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Reviewer #2 

The manuscript "Determining the threshold of issuing flash flood warnings based 

on people’s response process simulation" by Zhang et al. presents a novel and 

comprehensive approach to determining flash flood warning thresholds that considers 

the complexities of human response processes, which is a significant advancement over 

traditional methods that often focus solely on natural hydrological processes. 

Additionally, the study examines the uncertainties in flash flood forecasting that affect 

the effectiveness of warning thresholds and the role of people’s tolerance for false 

warnings and missed events in setting these thresholds. The manuscript is generally 

well-written, and I have only a few suggestions for the authors to consider before it can 

be accepted for publication. 

Response: Thank you very much for this positive assessment. We have followed 

your comments and revised the manuscript carefully. Please see the point-by-point 

responses to your comments as follows. 

 

Comment 1 

While the introduction highlights the limitations of existing approaches, it lacks 

explicit statements of the specific research questions the study aims to address. I would 

suggest that the authors improve the introduction to more clearly frame the study's 

objectives and guide the reader through the subsequent sections. 

Response 1 

Thanks for the insightful comments. We have revised the last paragraph of the 

introduction to clarify the research objectives, especially the relationship between 

research objectives and the limitations of existing approaches. The modified content is 

as follows:  

The objective of this study includes two parts. Firstly, to simulate people’s 

response processes to flash flood warnings and reveal the impact of the warning 

information weight given by people on the effectiveness of warnings, this study 

aims to develop a process-based ABM that combines natural and social processes 

(section 2.1). Secondly, to determine the threshold of issuing warnings (called 
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warning threshold hereafter) based on the social processes of warning responses, 

this study attempts to propose a simulation chain of "rainstorm probability 

forecasting - decision on issuing warnings - warning response processes" based 

on the ABM (section 2.2). Through the proposed simulation framework for 

determining the warning threshold, we will examine the uncertainties in flash 

flood forecasting that affect the determination of warning thresholds and the joint 

impact of forecasting skills and people’s tolerance levels of failed warnings on the 

warning threshold determination. Liulin Town in China is selected as a case study 

to demonstrate the proposed method, and to provide valuable insights into the 

determination of warning threshold for improving the effectiveness of flash flood 

warnings. 

 

Comment 2 

For the methodology section, I strongly recommend adding a diagram or flowchart 

to illustrate the relationships between the different modules and the overall simulation 

chain, including key variables and processes. This will be helpful for the readers to 

quickly understand the complex interactions and flow of information within the model. 

Response 2 

Thank you for the constructive comment. We have added a modeling flowchart 

that presents the simulation chain of “forecasting – warning - response” (see Figure 

R1) in the revised manuscript for illustrating the relationship between key 

processes/variables. A detailed description of the figure has also been given in the 

revised manuscript as follows: 

First, rainstorm probability forecasting is performed according to actual rainfall. 

And then the warning administrators make decisions to issue warnings based on 

the rainstorm probability forecasting and warning thresholds. If it is decided to 

issue warnings, the warning information and the actual rainstorm jointly drive the 

surrogate model of ABM to simulate the people’s response processes. Finally, the 

casualty rate is estimated and the warning threshold that minimizes the casualty 

rate can be determined based on the proposed modeling framework. 
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Figure R1. The proposed modeling framework for determining the warning threshold based on 

people’s response processes (the parameters in a simulation step are indicated by a rectangular 

box with the corresponding color background) 

 

Comment 3 

In the methods, some parameters are estimated based on author expertise and 

empirical data. I would suggest more information to justify the parameter settings. For 

example, although I assume that the parameters in section 2.1.3 are validated in the 

authors' previous study, at least the rationale behind the choice should be clearly 

articulated. In addition, it is not clear why the casualty probability is estimated using a 

logistic regression equation based on flood water depth and velocity. Please clarify the 

rationale for the choice of this particular equation. 

Response 3 

Thank you for the insightful comment.  
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For the casualty rate estimation module, we have added an explanation regarding 

the rationale for the choice of the logistic regression equation and the setting of its 

parameters in the revised manuscript. The detailed explanation in the revised 

manuscript is as follows: 

Takahashi et al. (1992) established a connection between the characterization of 

human stability (safe or fall) and flow features such as depth (h) and velocity (u) 

through a casualty experiment, and the result is shown in Figure R2. If variable z 

is set to the linear addition of h and u (i.e., z = β0 + β1h + β2u), a logistic regression 

equation can be used to fit the relationship between the characterization of human 

stability (if the person falls, its value is one, otherwise it is zero) and z (see Figure 

R3). Based on the experiment data, the parameters (β0, β1, and β2) can be estimated, 

and the logistic regression equation will be used to predict the probability of 

casualty by depth and velocity. 

