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Abstract.

Evapotranspiration (ET) plays a pivotal role in the terrestrial water cycle in sub-humid and tropical regions. In this, the con-

tribution of plant transpiration can be distinctively greater than the soil evaporation. The seasonal dynamics of plant phenology,

e.g., commonly represented as the vegetation attribute leaf-area-index (LAI), closely correlates with actual ET (AET). Hence,

addressing the reciprocal LAI-AET interaction is essential for practitioners and researchers to comprehensively quantify the5

hydrological processes in water resources management, particularly in the perennially vegetated regions of Western Africa.

However, due to the lack of field measurements, the evaluation of the LAI-AET interaction still remains challenging. Hence,

our study aims to improve the understanding of the role of LAI on the AET estimation with the investigation of characteristic

regions of Western Africa. We setup eco-hydrological models (SWAT-T) for two homogeneous land cover types (forest and

grassland) to guarantee the representativeness of field measurements for LAI and AET. To evaluate the LAI-AET interaction10

in SWAT-T, we apply different potential ET methods (Hargreaves, Penman-Monteith (PET-PM), Priestley-Taylor). Further, the

parameter sensitivity for 27 relevant LAI-AET parameters is quantified with the elementary effects method. The comprehen-

sive parameter set is then optimized using the Shuffled-Complex-Evolution algorithm. Finally, we apply a benchmark test to

assess the performance of SWAT-T to simulate AET and to determine the relevance of a detailed LAI modelling. The results

show that SWAT-T is capable to accurately predict LAI and AET on the footprint scale. While all three PET methods facili-15

tate an adequate modelling of LAI and AET, PET-PM outperforms the methods for AET independent of the land cover type.

Moreover, the benchmarking highlights that if an optimization process only accounts for LAI but disregards AET data, its

prediction of AET still yields an adequate performance with SWAT-T for all PET methods and land cover types. Our findings

demonstrate that the significance of a detailed LAI modelling on the AET estimation is more pronounced in the forested than

in the grassland region.20

1 Introduction

Evapotranspiration (ET) is a key hydrological process of the continental water cycle, particularly in the sub-humid and tropical

regions of Western Africa where the share of ET to precipitation can be up to 70 – 80 % (Rodell et al., 2015). The high share of
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ET in the water cycle inevitably necessitates the reliable estimation of ET for water resources studies on all scales in sub-humid

and tropical regions. Concurrently, the accurate computation of ET remains challenging for researchers and practitioners since25

ET is dynamic in space and time (Michel et al., 2016; Miralles et al., 2016). Its variability notably depends on land cover, soil

properties, water availability, vegetation state, and time of the year, even in proximate regions (Chu et al., 2021). In addition,

plant transpiration has a decisive contribution to the total evapotranspiration (Gerten et al., 2004; Schlesinger and Jasechko,

2014; Miralles et al., 2016; Wei et al., 2017). It is directly linked to the canopy conductance which strongly correlates with

the leaf-area-index (LAI) (Good et al., 2014; Wang et al., 2014). Thus in perennially vegetated regions with high transpiration30

rates, such as the sub-humid Western Africa, the LAI-ET interaction plays a pivotal role in the ET quantification (Schlesinger

and Jasechko, 2014; Wei et al., 2017; Bright et al., 2022).

Albeit its importance, the availability of LAI and ET ground measurements is scarce. In previous ET studies, authors have

used existing global monitoring networks, such as eddy covariance (EC) systems (e.g., AmeriFlux (Novick et al., 2018),

AMMA-CATCH (Galle et al., 2018), or FLUXNET (Friend et al., 2007)), to inform catchment-scale hydrological models to35

comprehensively assess all processes of the hydrological cycle (Schneider et al., 2007; Hector et al., 2018; Ferreira et al., 2021;

Jepsen et al., 2021; López-Ramírez et al., 2021). Still, the derived AET estimates from EC systems can not be extrapolated

without limitations beyond the location site. This is mainly attribute to the small footprint, i.e., the source area of the AET

fluxes. Dependent on soil and land cover properties underlying the footprints, the source area spatially limits the represen-

tativeness of the AET measurements (Chu et al., 2021). For LAI, the limited availability of field observations is commonly40

addressed with the exploitation of satellite-based LAI data. A favorable data set is thereby the Global Land Surface Satellite

(GLASS) LAI data (Liang et al., 2021) where the widely used MODIS LAI data has been advanced with machine learning

applications on the global scale (Liang et al., 2014). The validation reports of GLASS-LAI data present accurate LAI time

series results, particularly in perennially vegetated regions (Liang et al., 2014) where the satellite based vegetation data can

be subject to noise and cloud influences (Viovy et al., 1992; Strauch and Volk, 2013; Atkinson et al., 2012; Alemayehu et al.,45

2017).

In the present study, the semi-distributed, physically-based eco-hydrological Soil and Water Assessment Tool for the tropics

(SWAT-T) (Alemayehu et al., 2017) is applied. The SWAT-T model is a modification of SWAT (Arnold et al., 1998) which

has been introduced by Strauch and Volk (2013) and further developed by Alemayehu et al. (2017) to account for a more

realistic plant growth modelling of perennial vegetation in tropical regions. The merits of SWAT-T for an improved prediction50

of LAI and AET have been highlighted in different tropical and sub-humid regions. It has been applied on the catchment

scale in Eastern Africa (Alemayehu et al., 2017), in Colombia (Hoyos et al., 2019), in Brazil (Ferreira et al., 2021) as well

as in Australia (Zhang et al., 2020) and on the micro-catchment scale in Mexico (López-Ramírez et al., 2021). Moreover, the

application of SWAT-T for climate impact assessment has been presented in Peru on the catchment scale (Fernandez-Palomino

et al., 2021). Remotely-sensed AET has been mostly employed to assess the model fitness of simulated AET with SWAT-T55

(Alemayehu et al., 2017; Zhang et al., 2020; Fernandez-Palomino et al., 2021; Ferreira et al., 2021) as well as with SWAT (Rajib

et al., 2018; Qiao et al., 2022). The latest, open-source version of SWAT called SWAT+ has also been applied in the tropics
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with remotely-sensed AET and LAI data (Abitew et al., 2023). For the African continent, remotely-sensed AET products can

however be limited due to uncertainties in their reliability (Weerasinghe et al., 2020).

For the LAI estimation, the aforementioned SWAT-T studies relied on the application of remotely-sensed LAI from MODIS.60

In the past, measured LAI was used with SWAT (Park et al., 2017; Yang et al., 2018; Nantasaksiri et al., 2021; Haas et al., 2022)

as well as observed forest biomass production (Khanal and Parajuli, 2014; Haas et al., 2022) for an analysis of the LAI model

parameters. The number of LAI parameters thereby differ from three (Yang et al., 2018) to 18 (Haas et al., 2022) parameters.

For tropical regions, Alemayehu et al. (2017) suggests the calibration of 11 LAI parameters when SWAT-T is applied. LAI and

AET are correlated and influence each other in SWAT/SWAT-T (Arnold et al., 1998). For example, the water stress on plants is65

dependent on AET and can determine the actual plant growth in SWAT/SWAT-T (Neitsch et al., 2011). When modelling LAI,

a consideration of the relevant AET parameters is therefor essential.

To the best of our knowledge, the integration of measured LAI and AET data in the evaluation of the reciprocal LAI-AET

interaction as well as the relevance of a coupled LAI-AET parameter estimation with the SWAT/SWAT-T model has not yet

been considered. Previous studies on the influence of LAI on AET in SWAT/SWAT-T have either not covered all relevant LAI-70

AET parameters, considered only heterogeneous source areas of measured AET, or only used remotely-sensed AET and LAI

data. Hence, we address these shortcomings and focus on the comprehensive evaluation of the significance of LAI on AET

in SWAT-T with measured LAI and AET data. Further, we test the hypothesis if a detailed plant growth model optimization

(single LAI optimization regarding observed or GLASS-LAI) can still adequately estimate AET with SWAT-T.

We evaluate the LAI-AET interaction for two typical, perennially vegetated land cover types of Western Africa using a75

SWAT-T model on the seamless footprint scale of the EC system for each site. The sites are located in the sub-humid Bétérou

catchment in Benin. First, we highlight the relevance of a coupled LAI-AET parameter estimation for the prediction of LAI.

Then, a global sensitivity analysis using the elementary effects method (Morris, 1991) is applied to quantify the parameter

sensitivities and to enable a ranking of the sensitivity levels. We optimize the LAI-AET parameters with LAI data (observed and

GLASS-LAI), exclude AET as a proxy in the model optimization, and eventually evaluate the AET model response of the LAI80

optimization. For this purpose, the performance test proposed by Seibert et al. (2018) is conducted. The test compares the best

optimized model (simultaneous LAI and AET optimization as upper benchmark) with the single LAI optimization approaches

(observed or GLASS-LAI). To provide a lower limit of the general LAI-AET performance of SWAT-T, a random sampling

approach of the LAI-AET parameters (lower benchmark) is applied. The LAI-AET parameter optimization is conducted using

the Shuffled-Complex-Algorithm (SCE-UA) (Duan et al., 1994).85

2 Methods

Figure 1 gives an overview of the methods applied in this study to evaluate the significance of LAI on the AET estimation in

SWAT-T. First, the input data is processed and footprint scales SWAT-T models for two characteristic, perennially vegetated

regions in Western Africa are setup. Second, the relevance of a coupled LAI-AET parameter estimation is investigated with one-

at-a-time parameter changes and evaluated regarding observed LAI and AET data. Third, the sensitivity analysis is conducted90
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Figure 1. Methods to assess the significance of LAI on AET estimation as applied in the present study. For all three steps of the methodology,

three different PET methods (Hargreaves, Priestley-Taylor, Penman-Monteith) available in SWAT-T are applied.

based on the elementary effects method with respect to observed LAI. Finally, the role of LAI on the AET estimation in SWAT-

T is assessed with an optimization approach (Shuffled-Complex-Evolution algorithm) and the performance to predict AET is

tested with a benchmark test.

