
 

 

Determining the threshold of issuing flash flood 1 

warnings based on people’s response process 2 

simulation 3 

 4 
Ruikang Zhang a, b, Dedi Liu a, b, c*, Lihua Xiong a, b, Jie Chen a, b, Hua Chen a, b, Jiabo 5 

Yin a, b 6 

 7 
a State Key Laboratory of Water Resources Engineering and Management, Wuhan University, 8 

Wuhan, China 9 
b Hubei Provincial Key Lab of Water System Science for Sponge City Construction, Wuhan 10 

University, Wuhan, China 11 
c Department of Earth Science, University of the Western Cape, Robert Sobukwe Road, 12 

Bellville 7535, Republic of South Africa 13 
 14 

* Correspondence to Dedi Liu: dediliu@whu.edu.cn 15 

  16 

1

https://doi.org/10.5194/hess-2024-130
Preprint. Discussion started: 6 May 2024
c© Author(s) 2024. CC BY 4.0 License.



 

 

Abstract: The effectiveness of flash flood warnings depends on the people’s response 17 

processes to the warnings. And false warnings and missed events cause the people’s 18 

negative responses. It is crucial to find a way to determine the threshold of issuing the 19 

warnings that reduces the false warning ratio and the missed event ratio, especially for 20 

uncertain flash flood forecasting. However, most studies determine the warning 21 

threshold based on the natural processes of flash floods rather than the social 22 

processes of warning responses. Therefore, an agent-based model (ABM) was 23 

proposed to simulate the people’s response processes to the warnings. And a 24 

simulation chain of "rainstorm probability forecasting - decision on issuing warnings - 25 

warning response processes" was conducted to determine the warning threshold based 26 

on the ABM. Liulin Town in China was selected as a case study to demonstrate the 27 

proposed method. The results show that the optimal warning threshold decreases as 28 

the forecasting accuracy increases. And as the forecasting variance or the variance of 29 

the forecasting variance increases, the optimal warning threshold decreases (increases) 30 

for low (high) forecasting accuracy. Adjusting the warning threshold according to the 31 

people’s tolerance levels of the failed warnings can improve warning effectiveness, 32 

but the prerequisite is to increase the forecasting accuracy and decrease the 33 

forecasting variance. The proposed method provides valuable insights into the 34 

determination of warning threshold for improving the effectiveness of flash flood 35 

warnings. 36 

Keywords: Threshold of issuing warnings; Flash flood warnings; People’s response 37 

processes; Evacuation; Agent-based model38 
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1. Introduction 39 

With the intensification of climate change and human activities (Slater et al., 40 

2021), flash floods have become one of the most serious disasters threatening 41 

economic and social security (Borga et al., 2019). Flash flood warning has been taken 42 

as an effective and economical means of preventing flash flood disasters (Yin et al., 43 

2023). By issuing warnings before the occurrence of flash floods, people are advised 44 

to or ordered to evacuate for reducing the casualties. However, the people’s responses 45 

to the warnings are complex processes including receiving the warnings, 46 

understanding the warnings, trusting the warnings, and personalizing the flood risk 47 

(Mileti, 1995; Parker et al., 2009). And these complex processes might hinder the 48 

evacuation and undermine the effectiveness of the warnings (Cools et al., 2016). To 49 

improve the effectiveness of flash flood warnings, extensive studies have been done 50 

to pursue higher accuracy and longer lead time of flash flood forecasting (Han and 51 

Coulibaly, 2017; Lei et al., 2018). Unfortunately, the people’s responses to the 52 

warnings have rarely been explored and have become a bottleneck in improving the 53 

effectiveness of the warnings and reducing casualties (Bodoque et al., 2019; Wang et 54 

al., 2022). 55 

The people's negative responses to the warnings have been mainly attributed to 56 

the uncertainties of the flash flood forecasting and the warnings. The uncertainties of 57 

flash flood forecasting are from the uncertainties of meteorological forecasting, 58 

observation data, initial conditions, hydrological and hydraulic model structure, model 59 

parameters, and so on (Boelee et al., 2019). To describe the uncertainties of flood 60 

forecasting, a probabilistic flood forecasting was proposed and had been widely 61 

applied in the issuing warnings by the disaster prevention administrators 62 

(Krzysztofowicz, 2001). If the probability of flash flood disasters from the 63 

probabilistic flood forecasting exceeds a preset threshold, the procedure of the issuing 64 

warning will be triggered (Coccia and Todini, 2011; Todini, 2017). If the threshold is 65 

set low, even a low forecasted probability of flash flood disasters can exceed the 66 

threshold, and lots of warnings with only the low probability of flash flood disaster 67 

will be issued, resulting in an increase in the false warning ratio. In contrast, if the 68 

threshold is set high, only the flash flood disasters with high forecasted probability 69 

can be warned, and some flash flood disasters with not low probability will be missed, 70 

leading to an increase in the missed event ratio (Potter et al., 2021). These two 71 
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increases from both the false warning ratio and the missed event ratio can decrease the 72 

people’s responses to the warnings and expand the casualties. Simmons and Sutter 73 

(2009) conducted a statistical analysis of tornado data from 1986 to 2004, and they 74 

found that tornadoes with a higher false warning ratio killed and injured more people. 75 

LeClerc and Joslyn (2015) explored the cry wolf effect in weather-related decision 76 

making through a controlled experimental approach. And their experiments revealed 77 

that the decreasing false warning ratio could increase people’s trust in the warnings 78 

when the trust level was in the medium range, while both too high and too low false 79 

warning ratios led to inferior decision making. Ripberger et al. (2015) found that the 80 

false warning ratio and the missed event ratio significantly reduced people’s trust in 81 

the National Weather Service, and suppressed their positive responses via a large 82 

regional survey. However, it is impossible to simultaneously reduce the false warning 83 

ratio and the missed event ratio at a certain level of forecasting, as there is a trade-off 84 

between these two ratios as described above. Therefore, it is crucial to find a way to 85 

determine an appropriate threshold that balances the false warning ratio and the 86 

missed event ratio for improving the positive warning responses and reducing the 87 

disaster casualties. 88 

Extensive methods have been proposed to determine the threshold of issuing 89 

flood warnings for balancing the false warning ratio and the missed event ratio (Duc 90 

Anh et al., 2020; Ke et al., 2020; Ramos Filho et al., 2021; Tekeli and Fouli, 2017; 91 

