alegre, 2006) have flexible joint distributions to quantify the dependency of correlated events. Bivariate 50 

or trivariate combinations of flooding factors such as waves, storm surge, water level, river discharge and volume, rainfall 51 

intensity and duration, groundwater, sea level rise, etc., are selected for the multivariate statistical analysis based on various 52 

research interests (e.g. Kim et al., 2023; Lai et al., 2021; Moftakhari et al., 2017; Sadegh et al., 2017; Salvadori et al., 2014; 53 

Ward et al., 2018; Al Azad et al., 2018). Those studies have been done at global (e.g. Ward et al., 2013), national (e.g. Wahl 54 

et al., 2015) regional (e.g. Gori et al., 2020b) and local scales (e.g. Jane et al., 2020).  55 

Most of these studies quantify the compound flood events from a single population dataset without distinguishing what 56 

meteorological systems are causing them. Tropical cyclones (TCs, including post-tropical cyclones) and extratropical cyclones 57 

(ETCs) both can cause coastal hazard extremes and compound flooding. However, these storm types have different energy 58 

and moisture sources and cause different hazard intensities in terms of maximum wind speed, storm surge (e.g. Orton et al., 59 

2016; Ayyad et al., 2022; Chen et al., 2019) and rainfall rates. ETCs normally have a larger spatial extent and have wind speeds 60 

far below the maxima exhibited by TCs (e.g. Dolan and Davis, 1992; Landsea and Franklin, 2013) and TCs can have more 61 

abundant moisture. Each storm type has often been shown to exhibit different univariate extreme value probability distributions 62 

(Lin et al., 2010; Villarini and Vecchi, 2013; Orton et al., 2016). Each storm type thus may also have distinct compound flood 63 

hazard characteristics, pointing to the importance of not assessing all storm events together as one population (Orton et al., 64 
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2016). However, this separation by storm type has only rarely been attempted in past studies of compound flooding (e.g. Kim 65 

et al., 2023), especially in mid-latitude areas that are affected by both TCs and ETCs. 66 

Also, many studies ignore the question of relative timing of the drivers within a storm, using the storm-maximum flood drivers 67 

rather than the simultaneous ones as the compound sampling pairs. It is unclear in these studies whether the flood drivers are 68 

compounding or sequentially occurring. Due to the more widespread and longer duration historical archives of daily versus 69 

hourly rain data, most prior studies have used daily data. This limits our understanding of relative timing of drivers and is not 70 

an appropriate timescale to understand pluvial flooding processes. 71 

The urban environment has a much larger proportion of unvegetated impervious surfaces and additional vulnerability due to 72 

dense population and extensive infrastructure. There is little infiltration of water into soils, and stormwater systems are often 73 

insufficient to convey heavy rainfall, leading to flooding from the backing up of water (e.g. Villarini et al., 2009). Short 74 

duration (hourly or sub-hourly) intensified rain values have been found to be the predominant driver of pluvial flooding for 75 

NYC (Nyc, 2021) and other urban environments (Rosenzweig et al., 2018). Its timing relative to the peak of coastal water 76 

levels is a critical factor for compound flooding (Gori et al., 2020a; Xu et al., 2023). While pluvial flood research has often 77 

utilized hourly and sub-hourly data, much of the past research on compound flooding mentioned above has relied upon daily 78 

rainfall data.  79 

In this study, we address the above weaknesses and demonstrate a framework for assessing compound rain-surge hazard for 80 

different storm types and applying hourly data, using NYC as a demonstration site. We evaluate the compound hazard 81 

characteristics from separate populations of TC and ETC events, as well as events that are attributed to “Neither” type of storm 82 

and “All” events combined. Our framework is tailored to the compound flood risk of a typical urban pluvial flood environment 83 

where the peak flood depth occurs relatively rapidly after the peak rainfall (i.e. the time of concentration is below one hour). 84 

We use higher-resolution spatiotemporal data to study compound flood driver characteristics that have not been sufficiently 85 

evaluated in prior national and global studies. 86 

Below, Section 2 introduces the study area and data for this research; Section 3 gives a full picture of methodology from pre-87 

processing the data, identifying compound events, storm type association analysis methods for multiple aspects of compound 88 

characteristics. Section 4 shows the results under the above-described framework. Section 5 discusses the key results, 89 

limitations, and future work for this research, and Section 6 summarizes our study’s conclusions. 90 

2 Study Site and data 91 

2.1 Study Site 92 

NYC is the most densely populated city in the United States with more than eight million residents, 778 km2 of area, and 93 

approximately 70% impervious land coverage. It is vulnerable to pluvial and coastal flooding, and likely compound flooding 94 

from both (e.g. Sarhadi et al., 2024; Georgas et al., 2014; Chen and Orton, 2023). It consists of several small, urbanized 95 

watersheds (ranging from 4.7-60 km2), where the time of concentration is short. The Bronx River is one exception, a small 96 
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river with an elongated 39 km long, 105 km2 watershed and by far the largest inland stream passing through NYC. The city is 97 

located in a low-elevation region with a lengthy coastline subject to flooding from both the NY/NJ Bight to the south and Long 98 

Island Sound to the northeast. It has extensive coastal floodplains along its adjacent tidal water bodies (Fig. 1). A recent study 99 

found that many of the NYC neighbourhoods with the most flood complaints are in these coastal areas (Agonafir et al., 2022); 100 

compound flooding could be an important contributing factor. Another study used 311 flood report phone call data and found 101 

relationships between flood reports and other spatial data sets (Smith and Rodriguez, 2017). 102 

Historically, severe coastal floods (e.g. Hurricane Sandy in 2012, a Nor'easter in December 1992), pluvial floods (e.g. 103 