2.1 Model description and parameter selection

The SWAT-T model is an enhanced version of the ecohydrological model SWAT (Arnold et al., 1998). In SWAT-T, the plant95

growth module has been modified to account for a more realistic perennial plant phenology in tropical regions (Alemayehu

et al., 2017) which can improve the AET prediction (Zhang et al., 2020; Fernandez-Palomino et al., 2021; Ferreira et al., 2021;

López-Ramírez et al., 2021). Apart from the plant growth module, SWAT-T and SWAT are identical. The original SWAT model

has been applied worldwide in different river basins (Arnold and Fohrer, 2005; Tan et al., 2020) as well as regionally in Benin

(Akoko et al., 2021). Specifically in Benin, most of the applications focused on the discharge assessment for the Ouémé river100

basin (Bossa et al., 2014; Poméon et al., 2018) and its tributaries (Giertz et al., 2006; Bossa et al., 2012; Duku et al., 2016, 2018;

Danvi et al., 2017; Togbévi et al., 2020). In previous studies in Western Africa, remotely-sensed AET was also used as a main
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calibration objective to predict streamflow (Odusanya et al., 2019, 2021). To the best of our knowledge, the SWAT-T model

has so far not been applied in Benin but in Eastern Africa (Alemayehu et al., 2017).

Generally, the SWAT/SWAT-T model is spatially discretized into subbasins and further subdivided in hydrological response105

units (HRUs). Three options are available to compute the potential ET (PET) in SWAT/SWAT-T: the temperature-based Har-

greaves (PET-HG) (Hargreaves and Samani, 1985), the energy-based Priestley-Taylor (PET-PT) (Priestley and Taylor, 1972)

and the combined temperature and energy-based Penman-Monteith (PET-PM) (Monteith, 1965) method. Table 1 summarizes

the equations how PET E0 is computed and highlights the integral part of LAI in each approach.

Table 1. Approaches to compute potential evapotranspiration E0 and potential transpiration Tplant provided in SWAT-T.

PET method Equation for E0 Equation for Tplant

PET-HG E0 =
0.0023 ·H0

λ
·
√
Tmx −Tmn · (Tav +17.8) Tplant =

LAI · E0
3.0

, if LAI ≤ 3.0

E0, if LAI > 3.0

PET-PT E0 =
αpet ·∆

λ · (∆+ γ)
· (Hnet −G) Tplant =

LAI · E0
3.0

, if LAI ≤ 3.0

E0, if LAI > 3.0

PET-PM
E0 =

∆ · (Hnet −G)+ ρair · cp · (e0z − ez)/ra
λ · (∆+ γ · (1+ rc/ra))

, Tplant =
∆ · (Hnet −G)+ ρair · cp · (e0z − ez)/ra

λ · (∆+ γ · (1+ rc/ra))
,

with rc, ra from alfalfa crop reference with rc, ra from actual plant (canopy height and LAI)

In the equations in Table 1 λ is the latent heat of vaporization, H0 is the extraterrestrial radiation, Tmx, Tmn, and Tav are110

the maximal, minimal, and mean daily temperature, respectively, αpet is a coefficient, ∆ is the slope of the saturation vapor

pressure-temperature, γ is the psychcrometric constant, Hnet is the net radiation, G is the heat flux density to the ground, ρair

is the air density, cp is the specific heat at constant pressure, e0z is the saturation vapor pressure of air at height z, ez is the water

vapor pressure of air at height z, ra is the aerodynamic resistance, and rc is the plant canopy resistance. In PET-PM, ra and

rc are attributed to the alfalfa crop reference for the computation of E0 (Neitsch et al., 2011). After the calculation of E0, it115

is partitioned into potential plant transpiration Tplant and soil evaporation Esoil. Tplant is thereby computed depending on the

value of LAI for the given day for all PET methods. For PET-HG and PET-PT, a threshold of LAI = 3.0 determines if Tplant

is equal to E0, i.e., all potential evapotranspiration is coming only from the plant transpiration without the consideration of soil

evaporation. If LAI ≤ 3.0, a share of E0 is potentially available for Tplant and Esoil. For PET-PM, Tplant is computed using

the equation of Penman-Monteith (Table 1) where ra and rc are determined with respect to the actually modelled plant canopy120
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and LAI. Esoil for PET-PM is then Esoil = E0 −Tplant. The actual plant transpiration and soil evaporation are computed

dependent on the water availability and different biophysical parameters, such as LAI or root depth, as well as soil properties,

such as the field capacity. Actual plant transpiration and soil evaporation are then added to the actual ET (AET).

The plant growth computation in SWAT/SWAT-T follows the approach of the “Environmental Policy Impact Climate” (EPIC)

model (Arnold et al., 1998) where LAI is a key vegetation attribute for the vegetation phenology (Neitsch et al., 2011). Gen-125

erally, the plant growth in SWAT/SWAT-T can be divided into an initial phase (start of the growing phase), a growing phase, a

period of maturity (growing is halted to a constant LAI), the leaf senescence phase (natural decline of the plant and a decreas-

ing LAI), and a dormancy period (no plant growth but constant LAI). In the growing phase, the optimal leaf development in

SWAT/SWAT-T is computed with:

frLAImx
=

frPHU

frPHU + exp(l1 − l2 · frPHU )
, (1)130

where frLAImx
is the fraction of the maximum leaf area index of a plant with respect to the fraction of the potential heat units

for the plant, frPHU is the fraction of the potential heat units in the current day of the growth cycle, and l1 and l2 are shape

coefficients. The plant growth continues until the maximum leaf area index is reached:

∆LAIi = (frLAImx,i − frLAImx,i−1) ·LAImx · (1− exp(5 · (LAIi−1 −LAImx))), (2)

For perennial plants, the LAI for the given day i under optimal conditions is computed as:135

LAIi = LAIi−1 +∆LAIi. (3)

However, the optimal plant growth can be constrained in SWAT/SWAT-T due to water, temperature, nitrogen, or phosphorous

stress. The water stress wstrs is thereby directly linked to the actual plant transpiration and the total water plant uptake. The

temperature stress tstrs is computed based on the air temperature of the given day and the user defined parameters Tbase and

Topt. Nitrogen and phosphorus stresses, nstrs and pstrs respectively, are computed to account for insufficient nutrients (see140

Appendix A2 for the supplementary equations). The actual plant growth is determined with a plant growth factor γreg:

γreg = 1−max(wstrs, tstrs,nstrs,pstrs), (4)

and the actual leaf area added on a day i is computed as:

∆LAIact,i =∆LAIi · γreg. (5)

The major difference between the plant growth modelling in SWAT and SWAT-T are two features: a logarithmic decline of LAI145

and the automatic start of the growing phase based on a soil moisture index. In the first plant growth modification of SWAT,

Strauch and Volk (2013) introduced a logarithmic decline of LAI in the leaf senescence phase for a more realistic representation

of the LAI decrease and to avoid a rapid drop of LAI:

LAI =
LAImax −LAImin

1+ exp(−t)
, (6)
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where t is defined considering the fraction of the potential heat units at which senescence become the dominant growth phase150

frPHUsen
as:

t= 12 ·
(

1− frPHU

1− frPHUsen

− 0.5

)
if frPHU ≥ frPHUsen

. (7)

Since the plant growth in the tropics is generally governed by the water availability in the soils (Jolly and Running, 2004),

Alemayehu et al. (2017) further modified the SWAT version of Strauch and Volk (2013) and implemented an automatic start

of the growing phase which is triggered by the soil moisture index. For this purpose, the soil moisture index SMI = P/E0155

is introduced. The precipitation P is aggregated for a user defined time window (here: 5 days). A SMI threshold to start the

growing has to be defined (here: SMI = 0.5). To avoid false starts of the new growing cycle, the end of the dry season (SOS1,

here: October) and the beginning of the rainy season (SOS2, here: January) have to be specified by the user, too (Alemayehu

et al., 2017). In SWAT, the start of the growing phase is linked to the number of accumulated heat units. In SWAT-T, the soil

moisture index has replaced this dependency of the heat units. The heat units are mainly used in SWAT-T to define the plant160

growth development over the year (see Equ. 1).

27 parameters have been selected to investigate the LAI-AET interaction (Table 2). The selection of LAI parameters follows

the suggestion of Alemayehu et al. (2017), whereas the AET parameters are chosen based on literature review. In the past, 27

parameters of SWAT were assessed for sensitivity analysis with particular focus on AET (Ha et al., 2018; Odusanya et al., 2019;

Bennour et al., 2022; Koltsida and Kallioras, 2022). Parameters with a coinciding low sensitivity reported in these studies, e.g.,165

the hydraulic conductivity in the channel (CH_K2) or groundwater baseflow delay (GW_DELAY), are not considered in the

present LAI-AET parameter list to reduce the total parameter space. For the present study, the soil layer thickness (SOL_D) is

given for four soil layers from field measurements (Judex and Thamm, 2008). We adjust only the depth of the lowest soil layer

in order not to excessively shape the ground-truth observations, but to still facilitate an evaluation of the influence the total soil

thickness on the LAI-AET interaction in SWAT-T.170

2.2 Study site and footprint-scaled models

The study sites Bellefoungou and Naholou are located in the Western part of the Bétérou catchment (Figure 2). The climate

is typical for Sub-Saharan, sub-humid Africa. The annual precipitation ranges from 1100 to 1500 mm (Mamadou et al., 2016;

Bliefernicht et al., 2019). The precipitation pattern is unimodal with a rainy season between April and October wheareas

from November to March the dry season occurs. The annual mean daily temperature is 25°C (Galle et al., 2018). The soils175

in the Bétérou catchment consist of ferric soils with loamy sand present in the upper soil horizons (Giertz and Diekkrüger,

2003). Generally, the AET data follows the seasonality of LAI (Figure 2). Still, a decrease of AET in the wet season can be

observed for this region. AET depends on radiation, wind speed, and humidity. The net radiation is decreasing during the wet

season which automatically reduces fluxes like sensible and latent heat fluxes (cf. A1). Additionally, the atmospheric demand

is reduced because of high air humidity which was observed for the vapor pressure deficit (Mamadou et al., 2016) resulting in180

lower AET rates in the wet season.
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Table 2. List of parameters used to estimate LAI and AET with their description.