Young et al., 2021). The methods have gradually evolved from fixed threshold 92 

determination methods to dynamic threshold determination methods, and from 93 

data-driven methods to simulation-based methods (Cheng, 2013). However, these 94 

methods only determined the threshold of issuing warnings based on the natural 95 

processes of flash floods, while ignoring the social processes of warning responses. 96 

The goal of flash flood warnings is to stimulate the people’s responses to the warnings 97 

for reducing casualties. Even a reliable warning cannot be effective without people’s 98 

positive responses to it. To our best knowledge, there are very few methods to 99 

determine the threshold based on people’s response process simulation. Roulston and 100 

Smith (2004) generalized the warning release into an improved classical binary 101 

cost-loss problem, where the people's warning response level was expressed as a 102 

function of false warning ratio, and this warning response level variable was included 103 

in the cost-loss analysis. And the threshold of issuing warnings was derived with the 104 

goal of minimizing the cost loss ratio under different scenarios. Sawada et al. (2022) 105 
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proposed a stylized model that coupled natural and social systems to determine the 106 

threshold of issuing warnings. In this stylized model, the warning response level was 107 

attributed to be influenced by both the success rate of the warning and the flood 108 

experience, and then was mapped to flood losses through an empirical equation. 109 

However, these studies only described the warning response level through empirical 110 

equations or conceptual models, instead of describing the warning response processes 111 

through process-based models. To reflect the characteristics of flash flood disaster 112 

prevention and the flash flood warning responses, it is necessary to simulate the 113 

people’s response processes of receiving warnings, making evacuation decisions, 114 

implementing evacuation, and being submerged by flash floods (or reaching shelters). 115 

Agent-based model (ABM) is a modeling framework for complex systems by 116 

simulating the dynamic interactions between automatic decision-making agents and 117 

between these agents and the environment in a distributed micro level (Janssen and 118 

Ostrom, 2006). As the warning responses are related to a learning process, and also to 119 

personal flood experience and risk perception, ABM is suitable for understanding the 120 

dynamic processes through simulating the individual decision-making (Anshuka et al., 121 

2022). Additionally, ABM can describe the spatially explicit social-hydrological 122 

processes, such as the dissemination of warning information, the selection of 123 

evacuation routes, and the distribution of flash flood inundation (Sivapalan and 124 

Bloeschl, 2015). Thus, ABM is an effective tool for simulating the people’s response 125 

processes to flash flood warnings (Du et al., 2017; Yang et al., 2018; Zhuo and Han, 126 

2020). 127 

The aim of this study is to propose a method for determining the threshold of 128 

issuing warnings (called warning threshold hereafter) based on the people’s response 129 

process simulation. A process-based ABM is developed to simulate people’s response 130 

processes to flash flood warnings (section 2.1). A simulation chain of "rainstorm 131 

probability forecasting - decision on issuing warnings - warning response processes" 132 

is conducted to determine the warning threshold based on the ABM (section 2.2). 133 

Liulin Town in China is selected as a case study to demonstrate the proposed method, 134 

and to provide valuable insights into the determination of warning threshold for 135 

improving the effectiveness of flash flood warnings. 136 
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2. Methodology 137 

2.1. An ABM development for simulating people’s response 138 

processes to flash flood warnings 139 

To simulate the people’s response processes to flash flood warnings (i.e., 140 

including the receiving warnings, the making evacuation decisions, the implementing 141 

evacuation, and the being submerged by flash floods/the reaching shelters), an ABM 142 

is developed by coupling social and natural sub-systems. 143 

2.1.1. Agents and their environments in the ABM 144 

There are two types of agents in the ABM: resident and authority. The resident 145 

agents refer to the people threatened by flash floods. After receiving flash flood 146 

warnings, the agents will decide whether and when to evacuate. If they decide to 147 

evacuate, they will move along the roads towards the shelters. After issuing the 148 

warnings, the flash flood will occur and might wash away the agents who have not 149 

successfully arrived at shelters. The probability of casualties can be estimated based 150 

on the velocity and the depth of the flash flood. The authority agents represent the 151 

local authorities that mandate to prevent the flash flood disasters. 152 

The environment in the ABM are the residences, road networks, shelters, and 153 

floodwater. The residence agents are initially randomly distributed in the residences. 154 

The resident agents who have decided to evacuate will move along the road network 155 

instead of freely moving within the ABM area. The shelters are the destinations for 156 

evacuation. The flash flood water not only affects the evacuation decisions and 157 

behaviors of the resident agents but also causes casualties to the resident agents. 158 

2.1.2. Sub-modules of the ABM 159 

Early warning sub-module. Early warning sub-module simulates the process of 160 

issuing warnings. Owing to the uncertainties of flash flood forecasting, there are 161 

multiple stages of warning in a warning system. Rainstorm red, ready-to-evacuate, 162 

and immediate-evacuation warnings are successively issued in the ABM. The times of 163 

issuing these three warnings are determined by three parameters: lead time of 164 

rainstorm red warning (indicated as - - 1lead time w ), ready-to-evacuate warning 165 

(indicated as - - 2lead time w ), and immediate-evacuation warning (indicated as 166 

- - 3lead time w ). 167 

Social sub-module. Social sub-module simulates the people’s psychological and 168 
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behavioral response processes to the warnings. The j -th agent1 will decide to 169 

evacuate when his/her overall evacuation intention ( jS , [ ]0,  3jS ∈ ) exceeds a 170 

threshold, τ , or the water depth near him/her exceeds a threshold, EDT . There are 171 

two components in jS : evacuation intention arising from receiving warnings ( W
jS , 172 

{ }1,  2,  3W
jS ∈ ), and evacuation intention arising from observing neighbors ( N

jS , 173 

[ ]0,  1N
jS ∈ ). The value of W

jS  is related to the socio-demographic and 174 

socio-psychological attributes of the j -th agent ( jSSC ) and the stages of the 175 

receiving warning from the early warning sub-module (WT). The relationship can be 176 

described by a random forest algorithm. The value of N
jS  equals to the proportion of 177 

the j -th agent’s neighbors who have decided to evacuate. The weights of the 178 

influence of W
jS  and N

jS  on the jS  are represented by parameters jα  and jβ , 179 

respectively, and 1j jα β+ = . Finally, the overall evacuation intention of the j -th 180 

agent at time t , ,j tS , is a linear combination of overall evacuation intention at time 181 

