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Abstract. Soil moisture plays a crucial role in hydrological and ecological systems. While remote sensing has advanced 

large-scale soil moisture monitoring, current satellite products often face spatial resolution limitations. This study presents a 

reliable framework for downscaling satellite-derived soil moisture, leveraging ensemble machine learning and multiple 15 

knowledge sources. Our approach efficiently converges outputs from diverse machine learning algorithms through Bayesian 

model, harnessing spatiotemporal domains and point-wise data. Covering approximately five million square kilometres in 

the Three Northern region of China, our model generates 1-km daily soil moisture maps, accurately reflecting soil water 

content patterns and showing spatial consistency with outputs from two credible numerical models. Validation against in situ 

measurements from three ground networks confirms the accuracy of the downscaled dataset. Comparative analysis 20 

demonstrates the superiority of the Bayesian-based method over four individual machine learning methods. The high-

resolution dataset produced proves effective in capturing drought dynamics, particularly extreme drought patterns. The 

robustness of our framework is further affirmed through uncertainty analysis, employing leave-one-out and progressive 

sample reduction approaches. In summary, our ensemble machine learning-based framework offers an efficient solution for 

acquiring accurate and high-resolution soil moisture data across large regions, with implications for water resource 25 

management and drought monitoring. 

1 Introduction 

Soil moisture serves as a nexus between surface water and groundwater, playing a foundational role in land surface 

ecosystem and hydrological cycle. It influences essential hydrological processes such as water infiltration, surface runoff, 

soil evaporation, and vegetation transpiration. Soil moisture monitoring has become pervasive across various domains, 30 

including applications in drought surveillance (Zhang et al., 2016), crop yield estimation (Chen et al., 2011), weather 
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forecasting (Drusch et al., 2009), etc. Considering its importance, the Global Climate Observing System (GCOS) and the 

United Nations Framework Convention on Climate Change (UNFCCC) have recognized soil moisture as a fundamental 

variable within terrestrial realms. Reliable soil moisture datasets are crucial but urgently demanded for research and 

applications in hydrology (Robinson et al., 2008; Western et al., 2004), agriculture, climatology (Anderson et al., 2007) and 35 

water resources management (Bastiaanssen et al., 2000; Dobriyal et al., 2012). 

Various manners and methodologies have been designed for obtaining soil moisture. In-situ measurements offer temporal 

dynamics at the station level through extensive regional, national, and global monitoring networks (Dorigo et al., 2011; 

Ochsner et al., 2013). However, achieving spatial continuity across expansive regions remains challenging due to the limited 

ground stations. Advances in remote sensing technology, such as microwave sensors, have enabled the collection of soil 40 

moisture data on a larger scale (Petropoulos et al., 2015). Given their susceptibility to soil moisture variations and reduced 

susceptibility to diverse weather conditions, microwave remote sensors exhibit the capability to accomplish all-weather earth 

observation. A diverse of satellite-based soil moisture products is readily accessible, including Advanced Microwave 

Scanning Radiometer-Earth Observation System (AMSR-E) (Njoku et al., 2003), Soil Moisture Active Passive (SMAP) 

(Entekhabi et al., 2010), Soil Moisture and Ocean Salinity (SMOS) (Berger et al., 2002), and the Fengyun (FY) series of 45 

satellites developed independently by the National Satellite Meteorological Center of China Meteorological Administration 

(Parinussa et al., 2014). To obtain optimal spatial and temporal coverage and generate long duration sequence of soil 

moisture data, as part of the Climate Change Initiative (CCI), the European Space Agency (ESA) produces the combined 

microwave soil moisture product, ESA CCI SM (Dorigo et al., 2017). While these products are valuable for certain 

applications (Molero et al., 2016), the spatial resolution of these products—largely tens of kilometers—limits the ability to 50 

capture he spatial heterogeneity of soil moisture (Njoku and Entekhabi, 1996; Schmugge, 1998). 

Soil moisture downscaling, an effective technique for improving spatial resolution, has received substantial attention (Zhang 

et al., 2022). Statistical approaches and land surface models (Famiglietti et al., 2008; Grayson and Western, 1998) have been 

widely used, but these methods typically require large amounts of parametric data with ground data. Various fusion methods 

integrating multi-source satellite remote sensing data have been developed, falling into categorized like active-passive 55 

microwave and optical-microwave data integration. While active-passive microwave fusion offers high accuracy, its cost and 

data processing complexity are notable. All these mentioned models encounter challenges related to model structure 

constraints, data quality, scale disparities, and geographic limitations (Peng et al., 2017; Werbylo and Niemann, 2014). 

With rapid advancements in computer performance and artificial intelligence, the integration of machine learning techniques 

into soil moisture downscaling has marked a stride forward (Ali et al., 2015). Techniques like random forest (RF) and 60 

support vector regression (SVR) (Abbaszadeh et al., 2019; Srivastava et al., 2013) have showed the potential to achieve high 

accuracy and resolution in soil moisture data. Nonetheless, current studies often rely on a single machine learning method or 

the comparison of disparate single methods, inadvertently exposing themselves to limitations related to the heterogeneous 

nature of environmental processes (Jordan and Mitchell, 2015). Deep learning, a new generation technology in machine 

learning, shows promise across various soil moisture studies (Fang et al., 2019; Liu et al., 2022a; Ma et al., 2024). However, 65 
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this complex architectural model requires substantial training data to capture complicated patterns compared to traditional 

machine learning, posing challenges when applied to satellite-derived soil moisture data with sample limitations. Meanwhile, 

deep learning models may face difficulties in generalizing effectively across diverse environmental conditions, potentially 

degrading performance in regions not adequately represented in the training data (Ma et al., 2021b). 

The utilization of ensemble machine learning emerges as an imperative alternative, combing the strengths of various learners 70 

to enhance robustness and uncertainty assessment. While a few studies, such as Shangguan et al. (2023) and Abbaszadeh et 

al. (2019), have combined downscaling results from multiple machine learning techniques to improve soil moisture 

downscaling accuracy, ensemble machine learning in soil moisture downscaling encounters challenges related to 

uncertainties. These challenges include selecting the optimal blend of models, harmonizing outputs from models trained on 

distinct datasets, and assigning weights to optimize performance (Ma et al., 2021a; Sagi and Rokach, 2018; Zounemat-75 

Kermani et al., 2021). Existing ensemble machine learning often overlooks the incorporation of prior knowledge, a crucial 

regularization mechanism that prevents overfitting and enhances model generalization. This may magnify systematic errors 

and biases among individual models instead of correcting them. Collectively, the extent to which ensemble machine learning 

contributes to improving downscaled soil moisture quality remains unclear.  

Given the limitations of current soil moisture downscaling methods, we propose a robust ensemble machine learning 80 

framework that considers both spatial and temporal domains, with a focus on prior knowledge from in-situ ground 

measurements. Covering the extensive Three Northern region in China (over five million square kilometres), our study 

addresses the challenges posed by diverse landscapes and climatic variations. Our work assesses the model’s robustness and 

effectiveness through: 1) evaluating downscaled results using diverse in-situ measurements; 2) comparing with alternative 

machine learning methods and credible land surface model outputs; 3) demonstrating the model’s ability in delineating 85 

drought patterns; and 4) analyzing model uncertainty by examining the impact of refined explanatory variables and a 

reduction in training samples. 