Parameter Description [unit]

Parameters associated with plant growth (LAI) in the plant data base of SWAT

BIO_E Radiation-use efficiency [(kg/ha)/(MJ/m2)]

BLAI Maximum potential leaf area index [m2/m2]

FRGRW1 Fraction of PHU corresponding to the first point on the optimal leaf area development curve [-]

LAIMX1 Fraction of BLAI corresponding to the first point on the optimal leaf area development curve [-]

FRGRW2 Fraction of PHU corresponding to the second point on the optimal leaf area development curve [-]

LAIMX2 Fraction of BLAI corresponding to the second point on the optimal leaf area development curve [-]

DLAI Fraction of total PHU when leaf area begins to decline [-]

T_OPT Optimal temperature for plant growth [°C]

T_BASE Minimum temperature for plant growth [°C]

ALAI_MIN Minimum leaf area index for plant during dormant period [m2/m2]

PHU Total number of heat units needed to bring plant to maturity [-]

GSI Maximum stomatal conductance [m/s]

Parameters associated with AET estimation

CAN_MX Maximum canopy storage [mm]

ESCO Soil evaporation compensation factor [-]

EPCO Plant uptake compensation factor [-]

HRU_SLP Average slope steepness [m/m]

SLSUBBSN Average slope length [m]

CN2 Initial SCS runoff curve number [-]

SOL_AWC Available water capacity of the soil layer [mm]

SOL_BD Moist bulk density [g/cm3]

SOL_CBN Organic carbon content [% soil weight]

SOL_K Saturated hydraulic conductivity [mm/hr]

SOL_RD Maximum rooting depth of soil profile [mm]

SOL_Da Soil layer depth [mm]

GW_REVAP Groundwater re-evaporation coefficient [-]

RCHRG_DP Deep aquifer percolation fraction [-]

REVAPMN Threshold depth of water for re-evaporation to occur [mm]
aHere: lowest soil layer depth

The forested Bellefoungou region (latitude 9.791°N, longitude 1.718°E, 445 masl) is covered with typical, widespread

woodland ("clear forest") for Sub-Saharan Africa (Ago et al., 2016). The Naholou region (latitude 9.74°N, longitude 1.60°E,

449 masl) is largely covered by characteristic mixture of crops and savannah grassland and fallows (Ago et al., 2014). Due

to the high share of grassland, the Naholou region is hence defined as grassland region in the following. The estimated flux185
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a) b)

c)

Figure 2. a) Overview of the Bétérou catchment and the locations of the eddy covariance systems (Naholou and Bellefoungou); b) the

seasonality of precipitation and temperature in Bellefoungou; c) and the comparison of observed AET (in blue), mean monthly values for

observed LAI (yellow), and mean monthly values for GLASS-LAI (in purple) in Bellefoungou. The solar radiation, wind speed, and relative

humidity for the sites are illustrated in the appendix (cf. A1). References for the data used to display the map are listed in the appendix (cf.

A5). The superscripts in c) denote the corresponding time periods: 1from 01/2008 to 12/2010; 2from 07/2008 to 05/2010; 3from 01/2007 to

12/2015.

footprint extent for the grassland region is 4000 m2, while for the forested region it is seasonally varying and can be up to

60000 m2 (Mamadou et al., 2014). AET accounts for high shares of precipitation at both sites where the share of annual AET

to precipitation is 57 % and 72 % for Naholou and Bellefoungou, respectively (Mamadou et al., 2016). The evaporative fraction

(share of plant transpiration to total AET) is particularly high in the wet season. The values for the evaporative fraction are 70

± 2.5 % at Naholou and 75 ± 0.7 % at Bellefoungou (Mamadou et al., 2016). These high rates of plant transpiration to AET190

demonstrate the strong dependency of plant growth and AET in these regions (Mamadou et al., 2016; Hector et al., 2018). The

field measurements for LAI in both sites were delineated from hemispherical photographs and the processing methodology

proposed by Weiss et al. (2004). The in situ data is complemented with corrections of an ensemble of satellite-based LAI

products (CYCLOPE, MODIS, SEVIRI) (Mamadou et al., 2014).

One SWAT-T model is setup for the forested and the grassland site in the Bétérou catchment, respectively. No footprint195

calculations for the sites nor the necessary data to compute those is available. We thus adhere the suggestion of Chu et al.

(2021) where radii of < 250 m around flux towers assure flux representativness. The SWAT/SWAT-T models are watershed
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Table 3. Overview of the data sets that are applied in this study.

Variable Resolution Database name or source

Digital elevation model Rastered DEM, 30 m x 30 m Copernicus GLO-30 (Copernicus, 2022)

Soil map Soil type clusters IMPETUS Soil Map (Judex and Thamm, 2008)

Observed AET Daily, pointwise Mamadou et al. (2016)

Observed LAI Daily, pointwise Ago et al. (2014); Mamadou et al. (2016)

GLASS-LAI Rastered, 250 m x 250 m GLASS-LAI (Liang et al., 2021)

Precipitation Daily, pointwise AMMA-Catch network (Galle et al., 2018)

Temperature Daily, pointwise AMMA-Catch network (Galle et al., 2018)

Solar radiation Daily, pointwise AMMA-Catch network (Galle et al., 2018)

Relative humidity Daily, pointwise AMMA-Catch network (Galle et al., 2018)

Wind speed Daily, pointwise AMMA-Catch network (Galle et al., 2018)

models. For the model delineation with SWAT-T, we drew circles (250 m radius) around each flux tower to guarantee the

representativness of the flux footprints. Based on the underlying DEM, the resulting watershed extents are 8500 m2 and 2300

m2 for the forested and grassland site, respectively. Although the footprint extent in the forested region can be larger depending200

on the season (Mamadou et al., 2016), we applied a constant extent following the suggestion of Chu et al. (2021). To ensure

the homogeneity of land cover and soil properties, each SWAT-T model consists of a single HRU. LAI and AET are simulated

on the daily time step. The data sets used in this study are listed in Table 3. The land cover type for each site (forest, grassland)

represented in the model is provided in Ago et al. (2014, 2016). We defined the land uses classes "FRSD" and "RNGE" from the

SWAT crop data base to the forested and grassland region, respectively. The observed AET data for both sites is available from205

1/1/2008 to 31/12/2010 (Mamadou et al., 2016). The observed LAI data for the forested region (Bellefoungou) is available

from 1/7/2008 to 31/5/2010 (Ago et al., 2016), for the grassland region (Naholou) from 5/8/2007 to 2/1/2010 (Ago et al.,

2014). The meteorological data provided by the AMMA-Catch network dates from 2005 to 2020 (Galle et al., 2018). The

GLASS-LAI data is provided from 2000 to 2021 (Liang et al., 2021). To enable the best possible overlap of measured LAI

and AET data, the study periods from 1/1/2008 to 31/12/2010 and from 1/1/2007 to 31/12/2010 for the forested and grassland210

region are defined, respectively.

2.3 Evaluation of the coupled LAI-AET parameter estimation

We postulate that for a comprehensive plant growth modelling in SWAT-T both, the LAI and AET model parameters are

decisive, particularly if the accurate estimation of plant transpiration is a modelling objective. To assess the relevance of

a coupled LAI-AET parameter estimation, we apply parameter changes and compare the corresponding model responses215

to observed AET and LAI. Each parameter from Table 2 is randomly sampled (1000 samples) and the model is run for

each sample. In each simulation, the other model parameters remain unaltered (one-at-a-time parameter changes). To avoid

influences from poorly estimated parameter values (e.g., the default settings), the optimized model parameters from the LAI-

10



AET optimization (cf. Section 2.5) are prescribed for the unaltered parameters. The model response of a parameter change is

evaluated in two ways: with respect to observed AET and with respect to observed LAI. Finally, an evaluation of how LAI220

parameters influence the AET responses as well as how AET parameters influence the LAI responses is presented with this

approach. The analysis of the LAI-AET parameter estimation is shown for three different PET methods (Hargreaves, Penman-

Monteith, Priestley-Taylor) for the forested study site. The results for the grassland region are similar but not specifically

presented.

2.4 Sensitivity analysis with the Morris method225

To address the parameter-response-complexity of the coupled LAI-AET modelling with SWAT-T, a sensitivity analysis for all

LAI-AET parameters is conducted. Sensitivity analysis is an essential, yet challenging step in the application of hydrological

models and the evaluation of reliable parameters sets, particularly with respect to model equifinality. Different approaches

exist to quantify the model responses to parameter changes. In this study, we take advantage of the elementary effects method,

or Morris method (Morris, 1991), since its computational demand is inexpensive, the parameter sensitivity is statistically230

quantified, and non-linear model responses can be determined (Morris, 1991; Campolongo et al., 2007). Moreover, parameters

which are involved in parameter interactions and non-influential parameters can be identified.