1t −  ( , 1j tS − ) and current information. Learning rate, jθ , measures the weight given 182 

by the j -th agent to the obtained information at the current time. If the j -th agent 183 

has decided to evacuate, he/she will walk along the shortest road network to the 184 

shelters. His/her walking speed is estimated by the spatial-grid evacuation model 185 

(SGEM) that has been developed by the City University of Hong Kong and Wuhan 186 

University (Lo et al., 2004). 187 

Flood sub-module. As flash flood can affect the people’s evacuation behaviors 188 

and cause casualties, the flash flood process is simulated in the flood sub-module. The 189 

Hydrologic Engineering Center's River Analysis System (HEC-RAS) software is 190 

gaining popularity due to its capabilities to simulate unsteady flow efficiently, and 191 

identify and visualize flood-prone areas (Hicks and Peacock, 2005; Maidment, 2017). 192 

The HEC-RAS model has been applied for flood forecasting and warning (Oleyiblo 193 

and Li, 2010). And it has been adopted in our flood sub-module. The river geometries 194 

such as centerlines, bank lines, and cross-sectional lines are the major parameters 195 

proceeded in the HEC-RAS model to generate flood-prone areas. The spatiotemporal 196 

 
1 The agent refers to the resident agent by default 
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changes in the depth and velocity of flash floods are simulated by the HEC-RAS 197 

model after the warnings. 198 

2.1.3. Casualty rate estimation module 199 

Based on the spatiotemporal distribution of the people outputted from the social 200 

sub-module and the spatiotemporal distribution of floodwater outputted from the 201 

flood sub-module, the casualty probability of an agent can be estimated via a logistic 202 

regression equation as follows: 203 

 15.48

1( )
1 zf z

e −=
+

  (1) 204 

where 0 1 2z h uβ β β= + × + × , 0 12.37β = − , 1 22.036β = , 2 11.517β = . The flood 205 

water depth is represented by h  ( [0.28,  0.85] (m)h ∈ ), and the flood water velocity 206 

is denoted by u  ( [0.50,  2.00] (m/s)u ∈ ). The j -th agent is taken as casualty if the 207 

h  exceeds 0.85 m or u  exceeds 2.00 m/s around him/her. The casualty rate is 208 

estimated as the proportion of the casualties. A detail description of the ABM can be 209 

retrieved from Zhang et al. (2024) 210 

2.1.4. A surrogate model development for the ABM 211 

Due to the complexity of the ABM, running this model once requires a 212 

significant amount of time (Confalonieri et al., 2010). To simulate multiple flash flood 213 

events, it is necessary to improve the computational efficiency of the ABM. Thus, a 214 

Bayesian method developed by Oakley and O'Hagan (2004) is used to develop a 215 

Gaussian process (GP) emulation as a surrogate model of the ABM. The GP 216 

emulation can simulate the warning response processes more efficiently than the 217 

original ABM (O'Hagan, 2006). In general, the GP emulation can be represented by 218 

an equation: ( )GPD f= x  where D  is the casualty rate at the end of the simulation 219 

and x  are a set of parameters of the ABM. 220 

A global sensitivity analysis of the ABM reveals that the weight of warning 221 

influence, α , is the most sensitive parameter for the casualty rate (Zhang et al., 222 

2024). Furthermore, rainfall, P , is the driving factor causing flash floods. Therefore, 223 

if there is a flash flood disaster and its corresponding warnings are issued, the ABM 224 

can be simplified into a two-parameter surrogate model: 2 ( , )GPD f Pα= . If there is a 225 

flash flood disaster and no warning is issued, the ABM can be simplified into a 226 

one-parameter surrogate model: 1 ( )GPD f P= . 227 
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2.2. Simulation chain of "rainstorm probability forecasting - 228 

decision on issuing warnings - warning response processes" 229 

2.2.1. Simulation of the rainstorm probability forecasting 230 

Flash floods often occur if there are sufficient rainstorms in a small basin over a 231 

few hours (Collier, 2007; Younis et al., 2008). As the total flood generation and 232 

routing time is very short, flash flood warnings have to be dependent on the rainstorm 233 

forecasting for an enough lead time (Zhai et al., 2018). Therefore, the rainstorm 234 

forecasting determines the flash flood warning decisions. The probabilistic forecasting 235 

is preferred over the deterministic one as it considers forecasting uncertainties and it 236 

is beneficial for rational decisions (Krzysztofowicz, 2001). A random probabilistic 237 

forecasting generator based on Ambühl (2010) is employed to forecast the probability 238 

distribution of rainfall as follows: 239 

 2 2 ~ ( ( , ), ( , ))PA PA PP PPF N P N Nµ σ µ σ+   (2) 240 

where F  is the forecasted rainfall, (.)N  is the Gaussian distribution, P  is the 241 

actual rainfall, 2( , )PA PAN µ σ  reflects the forecasting accuracy, and 2( , )PP PPN µ σ  242 

reflects the forecasting precision. Although Ambühl (2010) used the gamma 243 

distribution to simulate the forecasting precision, the Gaussian distribution can help 244 

improve the interpretability of the results. Negative 2( , )PP PPN µ σ  is truncated to 245 

1.0 × 10-6 to eliminate the negative values of variance. 246 

We set =0PAµ  assuming the unbiased forecasting according to Sawada et al. 247 

(2022). If the mean of the F  (i.e., 2+ (0, )PAP N σ ) is taken as the forecasting 248 

tendency value, the accuracy of the forecasting tendency value will be reflected by 249 

PAσ . The variance of the F  (i.e., 2( , )PP PPN µ σ ) determines the band-width of the 250 

F . The larger 2( , )PP PPN µ σ , the greater the band-width value of the F . The 251 

variance of the forecasting values is determined by PPµ , while the variance of the 252 

variance of the forecasting values is determined by PPσ . 253 

2.2.2. Simulation of the decision on issuing warnings 254 

There is a damage threshold, δ . If the P  exceeds this threshold, flash flood 255 

disasters will occur and cause damages. The probabilistic forecasting system can 256 

provide the probability that the forecasted rainfall exceeds the δ  (i.e., the 257 

probability of flash flood disasters, denoted by Prob ). If the Prob  is larger than a 258 
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preset threshold, λ , the warning administrators will issue the warnings. Thus, the λ  259 

is the warning threshold. The warning outcomes are dependent on a contingency table 260 

(shown in Table 1). The outcomes are dependent on two conditions: first, whether the 261 