Hurricane Ida in 2021) and compound floods (Hurricane Irene in 2012; Orton et al., 2012) struck NYC, and can be associated 104 

with TCs, ETCs and convective thunderstorms. Four of NYC’s top-5 storm surges from 1788-present were TC (or post-tropical 105 

cyclones), 3 of the top-5 hourly rain events from 1948-present were TC (KNYC: Central Park), and 4 of the top-5 daily rain 106 

events from 1869-present were TC (KNYC: Central Park). 107 

2.2 Historical observations 108 

In the interest of using a long-term database to study compound flooding, rain and coastal water level data were assembled 109 

with the longest possible hourly data resolution. Given that there is hourly tide gauge data back to the 1800s (Talke et al., 110 

2014), the limitation on data availability came from hourly rain gauge data, which were continuously available for several 111 

NYC region gauges from 1948 to present. 112 

2.2.1 Tide gauges 113 

Hourly water level data are obtained from NOAA tide gauges in UTC time zone and North American Vertical Datum of 1988 114 

(NAVD88), including gauges (blue points in Fig. 1) at the Battery (8518750), Kings Point (8516945, from 1999 to 2022) and 115 

Willets Point (8516990, from 1948 to1998). The Battery gauge has near-complete long-term temporal coverage during the 116 

period of hourly rain data from 1948 to 2022, spanning approximately 75 years. The locations of Kings Point and Willets Point 117 

are only 3 km apart along the East River and have similar storm surge (O'donnell and O'donnell, 2012). We merge their data 118 

to represent storm surge conditions for Northern Queens and South Bronx, simply referring to the joint dataset as Kings Point.  119 

2.2.2 Rain gauges 120 

Observed hourly rainfall data at and around NYC (red points in Fig. 1) were obtained from the NOAA National Climatic Data 121 

Centre (NCDC). The hourly rainfall data can be used to capture the short duration (hours) rain intensity, which is critical to 122 

the pluvial flood impacts for an urban environment like NYC. Also, the hourly temporal resolution can be simultaneously 123 

matched with the hourly data around its nearby tide gauge to study simultaneous or lagged occurrences. The rain gauges we 124 

selected are all within 20 km of the coast and at elevations below 100 m and have near complete long-term temporal coverage 125 

from 1948 to 2022. Each of them is within 30 km of the Battery or Kings Point tide gauge. Overall, these gauges have good 126 

spatial coverage around the NYC area.  127 
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2.2.3 TC and ETC tracks 128 

Datasets of 6-hourly storm location and time (cyclone tracks) are utilized to associate the rainfall/coastal flood drivers with 129 

specific storm types (see Section 3.4). The TC tracks dataset is from the National Hurricane Centre (HURDAT2; Landsea and 130 

Franklin, 2013). The ETC tracks are obtained by running an automated cyclone tracking algorithm on the ERA5 reanalysis. 131 

The tracking algorithm used is the MAP Climatology of Midlatitude Storminess (MCMS) documented in Bauer et al. (2016). 132 

MCMS identifies closed low pressure locations in the sea level pressure field and then links the low centres through time. The 133 

algorithm was developed explicitly for tracking ETCs, however, MCMS sometimes identifies TCs. Before using MCMS, the 134 

TCs tracks are removed by identifying matching tracks in HURDAT2 and the MCMS output.  135 

 136 
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 137 

 138 

Figure 1: Map of the locations of rain gauges (red) and tide gauges (green) around NYC. The low-elevation 100-year coastal 139 

floodplain (Fema, 2014) is shaded blue, where pluvial and coastal compound floods are more likely to occur during storms than 140 

more elevated areas (see Section 3.3). Listed from left to right, the rain gauges are Newark Liberty Airport (EWR), Central Park, 141 

LaGuardia Airport (LGA), John F. Kennedy Airport (JFK), and Mineola, and the tide gauges are Battery and Kings Point.  142 

3 Methods 143 

3.1 Extreme rainfall 144 

3.1.1 Rain gauges and metro-scale rain 145 

We compute the spatial average rain within 30 km of each tide gauge separately (the Battery and Kings Point in Fig. 1) to 146 

represent the metro-scale rainfall, while each single rain gauge represents a point measurement of rainfall in each smaller local 147 
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sewershed. Calculating a spatial average over rain gauges within a 30-km radius helps smooth out the localized variability in 148 

rainfall, giving a perspective more reflecting an integrated hourly effect of rain on flooding. Each individual rain gauge captures 149 

extreme rainfall intensity of local convective rain events and the spatial variability during localized convective and synoptic 150 

events (TCs or ETCs). For example, TC Ida 2022 caused extreme rainfall at Central Park and LGA airport, but much less 151 

rainfall at JFK airport.  152 

3.1.2 Top-ranked rain intensity of different durations 153 

We temporally accumulate the continuous hourly rainfall data to different durations (from 1 to 48 hours) on both single rain 154 

gauges and metro-scale averaged rainfall and isolate the extreme values of the accumulated rainfall. To guarantee event 155 

independence we eliminate peaks that occur within 5-day windows. This 5-day window was chosen to account for the typical 156 

maximum duration of cyclonic storm events. 157 

3.2 Top-ranked storm surge or non-tidal residual 158 

Storm surge was estimated as the non-tidal residual and excludes seasonal, interannual and secular sea level changes through 159 

the following process. We compute and remove the annual mean sea level (AMSL) from the water level data of each tide 160 

gauge. Then, we perform harmonic analysis (Schureman, 1994) on the resulting data year by year to obtain the tidal signals 161 

across the time series. Thirty-seven harmonic constituents are considered including the solar annual constituent and solar semi-162 

annual constituent. Then, we compute the non-tidal residual (NTR) by removing the AMSL and tide from the total water levels, 163 

thus removing SLR from the NTR data. The NTR is mainly composed of storm surge (driven by wind and atmospheric 164 

pressure), but also includes smaller contributions from river runoff and rainfall. It excludes the sea level rise (SLR) and 165 

interannual and seasonal variabilities. Prior hydrodynamic model experiments for Tropical Storm Irene (2011) showed that 166 

the effect of local rainfall on harbour water levels was only 2 cm at the time of peak water levels (Orton et al., 2012). Similar 167 

to rain data processing in Section 3.1.2, we capture the peak 1-hour NTR and ensure event independence with a 5-day window. 168 