Generally, the Morris method screens through a total sample size N where one parameter, or input factor q = [qi, ..., qk], is

changed while the others remain constant (one-at-a-time method). The total sample size N is generated based on r defined

levels and q selected parameters such that N = r(q+1). Based on each sample, the elementary effects di is calculated with:235

di(q) =
f(qi, ..., qi−1, qi +∆, qi+1, ..., qk)− f(q)

∆
=

f(q+∆ei)− f(q)

∆
, (8)

where ∆ represents the parameter step size, q+∆ei denotes the transformed parameter point, q = [qi, ..., qk] is any selected

parameter of N , and ei consists of a vector of zeros but one in the ith element. The local sensitivity of parameter q is described

with the value of di(q). For the global sensitivity, the statistical moments µi and σi as mean and standard deviation from the

distribution of the total sample simulation are used (Morris, 1991). We use the absolute mean µ∗ as proposed by Campolongo240

et al. (2007) to not disregard non-monotonic model responses because of opposite signs. The statistical moments for each set

j are:

µ∗
i (q) =

1

r

r∑
i=1

|dji (q)|, (9)

σi(q) =

√√√√ 1

r− 1

r∑
i=1

(dji (q)−µi)2. (10)245

In this study, we quantify the model performance with the Kling-Gupta efficiency (KGE) (see Appendix A2 for the supple-

mentary equations). Moreover, we apply the Latin hypercube sampling to guarantee a widespread input space. Using r = 500

and q = 27 parameters, the total sample size is N = 14000. We varied investigated all 27 parameters listed in Table 2 for the

11



sensitivity analysis. For the application of the elementary effects method, we implemented the equations of Morris (1991) and

Campolongo et al. (2007) into a set of MATLAB scripts. The code is available on demand.250

2.5 Coupled LAI-AET parameter optimization and benchmarking

The LAI-AET parameters are first optimized with respect to different objectives which are (i) a multi-objective optimization

with respect to LAI and AET ("upper benchmark"), (ii) an optimization only with respect to observed LAI data ("LAI-obs"),

and (iii) an optimization only with respect to satellite-based GLASS-LAI data ("LAI-GLASS"). The model performance is

then tested based on the benchmark proposed by Seibert et al. (2018) and the different objectives are compared to each other.255

Seibert et al. (2018) have suggested to use upper and lower model benchmarks to thoroughly evaluate the model performance

of a specific modelling framework. In Seibert et al. (2018), the performance of the streamflow prediction is investigated. The

application of a physical-based model is thereby compared to an upper (optimized, conceptual model) and lower benchmark

(ensemble of random samples) (Seibert et al., 2018). To avoid an arbitrary good or bad model response from a single param-

eter set, like the default model parameters, Seibert et al. (2018) propose to use an random parameter samples for the lower260

benchmark.

We apply the SCE-UA algorithm (Duan et al., 1994) for the optimization of the LAI-AET parameters. The SCE-UA is

a genetic algorithm where first, samples of the parameters are stochastically generated with respect to the lower and upper

bounds of the parameter values. The parameters values are then changed to develop the samples to an optimum, i.e., to the

optimal value of an objective function. Here, we use KGE to compare the simulated model output with the observed data.265

In the algorithm application, the initial sample is divided into several sub-samples (complexes) (Duan et al., 1994). In each

complex, varying combinations of parameter values are embedded. Each complex is then used to produce offsprings using the

downhill simplex procedure (Nelder and Mead, 1965). The probability for a parameter value to be used in the next complex

is proportional to its model fitness, i.e., to the objective function. Parameter values of lower fitness are replaced by the new

offspring. The main advantage of the SCE-UA agorithm is the application of (i) mutation where new parameter values in the270

defined parameter spaces can be spontaneously generated and (ii) shuffling where a recombination of the parameter values in

new complexes is conducted (Duan et al., 1994).

In this study, different objectives are defined for the LAI-AET parameter optimization (Table 4). First, the LAI-AET param-

eters are optimized in a multi-objective way with equal weight with respect to observed AET and LAI ("upper benchmark").

This way, the performance potential of LAI-AET to fit both the AET and plant growth is quantified. Further, we also as-275

sess if a detailed plant growth optimization can predict AET using the single LAI optimization approaches ("LAI-obs" and

"GLASS-LAI"). We use the SPOTPY toolbox (Houska et al., 2015) for the application of the SCE-UA algorithm.

All three optimization approaches are compared with each other based on the individual AET evaluation using the bench-

marking proposed by Seibert et al. (2018). The upper benchmark is defined to be the best potential model performance (here:

"upper benchmark" in Table 4). For the lower benchmark, we generated 1000 uniformly distributed LAI-AET parameters280

samples, evaluate the simulated AET with observed AET, and determine the overall median KGE performance as lower bench-

mark. With the upper and lower model limits, the AET prediction performance of optimizing the parameters only for LAI
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Table 4. Summary of benchmark elements, their optimization approach with the corresponding optimization objectives and their evaluation.

For the Lower benchmark, the median KGE of the AET performance of all 1000 random samples is used.

Benchmark element Optimization approach Objective(s) Evaluation for benchmark

Upper benchmark SCE-UA Observed LAI & AET AET

LAI-obs SCE-UA Observed LAI AET

LAI-GLASS SCE-UA GLASS-LAI AET

Lower benchmark Random sampling - AET

can be benchmarked for the footprint scaled models of the forested and grassland region as well as for different PET methods

(PET-HG, PET-PT, and PET-PM). With four benchmark elements (Table 4), two land cover types, and three PET methods, 24

setups are hence compared to each other to assess the LAI-AET modelling performance of SWAT-T. In total, 27 parameters285

are considered for the sensitivity analysis. To reduce the parameter space and address the equifinality problem, 22 parameters

are optimized. Five parameters are not changed but derived, e.g., from other studies in the region. The groundwater parameters

(GW_REVAP, RCHRG_DP, and REVAPMN) are obtained from Duku et al. (2015) who investigated the streamflow prediction

with SWAT for the Bétérou catchment. The CN_2 numbers for FRSD and RNGE are derived from Alemayehu et al. (2017).

The parameters HRU_SLP and SLSUBBN are catchment specific and individually derived when a SWAT/SWAT-T model is290

setup. We hence kept these geospatial parameters constant for the optimization.

3 Results

3.1 The relevance of a coupled LAI-AET parameter estimation

The influences of the parameter changes on both modelling objectives (LAI and AET) are displayed in Figure 3. The evaluation

shows the distribution which results from each parameter change for AET and LAI. All 27 parameters for all three used295

PET methods impact the simulated LAI and AET. Figure 3 shows examples of the parameters (EPCO, SOL_AWC, PHU,

ALAI_MIN, DLAI, T_BASE) where the changes on both, LAI and AET, are the most significant using PET-PM in the forested

region. The results for PET-HG and PET-PT are illustrated in the Appendix A1.

As shown in Figure 3, the variations for the parameter changes regarding intervals of the observed value are displayed. The

AET and LAI data is clustered to 7 and 5 intervals, respectively. We used the same interval size for AET and LAI to improve300

readability. Each parameter change is then classified according to the interval. Then, the difference between observed and

simulated data is calculated (∆Y =Obs−Sim). The distributions are computed based on the difference within the interval.

If, for example, the observed values for the AET interval of 0.625 to 1.25 mm are compared with the simulated values of

the EPCO changes, an overall AET difference of -2.2 to 1.2 mm can be observed. The parameters EPCO and SOL_AWC are

commonly associated with AET modelling. Thus, large spreads in the AET model response for the parameter changes can305

be observed, e.g., the influence of EPCO is particularly high for values AET < 3 mm. Still, influences of both parameters on
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Figure 3. Distribution of variations in AET or LAI for the one-at-a-time parameter changes (1000 samples) for parameters a) EPCO, b)

SOL_AWC, c) PHU, d) ALAI_MIN, e) DLAI, and f) T_BASE. The distributions are clustered in uniform intervals (size = 0.625) of the

observed time series for AET [mm] or LAI [m2/m2]. The x-axis indicates the observed AET [mm] and LAI [m2/m2] values. The y-axis

represents the difference between observed and simulated values with ∆Y =Obs−Sim regarding AET [mm] or LAI [m2/m2]. A perfect

fit is indicated with the dashed line for ∆Y = 0. Positive and negative values show an underestimation and overestimation of the simulated

values, respectively. The distributions (violin plots) are created based on Karvelis (2024).

the LAI simulation are indicated, too. For EPCO, decisive variations in the LAI response are observed for values LAI > 2

m2/m2. As the plant growth is close to the phase of maturity, the significance of the water uptake by the plant in SWAT-T

(determined with EPCO) increases and the importance of EPCO for LAI modelling can be observed. Generally, the EPCO

parameter governs the actual transpiration which in turn influences the water stress for plants and thus affects the actual plant310

growth. The impact of EPCO on LAI is significant especially in the wet season when essential AET rates occur. With high

AET, the plant growth stress is intensified in this period. Similarly, the available water capacity in the soil layers (SOL_AWC)

influences the LAI response the more the further the plant is in the growing phase (LAI > 2 m2/m2). Both, the EPCO and

SOL_AWC parameter can limit and elevate the plant growth in the wet season.
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Concurrently, the shown LAI parameters (PHU, ALAI_MIN, DLAI, T_BASE) can have an influence on both, AET and LAI.315

The variations of simulated AET regarding LAI parameters changes is particularly significant at the end of the wet and in the

dry season (AET < 3 mm). PHU determines when the plant reaches maturity based on the heat unit assumption. Similarly, the

DLAI parameter defines when the LAI begins to decline and thus the start of leaf senescence. If the maturity phase is too early

or not long enough, the leaf senescence phase starts too early. In these cases for PHU and DLAI, the LAI-AET interaction is

impaired and influences on AET can be observed. The ALAI_MIN parameter defines the minimum LAI value for a plant type320

during the dormant period. If ALAI_MIN is set too small, the plant is underrepresented in the dry period which results in low

plant transpiration rates. The parameter changes for T_BASE result in the largest spread of simulated LAI values for all stages

of the plant growth phase. With T_BASE, the temperature stress and hence the actual plant growth is determined in SWAT-T.

