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Response to RC2： 

Summary: This study uses Bayesian model averaging to model soil moisture at a 1km resolution 

in the Three North region of China by combining the results from 4 individual machine learning 

methods. Their model uses 5 datasets of varying resolution (LST: 1km/daily, NDVI: 1km/16d, 

surface albedo: 0.05°/daily, elevation: 90m and precipitation: 0.1°/daily) as explanatory variables 

for soil moisture. Their model is trained on the 0.25° ESA CCI COMBINED soil moisture product 

by resampling the high-resolution predictor variables to the same scale and then applied to a lower 

1km resolution using the original predictor datasets. The main finding of the paper is that the 

pearson R correlation coefficient and the RMSE against in-situ measurements from 3 different 

networks improve slightly in their new high resolution dataset. 

 

General Comments  

1. The use of Bayesian model averaging shows an innovative use of machine learning to train 

models   

Response: Thank you for acknowledging our use of BMA as an innovative approach within the 

machine learning framework. We greatly appreciate your detailed and constructive feedback, 

particularly your insights from a statistical perspective, which complement the remote sensing 

hydrology viewpoint. Your suggestions have significantly enhanced the quality of our manuscript 

and provided valuable learning opportunities, both for improving this work and for my academic 

growth as a remote sensing hydrology scholar. 

 

2. Misleading title. The authors use the term ‘downscaling’ to describe their method and the 

purpose of this study. In the remote sensing community, downscaling usually refers to using a 

coarse-grained dataset of some environmental variable (like soil moisture) along with auxiliary 

datasets available at the target resolution as predictor variables in a model to predict the same 

environmental variable at a higher (target) resolution. The target variable of the training and the 

validation is typically also used at the target resolution. What the authors describe in the paper 

would be better described as model calibration.  

Response: Thank you for highlighting this important distinction. We recognize that our use of the 

term “downscaling” might be confusing within the traditional remote sensing context, where 

downscaling typically involves interpolating a coarse-resolution dataset to a finer spatial resolution, 

often through auxiliary data as predictor variables. In contrast, our work is more accurately 

described as a form of “model enhancement”. Our objective is to use ground-based observations 

to enhance the accuracy of a coarse-resolution soil moisture product, thereby improving its 

alignment with observed values rather than simply increasing its spatial resolution. 

Following your suggestion, we have revised the title to reflect the focus on calibration and 

accuracy enhancement rather than traditional downscaling. The new title is: 

"Enhancing satellite-derived soil moisture in the Three North region using ensemble machine 

learning and multi-source knowledge integration". 
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3. There is no clear training-validation split in the modelling. This should always be employed 

when using machine learning models.  

Response: Thank you for highlighting this critical aspect of model evaluation. In the revised 

manuscript, we have clarified our approach to training-validation splitting, which can be found in 

main text Section 3.2 and 3.5. 

Given the limited availability of ground station data for this study, we employed a 5-fold 

cross-validation approach to assess model accuracy from 2003 to 2010. By training and validating 

the model on different data splits, we minimized the potential bias associated with any single 

partition of data. The cross-validation results were then averaged to provide an overall measure of 

the model’s performance across various validation sets, ensuring robust model generalizability. 

Specifically, to maintain the temporal characteristics of soil moisture, we implemented a spatially-

based random split according to geographical location rather than a time-based split. This approach 

allows the model to better capture spatial variability in soil moisture while preserving temporal 

integrity. 

For optimizing model performance and preventing overfitting, key hyperparameters were 

fine-tuned to minimize Root Mean Square Error (RMSE) through a 10-fold cross-validation 

process. This 10-fold cross-validation, conducted across the period of 2011–2013, ensures that the 

model’s parameters are well-calibrated for accuracy and stability. Specifically, nine-tenths of the 

spatial sample were randomly allocated for model fitting, with the remaining one-tenth reserved 

for validation.  

 

4. The authors report a narrowing of the distribution of soil moisture values in the ‘downscaled’ 

dataset compared to the original CCI SM, which indicates a loss of information. A higher-

resolution dataset should have a wider distribution of values than a low-resolution one, if we 

assume that the low-resolution data is a (weighted) average of the high-resolution data contained 

in its boundaries. This follows from the central limit theorem.  