3.3 Compound events 169 

Storm surge and rainfall have several important differences that motivate different treatment in the sampling of compound 170 

events. Storm surge can be positive and negative, whereas the minimum rainfall is zero. Surge tends to be relatively stable 171 

over several hours’ duration, while rainfall can be extreme for one hour, zero for the next (e.g. for a convective storm or as 172 

spiral rain bands of hurricane pass a location; Senn and Hiser, 1959). However, surge often peaks with a large positive value 173 

as a storm passes, then drops to a negative value within hours due to reversed, offshore winds (e.g. for a passing tropical 174 

cyclone; Ayyad et al., 2022). As a result, we use surge maxima, to avoid averaging negative and positive values within a 175 

storm’s passage. Our statistical analyses are conditioned on the primary flood driver being top-ranked, while the secondary 176 

flood driver can be of any value. Thus, we study events conditioned on top-ranked rain (peak 1 to 48 hours accumulations), 177 

which we refer to as Pluvial-Coastal (P-C) events, and top-ranked NTR (peak 1-hour intensity), which we refer to as Coastal-178 
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Pluvial (C-P) events. The primary flood drivers are sampled by peaks-over-threshold (POT) approach based on a per-year 179 

average (PYA) frequency of five events. This two-sided conditional sampling approach with a POT of certain percentile (e.g. 180 

0.95 or 0.99) is typically used in many studies to identify compound extreme events from two conditioned aspects (Jane et al., 181 

2020; Wahl et al., 2015; Ward et al., 2018).  182 

The relative timing of the compound flood drivers is critical to their compound effects, especially for an urban environment. 183 

Here, we investigate the characteristics of the simultaneous hourly flood drivers (Section 4.2.2, 4.3, 4.5). For comparison to 184 

common practice (e.g. Wahl et al., 2015; Lai et al., 2021; Lai et al., 2023), we also evaluate the characteristics of storm-185 

duration (non-simultaneous) maximum flood drivers (Section 4.2.1), defined as having the secondary flood driver occur within 186 

±1.5 day of the peak of the primary flood driver. We also study the lag times between these storm-duration maximum flood 187 

drivers. Considering the joint occurrence of rain and surge, when the peak rain intensity occurs several hours away from the 188 

peak storm surge, these two may result in more of a sequential pair of flood events with little exacerbation from compounding. 189 

However, if they co-occur at or near the same hour, the resulting compound flood magnitude may be substantially increased 190 

(e.g. Gori et al., 2022). For Pluvial-Coastal compound flood events, the compounding typically arises due to the drainage of 191 

the urban stormwater system being blocked by the simultaneous coastal high water levels (e.g. Gold et al., 2022). For Coastal-192 

Pluvial compound flooding, a coastal flood can be aggravated by simultaneous rainfall (e.g. Orton et al., 2012).  193 

3.4 Storm type association 194 

Cyclone tracks (Section 2.2.3) are used to associate the top-ranked rainfall and NTR events with specific TC and ETC events 195 

or to determine if they are a "Neither" case that doesn't match any cyclone track. If the top ranked rain/NTR events occur 196 

within 500 km of the centre of a TC or within 1000 km of the centre of an ETC, the event is considered as association with TC 197 

or ETC. Storms in the HURDAT dataset were considered TCs, given that they are nearly always either TC or post-tropical 198 

cyclones as they pass NYB. TC events include those that may have become post-tropical because these storms often continue 199 

to have unusually high winds and moisture. We additionally evaluate all the events together (“All”, see the diagram in Fig. 2).  200 

Similar distances are used to judge the storm association in other studies (e.g. Kim et al., 2023; Lai et al., 2021). In the 201 

supplementary material (SM), we test the sensitivity of additional distances for storm association. 202 
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 203 

Figure 2: Diagram for the workflow. 204 

3.5 Dependence analysis of compound flood drivers 205 

Kendall’s rank correlation coefficient (Kendall, 1938) between flood drivers is computed for both the “storm maximum” and 206 

the “simultaneous” cases for each storm type to assess their dependency. In addition, the non-parametric upper tail dependence 207 

coefficients (UTDCs) (Schmidt and Stadtmüller, 2006; Wahl et al., 2015) are used to check the dependence of values in the 208 

upper tail region as a consistency check with their overall rank correlation. The UTDC represents the probability of a second 209 

driver being in the upper tail region, conditional on the primary driver being in the upper tail.  210 
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3.6 Lag time of storm-duration maximum flood drivers 211 

The lag time between the maximum flood drivers reflects another aspect of compound flood risk (e.g. Jane et al., 2020). We 212 

identify the timing of the maximum flood drivers of each compound event and define the “lag time” as Tpeak surge - Tpeak rain, so 213 

a positive lag means the rain peak occurs before the NTR peak. Here, our main purpose is to compare the lag time 214 

characteristics of compound events associated with different storm types, as well as to contrast the difference between the 215 

Battery and Kings Point. We also use the Kendall’s rank correlation coefficient to evaluate the dependence between the primary 216 

and secondary flood driver and the absolute lag time.  217 

3.7 Magnitude of compound flood drivers 218 

Prior research often focused only on rank correlations and copula modelling of joint probabilities for assessing compounding. 219 

While a high rank correlation reflects tight coupling between drivers, it is not a prerequisite for extreme compound hazard. If 220 

the secondary driver is often extreme but does not have a high rank correlation with the primary driver, there can still 221 

occasionally be co-occurrence of both drivers’ extremes.  222 

To capture the high-end intensity of the secondary flood drivers and provide an alternative method for understanding the 223 

potential magnitude of compounding that comes from different storm types, we compute the 50th and 90th percentiles 224 

(empirical quantiles) of the rain and NTR for the hours around the time of peak rain (for P-C compound event) and hours 225 

around the time of peak NTR (for C-P compound event). This analysis compares the “simultaneous” compound hourly 226 

intensity at a range of times around the peak (±10 hours), for a consistency check with lag time characteristics analysed in 227 