The influence of the T_BASE parameter on AET is present in the wet and dry periods of the AET modelling, too. Notably, the

largest spreads of AET based on T_BASE can be observed in for values AET < 3mm.325

The one-at-a-time parameter change evaluation and the LAI-AET cross-comparison show that AET parameters, such as

EPCO or SOL_AWC, are significant for the AET and LAI modelling. Figure 3 also highlights that the LAI parameters, such

as PHU, ALAI_MIN, DLAI, or T_BASE, can influence the AET model response. The variations in LAI and AET resulting

from changes of the remaining 21 LAI-AET parameters (cf. Table 2) are similar, although not shown here. Hence, a coupled

LAI-AET parameter estimation is essential for the reliable computation of LAI and AET, particularly for perennial land cover330

types in a sub-humid region in Western Africa.

3.2 LAI-AET parameter sensitivity analysis with respect to observed LAI

The sensitivities of the LAI-AET parameters are quantified using the elementary effects method regarding the observed LAI

data. Figure 4 shows the statistical moments µ∗ and σ for each parameter. It can be observed that nearly all parameters are

located close or slightly above than the 1:1 line which defines a non-linearity of the parameters (Garcia Sanchez et al., 2014).335

Albeit some exceptions, the parameters in the forested region result in higher σ values implying that the parameter interactions

are more non-linear than in the grassland region. Generally, a proximity of the parameter sensitivities for each land cover type

method can be observed, e.g., the diamond symbols for forest are close to each other. Thus, differences for the PET methods

and for the same land cover type are not significant which suggests a potential independence of the LAI parameter sensitivity to

the PET method. Moreover, all three groundwater parameters result in values µ∗ = 0 and are thus insensitive for plant growth.340

Hence, they are excluded from the in-depth parameter analysis in the following.

Moreover, all PET methods are clustered to compare the sensitivity of the LAI-AET parameters for different land cover

types. Figure 5 shows the distribution of µ∗ where all PET methods are combined in one land cover group. The parameters are

ranked according to the mean µ∗ values resulting from the simulations in the forested region. In Figure 5, it can be observed

that the general parameter sensitivity patterns are similar in the forested and grassland region albeit with differences in the345

magnitude of µ∗ for the land covers. The most sensitive parameters for both land use types are T_BASE, PHU, DLAI, BLAI,

and SOL_RD. Moreover, a high boxchart (high spread of µ∗ values) implies a high parameter interaction. The boxplot heights

for the forest and grassland clusters are generally comparable for the same parameters. If a parameter (e.g., T_BASE) in the

15



Figure 4. The statistical moments µ∗ and σ of the elementary effects for the evaluation of the LAI-AET parameter sensitivity with respect to

observed LAI. We use the relation of σ/µ∗ to classify regions of non-linear, almost monotonous, monotonous and linear parameter behavior

(Garcia Sanchez et al., 2014).

Figure 5. Clustering of the sensitivity analysis of all PET methods in the land cover types forest and grassland with respect to observed LAI.

The parameters are sorted according to the mean µ∗ values resulting from the forested region. 1Parameter GSI is only accounted for when

PET-PM is used.
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forest region shows meaningful interactions, responses are also indicated for the same parameter in the grassland region alike.

However, the parameters BLAI and SOL_RD appear to have higher parameter interactions in the forest than grassland region.350

Although the ranking is shown in Figure 5 with respect to the mean µ∗ values resulting from the forested region, the sensitivity

hierarchy of the forested and grassland clusters are generally interchangeable.

From Figure 5, a clear ranking pattern for PET methods and land use types can be observed (see also Figure A4). Variations

in the ranking position for each parameter are thereby minor, albeit some exceptions for ALAI_MIN, GSI, EPCO, and ESCO.

Prior in Figure 3, the influence of EPCO on LAI has been qualitatively illustrated. Here, the parameter sensitivity of EPCO on355

LAI is quantified with µ∗ and ranked with the other parameters in Figure 5. The ranking differs for EPCO, GSI, and ESCO

when PET-PM is used (Figure A4). Its application implies that EPCO and ESCO are less while GSI is more relevant to the

LAI model output. The stomatal conductance GSI is only accounted for in SWAT-T when PET-PM is used. Concurrently, the

ALAI_MIN parameter is higher ranked for grassland than for forest. Lower LAI values in the dry period of the rainy season

increase the parameter ranking of ALAI_MIN. Ultimately, the plant growth parameters are generally higher ranked than the360

AET parameters. Still, the ranking of SOL_RD, SOL_BD, SOL_CBN, SOL_D, and EPCO indicate an observable influence

of AET parameters also on LAI. The sensitivity analysis of the LAI-AET parameters highlights that a coupled LAI-AET

parameter estimation is inevitable for a comprehensive assessment of perennial plant growth of SWAT-T in sub-humid regions

for all 3 PET methods.

3.3 Optimization and benchmark test of the LAI-AET modelling365

The SCE-UA algorithm is applied to optimize the LAI-AET parameter in a multi-objective way (upper benchmark) and only

with respect to observed (LAI-obs) as well as satellite-based (LAI-GLASS) LAI data. The evaluation focuses on observed AET

in the following. The upper benchmark optimization results in very good modelling results for the three PET methods and two

land cover types.

For all six setups, the model performance (AET) of the upper benchmark is KGE ≥ 0.75 (Table 5). The performance of370

the LAI optimization to simulate AET results in values of KGE ≥ 0.44 (LAI-obs) and KGE ≥ 0.49 (LAI-GLASS). The

median of the random sampling (lower benchmark) determines values of KGE = 0.45 to 0.74 across all six setups for AET. In

the forested region, LAI-obs and LAI-GLASS yield better predictions of AET than the lower benchmark except for the PET-

HG application and LAI-obs optimization. Still, this difference is small. Hence, a single optimization with LAI (observed or

GLASS-LAI) can improve the AET estimation in forested regions. In the grassland setups, the lower benchmark outperforms375

the LAI optimization (observed and GLASS-LAI), although only in small KGE differences. Considering that KGE ≥ 0.5 is

often accepted as a behavioral model performance (Rogelis et al., 2016; Knoben et al., 2019), the resulting KGE values for

AET in the grassland setups are still satisfying. Figure 6 shows the correspodning time series for AET. An overestimation of

AET (PET-HG method) particularly in the wet period in the grassland region for the LAI optimization can be observed. For

the PET-PM method, an underestimation of AET in wet period is computed.380

Generally, the best model performance is achieved with the application of PET-PM independent of the land cover type.

The good AET fit for the LAI optimization approaches is explained with LAI being a term in the calculation of the canopy
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Table 5. Summary of final KGE values with respect to observed AET and LAI for the benchmark elements. For the lower benchmark, the

median AET performance of all 1000 random samples is determined. For LAI modelling, the LAI-GLASS optimization is investigated with

the GLASS-LAI. The lower benchmark LAI values are based on the parametrization of the median AET performance runs.

PET method
Upper benchmark LAI-Obs LAI-GLASS Lower benchmark

Forest Grassland Forest Grassland Forest Grassland Forest Grassland

Final KGE values regarding AET performance

PET-HG 0.75 0.87 0.44 0.69 0.57 0.71 0.45 0.73

PET-PM 0.84 0.93 0.77 0.71 0.49 0.87 0.46 0.72

PET-PT 0.76 0.90 0.68 0.82 0.60 0.71 0.47 0.74

Final KGE values regarding LAI performance

PET-HG 0.84 0.87 0.94 0.91 0.96 0.88 -0.47 0.17

PET-PM 0.93 0.89 0.94 0.90 0.94 0.94 -0.04 0.07

PET-PT 0.93 0.89 0.95 0.90 0.96 0.90 -0.39 0.02

Figure 6. Time series of simulated and observed AET for the four benchmark elements, with: a) PET-HG method in the forested region, b)

PET-PM method in the forested region, c) PET-HG method in the grassland region, and d) PET-PM method in the grassland region.

resistance in the PET-PM equation and the dynamic plant growth cycle. The LAI optimization guarantees a steady transpiration

rate even in the dry period without the plant dying, i.e., LAI dropping to zero. The lower benchmark with no tailor-suited LAI

modelling outputs an underestimation of AET in the dry season (Figure 6) which can be attributed to its low LAI values in this385

season (Figure 7). The simulated LAI and AET data for PET-PT are similar to the PET-HG results (cf. A5). Concurrently, good

model performance for PET-PM are achieved for the lower benchmark, too. Although an insufficient LAI modelling results

for the lower benchmarks in the grassland region, acceptable AET performance are still achieved (Table 5). Ultimately, the
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Figure 7. Time series of simulated, observed and remotely-sensed AET for the four benchmark elements, with: a) PET-HG method in

the forested region, b) PET-PM method in the forested region, c) PET-HG method in the grassland region, and d) PET-PM method in the

grassland region.

results show that SWAT-T is capable to predict accurate LAI and AET predictions. Moreover, the benchmark test shows that

even if no AET data is available, the LAI parameter optimization with observed or satellite-based LAI facilitates an acceptable390

AET estimation in forest and grassland regions. The AET performance from LAI calibration is however constrained by the

hydro-meteorological data availability for the choice of the PET method and if the application of energy-based PET methods,

particularly PET-PM, is feasible.

4 Discussion and outlook

4.1 Evaluation of the LAI-AET parameters with observed and GLASS-LAI395

In this study, the LAI modelling is evaluated with observed and satellite-based LAI data. Previous studies with SWAT have

also employed field measurements for LAI (Park et al., 2017; Yang et al., 2018; Nantasaksiri et al., 2021) or forest biomass

production (Khanal and Parajuli, 2014; Haas et al., 2022) to evaluated the LAI modelling of SWAT. Yet, the parameters differ

in these studies, e.g., the total number of parameter applied ranges from three (Yang et al., 2018) to 18 (Haas et al., 2022).