2 Study area and materials 

2.1 Study area 

The study area is focused on the Three North Protection Forest Project Area, referred to as the Three Norths region. It is 90 

located between 73°26′ ~ 127°50′ E and 33°30′ ~ 50°12′ N. The Three North region refers to the part of the area north of 

Kunlun-Qinling-Daba Mountains, spanning three major geographic areas in northwest, north and northeast China. The 

region is relatively arid, with precipitation decreasing in a north-to-south and east-to-west pattern across the region, with an 

average annual precipitation of about 20 ~ 450 mm. Due to the influence of precipitation and other factors, the natural 

vegetation types are desert, grassland, forest grassland and forest, from west to east. The study area covers diverse climatic 95 

zones, featuring a temperate monsoon climate in the northeast and northern regions, while the northwest part exhibits 

https://doi.org/10.5194/hess-2024-129
Preprint. Discussion started: 8 May 2024
c© Author(s) 2024. CC BY 4.0 License.



4 

 

temperate continental and alpine climates (Fig. S1). The study area exhibits a diverse range of land cover patterns types (Li 

et al., 2023), as shown in Fig. 1. 

 

Figure 1: Geographic Context of the Study Area. (a) Spatial distribution of land types and (b) elevation within the study area. The 100 

dots on the maps represent the precise locations of the selected ground stations employed in this research. (c) Photographic 

representation showcasing characteristic land types in northern China. 

2.2 Dataset 

The downscaling of satellite-based soil moisture data requires supplementary high-resolution knowledge. Environmental 

data featuring high spatial resolution, involving land surface temperature (LST), normalized difference vegetation index 105 

(NDVI), albedo, elevation, and precipitation, have been identified (feasibility of chosen explanatory factors can be seen in 

section 3.1). Validation includes a diverse array of ground station datasets, supplemented using drought index data for 

drought pattern identification. Comparisons are further conducted with outputs from the European Centre for Medium-Range 

Weather Forecasts (ECMWF) fifth-generation global atmospheric reanalysis (ERA5) and the Noah land surface model. The 

specific descriptions of dataset used in this study are listed in Table 1. 110 

 

 

 

 

 115 
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Table 1. Summary of available dataset  

ID Datasets Description 
Spatial/Temporal 

resolution 

1 ESA CCI Soil Moisture (SM) 25km/daily 

2 MOD11A1 Land surface temperature (LST) 1km/daily 

3 MOD13A2 
Normalized difference vegetation 

index (NDVI) 
1km/16d 

4 MCD43C3 Surface albedo (ALB) 0.05°/daily 

5 SRTM DEM Elevation 90m/- 

6 GPM Precipitation 0.1°/daily 

7 PDSI 
Palmer Drought Severity Index 

drought index 
4 km/month 

8 ERA5 Soil moisture (SM) 0.1°/daily 

9 Noah Soil moisture (SM) ~6 km/daily 

10 China Crop Growth and Development and 

Farmland Soil Moisture Decadal Data Set 
In situ soil moisture -/ten days 

11 Chinese Ecosystem Research Network field 

stations 
In situ soil moisture -/five days 

12 National Qinghai-Tibet Plateau Scientific 

Data Center 
In situ soil moisture -/daily 

2.2.1 ESA CCI Soil Moisture Data 

This study relies on ESA CCI soil moisture data as its primary source. Part of the European Space Agency’s Global 

Observing Program, the CCI Soil Moisture Project aims to create a consistent global soil moisture dataset by integrating data 120 

from active and passive microwave sensors. The ESA CCI SM product combines observations from both sensor types, 

generating active (ESA CCI SM A), passive (ESA CCI SM P), and combined active-passive (ESA CCI SM C) soil moisture 

products. All ESA CCI SM products offer daily global coverage at a spatial resolution of 0.25 degrees. We use the combined 

active-passive ESA CCI products from 2003 to 2010, obtained from the ESA data archive (https://www.esa-soilmoisture-

cci.org/). 125 

2.2.2 Moderate Resolution Imaging Spectroradiometer (MODIS) dataset 

The integration of MODIS products within satellite-derived soil moisture downscaling has been extensively employed. The 

MODIS instrument operates on the Terra and Aqua spacecraft, which covers the largest number of spectral bands of any 

medium-resolution imager globally and contributes to a range of land and water applications. Specifically, MODIS daily 

product MOD11A1 is collected to derive LST, while 16-day vegetation index product MOD13A2 is utilized to compute 130 

NDVI, both with a spatial resolution of 1 km. Surface albedo is extracted from the daily albedo product MCD43C3. These 

datasets are procured from the Land Processes Distributed Active Archive Center (LP DAAC) (https://lpdaac.usgs.gov/). 
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2.2.3 Digital elevation model (DEM)  

Elevation is a critical topographic attribute in various studies concerning soil moisture downscaling (Mascaro et al., 2011; 

Wilson et al., 2005). We incorporate the DEM as supplementary data to refine the resolution of ESA CCI soil moisture data. 135 

The DEM data are sourced from NASA’s Shuttle Radar Topography Mission (SRTM), featuring a spatial resolution of 90 

meters.  

2.2.4 Global Precipitation Measurement (GPM) precipitation 

Numerous global and regional studies have verified the relationship between the dynamic patterns of precipitation and the 

fluctuations in soil moisture (Jones and Brunsell, 2009; Seneviratne et al., 2010). The GPM system, jointly developed by 140 

NASA and the Japan Aerospace Exploration Agency (JAXA) as a successor to the Tropical Rainfall Measurement Mission 

(TRMM), opens a new era in satellite-based global precipitation assessment. Featuring a spatial resolution of 0.1° 

(approximately 10 km) and a temporal resolution of 1 hour, GPM offers robust spatial representation and timely data. GPM 

data are sourced from the NASA open data repository (https://pmm.nasa.qov/data-access). 

2.2.5 In situ measurements 145 

The in situ measurements for model assessment includes ground stations derived from various sources, i.e., the China Crop 

Growth and Development and Farmland Soil Moisture Decadal Data Set (hereinafter referred to as NZW) (Wang et al., 

2016), the in situ measurements obtained from Chinese Ecosystem Research Network field stations (hereinafter referred to 

as CERN) (Meng et al., 2021), and data from the National Qinghai-Tibet Plateau Scientific Data Center (hereinafter referred 

to as QXZ) (Gan et al., 2019). 150 

The NZW dataset is compiled from agricultural meteorological decadal reports spanning back to 1991 and acquired from the 

China Meteorological Science Data Sharing Network (http://cdc.cma.gov.cn/). It features a temporal resolution of ten days, 

encompassing a substantial time span and wide spatial coverage with a total of 778 stations across the nation. This study 

merely focusses on the first observation layer (10 cm), which comprises data from 234 stations (Table S1). The soil moisture 

values are expressed in terms of relative humidity. To facilitate validation, a conversion from relative humidity to volumetric 155 

water content is conducted for observed soil moisture. 

The CERN dataset comprises 34 stations, covering a period of approximately five days from 2005 to 2014. In our research, 

we focused on data from 12 stations located within our specific study area (Table 2). We obtained access to this dataset 

through the National Center for Ecological Science Data (www.cnern.org.cn/data/). 