 

Figure R2. Casualty experiment - results of Takahashi et al. (1992) experiment 
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Figure R3. Casualty estimation - binomial logistic regression derived from the experimental 

data of Takahashi et al. (1992) 

The lead times of the three stages of warning were parameterized based on author 

expertise, and parameters β and p were set based on existing literature. Therefore, we 

have also added the rationale behind the parameter setting in the revised manuscript as 

follows: 

The lead times of the three stages of warning were parameterized from the two-

month surveying expertise and experience in the study area. Specifically, the lead 

time of rainstorm red warning is around 180 min in China, and here the lead time 

was set to 120 min as a conservative and adverse scenario. As people should 

immediately move to a shelter after receiving an immediate-evacuation warning, 

the lead time of immediate-evacuation warning is related to the travel time of the 

people to the shelter. The person farthest from the shelter needs about 25 min to 

travel to the shelter, so the lead time of immediate-evacuation warning was set to 

30 min. According to the lead times of rainstorm red warning and immediate-

evacuation warning, it was assumed that the lead time of ready-to-evacuate 

warning was between the two, that is, 60 min. The three hyperparameters of the 

random forest model were calibrated by the empirical data from our survey. 
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The setting of parameters β and p were based on existing literature, aiming to 

reflect people’s general behavior. β = 0.5 represents a general and unbiased 

behavior that gives same weights to current flood information and past opinion on 

flood risk. And p = 0.1 means flood information being checked every ten minutes. 

 

Comment 4 

In the case study section, it is not clear what the role of event rainfall and synthetic 

rainfall events are in ABM. Also, if possible, please try to improve Figure 3 to make it 

more informative, e.g., use a histogram and indicate the level of real event rainfall in it. 

Response 4 

Thanks for this helpful comment. The rainfall is the driving data of the flood 

module of ABM. After synthetic rainfall series was generated through statistical 

methods, the rainfall events in the synthetic rainfall series were input into the flood 

module of ABM in sequence, and previous rainfall events will have an impact on 

subsequent rainfall events. A detailed explanation that has been added in the revised 

manuscript is as follows: 

A rainfall event in the synthetic rainfall events was input into the flood module of 

ABM, and then converted into a flash flood event. According to the flash flood 

event, the degree of flash flood disaster had been estimated, and people's attitudes 

towards the corresponding warning had been recorded. The people's attitudes can 

influence the subsequent warning response processes. Then, the next rainfall event 

in the synthetic rainfall events was input into the ABM, and the above simulation 

process was repeated.  

The Figure 3 in the original manuscript has been modified to include rainfall for 

different return periods and rainfall threshold causing disasters, as shown in Figure R4. 

The return period of rainfall in the 8.12 event (i.e., 462.6 mm) exceeds 1,000 years. 

And the frequency of the synthetic rainfall events was summarized through histogram 

plot. There is a decreasing trend of the frequency with increasing rainfall. The number 

of rainfall event reaching the damage threshold and exceeding the return period of 100 

years and 1,000 years were only 88, nine, and one, respectively.  
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Figure R4. 1,000 synthetic series of rainfall events (right). Histogram statistical results of the 

synthetic rainfall events. The three horizontal lines from top to bottom represent the rainfall for 

1000-year return period, 100-year return period, and triggering disasters, respectively 

 

Comment 5 

The results focus heavily on the simulation results without sufficient discussion of 

the implications and limitations of the results. For example, while the simulation results 

are detailed, there appears to be limited validation of these results against real-world 

data or historical flood events. Also, the results rely heavily on behavioral assumptions 

embedded in the ABM, such as confidence levels and evacuation intentions; I would 

suggest discussing the limitations of these assumptions and how they might affect the 

simulation results. In addition, the manuscript assumes that most parameters in the 

ABM are time-invariant, with the exception α. This simplification may overlook the 

dynamic nature of human behavior and environmental conditions. It would be 

beneficial to explore how varying these parameters over time might affect the model 

results. 

Response 5 

Thanks for the valuable comments. We acknowledge that the discussion on the 

limitations and implications of the research results in the paper is weak. Thus, we have 

added a new section 4.4 called “implication and limitations” in the revised manuscript. 

In the section, the impact of time-varying parameters on the trade-off in the warning 

threshold determination will be discussed. Afterwards, the limitations of the 
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assumptions in the model structure (i.e., generalization of disaster information sources) 

and their impact on the warning threshold determination will be explained. Finally, 

some considerations for model verification and future verification prospects will be 

presented. The detailed content of the section that has been supplemented is as follows: 

Although the simulation results have deepened our understanding of the warning 

threshold determination, especially the impact of forecasting skills and people’s 

tolerance levels of the failed warnings on the warning threshold determination, 

the simulation results should be carefully interpreted due to the assumptions 

underlying the simulation method. As highlighted in the simulation results, the 

warning threshold should be appropriately determined due to the trade-off 

between multiple factors affecting the warning threshold (see Figure R5). 

Specifically, as the warning threshold increases, the number of missed events and 

the loss of α due to missed events will increase. And as the missed events increase, 

the level of disaster preparedness will decrease. The loss of α and the low level of 

disaster preparedness are not conductive to reducing disaster damage. However, 

as the warning threshold increases, the number of false warnings and the loss of 

α due to false warnings will decrease, which is conductive to reducing disaster 

damage. Therefore, there is a trade-off in the warning threshold determination. 

However, it has been assumed that the experience of warnings (i.e., the success or 

failure of past warnings) only affects people's trust levels in warnings (i.e., α). 