Section 3.6. This approach is similar to looking at fitted marginal distributions but is an empirical approach, without any 228 

scaling by annual frequency. It also has an added benefit of being more straightforward for risk communication than rank 229 

correlations and copula models.  230 

3.8 Magnitude of compound flood drivers 231 

The joint probabilities and return periods of rainfall and NTR are resolved by using a recently developed copula software for 232 

bivariate analysis of compound hazards by Sadegh et al. (2018), known as Multi-hazard Scenario Analysis Toolbox (MhAST). 233 

This toolbox is utilized to assess 17 marginal distributions (e.g. GPD) with quantile-quantile plots and Chi-Square tests and 234 

identify the optimal one based on the Bayesian Information Criterion (BIC) (Sadegh et al., 2017). Similarly, the bivariate 235 

dependency structure is analysed by fitting 25 copula models (e.g. Nelsen, 2003) and these are assessed with multiple 236 

goodness-of-fit tests, including Cramer-von Mises test (e.g. Genest et al., 2009), BIC, Akaike Information Criterion (AIC), 237 

maximum likelihood, Nash-Sutcliffe efficiency (NSE), etc. (Sadegh et al., 2017). The “AND” hazard scenario is chosen to 238 

consider compound drivers from the joint extreme values of both drivers (Salvadori and De Michele, 2004; Ward et al., 2018; 239 

Moftakhari et al., 2019; Couasnon et al., 2020). 240 
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For inter-comparing probabilities, we select one copula model that is suitable across all event types (TC, ETC, All and Neither). 241 

Instead of pursuing the copula that leads to the best goodness of fit metric for each event type, we use the same copula for all 242 

to avoid differences arising due to differing copula models. For example, we avoid intercomparing probability (or return 243 

period) results where one event type has been fitted with an extreme value copula and another with a non-extreme value copula. 244 

The p values from the Cramer-von Mises test are used to eliminate the inadmissible copulas (p<0.05) (Genest et al., 2009; 245 

Mazdiyasni et al., 2019; Lucey and Gallien, 2022). BIC is commonly used in previous studies among the metrics for goodness-246 

of-fit, because it considers both sample size and the complexity of the model to avoid overfitting (e.g. Bevacqua et al., 2019; 247 

Tootoonchi et al., 2022). Hence, we use BIC as the primary judgment for suitability checks among all the plausible copula 248 

models. The Plackett Copula is the most consistently highly ranked copula based on BIC across all event types. The Plackett 249 

Copula is flexible in modelling various types of dependence structures and can exhibit tail dependence as well (Nelsen, 2006); 250 

it was found here to be suitable across all cases (Table S1).  251 

4 Results 252 

Results below include the relative frequencies of top-ranked pluvial and coastal events by storm type (Section 4.1), the 253 

measures of dependence of the rain and NTR (Section 4.2), and the magnitude of the marginals of the rain and NTR (Section 254 

4.3). The lag time between the rain and NTR flood drivers are evaluated in Section 4.4. The above first three aspects are 255 

dominant factors that influence the joint probability analysis results in Section 4.5.  256 
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 258 

Figure 3: Compound events at the Battery associated with different storm types and primary drivers. The relative annual frequency 259 

average annual frequency of each storm type within the top ranked conditioned on total rainfall events across different durations 260 

are represented by dotted lines (P-C compound event) and conditioned on hourly peak NTR events are represented by solid lines 261 

(C-P compound event). The latter are always flat because the ranked list of NTR (a peak) is the same regardless of rain duration, 262 

while the former vary because each duration has a different ranked list.  263 

4.1 Relative Frequency by event types 264 

Figure 3 gives a picture of the average annual frequency for the top-ranked coastal and pluvial events at the Battery associated 265 

with different storm types above a total 5 PYA threshold from all events (i.e. both NTR and rain exceed their respective PYA 266 

thresholds). At Kings Point, the frequencies have similar patterns. Events associated with TCs contribute a small proportion 267 

of all top ranked P-C compound events (0.20-0.40 PYA) and C-P compound event (0.35 PYA) events. Events associated with 268 

ETCs are the major proportion of the top ranked C-P compound events, while neither drive the majority for the top ranked P-269 

C compound events. For the P-C compound events conditioned on short durations (1-6 hours) rain, a higher proportion is 270 

associated with Neither (e.g. summer convective-rain storms) than for those conditioned on longer durations. These convective 271 

events normally do not last long and typically have a short duration of intense rain. 272 
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4.2 Dependence 273 

4.2.1 Top-ranked rain intensity of different durations 274 

Using the common method of assessing correlations of storm-duration maximum flood drivers, we find for TCs a large 275 

difference between correlations of P-C and C-P events. TC-induced P-C and C-P compound events at NYC have quite different 276 

rain-NTR correlations of 0.3-0.5 and 0.0-0.1, respectively (Fig. S1). On the other hand, the correlations for All, Neither and 277 

ETC are ~0.1 for both P-C compound events and C-P compound events. Their correlation is not sensitive to the durations of 278 

maximum rain accumulations, except for the short durations (1- 5 hours) which have ~0.0 correlation for P-C compound 279 

events. Among the short duration high rain events, a higher proportion of them are in the Neither category that presumably 280 

induced by convective events (Fig. 3). These events have a lower chance of co-occurring with a coastal flood. The P-C 281 

correlations are relatively sensitive to the short rain durations (1- 5 hours) associated with both TCs and ETCs (Fig. S1a). Short 282 

extreme rain events tend to have high intermittency, leading to high variation in the correlation from one duration to the next. 283 

The storm-duration maximum compound events could have maximum flood drivers sequentially or simultaneously, depending 284 

on the lag time (explored in Section 4.4) of the compound drivers. So, their compound effects on a pluvial environment like 285 

NYC has a large uncertainty. In the next Section 4.2.2, we investigate the dependence of simultaneous compound flood drivers. 286 

4.2.2 Simultaneous hourly flood drivers 287 

Figure 4 shows the P-C simultaneous compound flood drivers associated with TCs have much higher overall correlation than 288 

the other storm types. This pattern is consistent across space in terms of overall dependency (Fig. 4) and upper tail dependence 289 