The QXZ dataset is collected from http://data.tpdc.ac.cn. The 5-10 cm in situ soil moisture from six stations are collected, 160 

including Arou, Daxing, Guantan, Maliantan, Miyun and Yingke. The daily temporal resolution of these data fulfills the 

requisite criteria for validation time. Detailed station information is listed in Table 3. 
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Table 2. Information of CERN stations  

ID Stations Land Cover Elevation (m) Longitude Latitude 

1 Aksu Farmland 1028 80.85E 40.67N 

2 Ansai Farmland 1083 109.31E 36.85N 

3 Beijing Forest Forest 1248 115.43E 39.97N 

4 Qira Desert 1306 80.70E 37.01N 

5 Changwu Farmland 1200 107.67E 35.25N 

6 Ordos Desert 1270 110.18E 39.50N 

7 Fukang Desert 460 88.00E 44.15N 

8 Haibei Farmland 3280 101.33E 37.66N 

9 Hailun Farmland 236 126.63E 47.43N 

10 Linze Farmland 1375 100.12E 39.33N 

11 Naiman Desert 363 120.70E 42.92N 

12 Shapotou Farmland 1350 104.95E 37.45N 

 165 

Table 3. Information of QXZ stations  

ID Stations Land Cover Elevation (m) Longitude Latitude 

1 Arou Grassland 2295 m 100.46E 38.04N 

2 Daxing Farmland 20 m 116.42E 39.62N 

3 Guantan Forest 2835 m 100.25E 38.53N 

4 Maliantan Grassland 2817 m 100.30E 38.55N 

5 Miyun Farmland 350 m 117.32E 40.63N 

6 Yingke Farmland 1519 m 100.42E 38.85N 

2.2.6 Drought index and numerical model outputs 

The Palmer Drought Severity Index (PDSI) (Palmer, 1965) is employed to delineate the critical arid regions for drought 

assessment. Such an index considers soil moisture and evapotranspiration, and its physical meaning is clear compared to 

other drought indices. The PDSI dataset is obtained from the Terraclimate dataset (Abatzoglou et al., 2018), with the spatial 170 

resolution of ~4 km. 

ERA5 reanalysis dataset and Noah land surface model outputs, which are commonly used internationally, are further 

collected to validate our model results. ERA5, generated from the terrestrial component of the ECMWF ERA5 climate 

reanalysis (Zhang et al., 2021b), offers an hourly temporal resolution and an approximate spatial resolution of 10 km. This 

dataset delivers soil moisture at various depths from 1981 to the present. Here, we select the data from the topmost layer (0-7 175 

cm). Another modeled surface (0-10 cm) soil moisture is derived from Noah model. These simulations include a spatial 

resolution of approximately 6 km, effectively covering the extensive expanse of the Chinese Loess Plateau region. The 

detailed execution of the Noah model will be elaborated upon in Section 3.5. 
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3 Methods 

The framework primarily involves Bayesian model averaging (BMA) along with four regression approaches: random forest, 180 

multiple linear regression (MLR), support vector machine, and extreme gradient boosting (XG). It entails several critical 

step: i) assessing the feasibility of chosen explanatory factors from diverse knowledge sources through importance and 

correlation analysis, subsequently partitioning the region based on climate and hydrology patterns; ii) training and applying 

multiple machine learning techniques to downscale coarse resolution soil moisture, relying on an adaptable spatial and 

temporal window searching strategy; iii) leveraging BMA approach to merge the outputs of four regression methods, based 185 

on the suitable partitioned regional zoning; and iv) evaluating the downscaled results by comparing with a range of in-situ 

measurements and model simulations. Fig. 2 shows the flow chart of the study. 

3.1 Feasibility of chosen explanatory factors 

Albedo, NDVI, precipitation, LST, and DEM are identified as input explanatory variables. These variables can be collected 

through reliable and readily available data at large scales, thereby enhancing the model’s potential for extension to diverse  190 

regions. These variables have been consistently associated with soil moisture in previous downscaling studies (Liu et al., 

2023; Ranney et al., 2015; Song et al., 2014; Zhang et al., 2022). Specifically, atmospheric variables (e.g., LST, albedo, and 

precipitation) maintain temporal variability, while geophysical variables (e.g., DEM) capture spatial variability of the 

downscaled soil moisture. Furthermore, the incorporation of NDVI aims to characterize the influence of vegetation on the 

spatiotemporal dynamics of soil moisture (Abbaszadeh et al., 2019).  195 
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Figure 2: Flowchart of the presented framework 

 

To validate the feasibility of the selected explanatory variables, we compute the importance percentage and SHAP (Shapley 

Additive exPlanations) values of the five auxiliary datasets with respect to ESA CCI soil moisture from 2009 to 2010. The 200 

utilization of the random forest model enables the quantification of the explanatory variables’ impact probabilities, with 

higher values indicating a stronger ability to characterize soil moisture. As depicted in Fig. 3(a), all five variables exhibit an 

importance exceeding 0.3. The highest significance is attributed to DEM with a value of approximately 0.69, closely trailed 

by LST, precipitation, and albedo, all surpassing 0.4. The lowest percentage is attributed to NDVI. Results substantiate the 

high relevance of these five auxiliary datasets to ESA CCI soil moisture data, validating the reasonable selection of these 205 
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explanatory variables. Moreover, the robustness of these variables is reinforced by their high SHAP values and importance 

scores obtained from other models (Fig. S2). 

We further examine the relationships between utilized variables and ESA CCI soil moisture through linear regression 

analysis, and Fig. 3(b) delineates a robust correlation between them. NDVI, precipitation, and DEM exhibit a positive 

correlation with soil moisture, whereas albedo and LST display a negative correlation. The most pronounced correlation 210 

emerges with LST at approximately -0.4, attributable to the essential role of LST in surface energy flux regulation and 

distribution (Im et al., 2016). Succeeding in magnitude are NDVI and albedo, with 0.35 and -0.28 correlations, respectively, 

underscoring NDVI’s capacity to represent vegetation coverage (Piles et al., 2011). Collectively, these five explanatory 

variables exhibit strong correlations with ESA CCI soil moisture, thus affirming their feasibility for soil moisture 

downscaling. 215 

 

Figure 3: Assessment of explanatory variables’ feasibility. (a) Average (blue bar) and standard deviation (error bar) of 

permutation-based importance of explanatory variables concerning soil moisture, with corresponding SHAP values depicted as 

red circles. (b) Average (red bar) and standard deviation (error bar) of the Pearson correlation coefficient denoting explanatory 

variables’ association with soil moisture. 220 

3.2 Machine learning methods 

The fundamental principle beneath the soil moisture downscaling model relies on the establishment of a robust nonlinear 

functional relationship connecting a multitude of diverse input parameters to sequential soil moisture. This concept can be 

expressed as follows: 

SM = f(X) + ε ,                                                                                                                                                                    (1)   225 

In this equation, the variable SM on the left-hand side symbolizes soil moisture, while the vector X = {x1, x2, … , xk} 

encompasses an array of input parameters, i.e., albedo, NDVI, precipitation, LST, and DEM. The core of this equation 

resides in the nonlinear function f, which captures the dependencies between these input parameters and the dynamics of soil 

moisture. 

(a) (b) 
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3.2.1 Random forest  230 

The random forest approach, a modified version of the decision tree model, utilizes an ensemble of multiple regression trees 

to reach decisions (Long et al., 2019). This model has gained prominence in soil moisture data analysis compared to other 

machine learning methods (Liu et al., 2018).  

During the training phase, RF constructs multiple decision trees and then averages the predictive outcomes of these trees to 

generate the final output. The RF outcome is derived from the average of predictions from each individual decision tree, as 235 

demonstrated by: 

f(SM|X) =
1

n
∑ fi(SM|X)n

i=1  ,                                                                                                                                                (2) 

where n represents the count of regression trees, f(SM|X) signifies the integrated decision tree, and fi(SM|X) denotes the sub-

decision tree derived from the initial SM within the input parameters X. 