Prob  is above the λ  or not (i.e., whether to issue warnings or not); and second, 262 

whether the P  exceeds the δ  or not (i.e., whether to occur a flash flood disaster or 263 

not). The interplay of the two conditions leads to four warning outcomes: true 264 

negative (no warning), false negative (missed event), false positive (false warning), 265 

and true positive (successful warning). The missed events and the false warnings are 266 

collectively taken as failed warnings here. 267 

Table 1. Contingency table defining the warning outcomes a 268 

 P δ<  P δ≥  
Prob λ<  True negative (no warning) 

0 
False negative (missed event) 
Damage 

Prob λ≥  False positive (false warning) 
Cost 

True positive (successful warning) 
Cost + residual damage 

a Costs and damages associated with each outcome. And they are highlighted in italics. 269 
2.2.3. Simulation of the warning response processes 270 

According to the four warning outcomes in Table 1, the warning response 271 

processes are simulated by the surrogate model of the ABM for estimating the 272 

casualty rate, D . If the warning outcome is true negative or false positive, the 273 

casualty rate is negligible as the actual rainfall, P , is smaller than the damage 274 

threshold, δ . It should be noted that false positive can cause opportunity cost as 275 

there are behavior responses to the warnings (i.e., evacuation behaviors). As this study 276 

only focuses on the casualty rate, the opportunity cost has been ignored. If the 277 

warning outcome is false negative, there is a flash flood disaster but no warning is 278 

issued. In this case, the one-parameter surrogate model (i.e., 1 ( )GPD f P= ) is 279 

employed to simulate the warning response processes for estimating the casualty rate. 280 

If the warning outcome is true positive, there is a flash flood disaster and its 281 

corresponding warnings are issued. The casualty rate is mitigated by evacuation. The 282 

two-parameter surrogate model (i.e., 2 ( , )GPD f Pα= ) is used to simulate the warning 283 

response processes for estimating the casualty rate. In general, the casualty rate can be 284 

described by the following equation: 285 

 1

2

0                 for true negative or false positve
( )       for false negative
( , )   for true positive

GP

GP

D f P
f Pα




= 



  (3) 286 
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We assume that past warning outcomes affect people’s trust levels in the 287 

warnings. Existing studies have found that the recent false warning ratio undermines 288 

people’s trust levels in the warnings and their preparedness actions (Jauernic and Van 289 

den Broeke, 2017; LeClerc and Joslyn, 2015; Lim et al., 2019; Ripberger et al., 2015). 290 

It is reasonable to assume that people’s past experiences with successful (or failed) 291 

warnings increase (or decrease) their trust levels in the warnings. A person’s trust 292 

level in the warnings can be described by the parameter α  representing the weight 293 

assigned to the warning information. Therefore, α  after experiencing a flash flood 294 

at the 1t +  time can be described by the following equation: 295 

 

( )              for true negative
( )     for false negative

( 1)
( )     for false positive
( )     for true positive

FN

FP

TP

t
t

t
t
t

α
α χ

α
α χ
α χ


 −+ =  −
 +

 (4) 296 

where FNχ , FPχ , and TPχ  are increments of α  for false negative, false positive, 297 

and true positive, respectively. If α  is larger than one, it is truncated to one. If α  298 

is smaller than zero, it is truncated to zero. 299 

2.2.4. Performance metrices of the warning 300 

Three metrices are used to evaluate the warning performance: the relative 301 

casualty rate ( rD ), missed event ratio ( MER ), and false warning ratio ( FWR ). The 302 

rD  is defined as: 303 

 w
r

n

DD
D

=  (5) 304 

where wD  is the average casualty rate of multiple flash floods if there is a flash flood 305 

warning. And the casualty rate of each flash flood can be estimated by equation (3). 306 

nD  is the average casualty rate of multiple flash floods if there is no flash flood 307 

warning in place (i.e., the casualty rate is dependent only on the natural variability). 308 

The casualty rate of each flash flood can be estimated by the following equation (6). 309 

 1

0                 if 
( )       if  n

GP

P
D

f P P
δ

δ

<
= 

≥
 (6) 310 

The lower the value of rD , the more effective the flash flood warning is. If the 311 

objective of flash flood warning is the minimizing the casualties, the optimal warning 312 

threshold is the threshold where the rD  is the lowest. 313 
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Besides rD , the MER  and FWR  are used to evaluate the performance of the 314 

flash flood warning. They are defined by equations (7) and (8): 315 

 FN

TP FN

OMER
O O

=
+

 (7) 316 

 FP

FP TP

OFWR
O O

=
+

 (8) 317 

where FNO , TPO , FPO  are the total number of false negative, true positive, and 318 

false positive events, respectively. 319 

3. Case study 320 

3.1. Study area 321 

Liulin Town located in Suixian Country, Hubei Province, China was selected as 322 

our study area. The Lang River goes through Liulin Town as shown in Figure 1(a) 323 

and the red rectangular box indicates the location of the town. The average annual 324 

rainfall is 1,100 mm. Rainfall is unevenly distributed throughout the year, and mainly 325 

concentrates from June to August. The upstream valley of Liulin Town is wider than 326 

that of the downstream. And this river geomorphology hinders flood discharge and 327 

easily causes the flash flood disaster when a rainstorm occurs. Residences in the town 328 

are located on both sides of Langhe River. In the prevention and control map of flash 329 

flood disasters in Suixian County, two communities in Liulin Town are listed as 330 

high-risk and relatively high-risk areas. Especially, an extreme rainstorm with a 331 

volume of 503 mm from 2:00 a.m. to 9:00 a.m. on August 12, 2021 (hereafter called 332 

the 8.12 event) caused a severe flash flood disaster in the town. Unfortunately, 21 333 

people were dead and four people were still missing in this disaster although flash 334 

flood warnings had been issued (Wei, 2021). Exploring the way to determine the 335 

threshold of issuing flash flood warnings in the town will provide valuable 336 

information on flash flood disaster prevention for reducing the casualties. 337 
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 338 
Figure 1. Location of the (a) Lang River Basin and (b) Liulin Town 339 

3.2. Setting of the ABM 340 

To set up the environment of the ABM, the residences and road network (see 341 

Figure 1) were imported into the model after processing a digital archive (i.e., World 342 