(Fig. S2). This implies a higher joint risk for TCs compared with other storms in terms of dependence. 290 

However, for TCs the C-P simultaneous correlation is near zero at both the Battery and Kings Point. Even if we only look at 291 

the upper tail region, the C-P compound events are still less correlated than the P-C compound events driven by TC (comparing 292 

panel a and b in Fig. S2). The upper tail dependence coefficients associated with TC are close or slightly higher than other 293 

storm types for the majority of locations (e.g. EWR, LGA or the spatial average in Fig. S2).  294 

For certain stations (e.g. JFK, LGA in Fig. 4), the C-P simultaneous compound hourly flood drivers associated with ETC or 295 

All have moderate dependency, but they are not evident in the upper tail region (Fig. S2). At LGA and EWR, their upper tail 296 

correlations are less than that associated with TC. The rain-NTR dependency could be significantly different depending on 297 

storm type as well as the choice of primary flood driver. Location and rainfall accumulation duration also cause minor changes 298 

in correlation. The phenomena are not explored in detail in prior studies in this area. More comparisons are discussed in 299 

Sections 5.2.  300 
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  303 

Figure 4: The Kendall rank correlation coefficients for (a) the P-C simultaneous compound flood drivers and (b) C-P simultaneous 304 

compound flood drivers associated with different storm types for each single gauge and the spatial average around the Battery. The 305 

filled colour bars represent statistically significant cases (p<0.05). 306 
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4.3 Magnitudes of flood drivers 307 

The hourly magnitudes of the primary flood drivers are similar for different storm types, but the magnitude of secondary flood 308 

drivers associated with TCs stands out compared with other storm types. In Fig. 5, for the P-C compound event, the empirical 309 

percentiles (50th and 90th) of top ranked rainfall are slightly higher for TCs than the other storm types, while the empirical 310 

percentiles (50th and 90th) of the associated NTR are much higher for TCs than the other types (panels a6 vs a5, a7, a8). 311 

Similarly, for the C-P compound event, the empirical 90th percentiles of top ranked NTR are much higher for TCs than the 312 

other types, but the 50th percentiles are similar for all cyclone types. The empirical percentiles (50th and 90th) of the associated 313 

compound rainfall are much higher for TCs than the other types (panels b6 vs b7&8). This higher magnitude of the secondary 314 

flood driver associated with TCs is not only seen during the simultaneous peak rain or peak NTR hour (at “0” hours in Fig. 5), 315 

but also during the few hours around it.  316 

The Battery and Kings Point have similar magnitudes of coupled flood drivers for different storm types. The pattern for the 317 

magnitude of secondary flood drivers described above is also true for Kings Point (Fig. S3). However, the magnitude of the 318 

secondary flood drivers for the Battery (panels a5-a8 and b5-b8 in Fig. 5) is relative symmetrically distributed temporally 319 

around the peak hourly rain (P-C compound event) or the peak hourly NTR (C-P compound event), while the temporal 320 

distribution at Kings Point is asymmetrical (panels a5-a8 and b5-b8 in Fig. S3). Regardless of storm type, the hourly peak 321 

magnitudes of the coupled flood drivers at the Battery are almost simultaneous, while they lag by a few hours at Kings Point. 322 

Even though there is still a simultaneous compound effect at the Kings Point, the magnitude of the simultaneous secondary 323 

flood drivers tends to be lower than that of the Battery. 324 
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 326 

Figure 5: The magnitude of the P-C compound flood drivers (top; a1-a8) and the C-P compound flood drivers (bottom; b1-b8) by 327 

different storm types for the Battery. The top row (a1-a4) and third row (b1-b4) show the primary flood driver magnitudes (50th 328 

and 90th percentile), and the second row (a5-a8) and bottom row (b5-b8) show the secondary flood driver magnitudes. X-axis ranges 329 

from -10 to 10 h indicating time relative to the peak hour of rain (a1-a8) or NTR (b1-b8). 330 
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4.4 Lag time of flood drivers 331 

Figure 6 shows a large proportion of the historical compound events have their maximum coastal NTR after their maximum 332 

hourly rainfall, no matter what storm type, primary flood driver or location (Battery or Kings Point). This could arise if rainfall 333 

precedes a storm or if the propagation of storm surge into the harbour from offshore is slower than the storm speed (e.g. Orton 334 

et al., 2012). 335 

 336 

Figure 6: Histograms of lag time for the P-C compound events (top) and the C-P compound events (bottom). The left, middle and 337 

right panels are associated with TC (1), ETC (2), and Neither (3). The red and black colours represent histograms for the Battery 338 

and Kings Point separately. The numbers in each plot are the median of the absolute lag time for Battery and Kings Point. Positive 339 

lag time values indicate peak storm surge occurs after peak of rainfall. Here we only show the lag time within ±15 hours. 340 

The statistical characteristics of lag time are different across the three storm types (Fig. 6). During TCs, the secondary 341 

maximum flood drivers tend to be either simultaneous or occur with a smaller lag time than for other storm types, which can 342 

be seen by comparing histograms a1 and b1 with histograms a2&3 and b2&3 in Fig. 6. The median lag time for TCs tends to 343 

be the smallest and is shown as the parenthetic numbers at top left of each panel. Also, there is a significant negative correlation 344 
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of the extreme rainfall and the absolute value of lag time during TCs for P-C compound event (Fig. 7). This indicates that the 345 

most intense rainfall events tend to have the shortest absolute lag times to the peak, which raises the risk of amplifying the 346 

compound flood effects during TCs. These negative correlations are significant at many stations around the Battery (Fig. 7) 347 

and Kings Point.  348 

For the Neither type (panels a3 & b3 in Fig. 6), the lag time for P-C compound event (panel a3 in Fig. 6) is more spread out 349 

than C-P compound event (panel b3 in Fig. 6). This may be because C-P compound event has storm surge and thus is often 350 

associated with a synoptic storm. P-C compound event in the Neither category is more likely not to be associated with an 351 

organized storm that produces surge, so there is less reason for timing to be coupled. 352 