The time-series values from the BMA are either consistently higher or lower than all of the 

underlying model predictions (Figure 9). A weighted average must lie somewhere between its 

constituent values! This suggests that the authors are making an error in their calculations. 

Response: Thank you for highlighting these important points. In the new version, we have added 

the related context in the main text section 4.1, 4.2 and supplementary Figure S4 and Table S3. 

1) Traditional machine learning-based downscaling could indeed result in a narrower distribution 

range due to its tendency to smooth extreme values and prioritize certain variables, thereby 

producing more conservative predictions. This effect arises because machine learning models are 

heavily influenced by the training data distribution. In this study, high soil moisture values 

represented ~20% of the dataset. With such limited examples of extreme moisture, the model may 

not effectively capture this range, leading it to rely predominantly on mid-to-low value ranges 

(Figure S4). This reliance can cause underestimation of higher values, especially in arid and semi-

arid regions where the scarcity of high-moisture samples limits the model’s ability to generalize to 

higher soil moisture conditions. Furthermore, many machine learning models tend toward 
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conservative predictions, balancing overall prediction error by minimizing extreme deviations. 

This approach, while effective for reducing mean square error, can lead to an underestimation of 

high values, as the model “pulls” extreme values toward the mean [1, 2]. During downscaling, 

integrating fine-scale spatial features like topography or vegetation cover can also add complexity, 

especially in high-moisture regions (e.g., near irrigation zones or rivers). This integration challenge 

may lead the model to underestimate moisture variability, particularly at the higher end of the 

range. Despite this, our model does capture mid-range variability effectively, demonstrating that it 

can still reliably represent spatial heterogeneity. 

2) The observed narrowing of the soil moisture range should not necessarily be interpreted as 

information loss [3-5]. In remote sensing downscaling, a narrower range does not contradict 

enhanced spatial variability. Downscaling increases spatial resolution, allowing for the capture of 

localized details and finer distinctions in topography, land cover, and moisture gradients. The 

resulting increase in spatial variability, despite a narrower value range, is a reasonable outcome 

driven by the model’s capacity to accurately represent regional heterogeneity. Evidence from our 

histograms and box plots indicates that the downscaled dataset shows greater clustering in local 

median values, with values displaying an upward trend post-downscaling. Metrics such as the 

coefficient of variation (CV) and Moran’s I index further validate an increase in spatial variability, 

especially in the mid-range (Table S3). This approach, while conservative on extremes, effectively 

captures the nuanced spatial variability required for soil moisture analysis at finer resolutions. 

 

Table S3 Coefficient of variation (CV) and Moran’s I index 

 ESA CCI RF MLR SVR XG BMA 

CV 0.321 0.328 0.313 0.324 0.332 0.324 

Moran’s I [0-100%] 0.994 0.964 0.955 0.994 0.946 0.972 

Moran’s I [0-15%] 0.991 0.755 0.876 0.991 0.846 0.86 

Moran’s I [15-85%] 0.99 0.795 0.922 0.989 0.825 0.803 

Moran’s I [85-100%] 0.991 0.864 0.921 0.991 0.895 0.902 

Note: CV measures overall variability, with higher values indicating stronger heterogeneity. 

Moran’s I quantifies spatial distribution patterns, where higher values reflect weaker heterogeneity 

and stronger spatial autocorrelation. The CV is calculated for the entire dataset. Moran’s I index 

is determined using a simple four-neighborhood relationship, with brackets indicating different 

sample divisions. The 0-100% range represents the full sample, while the 0-15%, 15-85%, and 85-

100% ranges correspond to low-value, mid-range, and high-value distributions, respectively. 

 

3) BMA in this study goes beyond a simple weighted average of model outputs. Through 

integration with observational data, model uncertainty, and error correction, BMA can achieve a 

closer alignment with actual observations. This approach allows BMA to exceed the boundary 

values set by individual models, especially in extreme high or low values. Our results indicate that 

approximately 20-30% of grid points fell outside the individual model boundaries, most notably 

in these extreme ranges. 



4 
 

Unlike simple weighted averaging, Bayesian integration could leverage observational data to 

update the posterior probability distribution for each model [6, 7]. This update mechanism enables 

BMA to produce results that deviate from conventional model averages, adjusting based on model 

alignment with observed data. Specifically, when there is a pronounced difference between model 

predictions and observed values, the Bayesian framework adapts the outcome toward the observed 

values through posterior updates. Observational data significantly influence the weighting of each 

model, resulting in iterative refinements through methods like maximum likelihood estimation, 

leading to a final output that better approximates observed conditions. 