3.2.2 Multiple linear regression  240 

The principle of MLR (Wilks, 2011) is relatively simple, mainly using statistical methods to establish a linear relationship 

between soil moisture and several explanatory factors as follows: 

SM = a0 + a1x1 + a2x2 + ⋯ + ak−1xk−1 + akxk ,                                                                                                             (3) 

where {x1, x2, … , xk}  is the auxiliary variable; {a1, a2, … , ak}  is the partial regression coefficient corresponding to each 

auxiliary data; k is the number of auxiliary variables. 245 

3.2.3 Support vector regression 

SVR is a machine learning method rooted in the utilization of nonlinear transformations of covariate, pioneered by Vapnik 

(Vapnik, 1999). This modeling approach, characterized by its ability to grasp the nonlinear relationships, embarks upon a 

training phase wherein input datasets and corresponding target outputs undergo training (Kim et al., 2018). During this 

iterative process, the model strikes a harmonious balance between its output predictions and the actual veritable values by 250 

assimilating input training samples, a quintessential hallmark of SVR’s quest for fidelity. SVR can be described as a 

mapping relationship in the nonlinear space represented as follows: 

SM = f(x1, x2, … , xk) = ∑ ωixi + bm
i=I  ,                                                                                                                               (4) 

where xi denotes the value of each dimension in the training set; i denotes the variable of each dimension; ω denotes the 

variable coefficient; and b denotes the bias.  255 

3.2.4 Extreme gradient boosting  

The fundamental principle of the XG algorithm revolves around training weak classifiers that are progressively integrated 

based on negative gradient insights derived from the existing model’s loss function. These trained weak classifiers are 

incorporated into the existing model in an accumulative manner. This technique represents an enhanced form of gradient 
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boosting, generating a sequence of sequential regression trees. Each of these trees fits the residuals of the previous one to a 260 

target value until a predefined depth or convergence criterion is met (Chen and Guestrin, 2016; Zhang et al., 2021a). The 

objective function of XG can be mathematically represented as follows: 

Obj(t) = ∑ [n
i=1 l(yi, yi

t−1̂ ) + gift(xi) +
1

2
ℎift

2(xi)] + ∑ Ω(fi)
t
i=1  ,                                                                                        (5) 

where yi denotes the actual value of the ith sample; yi
t−1̂  represents the predicted value of the ith sample given at the t-1 step 

model; l(yi, yi
t−1̂ ) constitutes the loss function derived formed the predicted and true values; gi  signifies the first-order 265 

derivative and hi corresponds to the second-order derivative of the loss function; ft denotes the base model; and Ω signifies 

the canonical term, influenced by the count of leaf nodes in the decision trees and the application of regularization to the 

weights of these leaf nodes. 

3.2.5 Model parameters selection   

The model’s critical hyperparameters are optimized to enhance accuracy and prevent overfitting. The explanatory variable 270 

dataset is subsampled to 0.25o to match the resolution of the raw soil moisture through cubic convolution resampling 

techniques. This resulting dataset is referred to as the original training dataset of the model. Each machine learning approach 

in this study is then applied to the training dataset, with parameters optimized for minimal Root Mean Square Error (RMSE) 

via a 10-fold cross-validation process. An integral aspect of our methodological framework involves randomly allocating 

nine-tenths of the spatial sample for model fitting, reserving the remaining one-tenth for validation. Parameter value ranges 275 

for each hyperparameter are chosen based on a comprehensive review of relevant scientific literature and best practices in 

the machine learning community (Table S2). 

3.3 Bayesian model averaging  

This study employs Bayesian model averaging (Raftery et al., 2005) to create an ensemble of downscaled results from 

various machine learning methods. BMA is a statistical approach rooted in Bayesian theory, designed to incorporate the 280 

inherent uncertainty of models during data processing. Within this framework, the method assigns appropriate weights to 

multiple downscaled models based on the posterior probability of each model’s predictive accuracy and alignment with prior 

knowledge. This approach addresses the challenges of uncertainty and singularities often associated with individual models. 

Particularly, the incorporation of prior knowledge from point-wise data (i.e., in-situ ground measurements) facilities mitigate 

the impact of outliers or noisy data points on the ensemble’s predictions.  285 

Assume that y is the combined predictor variable, i.e., the downscaled soil moisture from individual machine learning.D =

{y1, y2, … , yT} is the measured samples, i.e., primary in situ measurements in 2003-2008. M = {M1, M2, … , Mk} is the model 

space composed of all possible prediction models. According to the full probability law, the expression of the predicted 

Probability Density Function (PDF) of the combined prediction y of the BMA method: 

𝑝(𝑦|𝐷) = ∑ 𝑝(𝑀𝑖|𝐷)𝑘
𝑖=1 𝑝(𝑦|𝑀𝑖 , 𝐷) ,                                                                                                                                  (6) 290 
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where 𝑝(𝑦|𝑀𝑖 , 𝐷) is the prediction PDF based on model 𝑀𝑖; 𝑝(𝑀𝑖|𝐷) is the posterior probability that model 𝑀𝑖 is correctly 

predicted with measured samples D, reflecting the degree of fit of model 𝑀𝑖  to the measured samples. The sum of the 

posterior model probabilities is equal to 1, i.e., ∑ 𝑝(𝑀𝑖|𝐷)𝑘
𝑖=1 = 1. These probabilities can be interpreted as weighting 

factors. The prediction results of BMA can be expressed as: 

𝐸(𝑦|𝐷) = ∑ 𝑝(𝑀𝑖|𝐷)𝑘
𝑖=1 𝐸[𝑝(𝑦|𝑀𝑖 , 𝐷)] = ∑ 𝑤𝑖𝑓𝑖

𝑘
𝑖=1  ,                                                                                                        (7) 295 

where 𝑤𝑖 , 𝑓𝑖 represent the weight and prediction result of 𝑀𝑖, respectively. 

In theory, calculating 𝑝(𝑀𝑖|𝐷) of a model involves computing the likelihood function for each model, multiplying it by the 

prior probability of each model, and dividing by the marginal likelihood. However, this method is rarely employed in 

practice due to the complexity of computing the likelihood function and prior distribution, especially for complex models 

with high-dimensional parameter spaces. Instead, iterative estimation techniques such as Markov Chain Monte Carlo 300 

methods are commonly used. In our study, we utilized Markov Chain Monte Carlo Cube (MC3) for this purpose. 