The histograms and median absolute lag time also show that the lag time around the Battery tends to be shorter than that around 353 

Kings Point. This is consistent with the magnitude results in Section 4.3. This phenomenon will be further discussed in Section 354 

5.3.  355 

 356 
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 357 
Figure 7. The Kendall rank correlation coefficients between primary flood drivers and absolute lag time of the secondary driver for 358 

(a) the P-C compound event (b) C-P compound event associated with different storm types for each single gauge and the spatial 359 

average around the Battery. The filled bars represent statistically significant cases (p<0.05). 360 

4.5 Joint return period analysis 361 

In Fig. 8, we contrast the resulting JRP curves associated with each storm type with that evaluated from All. For P-C events, 362 

the analysis uses simultaneous NTR. For C-P events, the analysis uses rainfall within a ±1 hour window from the time of peak 363 

NTR. This is done to conservatively assess the joint occurrence, because rainfall during severe storms can sharply change from 364 

one hour to the next. Extreme surge typically lasts for several hours at minimum (Booth et al., 2016), whereas extreme rain 365 

can last for only an hour or less and then drop to zero or can abruptly alternate between extreme and zero when there is banding 366 

of rainfall. This is demonstrated in Fig. 8, comparing the sharpness of peaks in panels a6 and b6. For P-C events (a6) the 367 

simultaneous hourly NTR barely drops for lags of ±1 hour. For C-P events (b6), the 90th percentile simultaneous rain on 368 

average drops to ~40% in the hour after peak NTR. For the 50th percentile, the average drop is ~50%. The need for the ±1 369 

hour window is also illustrated by the fact that the peak for the 50th percentile rain (panel b6) is at -1 hour. 370 
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Figure 8: Observations (black points) and joint return period curves (5-year to 200-year) for the P-C compound event (left; a1-a4) 373 

and the C-P compound event (right; b1-b4) by different storm types. All the compound flood drivers are hourly and simultaneous, 374 

except maximum rainfall within a ±1-hour window was used for C-P events (see section 4.5).  375 

 376 

The JRP results show that TCs play a dominant role in driving the most extreme (50-year return period and above) compound 377 

events, while ETCs contribute mainly to the more frequent compound events (10-year events and below). Specifically in Fig. 378 

8, for the joint extreme values of the 50-year (or above) return periods, higher values occur for TC than for All, but for the 379 

joint extreme values of the 10-year (or less) return periods, the joint values of TCs are much smaller than that of All. 380 

Conversely, the ETC joint extreme values of the 10-year (or less) return period are similar to All, but much smaller than TC 381 

for the 50-year (or above). The values for Neither are lower than for the other storm types, and thus play a very limited role. 382 

The characteristics of the JRP curves relate to both the rank correlations and marginal intensities presented in Sections 4.2 and 383 

4.3. The P-C joint return period (JRP) curves associated with TCs, for example, are more convex than those associated with 384 

other storm types, as they have a higher dependency. For the C-P compound event, the JRP curves associated with TCs are 385 

less convex than the P-C compound event, due to low correlations. However, they still cause stronger extreme compound 386 

events than other storm types. While TCs are far less frequent than other storm types (Section 4.1), they are the primary source 387 

of extreme compound rain-surge (e.g. 50-year to 200-year events).  388 

5 Discussion 389 

While this study focuses on flood drivers over one city and its relatively small watershed, our research has important 390 

implications for the broader field of urban compound flood research. First, through our separation of storm types, our study is 391 

the first to demonstrate the importance of both TCs and ETCs in assessing compound flooding. Our results illustrate that events 392 

driven by TCs, ETCs and Neither can have significant differences in their compound flood hazard characteristics. Separating 393 

the data from different storm type results in different estimates of their dependency, magnitudes of marginals, lag time and 394 

occurrence frequency. TCs have markedly different driver characteristics from other storm types and dominate the joint 395 

probabilities of the most extreme rain-surge compound events, even though they occur much less frequently. ETCs are the 396 

predominant source of more frequent, moderate compound events. Critically, the 50-year to 200-year return periods for 397 

compound events are higher when only assessing TC versus assessing All events together. This is mainly due to the larger 398 

magnitude of the secondary flood driver (Section 4.3) and in the case of P-C events also a higher dependency (Section 4.2). 399 

This research demonstrates that the danger of compound hazards from TCs can be underestimated if aggregated with data with 400 

other storm types, which is common practice. This is discussed in more detail below in Section 5.1.  401 

Second, by using hourly data and looking at simultaneous occurrence and hourly lags, our analyses demonstrate the importance 402 

of subtle lags that can be important to compound pluvial-coastal flooding for both small urban watersheds and small rivers 403 

(e.g. Bronx River). Prior research on pluvial-coastal compounding typically uses the daily rainfall data and ±1 day window to 404 
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capture the compound flood drivers (e.g. Lai et al., 2021; Kim et al., 2023) and evaluate the joint return periods using All 405 

events (e.g. Ghanbari et al., 2023; Wahl et al., 2015). However, small lags of 0-2 hours between maximum rainfall and coastal 406 

drivers were found to be a critical factor on the magnitude of urban compound flood impacts (e.g. Gori et al., 2020a). The 407 

analysis of hourly data verifies that rain and NTR occur simultaneously and also opens up many new windows into potential 408 

compounding that would be missed if using daily rainfall data and the storm-maximum approach. Results show the compound 409 

hazard statistics using the hourly simultaneous approach can reveal smaller hazard extremes from those resulting from the 410 

more commonly applied “storm-duration maximum” approach (Fig. S4), especially for the location (Kings Point) with more 411 

prominent lag times (Fig. 5 vs Fig. S3, or Fig. 6). Storm-duration co-occurrences of extreme flood drivers can be a day or more 412 

apart, so can have sequential or compounding impacts, whereas the hourly simultaneous approach guarantees that the drivers 413 

coincide. The “hourly simultaneous” analysis results can also be different for nearby tide stations due to the direction and 414 

pathway of storm surge propagation. This phenomenon is discussed in Section 5.3. Limitations and simplifications of the 415 

research are discussed in Section 5.4. 416 

5.1 Storm Separation 417 

TCs, ETCs and Neither can be responsible for similar individual events, but their clouds of data points and copula-modelled 418 