Additionally, BMA dynamically adjusts model weights and incorporates adjustment 

coefficients to account for model error and uncertainty. These adjustment coefficients apply 

targeted corrections to each model’s output, ensuring that the integrated result is not merely an 

average but a refined product that reflects observational data [8, 9]. When models display 

significant deviations, BMA reduces their influence, favoring models that align more closely with 

observational data. This dynamic weighting allows the ensemble to extend beyond individual 

model boundaries and closely approximate true observed values, enhancing both accuracy and 

realism in the downscaled product. 

 

 
Figure S4. (a) Scatter plots comparing ESA CCI soil moisture with in situ measurements from 

three ground station networks. (b) Scatter plots showing residual errors of the downscaled soil 

moisture relative to in situ measurements. 

[1] Sadayappan, K., Kerins, D., Shen, C., & Li, L. (2022). Nitrate concentrations predominantly 

driven by human, climate, and soil properties in US rivers. Water Research, 226, 119295. 

[2] Bo, Y., Li, X., Liu, K., Wang, S., Li, D., Xu, Y., & Wang, M. (2024). Hybrid theory‐guided data 

driven framework for calculating irrigation water use of three staple cereal crops in China. Water 

Resources Research, 60(3), e2023WR035234. 

[3] Wang, F., & Tian, D. (2024). Multivariate bias correction and downscaling of climate models 

with trend-preserving deep learning. Climate Dynamics, 62(10), 9651-9672. 

[4] Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., ... & 

Thiele‐Eich, I. (2010). Precipitation downscaling under climate change: Recent developments to 

bridge the gap between dynamical models and the end user. Reviews of geophysics, 48(3). 
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[5] Latombe, G., Burke, A., Vrac, M., Levavasseur, G., Dumas, C., Kageyama, M., & Ramstein, 

G. (2018). Comparison of spatial downscaling methods of general circulation model results to 

study climate variability during the Last Glacial Maximum. Geoscientific Model 

Development, 11(7), 2563-2579. 

[6] Xu, T., & Valocchi, A. J. (2015). A Bayesian approach to improved calibration and prediction 

of groundwater models with structural error. Water Resources Research, 51(11), 9290-9311. 

[7] Wang, C., Wang, K., Tang, D., Hu, B., & Kelata, Y. (2022). Spatial random fields-based 

Bayesian method for calibrating geotechnical parameters with ground surface settlements induced 

by shield tunneling. Acta Geotechnica, 17(4), 1503-1519. 

[8] Bao, L., Gneiting, T., Grimit, E. P., Guttorp, P., & Raftery, A. E. (2010). Bias correction and 

Bayesian model averaging for ensemble forecasts of surface wind direction. Monthly Weather 

Review, 138(5), 1811-1821. 

[9] Fraley, C., Raftery, A. E., & Gneiting, T. (2010). Calibrating multimodel forecast ensembles 

with exchangeable and missing members using Bayesian model averaging. Monthly Weather 

Review, 138(1), 190-202. 

 

5. The authors emphasize that one of the major advantages of their methodology is the inclusion 

of prior knowledge from in-situ data into the Bayesian modelling framework. However, I could 

not find a description of the priors they use anywhere in the paper. This needs to be included if 

such a strong statement is made.  

It is unclear from the manuscript how the weights of the individual models in the Bayesian model 

averaging algorithm are derived.  

Response: Thank you for raising this point. In the new version, we provide additional clarification 

on the use of priors and weight derivation in our BMA approach, including the role of in-situ data 

and our specific use of the Markov Chain Monte Carlo Model Composition (MC3) algorithm. The 

related context can be found in the main text section 3.3. 

This study utilizes BMA to create an ensemble from multiple downscaled soil moisture 

estimates produced by different machine learning models. BMA is a robust statistical approach 

that assigns weights to each model based on the posterior probability of its predictive accuracy, 

taking into account both model uncertainty and prior knowledge. This approach is particularly 

advantageous as it leverages prior information from ground-based observations (in-situ data) to 

refine model predictions and reduce the influence of outliers or noise in individual model outputs. 