Actually, the experience of warnings can also affect people's attitudes and 

behaviors towards flash floods. Specifically, the dangerous experiences on the 

property/life losses can form deep flash flood memories. The damage memories 

make people more inclined to evacuate after receiving warnings (Cuite et al., 2017; 

Morss et al., 2018). The higher the warning threshold, the more missed events and 

dangerous experiences there will be, and people's damage memories will be more 

profound. The profound damage memories increase people’s evacuation intention 

and reducing disaster damage. Therefore, if combined with the dynamism of 

human behaviors, there still be a trade-off of the warning threshold determination 

but the optimal warning threshold will increase. 
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Figure R5. A schematic diagram that illustrates the trade-off in the warning threshold 

determination 

The development of the ABM is the core of the simulation flow. The simulation 

results based on the ABM show that there is a monotonic positive relationship 

between α and casualty rate (see Figure 5). The rationale behind the monotonic 

relationship is that the higher the value of α, the more likely a person is to evacuate 

after receiving a warning. If someone has evacuated, he/she will lead more people 

to evacuate, because neighbor behavior is an important information source for a 

person to make evacuation decisions. The developed ABM generalizes these two 

information sources (i.e., warning information and neighbor behavior) to simulate 

the processes of people’s evacuation decision making. However, environmental 

cue (e.g., rainfall condition) is also an information source (Lindell et al., 2019). 

The monotonic positive correlation relationship between α and casualty rate may 

no longer hold true if the environmental cue is incorporated in the ABM. For 

example, if there is a flash flood disaster but no warning is issued, our ABM 

assumes that no one will evacuate. In fact, if people observe the rainfall that may 

lead to flash flood disasters, they will evacuate even if no warning is issued. The 

high trust levels in warnings (α) may have suppressed their evacuation intention, 

leading to a higher casualty rate instead. If the monotonic positive correlation 

relationship between α and casualty rate no longer holds true, the curve shape in 

Figure 6 will no longer be unimodal, and the determination of the optimal warning 

threshold will become more complex. 
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It is a tough work to verify the hydrodynamic simulation and people’s evacuation 

process simulation in small watersheds due to the difficulty in collecting data. The 

field flood survey was used to verify the water depth simulated by HEC-RAS. The 

flood survey showed that the flood depth of high-rise houses was 1.75 m, while 

that of houses with low terrain was 3.85 m in the 8.12 event (Shaojun et al., 2022). 

The survey results are roughly consistent with our simulation. In further studies, 

technologies such as unmanned aerial vehicle and radar can be used to obtain 

high-precision inundation data, and the simulation results can be finely verified 

based on the inundation data. For the verification of the evacuation processes 

simulated by the social sub-module in the ABM, indirect verification was 

conducted by investigating and simulating people’s evacuation intention. To 

directly verifying the evacuation process simulation, milling time can be surveyed 

and then converted into data on the evacuation processes in further studies. Based 

on the data, the parameters of the social sub-module in the ABM can be calibrated 

and verified. 

 

Comment 6 

Although the case study describes the town’s geomorphology and flood risk areas, 

it does not clearly link these local conditions to the model results and findings. Please 

consider to discuss how specific local conditions (e.g., topography, infrastructure) 

influenced the simulation results and how these findings can be generalized to other 

regions with similar or different conditions. 

Response 6 

Thanks for the constructive comments. We have added a paragraph in section 4.4 

to discuss how to integrate specific local conditions into ABM simulation and the 

impact of different local conditions on our research findings. The detailed discussion in 

the revised manuscript is as follows: 

The ABM was applied to Liulin Town where residences are located along Lang 

River and listed as high-risk and relatively high-risk areas. If there is a flash flood 

disaster, the whole town along the river is likely to be submerged and all the 

people are required to evacuate. Therefore, the modeling region with an area of 
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0.28 km2 is set as a whole to receive forecasting and warnings. However, if study 

region is large and terrain is complex, the study region needs to be divided into 

multiple sub-regions and then modeled by the ABM accordingly. For each sub-

region, forecasting and warnings also need to be produced and issued separately. 

However, in real world, there is usually a lack of clarity of the sub-region impact 

of some of the warnings owing to the limitation of forecasting skills. Forecasting 

and warning often only target a certain region and are difficult to distinguish the 

different degrees of impact within that region (Roberts et al., 2022). Given a 

unified forecast and warning for a region, the sub-region along river or at high-

risk areas is prone to missed events, while the sub-region located on a high ground 

is prone to false warnings. If it is difficult to improve forecasting skills, modifying 

people’s tolerance levels of the failed warnings will become one of the ways to 

improve the effectiveness of warnings. For example, education or risk 

communication can be conducted to inform residents of the background and 

production process of warning information, allowing them to understand the 

reasons for false warnings and missed events, as well as the obstacles to eliminate 

these issues. Implementing targeted education or risk communication based on 

geographical location to adjust people’s tolerance for corresponding types of 

failed warnings can compensate for the lack of accuracy in forecasting and 

warning. We will add the above discussion in the revised manuscript. 
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