JRP curves for rain and NTR are often distinct (Fig. 8). TCs and ETCs both can trigger extreme coastal flooding and extreme 419 

rainfall, whereas the Neither (often summer convective thunderstorms) mostly only cause extreme rainfall. 420 

The decision to separate rare TCs from other more frequent storm event types in extreme value analyses is a difficult one, as 421 

it results in more uncertainty in probability distributions. This can be a challenge for policy-oriented metrics such as the 100-422 

year flood zone, especially if it leads to widely varying estimates across different assessment methods or for consecutive 423 

studies from one organization (e.g. FEMA; Orton et al., 2016). Nevertheless, for environments like NYC where TCs are 424 

infrequent but responsible for a majority of historical rain and storm surge extreme events, merging data in an analysis of All 425 

storm event data can often lead to low biases in probabilistic assessments. If TCs are separated, the results in Figure 8 show 426 

that additional separation of ETCs from Neither may also be beneficial for proper quantification of 10-year return period joint 427 

rain-surge events. 428 

Recent studies (e.g. Gori et al., 2022) have begun using synthetic TC storms to evaluate the joint probability of compound rain 429 

and coastal flood hazards, which can be particularly useful for assessing future climate change. The observation-based 430 

approach we have used, and this new model-based approach can be complementary. While the observation-based approach is 431 

grounded in real-world data, the model-based approach can improve sample sizes for extreme events and enable extending the 432 

science to climate projections. 433 

5.2 Different correlations for C-P and P-C associated with TCs 434 

NYC C-P compound hazard induced by TCs has a much lower correlation than P-C compound hazard, in contrast to prior 435 

research for Florida and Texas. Typical TCs have their heaviest rain and strongest onshore winds (and thus, surge) in separate 436 
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quadrants (Yang et al., 2021), and as a result rain and surge are not typically highly correlated. Typical correlations for Florida 437 

and Texas are 0.2-0.4 for both P-C and C-P events (Jane et al., 2020; Kim et al., 2023). For top-ranked NYC NTR (C-P) events, 438 

the correlations are near zero. One reason this could be the case is because the TCs at this high latitude are typically undergoing 439 

extratropical transition causing the rain to get even more separated, moving radially outward further from the storm centre 440 

(e.g. Evans et al., 2017). For example, during Hurricane Sandy, the storm size became larger as the storm transitioned and the 441 

distance between rain and surge became large. Storm surge was concentrated near the right side of the storm track in the region 442 

of highest onshore winds (New York Bight), and precipitation was radially outward and to the west of the storm (e.g. Virginia, 443 

West Virginia; Blake et al., 2013). Regardless of the lower or even negative correlations between NTR and rain, there are still 444 

stronger secondary driver magnitudes and higher joint return period curves (50- to 200-year return periods) during TCs than 445 

All events.  446 

5.3 Storm track and surge path dependence of compounding 447 

The results by storm type reveal characteristics of compound flood drivers could be dramatically different depending on the 448 

storm type association. Similarly, for one specific storm type, compound hazards risk may mainly come from events with 449 

certain cyclone tracks. For example, NYC has exposure to three main hurricane paths pertinent to surge: (1) New Jersey 450 

landfalls, which maximize storm surge “to the right of the storm” at NYC but often co-occurs with low rainfall, as the rain 451 

tends to occur toward the west (e.g. Sandy), (2) direct hits from the south bringing large surges and heavy rains, and (3) tracks 452 

crossing Long Island to the east, where surges travel westward across Long Island Sound and there is also potential for heavy 453 

coincident rainfall to the “left” of the track. An initial hypothesis of this research was that Kings Point, due to events with track 454 

type (3), would have higher compound rain-NTR hazard than the Battery. However, we find mixed evidence that is not strongly 455 

supportive of this hypothesis. First, rank correlations for both stations were very similar. For P-C compounding, Kings Point 456 

has higher 90th and 50th percentiles of NTR than Battery (Fig. 5, Fig. S3), supporting the hypothesis. However, for C-P 457 

compounding, Battery has higher 90th percentile rainfall than Kings Point.  458 

A complexity not explored here is that different storm types have different track paths. ETCs have tracks from both seaward 459 

(the south) and landward (Booth et al., 2016), while TCs do not come over land or more precisely weaken and convert to post-460 

tropical status (e.g. Ida) or dissipate when they do. Compound flood characteristics of these different storm types could stratify 461 

depending on the tracks. More research on the storm track dependency of compound flood hazards would be useful. 462 

The surge path is also an important factor that could affect the timing of compound flood drivers, which could change the 463 

compound effects and risk locally during storms. For example, for an urban pluvial environment like NYC. The Battery and 464 

Kings Point have qualitatively similar storm-duration maximum rain-NTR compound hazard characteristics. However, we 465 

found the peak NTR at Kings Point tends to have longer hours of lag time from its peak rain during TCs and other storm 466 

events, due to surge propagation along Long Island Sound. This could reduce the risk of pluvial-coastal compound flood 467 

hazards but raises the risk of fluvial-coastal compound (e.g. storms in Table 1 in Chen et al., 2020). Examining river stage data 468 

(USGS station #01302020) for post-TC Ida, we see a 2-hour lag time between the onset of heavy rainfall and the exceedance 469 
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of the Major flood stage, with river stage remaining high for 18+ hours afterward. Given the typical lag time to peak surge for 470 

TCs of 2-6 hours for Kings Point (red histogram of panels a1 and b1 in Fig. 6), this could lead to an elevated risk of compound 471 

fluvial-coastal flooding.  472 

 473 

5.4 Limitations and simplifications 474 

Some limitations or challenges of our study are noted herein. First, a few C-P compound events associated with Neither have 475 

zero rainfall, which causes anomalies (Kojadinovic and Yan, 2010) when modelling its marginal distribution and dependency 476 

with NTR. We found that there are only slight changes in the correlation coefficient when omitting these few events. 477 