The suggested LAI parameter list for SWAT-T in Alemayehu et al. (2017) consists of 11 parameters. We applied one-at-a-time400

parameter changes to assess the interaction of LAI and AET parameters on both, simulated LAI and AET data. We compared

the resulting model responses (LAI, AET) for each parameter change and figured influences of LAI parameters on AET

modelling and vice versa. Although the assessment of the one-at-a-time changes was based on a qualitative analysis, a clear
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pattern of the reciprocal influences became apparent. Hence, we extended the LAI parameter list and identified 27 LAI-AET

parameters for evaluation of the significance of LAI on the AET estimation in SWAT-T.405

We applied the elementary effects method to evaluate the parameter sensitivity to understand the parameter interactions

in SWAT-T with observed LAI data. Previous efforts to assess the sensitivity of LAI parameters have focused on a relative

sensitivity index (Khanal and Parajuli, 2014; Nantasaksiri et al., 2021). In the present study, the sensitivity of the comprehensive

set of 27 LAI-AET parameters is quantified with the elementary effects method in SWAT-T for the first time. Before, the Morris

screening was used for the sensitivity analysis of SWAT model parameters only with respect to discharge (Xiang et al., 2022;410

Abbas et al., 2024). With the application of the Morris screening, a ranking of the sensitivity of the parameters is determined

in the present study. The most influential parameters on LAI are T_BASE, PHU, DLAI, and BLAI independent of the land

cover type or the PET method. Moreover, SOL_RD is the parameter with the highest influence on the other parameters. Its

influence is significant because it defines the root depth within the soils which in turn determines the plant water uptake and

thus the growing efficiency. The impact of SOL_RD is particularly meaningful in the forested region where the uptake of plants415

is high and the roots are growing deep. The sensitivities reported in Khanal and Parajuli (2014) are highest for the parameters

DLAI, BIO_E, BLAI and SOL_RD. Nantasaksiri et al. (2021) identified the parameters BIO_E, HVSTI, BLAI, LAIMX2, and

DLAI to be the most sensitive. The findings in both studies are coherent with our results, albeit the missing investigation of

some of the most sensitive parameters, e.g., T_BASE and PHU. Moreover, we apply a global sensitivity measure while Khanal

and Parajuli (2014) and Nantasaksiri et al. (2021) have used a local measure (relative sensitivity index). Local measures are420

however limited if the model response is nonlinear (Saltelli et al., 2008) which is the case for the LAI-AET parameters with

respect to observed LAI (Figure 4). Thus, we were able to detect and address the non-linearity of the LAI-AET parameters

with the elementary effects method in the present study.

The field measurements used in this study are derived from hemispherical photographs and satellite-based corrections. Such

assorted LAI data can be subject to uncertainties (Fang et al., 2019). To address potential shortcomings of the LAI observations,425

we additionally evaluated the LAI estimation regarding satellite-based GLASS-LAI. For both land cover types, the performance

of the LAI prediction is thereby accurate independent of the PET method. We applied the GLASS-LAI data since it is reliable

in different regions worldwide (Liang et al., 2014) and robust to noise and uncertainties satellite-based vegetation can be

susceptible to in tropical regions (Viovy et al., 1992; Atkinson et al., 2012). The dual consideration of both observed and

GLASS-LAI data assured the comprehensive LAI evaluation in the present study.430

4.2 Optimization and benchmarking of the AET modelling with observed AET on the footprint scale

The model extent of the grassland region (2300 m2) represents the actual footprint size of 4000 m2 estimated by Mamadou

et al. (2014) well. The footprint for the forested region is seasonally varying and can be up to 60000 m2 (Mamadou et al.,

2014). Generally, the source area of AET in EC systems can fluctuate over the year (Kim et al., 2018) because of, for example,

the wind direction where the windrose can influence the extent of the footprint (Chen et al., 2009; Chu et al., 2021). Since the435

model extents of SWAT-T are constant for the modelling period and the necessary data was not available, we approximated

the model scale to be representative for the footprint for the whole season according to Chu et al. (2021). The main objective
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of the present study is the thorough evaluation of the vertical fluxes (AET) based on the LAI-AET interaction in SWAT-T. In

SWAT/SWAT-T, the vertical fluxes (AET) are computed on the HRU level. Hector et al. (2018) investigated the same regions

using a physically based model for the critical zone (ParFlow-CLM) and also concluded the significance of vegetation on the440

AET estimation which is coherent to our findings.

In the present study, we also investigated if a detailed LAI modelling disregarding AET can predict reliable AET estimates

in SWAT-T. We showed that for both land cover types the LAI optimization also facilitates an adequate, behavioral modelling

of AET with acceptable KGE values. However, the evaluation of the model performance where only the values of an efficiency

metrics (e.g., KGE) are considered can be misleading because the explanatory power of the model is missing (Schaefli and445

Gupta, 2007; Knoben et al., 2019). The information if a modelling approach is applicable or should be rejected and the

assessment of the strengths and deficiencies of the modelling approach is not covered in pure values of an efficiency metrics

(e.g., KGE) (Knoben et al., 2019). To address these shortcomings of an exclusive KGE value evaluation, we applied the

benchmark test proposed by Seibert et al. (2018). The comparison of modelling approaches, such as the single LAI optimization

with upper and lower benchmark levels, facilitated the assessment if a detailed LAI modelling (single LAI optimization) can450

improve the LAI prediction in SWAT-T. Thereby, the benchmarking showed that the significance of a thorough LAI modelling

is more pronounced in the forested than in the grassland region.

4.3 Impacts of the model structure on the AET estimation

On the daily time-step, the temporal dynamics of simulated AET fit adequately to the observed AET pattern in the dry and

wet season for all three PET methods. Thereby, the application of PET-PM outperforms PET-HG and PET-PT. Generally, the455

PET-PM application is more physically complex than PET-HG and PET-PT but also requires more input data. The computation

of PET-HG and PET-PT relies on empirically delineated coefficients, e.g., H0 and αpet, respectively. In PET-PM, terms for

different properties of the land-atmosphere interaction are implemented, such as vapor pressure or the canopy rc and aero-

dynamic resistance ra. In PET-PT however, the aerodynamic term αpet is modelled with a constant coefficient which is 1.28

(Neitsch et al., 2011). Moreover, the partitioning of PET into potential plant transpiration and soil evaporation is threshold460

based in PET-HG and PET-PT. While PET-PM estimates the potential transpiration using the PM equation where rc and ra are

dependent on the modelled LAI modelling, the partitioning of PET implemented in PET-PT and PET-HG is based on the thresh-

old LAI > 3.0. Hence, the significance of a detailed LAI modelling in these methods has less impact on plant transpiration.

For the forested region, the LAI modelling (single LAI optimization disregarding AET) can still predict the AET adequately.

The influence of LAI estimation is less substantial in the grassland region where the lower benchmark (random sampling)465

outperforms the single LAI optimization (observed and GLASS-LAI). However, the physical representation of the LAI-AET

relationship is limited since low KGE values are computed. Overall, the more simple approaches PET-HG and PET-PT can

still yield adequate AET outputs (Archibald and Walter, 2014), although PET-PM offers a more physically sound depiction of

the LAI-AET interaction.

In previous studies, similarly accurate AET performances for the PET-PM application were observed for a forested region470

(Ferreira et al., 2021) as well as for a grassland region (Qiao et al., 2022) regarding a comparison with AET from EC systems.
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An improvement of the AET estimation with SWAT-T using EC systems has also been demonstrated for PET-HG, PET-PT,

and PET-PM on the HRU scale in López-Ramírez et al. (2021) where the annual budgets for AET fits best for PET-HG (López-

Ramírez et al., 2021). However, no coupled LAI-AET parametrization has been considered. We were able to address the

relevance of the coupled LAI-AET parametrization and thereby also demonstrated the best overall performance for PET-PM.475

4.4 Outlook

The elementary effects were computed based on the whole period for which measured LAI data is available. SWAT-T divides

the plant growth in four phases (start of growing, maturity, leaf senescence, dormancy). A time-varying sensitivity analysis of

the LAI-AET parameters with respect to the plant growth phases should be done in future work. Applications should explore

approaches such as dynamic identifiability analysis (Wagener et al., 2003) or wavelet based methods (Chiogna et al., 2024).480

With these time-varying approaches, the understanding of the LAI-AET parameter interaction can be further improved.

We showed that the LAI-AET modelling of SWAT-T for approximated footprints is applicable for perennially vegetated

regions in Western Africa. The coupled LAI-AET modelling should be transferred from the footprint to the catchment scale in

future work. The water balance of the ecosystems of Western Africa are mostly characterized by a high share of AET. Hence,

this study focuses on the analysis of the LAI-AET interaction and thus on the dominant vertical fluxes in these regions. Given485

the significance of AET in Western Africa, the LAI-AET relationship can be essential to also estimate the horizontal fluxes

which are substantial for the streamflow computation on the catchment scale. The application of satellite-based LAI data, e.g.,

GLASS-LAI, can support the plant growth and AET modelling on larger scales, too. Moreover, we focused our analysis on

characteristic regions of Western Africa. Future work should analyze the LAI-AET interaction for other land cover types, e.g.,

other regions with higher LAI values like the Congo forests or other climatic zones, such as energy-limited regions.490

The present study focuses on LAI as a vegetation attribute. In SWAT/SWAT-T, the canopy height is modelled, too. The

canopy height can have an impact on the PET estimation, e.g., in the application of PET-PM where the canopy resistance

rc is a function of the canopy height. Moreover, EC systems can also offer other relevant attributes of the vegetation-AET

interaction, such as derivations of the aerodynamic conductance, surface conductance, water vapor and heat fluxes, or the

evaporative fraction (Mamadou et al., 2016). These attributes not only improve the physical understanding of the vegetation-495

AET interaction, but can also be valuable to inform hydrological modelling (Hector et al., 2018). We focused on the application

of LAI because (i) it is a key vegetation attribute in SWAT-T and (ii) global products of LAI are available. Since the seasonal

dynamics of both, forest and grassland vegetation (LAI) is modelled accurately, we postulate that the approaches of this study

can be transferred to other plant and crop types.