3.4 Cluster analysis and spatiotemporal window searching  

Considering the potential variability in soil moisture-explanatory factor relationships across our vast spatial domain, the 

uncertainty in the global regression model may increase, particularly with limited training samples. Uneven distribution of 

ground training data in vast spatial domains could lead to fewer data points in certain regions, posing a challenge to the 305 

model’s ability to capture fine characteristics and reducing overall accuracy. By treating the entire area as homogeneous, 

crucial geographical and climatic details are overlooked, exacerbating uncertainty. To mitigate this, we employ cluster-based 

models to better capture spatiotemporal soil moisture variation compared to a global model. A spatial partitioning of the 

study area is implemented before applying machine learning models, as depicted in Fig. 4(a). Previous research has 

employed cluster analysis to segment study areas grounded in distinctive characteristics or data attributes (Xiao et al., 310 

2018b). Here we calculate the multi-year average of ESA CCI soil moisture data spanning 2003 to 2010. This multi-year 

average dataset underwent k-means clustering analysis to yield a division scheme of the study area. Subsequent to this 

partitioning, the BMA model is trained utilizing the outcomes of this segmenting process. The BMA model’s output is 

aligned with the trained model specific to each partition, harmonizing the partitioning strategy’s application throughout the 

model training and result output stages. 315 

Efficiently exploring informative covariates is a challenge in machine learning models. Here, we adopt a spatiotemporal 

approach (Liu et al., 2020) to effectively capture the spatial and temporal fluctuations in soil moisture and its correlated 

covariates. This approach centres on regional subsets, aiming to involve a greater array of relevant pixels in the regression 

process (Fig. 4(b)). An adaptable mechanism is used to determine the optimal spatiotemporal window size, relying on two 

critical parameters: the spatial window size and the temporal duration in terms of days. This strategy involves incrementally 320 

increasing these two parameters from initial values until a specific criterion is met, which mandates that the available pixels 

within the window encompass at least eight times the included explanatory variables. The initial values are set at a spatial 
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window size of 3 and a duration of days of 1. By introducing upper limits to these parameters, the process is ensured to 

terminate, accounting for potential gaps in the satellite dataset. Through a sensitivity analysis conducted with an independent 

dataset, maximum values for these parameters are chosen for the period spanning 2003 to 2010. Testing various 325 

combinations of parameters involved exploring different temporal durations from 1 to 5 days, increasing by 1 day 

increments, and spatial window sizes from 3 to 10, with 1 unit increments. This yields the optimal parameter values are a 

temporal duration of 3 days and a spatial window size of 5. The sensitivity analysis reveals consistent optimal parameter 

values across the seven climate regions, likely due to the focus on model structure rather than sample characteristics. 

 330 

Figure 4: Strategies for machine learning optimization. (a) Schematic illustrating regional clustering applied to the BMA model. 

(b) Schematic outlining the strategy for determining spatiotemporal windows in machine learning regression which involves 

defining two key parameters: the spatial window size (sw) and the temporal duration in terms of days (nd).  

3.5 Evaluation analysis from diverse perspectives 

Evaluating proposed model from a multitude of perspectives is of importance in maintaining the accuracy and hydrological 335 

responsiveness of satellite-derived soil moisture. We initially validated downscaled soil moisture through comparison with in 

situ measurements from three ground station networks. A comparative analysis is further conducted across various machine 

learning models. Specifically, the accuracy validated is quantitatively performed using statistical metrics including the 

(a) 

(b) 
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correlation coefficient (R), mean absolute error (MAE), RMSE, and unbiased root mean squared error (ubRMSE). The 

formulas for these calculations are as follows: 340 

𝑅 =
∑(𝑋𝑖−�̅�)(𝑌𝑖−�̅�)

√∑(𝑋𝑖−�̅�)
2

(𝑌𝑖−�̅�)2

 ,                                                                                                                                                           (8) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑋𝑖−𝑌𝑖)2𝑛

𝑖=1

𝑛
 ,                                                                                                                                                        (9) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑋𝑖 − 𝑌𝑖|

𝑛
𝑖=1  ,                                                                                                                                                      (10) 

𝑢𝑏𝑅𝑀𝑆𝐸 = √𝑅𝑀𝑆𝐸2 − 𝐵𝐼𝐴𝑆2,                                                                                                                                          (11) 

where n represents the count of observations, and 𝑋𝑖 and 𝑌𝑖 are the in situ and the modeled soil moisture, respectively. 345 

We employ surface soil moisture from the ERA5 and Noah to conduct cross validation, aiming to discern the congruence 

between the results of our model and internationally recognized datasets. We specifically run the Noah model at a spatial 

resolution of 0.05° (~6 km). The meteorological input data are sourced from the China meteorological forcing dataset, with a 

3-hour temporal resolution and 1° spatial resolution. This dataset comprises seven essential parameters, encompassing 2-

meter air temperature, 10-meter wind speed, specific humidity, air pressure, downward shortwave, longwave radiation and 350 

accumulated precipitation. Recognizing the possibility of the Noah model’s underestimation of peak flows for thermal and 

energy fluxes, we opt to utilize surface dynamic variability as a replacement for the traditional static surface parameters. This 

subset of parameters, comprising leaf area index, surface albedo, and green vegetation fraction, is updated through 

seasonally varying satellite observations from MODIS. To ensure precise allocation of distinct vegetation and soil types, the 

integration of land cover and soil texture maps from the State Soil Geographic Database/Food and Agriculture Organization 355 

is employed. A more extensive elaboration can be referenced in our previous research endeavours (Liu et al., 2022b; Liu et 

al., 2023; Liu et al., 2020).  

A drought assessment is further performed by focusing on drought-prone regions of interest. Within these regions, a 

temporal analysis is applied to ground station measurements, CCI soil moisture, and the results obtained from the machine 

learning downscaling method.  360 

Uncertainty analyses are conducted to evaluate the model’s robustness. A leave-one-out parameter analysis is performed to 

assess the influence of the explanatory factors on the model outcomes. To explore the impacts of training samples on the 

mode accuracy, we iteratively eliminate subsets of training samples from the Bayesian model and subsequently assess the 

implications on the validation outcomes. 

4 Results and discussion 365 

4.1 Spatial pattern of downscaled soil moisture  

Utilizing a machine learning downscaling framework, the daily ESA CCI soil moisture with an original spatial resolution of 

approximately 25 km is downscaled to a finer resolution of 1 km. Fig. 5 (and Fig. S3) presents the spatial patterns of both the 
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raw ESA CCI soil moisture and the downscale soil moisture of four distinct machine learning methods, along the results 

obtained through BMA ensemble model for the two consecutive years of 2009 and 2010. Specifically, the months ranging 370 

from April to October of both 2009 and 2010 are considered for visualization. 

The results from individual machine learning methodology align with the patterns observed in the original ESA CCI. This 

congruence is pronounced within areas exhibiting both high and low soil moisture values. The results illustrate high soil 

moisture levels in the southern and northeastern parts of the study region, in contrast to comparatively lower soil moisture 

content observed in the central and western regions. This spatial variability can be explained by underlying factors such as 375 

land use composition and precipitation dynamics (Li et al., 2011). The arid and desert-like land use in the western portion of 

the study area, combined with limited precipitation, contributes to the lower soil moisture observed.  

 

Figure 5: Spatial distribution of soil moisture across six data sources, representing the 15th day of April-October 2009. Columns, 

from left to right, show the 25-km ESA CCI soil moisture and the 1-km downscaled soil moisture derived from random forest 380 

(RF), multiple linear regression (MLR), support vector regression (SVR), extreme gradient XG Boost (XG), and Bayesian model 

averaging (BMA), respectively. 

 

 

Examining histograms visually enhances the coherence between ESA CCI and downscaled results. In Fig. 6(a) (and Fig. S4), 385 

all techniques align with the dataset’s broader trajectory, but SVR exhibits the most similarity with ESA CCI soil moisture. 

The concentration of soil moisture values is notably within the 0.15 to 0.2 m3/m3 range, highlighting the arid nature of the 

study area. It is evident that the downscaled data produced by the BMA method exhibit more pronounced differences 

compared to the original data, particularly in terms of histogram distributions shifting towards the peak. This implies that the 

downscaled method effectively captures the disparities between the 25km and 1km products. These differences in the 390 
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histograms indicate a more concentrated distribution of data, which can mitigate the issue of overestimation and 

underestimation by machine learning models.  