Imagery Wayback). To prevent evacuation across the river, two shelters were set up at 343 

high place on both sides of the Langhe River. And they should not be submerged by 344 

floods. The parameters of the ABM were set according to calibration, empirical data, 345 

and related literature (see Table 2). The lead time of the three stages of warning and 346 

evacuation depth threshold were parameterized from the two-month surveying 347 

expertise and experience in the study area. The three hyperparameters of the random 348 

forest model were calibrated by the empirical data from our survey. A sampling 349 

without replacement was conducted on the empirical data and the sample was used to 350 

assign the initial SSC  values of the agents. The random forest model calibration, the 351 

survey, and the method of assigning SSC  values were detailed in Zhang et al. (2024). 352 

The values of jθ  and jp  of the -th agent were sampled from the Gaussian 353 

distributions according to the exiting literature (Du et al., 2017). 2S =j  is set to 354 

indicate no decision making on evacuation for the j -th agent in the empirical data 355 

while 2S >j  means the evacuation decision of the agent. Hence, the value of τ  356 

was set to 2. A global sensitivity analysis has been performed to explore the relative 357 

impacts of these parameters on the casualty rate and can be retrieved from Zhang et al. 358 

(2024). 359 

 360 

j
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Table 2. Fixed ABM parameters 361 

Sub-module Parameters Symbol Values Remark 
Early 
warning 

Lead time of rainstorm red 
warning 

1- -lead time w  120 min Author 
estimation a 

Lead time of 
ready-to-evacuate warning 

2lead time w- -  60 min Author 
estimation a 

Lead time of 
immediate-evacuation 
warning 

3lead time w- -  30 min Author 
estimation a 

Random 
forest 

Number of trees ntree  500 Calibration 
Number of candidate 
variables 

mtry  6/1/6 b Calibration 

Minimum size of nodes nodesize  10/1/10 b Calibration 
Socio-demographic and 
socio-psychological 
characteristics of resident 
agents 

SSC   Empirical data 

Opinion 
dynamics 

Learning rate θ  0.5 (0.1) c Literature 
reference (Du et 
al., 2017) 

Probability of receiving 
early warnings 

p  0.1 (0.1) c Literature 
reference (Du et 
al., 2017) 

Evacuation threshold τ  2 Empirical data 
Others Visual range VR  40 m Literature 

reference (Wu et 
al., 2022) 

 Evacuation depth 
threshold 

EDT  0.28 m Author 
estimation a 

a These estimations are from the two-month surveying expertise and experience of the authors 362 
in the study area. b x1/x2/x3 indicates the values of the factors are x1, x2, and x3

 for the 363 
rainstorm red, the ready-to-evacuate, and the immediate-evacuation warnings, respectively. c 364 
x1 (x2) indicates the values of the factors are sampled from a normal distribution with mean 365 
value of x1 and variance of x2 366 

The flood-module of the ABM was formed by a two-dimensional (2D) 367 

hydrodynamic model in the Langhe River Basin through HEC-RAS. Terrain 368 

information was obtained from the digital elevation model (DEM) at a spatial 369 

resolution of 12.5 m provided by the Advanced Land Observing Satellite (ALOS). 370 

Cells with size of 30 m were generated within the 2D flow areas. The Manning’s 371 

coefficient was set to a unified comprehensive value of 0.045. The upstream boundary 372 

condition was set as the rainstorm process. The hyetograph was selected by the 373 

measured rainfall process of the 8.12 event. Specifically, the hourly rainfall was 374 

greater than 30.0 mm from 2:00 to 7:00 on August 11, 2021 and the 6-h rainfall was 375 

up to 462.6 mm (see Figure 2). The 6-h rainfall process was input into the HEC-RAS 376 

as the hyetograph. As Baiguo River reservoir is in the outlet, the downstream 377 

boundary condition was set as the normal water level of the reservoir. The 378 
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spatiotemporal changes in the depth and velocity of flash floods were exported after 379 

running the model at a temporal interval of 2 min and spatial resolution of 12.5 m. 380 

 381 
Figure 2. The rainfall process from 19:00 on August 11 to 19:00 on August 12, 2021 382 

of Liulin Meteorological Station 383 

The ABM was run by covering the processes from issuing warnings to flash 384 

flood at a time step of 1 min and spatial resolution of 9.6 m. And 500 agents were 385 

assumed to be involved in the simulations. Due to the inherent randomness of the 386 

ABM, the averages of the outputs from the repeating 1,000 times for running the 387 

ABM were obtained to ensure stable outputs. 388 

3.3. Rainfall data 389 

A series of rainfall data was imported into the ABM for simulating a series of 390 

possible flash flood disasters. Synthetic rainfall series are required to ensure the 391 

representative of the extreme events. The annual maximum 6-h rainfall, P , was 392 

assumed to follow the Pearson III distribution. Its values of mean and vC  in the 393 

basin above Liulin Town were estimated to be 80 mm and 0.6, respectively, according 394 

to Atlas of Statistical Parameters of rainstorm in Hubei Province (2008). /s vC C  was 395 

taken as 3.5 in Hubei Province. 1,000 synthetic rainstorm events were randomly 396 

generated by the Pearson III distribution, and the result was shown in Figure 3. 397 
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 398 
Figure 3. 1,000 synthetic series of rainstorm events 399 

3.4. Model test experiments 400 

To determine the warning threshold under different forecasting skills for 401 

minimizing the relative casualty rate, three possible values of each of the three 402 

parameters (i.e., PAσ , PPµ , and PPσ ) were prepared to reflect different forecasting 403 

skills (see Table 3) and their interactive effects on the determination of warning 404 

threshold were tested. Rainstorm red warning is the highest level of meteorological 405 

risk warning in the mainland of China. When the rainstorm red warning is issued, 406 

floods tend to cause damage and the residents in flood risk area are advised to 407 

evacuate (Wang et al., 2020). If the 6-hour rainfall is up to 150 mm, the rainstorm red 408 

warning will be issued (Shanghai Meteorological Bureau, 2019). Thus, the value of 409 