With the consideration of a coupled LAI-AET parametrization, the quantification of biomass or crop yield for other plant500

species can be addressed, too. Yang and Zhang (2016), for example, investigated the biomass/primary productivity with SWAT

for different flux sites of the AmeriFLUX network. They identified BIO_E, BLAI, T_OPT, T_BASE, and BIO_LEAF to be the

most significant parameters for biomass. Apart from the BIO_LEAF, the choice of parameters is similar to our study. Hence,

we anticipate that the LAI modelling can be used as a proxy for the estimation of biomass, too. Still, in-depth analysis with

observed biomass data is inevitable if the modelling objective is the evaluation of biomass and net primary productivity.505
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5 Conclusion

The broad implication of this research is the presentation of a comprehensive LAI-AET parameter evaluation to model both,

LAI and AET with an ecohydrological model. We highlighted the relevance of a coupled LAI-AET parameter estimation in

SWAT-T. Although the impact of LAI parameters on the AET prediction can be low, substantial influence can be observed on

the AET dynamics. The impact of the LAI parameters on AET is particularly high at the end of the wet season and the beginning510

of the dry season where the plant growth phase shifts from plant maturity to leaf senescence. Moreover, water stress on plant

growth resulting from the AET estimation can be decisive and should be considered for comprehensive LAI modelling. We

conclude that the relevance of a coupled LAI-AET parameter estimation indicates that a stepwise modelling approach (e.g., first

LAI, afterwards AET) requires a careful review of the simulated LAI after the AET parameters were estimated. The analysis of

the elementary effects method demonstrates that the majority of LAI parameters behave non-linearly if compared to observed515

LAI data. The most sensitive parameters for LAI modelling are those associated as LAI parameters. Yet, the Morris screening

also indicates a meaningful contribution of the soil parameters. The ranking further illustrates an independence of the LAI

parameters to the land cover type (forest and grassland).

The multi-objective optimization with SCE-UA algorithm results in accurate estimations of both, LAI and AET for all

PET-methods and land cover types. SWAT-T has been proven to be applicable also on the footprint scale in Western Africa. Al-520

though the simpler PET-HG and PET-PT methods facilitate satisfactory modelling results, the application of PET-PM method

outperforms these methods for the LAI and AET estimation in the forested and grassland region. Moreover, our work demon-

strates that an adequate estimation of AET can be obtained if the LAI-AET parameters are only optimized with respect to LAI

data (and disregarding AET data) for forest and grassland regions. The benchmark test illustrates an enhancement of the AET

prediction for the PET-methods (particularly PET-PT, PET-PM) compared to the lower benchmark level. This is particularly525

noteworthy for data-scarce regions where no field measurements of AET are available. Even if no observed LAI data for a

forested region is available, practitioners and researchers can optimize the LAI-AET parameters using remotely-sensed LAI

data and still achieve reliable AET estimations. In the grassland region, the resulting AET prediction from the LAI optimiza-

tion is adequate, too. However, the lower benchmark depicts a better performance for the grassland site. The good result of

the lower benchmark is obtained from the median KGE performance of a large number of parameter samples (1000 runs).530

Single parameter changes, mean or the default model parameter values of the SWAT/SWAT-T crop data base do not necessarily

facilitate a satisfactory AET prediction. Overall, the LAI-AET parameter optimization for grassland yields a sufficient AET

performance. Nevertheless, its role in the AET estimation is less important than for forested regions.

Finally, we stress the importance of opting for a coupled parameter estimation to understand the LAI-AET interaction and to

improve the land-atmosphere simulation in hydrological modelling. The performance comparison of modelled AET confirms535

that a detailed analysis of plant growth is essential. The highlighted relevance of the LAI-AET interaction is particularly

meaningful for a thorough quantification of hydrological processes and hence important for the comprehensive assessment for

water resources management.
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Appendix A: Appendix

A1 Appendix A1 - Figures540

Figure A1. Seasonality of a) daily total solar radiation, b) wind speed, and c) relative humidity for the study sites Bellefoungou (forest) and

Naholou (grass). The seasonality is derived from measurements of each eddy covariance system.
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Figure A2. Distribution of variations in AET or LAI for the one-at-a-time parameter changes for PET-HG for parameters a) EPCO, b)

SOL_AWC, c) PHU, d) ALAI_MIN, e) DLAI, and f) T_BASE. The distributions are clustered in uniform intervals (size = 0.625) of the

observed time series for AET [mm] or LAI [m2/m2]. The x-axis indicates the observed AET [mm] and LAI [m2/m2] values. The y-axis

represents the difference between observed and simulated values with ∆Y =Obs−Sim regarding AET [mm] or LAI [m2/m2]. A perfect

fit is indicated with the dashed line for ∆Y = 0. Positive and negative values show an underestimation and overestimation of the simulated

values, respectively. The distributions (violin plots) are created based on Karvelis (2024).
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Figure A3. Distribution of variations in AET or LAI for the one-at-a-time parameter changes for PET-PT for parameters a) EPCO, b)

SOL_AWC, c) PHU, d) ALAI_MIN, e) DLAI, and f) T_BASE. The distributions are clustered in uniform intervals (size = 0.625) of the

observed time series for AET [mm] or LAI [m2/m2]. The x-axis indicates the observed AET [mm] and LAI [m2/m2] values. The y-axis

represents the difference between observed and simulated values with ∆Y =Obs−Sim regarding AET [mm] or LAI [m2/m2]. A perfect

fit is indicated with the dashed line for ∆Y = 0. Positive and negative values show an underestimation and overestimation of the simulated

values, respectively. The distributions (violin plots) are created based on Karvelis (2024).
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Figure A4. Ranking of the LAI-AET parameter sensitivity for the three PET methods and two land cover types with respect to observed

LAI. 1Parameter GSI is only accounted for when PET-PM is used.

Figure A5. Time series of simulated and observed AET and LAI for the four benchmark elements computed with the PET-PT method, with:

a) AET in the forested region, b) AET in the grassland region, c) LAI in the forested region, and d) LAI in the grassland region.
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Figure A6. Seasonality of the simulated and observed AET time series. The top row (a-c) shows the AET data for the forested region for

different PET-methods, with applications of a) PET-HG, b) PET-PM, and c) PET-PT. The bottom row (d-f) shows the grassland region, with

applications of d) PET-HG, e) PET-PM, and f) PET-PT.

Figure A7. Seasonality of the simulated and observed LAI time series. The seasonality for LAI-obs as well as GLASS-LAI are displayed.

The top row (a-c) shows the LAI data for the forested region for different PET-methods, with applications of a) PET-HG, b) PET-PM, and c)

PET-PT. The bottom row (d-f) shows the grassland region, with applications of d) PET-HG, e) PET-PM, and f) PET-PT.
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A2 Appendix A2 - Supplementary equations

Water stress wstrs is calculated as:

wstrs= 1− Et,act

Et
= 1− wactualup

Et
, (A1)

where Et,act is the actual transpiration, Et is the potential plant transpiration, and wactualup is the total water uptake. wactualup

is computed based on the amount of water in the soil layer and the water content at the wilting point (for details refer to Neitsch545

et al. (2011)).

Temperature stress tstrs is calculated as:

tstrs=



1, if Tav ≤ Tbase

1− exp
(

−0.1054·(Topt−Tav)
2

(Tav−Tbase)
2

)
, if Tbase < Tav ≤ Topt

1− exp
(

−0.1054·(Topt−Tav)
2

(2·Topt−Tav−Tbase)
2

)
, if Topt < Tav ≤ 2 ·Topt −Tbase

1, if Tav > 2 ·Topt −Tbase

(A2)

where Tav is the mean air temperature for the day, Tbase is the base temperature of the plant for growth, and Topt is the optimal

temperature of the plant for growth.550

Nitrogen stress nstrs is calculated as:

nstrs= 1− ϕn

ϕn + exp(3.535− 0.02597 ·ϕn)
, (A3)

where ϕn is a scaling factor for nitrogen stress computed with the actual and optimal mass of nitrogen stored in the plant

material bioN and bioN,opt, respectively:

ϕn = 200 ·
(

bioN
bioN,opt

− 0.5

)
(A4)555

Phosphor stress pstrs is calculated as:

pstrs= 1− ϕp

ϕn + exp(3.535− 0.02597 ·ϕp)
, (A5)

where ϕp is a scaling factor for phosphorous stress computed with the actual and optimal mass of phosphorus stored in the

plant material bioP and bioP,opt, respectively:

ϕp = 200 ·
(

bioP
bioP,opt

− 0.5

)
. (A6)560

The Kling-Gupta efficiency KGE is calculated as:

KGE = 1−

√
(r− 1)2 +

(
σsim

σobs
− 1

)2

+

(
µsim

µobs
− 1

)2

, (A7)

where r is the linear correlation between observations and simulations, σsim and σobs are the standard deviation of the simu-

lations and observations, respectively, and µsim and µobs are the mean value for the simulations and observation, respectively.
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A3 Appendix A3 - Final parameters565

Table A1. List of final parameters for the multi-objective (LAI & AET), observed LAI, and GLASS-LAI optimization for the forested region.

The units of the parameters are excluded for readability. They are given in Table 2.