Figure 6(b) shows the box plots encompassing twelve months of ESA CCI data and the corresponding BMA ensemble 

outcomes. The disparities between the two datasets are relatively inconspicuous across most of the months, with January and 

December demonstrating lower values overall. Such phenomenon may be related to the inherent nature of ESA CCI soil 395 

moisture values during those months (Yuling et al., 2022). While most of the downscaling results exhibit lower values 

compared to the original ESA CCI values during most months, this variance is not of substantial magnitude. This pattern can 

be attributed to the inherent characteristics of the BMA ensemble approach, which combines multiple machine learning 

outcomes to prevent excessively high or low values. 

We further check the box plots categorized according to soil dryness and moisture levels (Fig. 6(c)) Both the ESA CCI data 400 

and BMA ensemble products demonstrate a discernible upward trend in soil moisture as the soil transitions from a dry to a 

wet state. This underscores the efficacy of both datasets in capturing the dynamic spectrum of dry and wet soil conditions. 

Meanwhile, the values obtained from BMA ensemble method exhibit a lower overall profile compared to the ESA CCI 

values, an alignment reflected in Fig. 6(b). In general, the degree of concordance between the BMA ensemble-derived results 

and the original ESA CCI data is underscored. 405 

 

Figure 6: Soil moisture distribution analysis. (a) Histograms illustrating soil moisture data on the 15th day of April-October 2009. 

Histograms show the comparison between 25-km ESA CCI soil moisture and 1-km downscaled soil moisture using random forest 

(a) 

(b) (c) 
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(RF), multiple linear regression (MLR), support vector regression (SVR), extreme gradient XG Boost (XG), and Bayesian model 

averaging (BMA). (b) Box plots demonstrating the monthly averages of ESA CCI and BMA ensemble soil moisture. (c) Box plots 410 

showing the averaged soil moisture of ESA CCI and BMA ensemble grouped by wet and dry conditions. Medium values are 

marked by black lines, while boxes and whiskers denote the 25th to 75th percentiles and the 5th to 95th percentiles, respectively. 

4.2 Accuracy validation of downscaled soil moisture 

The validation of BMA ensemble outcomes is performed against three ground station datasets, as presented in Fig. 7. 

Excluding a few isolated instances characterized by lower R values and higher MAE, the dominated trend demonstrates a 415 

favourable accuracy. For most monitoring stations, higher R values correspond with lower MAE values. The stations 

characterized by lower R values and higher MAE values are predominantly situated within the western reaches of the study 

area. This is understandable since the spatial distribution of monitoring stations within the study domain exhibits an uneven 

dispersion. The absence of in situ data in the western desert-dominated region potentially weak the model training, exerting a 

negative effect on the resultant model accuracy. Meanwhile, the arid nature of the western region, marked by its desert land 420 

use type, results in considerable variability in temperature and energy radiation patterns. Additionally, there are clusters of 

low-accuracy points along the east boundary, which are known for their diverse and complex land use patterns, including 

wetland marshes, farmland, and fishing areas. The intricate interplay of these land use types, combined with variations in 

weather patterns and ecosystem dynamics, poses challenges to the accuracy of our model.  

 425 

 

(a) 

(b) 
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Figure 7: Performance evaluation of downscaled soil moisture. (a) Correlation coefficient (R) and (b) mean absolute error (MAE) 

illustrating the accuracy of BMA-based downscaled soil moisture when compared against in situ measurements from three ground 

station networks. 

 430 

Figure 8 shows a scatter plot of the correspondence between downscaled soil moisture and ground measurements. It is 

observed an evident enhancement in accuracy achieved by the BMA ensemble relative to the original ESA CCI data. 

Regarding NZW network, the ESA CCI data exhibits an R of 0.321, accompanied by corresponding RMSE and ubRMSE 

values of 0.138 and 0.095 m3/m3, respectively. In contrast, the BMA ensemble results produce an incremented R value of 

0.342, along with reduced RMSE and ubRMSE values of 0.137 and 0.093 m3/m3, respectively. Similar patterns are observed 435 

across CERN network, wherein the BMA outcomes present a modest increase in R by 0.003, along with a corresponding 

decrease in ubRMSE by 0.001 m3/m3 in comparison to the ESA CCI data. The QXZ network displays a more pronounced 

advancement, with the BMA results exhibiting a higher R of 0.035, accompanied by a reduction in ubRMSE by 0.003 

m3/m3relative to the original ESA CCI data. 

The soil moisture across distinct temporal periods is also checked, particularly during the monsoon period (May-September). 440 

As for the NZW stations, no apparent disparity is discerned between station measurements during monsoon and non-

monsoon seasons. Both ESA CCI and BMA results demonstrate consistent patterns, with an overall underestimation of soil 

moisture levels. The in situ measurements of CERN stations exhibit high values during the monsoon season in contrast to 

other months. Conversely, the ESA CCI and BMA downscaling outcomes depict lower values during the monsoon period 

than other months. As for QXZ stations, both ESA CCI and BMA downscaling outcomes consistently underestimated soil 445 

moisture across all periods. In general, station measurements during the monsoon season exhibit lower values compared to 

other months, a trend that is found in the ESA CCI and BMA data. The outcomes from both ESA CCI and BMA data 

broadly align with the observed trends at the station-specific level. This reinforces the credibility of these results in reflecting 

variations in soil moisture different temporal times. However, it also underscores the challenges in accurately capturing soil 

moisture dynamics during the monsoon season, especially in certain large geographic regions (Park et al., 2017a). 450 
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Figure 8: Accuracy evaluation of soil moisture. (a)-(c) Scatter plots of ESA CCI soil moisture against in situ measures from three 

ground station network. (d)-(f) Scatter plots of BMA downscaled soil moisture against in situ measures from the same three 

ground station network. In the subfigures located in the lower corners of the panels, box plots depict the distribution of ESA CCI 

and BMA downscaled soil moisture categorized into monsoon seasons (May-September, denoted as M1) and non-monsoon seasons 455 

(Rest of the year, denoted as M2). The central black lines indicate median values, while the boxes and whiskers represent the 

interquartile range (25th to 75th percentiles) and the full range (5th to 95th percentiles), respectively. 

4.3 Comparison of different machine learning models 

The downscaled soil moisture produced by the BMA ensemble model is compared against the results from four individual 

regression methods (Table 4). The relative efficacy of the four machine learning methods varies across diverse stations, 460 

while the BMA results outperform them. The R of the BMA ensemble results against in situ measurements surpasses that of 

the four individual machine learning methods. Additionally, the RMSE and MAE exhibit lower values in most instances for 

the BMA results. Regarding NZW stations, MLR exhibits higher accuracy among the four individual machine learning 

methods. In contrast, SVR shows higher accuracy for CERN stations and shows optimal performance in QXZ stations. The 

BMA approach demonstrates better overall performance, underscoring its capacity to combines the strengths inherent in each 465 

individual method. This aligns with earlier studies that employed BMA approach to harness the complementary attributes of 

different methodologies in yielding outcomes of enhanced reliability and precision (Miao et al., 2013). 