δ  was taken as 150 mm in the case study. 410 

Table 3. Model test experiment for determining the warning threshold under different 411 

forecasting skills 412 

Parameters Symbol Values 
The accuracy of the forecasting tendency value 

PAσ  
{0.05, 0.10, 0.15} 

The variance of the forecasting values 
PPµ  {0.0, 0.1, 0.2} 

The variance of the variance of the forecasting values 
PPσ  {0.0, 0.1, 0.2} 

Damage threshold δ  150 mm 
Increment of α  for false negative 

FNχ  0.1 
Increment of α  for false positive 

FPχ  0.1 
Increment of α  for true positive 

TPχ  0.1 

Besides the uncertainties of the forecasting, there are uncertainties in people’s 413 

response processes to the uncertain forecasting. To determine the warning threshold 414 

under different forecasting skills and tolerance levels of the failed warnings, the 415 
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warning threshold was determined under different PAσ  and combinations of 416 

parameters related to the increments of α  (i.e., FNχ , FPχ , and TPχ ) through Exp1 417 

in Table 4, and under different PPµ  and combinations of parameters related to the 418 

increments of α  through Exp 2 in Table 4. The higher the FNχ  and FPχ , the 419 

lower the tolerance levels of the people towards the missed event and the false 420 

warnings, respectively. 421 

Table 4. Model test experiment for determining the warning threshold under different 422 

forecasting skills and tolerance levels of the failed warnings 423 

Parameters Symbol Values 
Exp1 Exp2 

The accuracy of the forecasting 
tendency value 

PAσ  
{0.05, 0.10, 0.15} 0.075 

The variance of the forecasting 
values 

PPµ  0.15 {0.0, 0.1, 0.2} 

The variance of the variance of 
the forecasting values 

PPσ  0.075 0.075 

Damage threshold δ  150 mm 150 mm 
Increments of α  for false 
negative, false positive, and true 
positive 

FNχ / FPχ / TPχ  {0.1/0.1/0.1, 
0.8/0.8/0.1, 
0.8/0.1/0.1, 
0.1/0.8/0.1} 

{0.1/0.1/0.1, 
0.8/0.8/0.1, 
0.8/0.1/0.1, 
0.1/0.8/0.1} 

4. Results and discussions 424 

4.1. The casualty rate from people’s response process simulation 425 

To determine the warning threshold based on the people’s response process 426 

simulation, the ABM with different values of P  and α  were run to generate 427 

corresponding casualty rates, and these simulations were taken as sample data to train 428 

the GP emulation as a surrogate model of the ABM, as shown in Figure 4. And it has 429 

shown the variation of casualty rate with α  under different P . There are three 430 

stages of change in the casualty rate as α  increases regardless of P . When α  431 

increases from 0.0 to 0.4, the casualty rate slowly decreases; but as α  continues to 432 

increase to 0.6, the rate of decline becomes faster. When α  is greater than or equal 433 

to 0.6, everyone arrives at the shelters before the flash flood disaster arrives and there 434 

are no casualties regardless of P . This result implies that it is very important and 435 

effective to enhance people’s trust levels in the warnings when people have similar 436 

trust levels in warning information and their neighbors. When people's trust in 437 

warning information decreases, their evacuation decisions will become more 438 

dependent on whether their neighbors are evacuating or not. In other words, the 439 
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increase in the overall evacuation intention ( S ) of agents requires their neighbors to 440 

take evacuation actions. However, taking evacuation actions requires the increase in 441 

S  in turn. Thus, waiting for others’ evacuation ultimately leads to neither an increase 442 

in S  nor the implementation of evacuation actions. 443 

 444 
Figure 4. The casualty rate under different values of P  and α  from ABM 445 

simulations 446 

Because the casualty rate is zero when α  is greater than or equal to 0.6 447 

regardless of P , the one-parameter and two-parameter GP emulations were trained 448 

for α  with a value less than 0.6 and the results were shown in Figure 5. The 449 

training result for one-parameter GP emulation shows that there are also three stages 450 

in the increase of casualty rate as P  increases. When P  increases from 150 to 200 451 

mm, the casualty rate increases; but if P  increases from 200 to 260 mm, the 452 

casualty rate remains almost unchanged. When P  exceeds 260 mm and continues to 453 

increase, the casualty rate starts to increase again. This result indicates that there is 454 

spatial heterogeneity of flood risk levels in the case study. It is necessary to classify 455 

flood risk zones and distinguish water level or rainfall thresholds for triggering 456 

evacuation according to different flood risk levels. The training result for 457 

two-parameter GP emulation shows the complex responses of casualty rate to changes 458 

in α  and P . When α  is less than 0.4, there are three stages of changes in the 459 

casualty rate as P  increases. As α  increases from 0.4 to 0.6, the relationship 460 

between P  and casualty rate tends to be linearly positive, and the difference in 461 
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casualty rates under different P  gradually reduces. This result means that the trust 462 

level in the warnings becomes the dominant factor in determining the casualty rate 463 

when the people’s trust levels in the warnings and their neighbors are similar (i.e., 464 

when the value of α  is the range of 0.4 to 0.6). 465 

 466 
Figure 5. Trained (a) one-parameter and (b) two-parameter GP emulations for 467 

casualty rate 468 

4.2. Determining the warning threshold under different 469 

forecasting skills for minimizing casualties 470 

To determine the warning threshold under different forecasting skills for 471 

minimizing casualties, 250-member Monte Carlo simulations were performed on the 472 

simulation chain of "rainstorm probability forecasting - decision on issuing warnings - 473 

warning response processes" by randomly perturbing the warning threshold, λ , 474 

under different values of parameters controlling the forecasting skills (see Figure 6). 475 

Different rows represent different values of PPµ , and there is a larger forecasting 476 

variance in the sub-graph of the lower row. Similarly, there is a larger variance of the 477 

forecasting variance in the sub-graph of the right column compared to the sub-graph 478 

of the left column. The highest forecasting accuracy is represented by the green 479 

curves, followed by the yellow curves, and finally the red curves. In all the sub-graphs, 480 

there is the highest relative casualty rate in the red curves, followed by the yellow 481 

curves, and finally the green curves. Therefore, the lower the forecasting accuracy, the 482 

higher the relative casualty rate. The optimal warning threshold can be taken as the 483 

value of λ  where the relative casualty rate, rD  is lowest. The optimal warning 484 

thresholds are the lowest in the green curves, followed by the yellow curves, and 485 
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finally the red curves in all the sub-graphs. Thus, the lower the forecasting accuracy, 486 

the higher the optimal warning threshold. The reasons can be found in Figure 7. As 487 

the warning threshold decreases, the number of false warnings and successful 488 

warnings increases, and more warnings are issued. However, if the forecasting 489 

accuracy is low, the proportion of false warnings is higher than that of successful 490 

warnings among the additional warnings issued. For example, as the warning 491 

threshold decreases, the green curve for low forecasting accuracy rises faster than that 492 

for high forecasting accuracy. This means that if the forecasting accuracy is low, as 493 

the warning threshold decreases, the increase speed of false warnings is higher than 494 

that of successful warnings. In addition, when the warning threshold is less than 0.7, 495 

the green curve begins to rise rapidly for 0.15PAσ = , while it does not start to rise 496 

rapidly until the warning threshold is less than 0.5 for 0.15PAσ = . Therefore, when 497 

the forecasting accuracy is low, a high warning threshold should be set. As the 498 

forecasting accuracy increases, lowering the warning threshold can result in more 499 

successful warnings without significantly increasing false warnings, thereby 500 

improving the effectiveness of flash flood warnings. 501 

 502 
Figure 6. The relationship between the relative casual rate, rD , and the warning 503 

threshold, λ , under different values of PAσ , PPµ , and PPσ . Different rows and 504 

columns represent different values of PPµ  and PPσ , respectively. Different colors 505 
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represent different values of PAσ . Each dot shows the result of the individual Monte 506 