Nevertheless, neglecting them could cause a small negative effect on the joint probability results (Panel b4 in Fig. 8). The joint 478 

probability curves for Neither are not the key result for this research, so we did not apply a more sophisticated approach (e.g. 479 

randomization techniques in De Michele et al., 2013) to improve this issue. Secondly, tide is a relatively uncorrelated 480 

component in the total water level. Our main research interest is to investigate the statistical characteristics of the joint rainfall 481 

and storm surge. We choose to use the NTR, instead of water level, as the values for coastal hazards to avoid the interference 482 

of the randomness of tide (Bevacqua et al., 2019; Jane et al., 2022; Paprotny et al., 2018; Wahl et al., 2015). Future analysis 483 

could include tide as another driver of coastal hazards assuming tide as an independent component that could be near linearly 484 

superimposed with the NTR at this location (e.g. Jordi et al., 2018). Especially for those areas (e.g. coast of Jamaica Bay) 485 

already suffering from nuisance flooding (Orton et al., 2015) due to low elevation, there could be potential compound nuisance 486 

floods dominated by rainfall and high tide (e.g. Sept. 29, 2023 flood around Flushing bay with moderate rainfall, high tide and 487 

no storm surge). 488 

Different locations of rain gauges may introduce timing lags and lead to uncertainties in defining “simultaneous” extremes. 489 

However, the timing differences of NTR across New York Harbor, e.g. in Jamaica Bay, off Manhattan, or in Newark Bay, are 490 

at most 30 minutes based on the shallow water wave travel time (similar to tide) from offshore to reach these locations which 491 

have pathways with distances of at most 20 km.  For single-gauge analysis of rainfall-surge timing, these location differences 492 

may help explain different rank correlations. but for the joint probability analysis and lag time histograms we are using a spatial 493 

average rainfall, which captures regions surrounding the tide gauges well and should introduce very little timing difference. 494 

Lastly, this study does not evaluate historical or future climate change but focuses instead on establishing a baseline assessment 495 

of rain-surge compound hazard. We use past data to look at the present compound flood risk, requiring an assumption that the 496 

past processes and probabilities reflect those of the present. We remove sea level rise from the storm surge data in order to 497 

eliminate the most well-established climate change effect. While the broader Northeastern U.S. region has seen an increase in 498 

rainfall coming in extreme events (Huang et al., 2021), no observational study has revealed increases in extreme rainfall for 499 

New York City. One study has shown increasing storm surges and storm tides from 1844-2013, but those increases occurred 500 

in the century leading up to the 1950s (Talke et al., 2014). Extremes of both rainfall and storm surges were not found to have 501 

significant increases during the historic period that we evaluate in our research (1948-present; Wahl et al., 2015), though for 502 
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some other regions trends have been discovered (e.g. Calafat et al., 2022). So, it is reasonable for this first baseline assessment 503 

that we assume that rainfall and storm surge are statistically stationary. 504 

6 Conclusions 505 

Flood risk studies, insurance products and flood maps typically assume rain and storm surge are independent processes. 506 

However, for NYC our research shows non-zero correlations between these flood drivers and that there is a higher probability 507 

of one variable being extreme when the other is extreme. Based on 75 years of historical observations, compound rain and 508 

NTR overall have a low, but non-zero rank correlation (~0.10-0.15). However, the dependency of compound rain and NTR 509 

associated with TCs alone can be high. In addition, the magnitudes of secondary flood drivers during TCs are much higher 510 

compared with other event types. The lag time between the compound flood drivers also differs by storm type, with TCs 511 

tending to have the lowest absolute lag time compared with ETCs or Neither (convective storms and other types of events). 512 

TCs also tend to have more simultaneous occurrence with NTR as the rain intensity rises. In totalo, this evidence suggests that 513 

TC events need separate assessment, to avoid underestimating compound flood risk. 514 

The Battery and Kings Point coastal areas of NYC have qualitatively similar compound rain-surge hazard correlations. 515 

However, we found the peak NTR at Kings Point tends to lag hours behind the peak rain for all storm types, likely due to 516 

propagation of the storm surge along Long Island Sound. The timing between the compound flood drivers is a critical factor 517 

that affects their compound effects, especially in terms of an urban pluvial environment like NYC. This lag could reduce the 518 

risk of pluvial-coastal compound flood hazards but may raise the risk of fluvial-coastal compound floods. 519 

The historical data analysis shows that the combination of extreme rain and extreme surge (e.g. Hurricane Irene 2011 -50yr; 520 

Hurricane Gloria, 1985 -200yr) generally has a low annual probability in NYC. However, these statistical results are only 521 

based on the limited number of TC events (roughly 0.3 events per year) that hit NYC. NYC’s extreme events often cause only 522 

one extreme flood driver. For example, Hurricane Sandy (2012) triggered an extreme storm surge in NYC with only moderate 523 

rain, and Hurricane Ida (2021) triggered extreme rainfall but went through the ETC transition with less wind and only a small 524 

storm surge to the right of the storm track. However, our joint probabilistic analysis demonstrates that TCs have the potential 525 

to trigger both extremes at the same time, potentially causing a major flood disaster due to the non-linear increase in impacts 526 

with flood magnitude. While TCs are far less frequent than other storm types, they are the primary source of compound rain-527 

surge extremes (e.g. 50-year and 100-year events).  528 

Statistical and probabilistic assessments of rain and storm surge such as this demonstrate that flood drivers can co-occur during 529 

extreme storm events. Furthermore, statistical analysis choices between hourly and daily data, and rules for storm duration 530 

maxima, may be debated. Co-occurrence does not guarantee additive behaviour where flooding is actually compounded. 531 

Therefore, an important next step will be to simulate these extreme event scenarios in flood models such as those described 532 

above. Given the availability of one or more such flood models (e.g. Ghanbari et al., 2023), it is recommended that an 533 

assessment of the on-the-ground impacts of these compound events is initiated.  534 
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