 

 

 470 

(a) 

(d) 

(b) 

(e) 

(c) 

(f) 
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Table 4. Comparison of BMA and individual machine learning  

Stations N 
R 

RF MLR SVR XG BMA 

NZW 5044 0.323 0.338 0.321 0.325 0.342 

CERN 263 0.567 0.617 0.629 0.573 0.642 

QXZ 1204 0.477 0.480 0.478 0.468 0.514 

Stations N 
RMSE（m3/m3) 

RF MLR SVR XG BMA 

NZW 5044 0.138 0.136 0.138 0.137 0.137 

CERN 263 0.073 0.073 0.073 0.075 0.071 

QXZ 1204 0.169 0.169 0.168 0.169 0.169 

Stations N 
MAE（m3/m3) 

RF MLR SVR XG BMA 

NZW 5044 0.114 0.113 0.114 0.114 0.114 

CERN 263 0.060 0.061 0.061 0.062 0.058 

QXZ 1204 0.157 0.158 0.156 0.158 0.158 

 

We analysed time series data, incorporating in situ measurements, downscaled soil moisture from four distinct machine 

learning methods, and the BMA ensemble, comparing them with ESA CCI data. Specifically focusing on two QXZ stations 

and two NZW stations (Fig. 9), all six datasets exhibit a level of agreement with ground-based soil moisture dynamics. 475 

Despite occasional overestimation or underestimation, the main trends consistently align with observed values. This 

alignment, especially during extreme wet or dry periods, highlights the BMA ensemble’s accuracy in capturing anomalous 

conditions. 

 

Figure 9: Time series plots depicting the temporal dynamics of soil moisture, encompassing data from in situ measurements at 480 

four selected locations. The time series also include soil moisture values obtained from ESA CCI, as well as downscaled results 

derived from five machine learning models: random forest (RF), multiple linear regression (MLR), support vector regression 
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(SVR), extreme gradient XG Boost (XG), and Bayesian model averaging (BMA). The temporal resolution of the model data at 

Arou and Guantan stations is 1 day, while Qianguoerluosi and Jinzhou stations have a resolution of 10 days to match that of the 

observational data. 485 

4.4 Cross validation with numerical model outputs 

The ERA5 and Noah surface soil moisture datasets are chosen to compare with BMA downscaling results, given their 

efficacy and extensive adoption (Li et al., 2020; Yuling et al., 2022). As illustrated in Fig. 10, the R and MAE distributions 

of the ERA5 data within the study area and the Noah data within the Loess Plateau are utilized. Results reveal that the BMA 

ensemble outcomes exhibit reasonable performance in terms of higher R values and lower MAE values when compared to 490 

both the ERA5 and Noah datasets. The validation outcomes with the ERA5 data exhibit consistency across most regions, 

reflecting enhanced R and diminished MAE. In specific regions of the west-central part of the northern China, slight 

deviations are apparent, characterized by lower R and comparatively higher MAE. Concerning the Noah dataset, the R 

values remain high, and the MAE values reduced across a substantial portion of the Loess Plateau. A marginal subset of the 

north-central and south-western parts of Loess Plateau exhibit higher MAE and a slightly diminished R correlation. 495 

Collectively, the alignment between the BMA ensemble results and both the ERA5 and Noah datasets underscores the 

credibility of the downscaled soil moisture derived from our model.  

 

Figure 10: Assessment of downscaled soil moisture against larger-scale numerical models. Comparative evaluation of the accuracy 

of 1-km downscaled soil moisture in contrast to 10-km ERA5 products, depicted through (a) correlation coefficient (R) and (b) 500 

mean absolute error (MAE). The evaluation extends to 6-km Noah simulations, as shown in (c) for R and (d) for MAE. 

4.5 Assessment in terms of drought monitoring 

To assess the capability of soil moisture products in capturing drought dynamics, two drought-affected regions (Fig. S5) are 

identified based on PDSI values equal to or lower than -2 and drought periods exceeding 80% (Long et al., 2014). In each of 

(a) (c) 

(b) (d) 
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these identified regions, we compute the temporal averages of all station measurements, alongside the BMA ensemble results 505 

and the ESA CCI data, for the stations positioned within the selected region (Fig. 11). Evidently, the time series plots for 

both identified regions underscore the concordance between the BMA ensemble outcomes and the ESA CCI data with the in-

situ observations. This alignment is conspicuous in their representation of fluctuations in soil moisture levels. Moreover, the 

characterization of instances of severe drought conditions is consistent with the in-situ measurements. Hence, it can be 

inferred that the BMA results capture and reflect the prevailing soil drought conditions. 510 

 

Figure 11: Temporal analysis of soil moisture. (a) Comparative time series of ESA CCI and BMA downscaled soil moisture, 

focusing on the regional average within Region I. Additionally, the temporal trends are presented for three specific stations located 

within this region. (b) Similar for Region II, with attention to the regional average as well as individual stations within this region. 

The temporal resolution of the model data at Daxing and Miyun stations is 1 day, while other stations have a resolution of 10 days 515 

to match that of the observational data. 

4.6 Uncertainty analysis 

A leave-one-out analysis is conducted to assess the impacts of explanatory variables on model performance. Each input 

variable is excluded one at a time, and the BMA-integrated results are validated against ground station measurements. Fig. 

12(a) shows the validation outcomes following the exclusion of corresponding variables (i.e., albedo, NDVI, precipitation, 520 

LST, and DEM), as well as that incorporates all parameters. The removal of an individual parameter has a substantial but 

controlled effect on the model performance, generally preserving the trends. In comparison to the BMA model including all 

parameters, the exclusion of NDVI leads to an obvious decrement in R. This observation underscores the relatively higher 

(b) 

(a) 
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impact of NDVI among these parameters on the model outcomes, mostly attributing to NDV’s capacity to encapsulate 

surface vegetation state and coverage. The exclusion of precipitation and DEM results in a perceptible decrease in accuracy 525 

for their respective validation outcomes (Park et al., 2017b). 

The performance of machine learning models heavily relies on the quantity and quality of the training samples utilized 

(Géron, 2022). To explore such impact, an analysis is conducted, i.e., a stepwise removal of training samples—comprising 

10%, 20%, 30%, 40%, and 50% of the BMA model training dataset. Fig. 12(b) shows the discernible but not strong 

fluctuations upon the sequential removal of samples. This can be attributed to the substantial volume of samples integrated 530 

into the model, rendering the impact of the removal of a portion of samples comparatively minor. This lends support to the 

stability of the training samples employed in the model, underscoring their representative nature and consistent influence on 

the model’s performance. 

 

Figure 12: Model uncertainty. (a) Verification of model robustness through leave-one-out analysis. The subplots illustrate the 535 

validation accuracy of BMA downscaled soil moisture upon removal of individual input parameters. The rightmost plot presents 

results when all parameters are retained. (b) Assessment of training sample impact. The subplots show validation accuracy with 

varying percentages (10%, 20%, 30%, 40%, 50%) of BMA training samples removed, along with the scenario when all samples 

are included. 

 540 

Additionally, our model excels in capturing intermediate soil moisture levels, yet it tends to underestimate high values and 

overestimate low values within the soil moisture range. This indicates that the machine learning model effectively represents 

dominant factors but may overlook subtle signals crucial for capturing extreme values. To emphasize this asymmetric 

performance in downscaling, we check the model residuals and find no discernible pattern. Such asymmetry is common in 

machine learning models, partly attributed to limited data availability in extreme regimes (Liu et al., 2023; Sadayappan et al., 545 

2022). This uneven performance is particularly pronounced over dry regions, where lower accuracy is generally observed 

due to uncertainties in the available training sites and model applicability. 