Carlo simulation 507 

 508 
Figure 7. The changes in the number of false negative, false positive, and true 509 

positive events as warning threshold decreases, λ  under different values of PAσ . 510 

The range of λ  is reversed from 0.9 to 0.1 511 

In terms of the impacts of the forecasting variance (see Figure 6), there is a 512 

larger forecasting variance and a higher relative casualty rate of three colored curves 513 

in the sub-graph of the lower row. Thus, the larger the forecasting variance, the higher 514 

the relative casualty rate. For the optimal warning threshold, the differences in the 515 

optimal warning thresholds of these three colored curves are smaller in the sub-graph 516 

of the lower row. For instance, as the forecasting variance increases, the optimal 517 

warning thresholds for the red curves decrease while the optimal warning thresholds 518 

for the green curves increase. This result means that the larger the forecasting 519 

variance, the lower the optimal warning threshold for low forecasting accuracy, while 520 

the larger the forecasting variance, the higher the optimal warning threshold for high 521 

forecasting accuracy. When the forecasting accuracy is at a low level, a large 522 

forecasting variance is actually beneficial for improving the forecasting skills. High 523 

forecasting skill means that more successful warnings and fewer false warnings are 524 

issued after lowering the warning threshold. Therefore, if the forecasting accuracy is 525 

at a low level, as the forecasting variance increases, the warning threshold can be 526 

lowered. On the contrary, if the forecasting accuracy is at a high level, as the forecast 527 

variance increases, increasing the warning threshold can significantly decrease the 528 

false warnings and improve the effectiveness of flash flood warnings. Finally, we 529 

focused on the impacts of the variance of the forecasting variance. Similar to the 530 

impacts of the forecasting variance, the larger the variance of the forecasting variance, 531 
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the higher the relative casualty rate. As the variance of the forecasting variance 532 

increases, the optimal warning threshold tends to decrease for low forecasting 533 

accuracy or to increase for high forecasting accuracy. 534 

The impacts of the three parameters (i.e., PAσ , PPµ , and PPσ ) on the shape of 535 

the relationship curve between rD  and λ  can be analyzed as follows. As shown in 536 

Figure 6, PAσ  determines the height of the curve, while PPµ  and PPσ  determine 537 

the width of the curve. Specifically, as the forecasting accuracy increases, the 538 

stationary point of the curve moves down and the curve becomes higher; as the 539 

forecasting variance or the variance of the forecasting variance increases, the curve 540 

becomes narrower. If the forecasting accuracy is high and the forecasting variance and 541 

the variance of the forecasting variance are large, the curve will become high and 542 

narrow, such as the green curve for 0.2PPµ =  and 0.2PPσ = . And there is only a 543 

low relative casualty rate near the optimal warning threshold in this green curve. Thus, 544 

it is more important to determine the optimal warning threshold for minimizing 545 

casualties if the forecasting accuracy is higher, and the forecasting variance and the 546 

variance of the forecasting variance are larger. 547 

4.3. Determining the warning threshold under different 548 

forecasting skills and tolerance levels of the failed warnings for 549 

minimizing casualties 550 

To determine the warning threshold under different forecasting skills and 551 

tolerance levels of the failed warnings for minimizing casualties, the simulation chain 552 

of "rainstorm probability forecasting - decision on issuing warnings - warning 553 

response processes" was run with random values of λ  under different PAσ  and 554 

combinations of parameters related to the increments of α  (i.e., FNχ , FPχ , and 555 

TPχ ) (see Figure 8), and different PPµ  and combinations of parameters related to the 556 

increments of α  (i.e., FNχ , FPχ , and TPχ ) (see Figure 9). Owing to the similar 557 

roles of PPµ , and PPσ , the effects of PPσ  on the determination of warning 558 

threshold were not explored here. As shown in Figure 8, the optimal warning 559 

thresholds for the yellow curves are the lowest. The yellow curves represent scenarios 560 

that people’s trust in warnings is sensitive to false negative events and people have a 561 

low tolerance level for the missed events. To reduce the missed event ratio, the 562 
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warning threshold should be lowered (see Figure 8g). Therefore, the warning 563 

threshold should be lowered for increasing people’s trust levels in warnings and 564 

reducing casualties if people have a lower tolerance level for the missed events. 565 

Similarly, the warning threshold should be increased if the people's tolerance levels 566 

for the false warnings become lower (see the red curves). And if the people's tolerance 567 

for both the missed events and the false warnings decreases to the same level, the 568 

optimal warning threshold remains almost unchanged, but the relative casualty rate 569 

overall increases (see the blue curves). As for the relative casualty rate, the relative 570 

casualty rates of the yellow curves are lower than those of the red curves. This result 571 

suggests that compared to the missed events, the people’s low tolerance levels for the 572 

false warnings are less conducive to the effectiveness of flash flood warnings. As 573 

shown in Figure 7, the number of false warnings is greater than the number of missed 574 

events in general. Therefore, if the people’s tolerance levels for the false warnings is 575 

low, their trust levels in warnings are more likely to decrease, leading to the effects of 576 

"cry wolf". 577 

By comparing Figure 8a and Figure 8b, the overall height of the curves 578 

decreases when the forecasting accuracy decreases, as discussed in the last paragraph 579 

of section 4.2. However, compared to green curve, the heights of other curves 580 

decrease more significantly. And the relative casualty rates are high at any warning 581 

threshold (i.e., 0.75rD > ) except for the green curve when the PAσ  increases from 582 