Parameter
LAI & AET Observed LAI GLASS-LAI Lower Benchmark

HG PM PT HG PM PT HG PM PT HG PM PT

BIO_E 26.2 19.5 29.3 20.7 22.2 21.1 18.4 10.3 19.2 36.5 23.3 38.2

BLAI 3.7 4.2 5.5 4.4 4.6 4.8 4.1 5.1 4.6 6.6 2.5 5.8

FRGRW1 0.25 0.14 0.1 0.19 0.12 0.2 0.17 0.1 0.15 0.06 0.26 0.19

LAIMX1 0.26 0.18 0.13 0.22 0.13 0.16 0.21 0.09 0.19 0.08 0.17 0.21

FRGRW2 0.51 0.7 0.81 0.69 0.71 0.73 0.69 0.67 0.73 0.9 0.77 0.74

LAIMX2 0.5 0.72 0.84 0.74 0.72 0.64 0.61 0.61 0.6 0.54 0.64 0.61

DLAI 0.68 0.67 0.7 0.54 0.56 0.55 0.56 0.44 0.6 0.71 0.75 0.52

T_OPT 22.7 29.7 30.2 26.4 29.9 29.6 29.5 31.3 25.3 29.4 27.7 29.4

T_BASE 14 14.6 13 15 15.5 15.2 15.2 15.3 14.1 9.1 17 10.6

ALAI_MIN 0.9 0.76 0.88 0.83 0.8 0.8 0.73 0.61 0.77 0.68 0.48 0.84

GSI 0.006 0.006 0.001 0.004 0.005 0.007 0.004 0.002 0.004 0.003 0.003 0.007

PHU 3696 3962 4427 4140 3940 4074 3872 4361 4109 3176 4007 3165

SOL_Da 3381 2914 3148 2729 3195 2980 2727 3295 2680 2754 2696 3415

ESCO 0.52 0.41 0.13 0.55 0.54 0.56 0.48 0.92 0.37 0.14 0.29 0.94

EPCO 0.92 0.32 0.92 0.39 0.39 0.71 0.57 0.79 0.48 0.75 0.23 0.4

CAN_MX 4.3 4.9 0.3 6.4 3.7 3.9 5.7 3.8 5.7 4.9 6.1 7

HRU_SLP 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022

SLSUBBN 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463

CN_2 38 38 38 38 38 38 38 38 38 38 38 38

SOL_AWCb 1.82 1.11 1.14 1.35 1.2 1.07 1.27 1.8 1.06 -0.23 0.07 -0.5

SOL_BDb 0.04 1.08 -0.38 0.51 1.12 0.74 0.12 0.58 0.33 1.04 1.79 0.36

SOL_CBNb 1.85 0.39 0.64 0.58 0.8 1.24 1.07 0.56 0.39 1.48 1.17 1.14

SOL_Kb 1.43 0.95 1.66 0.91 0.82 0.74 1.25 -0.35 0.48 1.7 0.94 0

SOL_RD 1958 1239 1503 1040 1143 1512 1194 1648 1111 578 1575 1894

GW_REVAP 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18

RCHRG_DP 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

REVAPMN 500 500 500 500 500 500 500 500 500 500 500 500
aLowest soil layer depth; bRelative parameter changes: paranew = paraoriginal + paraoriginal · parachange
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Table A2. List of final parameters for the multi-objective (LAI & AET), observed LAI, and GLASS-LAI optimization for the grassland

region. The units of the parameters are excluded for readability. They are given in Table 2

Parameter
LAI & AET Observed LAI GLASS-LAI Lower Benchmark

HG PM PT HG PM PT HG PM PT HG PM PT

BIO_E 28 18.7 25.4 20.2 23 22.1 19.2 23.5 16.5 23.1 37.6 21.7

BLAI 4.5 4.5 4.4 4.5 4.4 4.7 4.5 5.3 6 4.8 4.9 6.9

FRGRW1 0.29 0.27 0.29 0.3 0.29 0.28 0.24 0.29 0.3 0.07 0.16 0.23

LAIMX1 0.08 0.07 0.06 0.06 0.05 0.05 0.15 0.14 0.14 0.2 0.11 0.15

FRGRW2 0.69 0.67 0.68 0.6 0.61 0.65 0.52 0.56 0.51 0.56 0.59 0.72

LAIMX2 0.72 0.74 0.78 0.74 0.75 0.76 0.75 0.88 0.66 0.61 0.64 0.57

DLAI 0.83 0.83 0.79 0.77 0.8 0.76 0.8 0.59 0.71 0.81 0.88 0.72

T_OPT 30.4 27.8 30.3 29.8 30.5 30.5 20.6 28.6 31.5 28.4 24.5 28.4

T_BASE 12.8 12.9 12.9 13 13 13 11.6 14.4 14.4 11.9 11.1 16.6

ALAI_MIN 0.62 0.6 0.63 0.6 0.61 0.6 0.7 0.65 0.68 0.51 0.26 0.8

GSI 0.005 0.004 0.004 0.005 0.006 0.006 0.008 0.004 0.008 0.001 0.009 0.001

PHU 4090 3970 4010 4087 4035 4059 4104 3843 3535 5638 5665 4571

SOL_Da 3002 2541 3375 2883 2911 2967 3866 2390 3575 3392 2270 2835

ESCO 0.89 0.54 0.8 0.49 0.5 0.59 0.49 0.51 0.1 0.28 0.53 0.11

EPCO 0.43 0.27 0.73 0.37 0.52 0.43 0.58 0.15 0.6 0.2 0.87 0.18

CAN_MX 4.3 4.9 0.3 6.4 3.7 3.9 5.7 3.8 5.7 4.9 6.1 7

HRU_SLP 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032 0.032

SLSUBBN 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463 91.463

CN_2 81 81 81 81 81 81 81 81 81 81 81 81

SOL_AWCb -0.21 -0.4 0.05 0.71 0.43 0.63 -0.17 1.72 0.14 0.1 0.74 1.5

SOL_BDb 1.08 0.93 0.98 1.03 0.98 0.93 1.6 1.95 0.48 1 0.5 1.72

SOL_CBNb 1.47 1.02 1.59 0.87 1.6 1.07 1.25 1.24 -0.6 0.88 0.28 0.74

SOL_Kb 0.46 0.61 0.44 0.61 0.7 0.65 0.59 -0.36 1.38 0.13 0.06 -0.06

SOL_RD 1958 1239 1503 1040 1143 1512 1194 1648 1111 578 1575 1894

GW_REVAP 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18

RCHRG_DP 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

REVAPMN 500 500 500 500 500 500 500 500 500 500 500 500
aLowest soil layer depth; bRelative parameter changes: paranew = paraoriginal + paraoriginal · parachange
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A4 Appendix A4 - Water balance components

Table A3. Water balance components for the final runs for the forested region. All quantities listed are in (mm). 1GW is short for groundwater.

The components of the lower benchmark are shown although no calibration was applied.

Model setup Precipitation PET AET
Water yield

Aquifer recharge
Surface runoff Lateral flow GW1 flow

PET-HG, Upper BM. 1479.6 1891.1 1098 12.1 16.5 56.2 307.6

PET-HG, LAI-Obs 1479.6 1891.1 1049 7.8 25.6 75.7 373.3

PET-HG, LAI-GLASS 1479.6 1891.1 1060 6.5 14.3 73.5 365.4

PET-HG, Lower BM. 1479.6 1891.1 595.9 18.7 27.2 527.2 836.3

PET-PM, Upper BM. 1479.6 1646.3 969 26.9 82.6 77.4 389

PET-PM, LAI-Obs 1479.6 1646.3 968.9 60.2 90.8 68.1 344

PET-PM, LAI-GLASS 1479.6 1646.3 769.3 78.8 16.3 267.5 593.9

PET-PM, Lower BM. 1479.6 1646.3 626.1 18.6 20.23 511.6 811.9

PET-PT, Upper BM. 1479.6 1392.5 969 20.6 8.2 139.3 444.4

PET-PT, LAI-Obs 1479.6 1392.5 911.4 22.6 36.3 193.3 477

PET-PT, LAI-GLASS 1479.6 1392.5 858.6 11.4 29.1 296.4 556.2

PET-PT, Lower BM. 1479.6 1392.5 572.8 99.7 13.8 533.5 787.2

Table A4. Water balance components for the final runs for the grassland region. All quantities listed are in (mm). 1GW is short for ground-

water. The components of the lower benchmark are shown although no calibration was applied.

Model setup Precipitation PET AET
Water yield

Aquifer recharge
Surface runoff Lateral flow GW1 flow

PET-HG, Upper BM. 1424 1809.1 729.7 375.5 12.7 57.4 303.6

PET-HG, LAI-Obs 1424 1809.1 869.8 269.5 19.3 48.4 261.7

PET-HG, LAI-GLASS 1424 1809.1 920 294.6 19.5 34.7 186.4

PET-HG, Lower BM. 1424 1809.1 888.6 291.2 11.1 42.7 230.3

PET-PM, Upper BM. 1424 1623 718.5 331.3 12.8 68.8 358.8

PET-PM, LAI-Obs 1424 1623 899.7 244.8 19.4 47.6 253.5

PET-PM, LAI-GLASS 1424 1623 789 300.8 12 57.8 313.4

PET-PM, Lower BM. 1424 1623 824.5 288 15 55 294.5

PET-PT, Upper BM. 1424 1475.6 751.1 382.1 17.8 50.3 269.5

PET-PT, LAI-Obs 1424 1475.6 786.3 309.8 19.8 56.1 302.3

PET-PT, LAI-GLASS 1424 1475.6 883.4 331.8 25.5 33.2 179

PET-PT, Lower BM. 1424 1475.6 874.6 294.1 13.5 43.2 239.1
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A5 Appendix A5 - References of the study site map

Table A5. Overview of the data use for the study site map.

Data Database name or source

Topography Copernicus GLO-30 (Copernicus, 2022)

Land use map Copernicus Global Land Service (Buchhorn et al., 2020)

Water bodies ArcGIS Pro 2.7.3 (ESRI)

Countries and cities ArcGIS Pro 2.7.3 (ESRI)

Study site locations Mamadou et al. (2016)

Catchment extents Derived with ArcGIS Pro 2.7.3 (ESRI)
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