4.7 Model merit and shortcoming 

Our study is dedicated to enhancing the spatial resolution and hydrological delineation of satellite-based soil moisture 

retrievals across the Three Northern region of China. These regions, characterized by intricate landscape diversity and 550 

climatic dynamics, demand an advanced but robust approach to capture the complexities inherent in their hydrological 

(a) (b) 
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response. The uniqueness of our approach lies in its integration of robust methodologies, strategically chosen to maximize 

the accuracy of soil moisture. Collectively, our framework produces more accurate and coherent high-resolution soil 

moisture data compared to conventional single-method downscaling approaches, and this superiority can be attributed to 

three key aspects. i) By employing clustering analysis, we group similar spatial and temporal contexts before model fitting. 555 

This enables the model to extract meaningful patterns from the extensive dataset. Our results show that the cluster-based 

model outperforms models without clustering (Fig. S6). The observed improvement in accuracy, approximately 5%, is 

expected as clustering into more homogeneous groups allows access to greater variance in soil moisture, thereby enhancing 

the bias-variance trade-off for complete scenes (Merentitis et al., 2014; Xiao et al., 2018a). Additionally, while our clustering 

analysis based on soil moisture data offers valuable insights, it may neglect other influential factors like vegetation types and 560 

terrain, possibly constraining model accuracy. Future studies should consider partition modeling incorporating complex 

ecosystem characteristics to improve the spatial representation of soil moisture across diverse regions and ecosystems. ii) 

The adaptive spatial-temporal window strategy ensures that our model adapts to the specific characteristics of different 

regions, accommodating variations in soil moisture dynamics across diverse terrains. This strategy addresses issues related to 

neglecting temporal information in image sequences and the low contrast between objects and background (Liu et al., 2020; 565 

Mahadevan and Vasconcelos, 2010). This framework potentially outperforms global models that downscale soil moisture 

from entire images, especially in handling extreme values. Specifically, the relative model bias across different quantiles 

(Fig. S7) indicates that our proposed models exhibit 7% less bias compared to the global model, and this improvement could 

reach approximately 11% in the 90% soil moisture quantile. iii) Another merit of our work is the fusion of soil moisture 

downscaling outputs derived from four distinct machine learning techniques, harmonized through Bayesian modeling. This 570 

strategic integration leverages the diverse strengths of individual methods, resulting in a reliable estimation of soil moisture. 

The Bayesian model utilizes prior knowledge from in-situ soil moisture across the entire study region to constrain the 

general dynamics of downscaled soil moisture. The original temporal pattern of the series is largely retained due to this 

constraint, allowing for the observation of different dynamics between downscaled soil moisture and in situ soil moisture 

(Ramoni et al., 2002). The weights assigned to individual models exhibit noticeable differences, with random forest 575 

receiving higher weights (0.38±0.14). However, other approaches also contribute substantially, as evidenced by weights 

larger than 0.13 (Fig. S8). This diversity in weights reflects the effective constraint of downscaled soil moisture by the 

multiple ensembles to the observations. 

To substantiate the efficacy of our proposed methodology, we benchmark our model results against those of earlier studies. 

The summarized comparative analysis in Table 5 highlights the reasonable performance of our approach, showing its 580 

potential to match or even surpass existing techniques in terms of accuracy. Traditional studies generally encounter 

challenges in achieving fine spatial resolution downscaled soil moisture over large scales, especially in drylands and critical 

zones. This challenge often arises due to the underutilization of available knowledge related to model structure and cloud 

contamination. The soil moisture products derived from prior studies may fall short for applications such as regional water 

resources management, drought event diagnosis, and land-atmosphere feedback analysis. Our framework, which leverages 585 
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multiple sources of knowledge and in-situ observations, proves well-suited for addressing the intricate soil moisture 

downscaling requirements prevalent in complex geographical regions. 

Table 5. Comparison of our model with other studies 

ID Methods Study Area Data Used R/R2 
RMSE/ ubRMSE 

(m3/m3) 

Reference 

Studies 

1 

GWR Yangtze and 

Huaihe rivers in 

China 

AMSR-2, MODIS 

R = 0.54-0.55 ubRMSE = 0.074 
Song et al. 

(2019) 
UTF R = 0.28-0.37 

ubRMSE = 0.097-

0.101 

2 

RF 

South 

Korea/Australia 
AMSR-E, MODIS 

R = 0.71-0.84 
RMSE = 0.049-

0.057 

Im et al. 

(2016) 

Boosted 

regression trees 
R = 0.75-0.77 

RMSE = 0.052-

0.078 

Cubist R = 0.70-0.61 
RMSE = 0.051-

0.063 

3 MATCH 
Qinghai-Tibet 

Plateau 
SMAP, MODIS R = 0.55 ubRMSE = 0.047 

Shangguan et 

al. (2023) 

4 

CART 

Northeastern 

China 
ESA CCI, MODIS 

R2 = 0.135 RMSE = 0.076 

Liu et al. 

(2018) 

KNN R2 = 0.130 RMSE = 0.074 

BAYE R2 = 0.081 RMSE = 0.075 

RF R2 = 0.191 RMSE = 0.073 

5 
Our Bayesian 

Ensemble  

Three North 

Regions 
ESA CCI, MODIS 

R = 0.342–

0.642 

RMSE = 0.071-

0.169 
 

 

While our model demonstrates commendable performance, it is essential to acknowledge its shortcomings. Firstly, the 590 

distribution of validation stations predominantly favors the eastern study area, potentially compromising the generalizability 

of validation outcomes across the broader region. Future work should be conducted to collect more measurements from 

western stations to enhance the representativeness of the validation. Secondly, the selection of four regression methods in 

this study influences downscaling outcomes, and exploring alternative methods that may display superior results remains a 

viable avenue for future research. Lastly, our choice of employing the Bayesian model for integrating different downscaling 595 

outcomes may benefit from considering alternative ensemble methods in forthcoming research. These constraints highlight 

the need for refining our model’s efficacy and applicability in soil moisture downscaling across expansive and varied 

terrains. 

5 Conclusion 

The emergence of remote sensing technology has enabled extensive soil moisture monitoring, yet prevailing satellite 600 

products commonly face limitations in restricted spatial resolution, hindering their broader utility, especially across large-
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scale regions. In this study, we establish a robust framework for achieving high-resolution soil moisture by leveraging an 

ensemble machine learning approach alongside diverse knowledge sources. This framework is implemented to downscale 

ESA CCI soil moisture, converting it from a resolution of 25 km to 1 km, employing ancillary soil moisture-related data, an 

adaptive spatial-temporal window strategy, and four distinct machine learning techniques. Crucially, the integration of 605 

outcomes from these machine learning methods using a Bayesian model enhances reliability and coherence in the 

downscaled soil moisture datasets, providing insights to the remote sensing and eco-hydrology field. 

Our study spans the expansive Three Northern region of China, covering more than five million square kilometers. 

Validation against three distinct ground station datasets underscores the efficacy of our model, affirming its potential to 

enhance the precision of the initial ESA CCI soil moisture. In contrast to single machine learning techniques, our model 610 

combines the strengths of each, resulting in more coherent and precise outcomes. Cross-validation with ERA5 and Noah soil 

moisture data further reinforces the reliability of our model’s performance. Furthermore, the downscaled outputs show 

promise for use in drought assessment, particularly within the arid and semi-arid regions of northern China susceptible to 

drought and water stress. 

In conclusion, our proposed framework facilitates soil moisture downscaling, demonstrating both reliability and scientific 615 

soundness. This serves as a reference for acquiring high-accuracy, high-resolution, and expansive-scale soil moisture data, 

with implications for diverse domains, including water resources management, drought monitoring, and crop yield 

estimation. 
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