0.05 to 0.1. It is more pronounced when the PAσ  further increases to 0.15. Therefore, 583 

as the forecasting accuracy decreases, the benefits gained by adjusting the warning 584 

threshold based on the people's tolerance levels of the failed warnings decreases. In 585 

other words, no matter how the warning threshold is adjusted, the relative casualty 586 

rate is high and the effectiveness of warning is at a low level. 587 
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 588 
Figure 8. (a-c) The relationship between the warning threshold, λ  and the relative 589 

casualty rate, rD  under different PAσ  and combinations of parameters related to the 590 

increments of α  (i.e., FNχ , FPχ , and TPχ ). (d-f) Same as (a-c) but for 591 

time-averaged α . (g-i) The relationship between the warning threshold, λ , and the 592 

false warning ratio, FWR , and the missed event ratio, MER , under different PAσ . 593 

Each dot shows the result of the individual Monte Carlo simulation 594 

In terms of the effects of the forecasting variance and the tolerance levels of the 595 

failed warnings on the determination of warning threshold as shown in Figure 9, the 596 

warning threshold should be decreased if people have a lower tolerance level for the 597 

missed events, and vice versa. And compared to the missed events, the people’s low 598 

tolerance levels for the false warnings are less conducive to the effectiveness of flash 599 

flood warnings. These findings are consistent with the results in Figure 8. 600 

Furthermore, we find that the difference in the optimal warning thresholds of these 601 

colored curves decreases as the forecasting variance increases as shown in Figure 602 

9a-Figure 9c. As discussed in the last paragraph of section 4.2, the curve becomes 603 

narrower as the forecasting variance increases. If the width of the curves decreases, 604 

the difference between their optimal warning thresholds will also decrease. Therefore, 605 
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as the forecasting variance increases, the difference in the optimal warning thresholds 606 

of these curves will decrease, and the adjustment space for the warning threshold 607 

based on the people's tolerance levels will also decrease. 608 

If the green curve represents the result of the baseline scenario where both FNχ  609 

and FPχ  equal 0.1, increment of the values of FNχ  and FPχ  (i.e., lowering 610 

tolerance levels for the missed events and the false warnings) will result in a series of 611 

curves, and these curves will be enveloped by the green curve in Figure 9. Therefore, 612 

only when the green curve is high enough, can the relative casualty rate of this series 613 

of curves be low enough, and the effectiveness of flash flood warnings be sufficiently 614 

improved. And only when the green curve is wide enough, can the difference in the 615 

optimal warning threshold for this series of curves be large enough, and there can be 616 

enough room for adjustment the warning threshold. In summary, by increasing the 617 

height and width of the green curve, the adjustable room for the warning threshold 618 

will be larged and the effectiveness of flash flood warnings will be improved. As the 619 

forecasting accuracy increases, the green curve becomes higher. And as the 620 

forecasting variance decreases, the green curve becomes wider. Therefore, under the 621 

premise of improving the forecasting skills (i.e., increasing forecasting accuracy and 622 

decreasing forecasting variance), adjusting the warning threshold based on the 623 

people’s tolerance levels of the failed warnings is one of the ways to improve the 624 

effectiveness of flash flood warnings. 625 
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 626 
Figure 9. (a-c) The relationship between the warning threshold, λ  and the relative 627 

casualty rate, rD  under different PPµ  and combinations of parameters related to the 628 

increments of α  (i.e., FNχ , FPχ , and TPχ ). (d-f) Same as (a-c) but for 629 

time-averaged α . (g-i) The relationship between the warning threshold, λ , and the 630 

false warning ratio, FWR , and the missed event ratio, MER , under different PPµ . 631 

Each dot shows the result of the individual Monte Carlo simulation 632 

5. Conclusions 633 

A method has been proposed to determine the warning threshold for minimizing 634 

casualties based on the people’s response process simulation. A process-based ABM 635 

was developed to simulate people’s response processes to flash flood warnings. A 636 

simulation chain of "rainstorm probability forecasting - decision on issuing warnings - 637 

warning response processes" was conducted to determine the warning threshold based 638 

on the ABM. The main conclusions are as follows. 639 

The casualty rate is jointly controlled by the warning information source and 640 

precipitation. If the people’s trust levels in official warnings are below a certain 641 

threshold, precipitation is the dominant factor in controlling the casualty rate. If the 642 
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people have a similar level of trust in official warnings and neighbor behaviors, the 643 

credibility of the warning information source is the dominant factor in controlling the 644 

casualty rate. 645 

The warning threshold has been determined under different forecasting skills for 646 

minimizing casualties. The lower the forecasting accuracy, the higher the optimal 647 

warning threshold. And the larger the forecasting variance or the variance of the 648 

forecasting variance, the higher (lower) the optimal warning threshold for high (low) 649 

forecasting accuracy. Furthermore, the impact pattern of forecasting skills on the 650 

shape of the relationship curve between the relative casualty rate and the warning 651 

threshold has been revealed: the curve becomes higher as the forecasting accuracy 652 

increases, and the curve becomes narrower as the forecasting variance or the variance 653 

of the forecasting variance increases. 654 

The warning threshold has been determined under different forecasting skills and 655 

tolerance levels of the failed warnings for minimizing casualties. The warning 656 

threshold should be decreased (increased) if people have a lower tolerance level for 657 

the missed events (the false warnings). However, if the forecasting accuracy is low 658 

and the forecasting variance is large, the space for adjusting the warning threshold is 659 

limited, and no matter how the warning threshold is adjusted, the casualty rate 660 

remains at a high level, and the effectiveness of flash flood warnings is limited. 661 

Therefore, under the premise of improving the forecasting skills, adjusting the 662 

warning threshold based on the people’s tolerance levels of the failed warnings is one 663 

of the ways to improve the effectiveness of flash flood warnings. 664 

Although our study provides valuable insights into the determination of warning 665 

threshold for minimizing casualties, it should be noted that there are some 666 

assumptions underlying the simulation method. The parameters of ABM were 667 

assumed to be time invariant except for α . Updating the values of these parameters 668 

based on past warning outcomes will provide more information for determining the 669 

warning threshold. The hyetograph was selected as the measured rainfall process of 670 

the 8.12 event. More uneven hyetographs should be taken in the flash flood 671 

simulation, and the impact of hyetograph on the warning threshold determination can 672 

be explored in further research. The casualty rate caused by pluvial floods varies with 673 

different spatial distribution of rainfall. The people’s trust levels in the warnings were 674 

assumed to be only affected by the past warning outcomes. There are other factors 675 

(e.g., social education and government authority) that should be incorporate into the 676 
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estimation of the people’s trust levels. Therefore, there are still works can be done in 677 

the future. 678 
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