In terms of prior knowledge, we incorporate in-situ soil moisture data as a form of point-wise 

ground truth to guide the weighting process. Ground observations are essential in calibrating model 

weights by providing a reliable reference for predictive accuracy, thus allowing the ensemble 

model to better capture the variability and characteristics observed in the field. 

1) The process of calculating the posterior probability for model weights in BMA is 

computationally intensive, especially when handling complex likelihood functions. To manage this, 

we employ the Markov Chain Monte Carlo Model Composition (MC3) algorithm [1, 2], which is 

an efficient sampling method that approximates the posterior distribution of each model’s weight. 
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Through MC3, we iteratively sample from the model space, with each iteration using ground 

observation data to calibrate and refine the weight assigned to each soil moisture model. The key 

steps are as follows: i) Likelihood calculation with observational data: To evaluate each model’s 

performance, we calculate the likelihood using the Negative Log-Likelihood function, which 

reflects the alignment between model predictions and observed data. Models with predictions that 

closely match observed values yield higher likelihoods, thereby increasing their probability of 

being assigned a higher weight during sampling. ii) Dynamic weight adjustment: During each 

iteration of MC3, ground observations dynamically influence the weight of each model based on 

its alignment with the observational data. By doing so, MC3 continuously optimizes the model 

weights, leading to a final ensemble output that is more representative of the observed field 

conditions. iii) Iterative sampling and optimal combination selection: Over multiple iterations, the 

MC3 algorithm records the model combination and its likelihood, refining the weight estimates 

with each step. The process continues until reaching a preset sample size, after which the posterior 

weights for each model are derived based on cumulative likelihood values across samples. 

2) The posterior probabilities (weights) calculated using MC3 are initially estimated at the station 

scale, where ground data are available. To generalize these weights across the entire study area, 

we use Kriging interpolation, a spatial interpolation technique that accounts for the spatial 

autocorrelation of station weights. Kriging provides a way to adapt the interpolation weights to 

local spatial characteristics, ensuring that the ensemble weighting is appropriately distributed 

across regions with varying data densities and environmental conditions. Kriging also enables 

uncertainty estimation for the interpolated weights, which is particularly useful for assessing 

reliability in data-sparse areas [3]. This uncertainty information is critical for evaluating the 

confidence in downscaled soil moisture estimates in regions where station data are limited. 

 

[1] Fragoso, T. M., Bertoli, W., & Louzada, F. (2018). Bayesian model averaging: A systematic 

review and conceptual classification. International Statistical Review, 86(1), 1-28. 

[2] Giudici, P., & Castelo, R. (2003). Improving Markov chain Monte Carlo model search for data 

mining. Machine learning, 50, 127-158. 

[3] Finley, A. O., Banerjee, S., & Carlin, B. P. (2007). spBayes: an R package for univariate and 

multivariate hierarchical point-referenced spatial models. Journal of statistical software, 19(4), 1. 

 
6. The manuscript contains misleading citations.   

Response: Thank you for highlighting this issue. We have conducted a thorough review of the 

manuscript, with particular attention to the citations in the introduction and other sections. We have 

corrected all misleading or unclear citations to ensure that each reference accurately supports the 

statements and arguments presented. 

 

Specific Comments  

1. Introduction  
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The introduction lacks a clear demonstration as to why we need higher resolution soil moisture 

datasets (applications, hypothesis to test, etc). It would benefit from a more detailed discussion of 

the most influential studies that have used downscaling and what their weaknesses are. Some 

strong statements lack citations and some citations are misleading (see detailed comments below).   

• Lines 49-51: “While these products are valuable for certain applications (Molero et al., 

2016), the spatial resolution of these products—largely tens of kilometers—limits the 

ability to capture the spatial heterogeneity of soil moisture (Njoku and Entekhabi, 1996; 

Schmugge, 1998).” I am certain there are more recent studies looking into the spatial 

heterogeneity of soil moisture.  

• Lines 52-54: “Soil moisture downscaling, an effective technique for improving spatial 

resolution, has received substantial attention (Zhang et al., 2022). Statistical approaches 

and land surface models (Famiglietti et al., 2008; Grayson and Western, 1998) have been 

widely used, but these methods typically require large amounts of parametric data with 

ground data.” Famiglietti et al., 2008, does not perform any downscaling, but only provides 

a quantification of SM variability across scales. This citation would be better suited to the 

paragraph preceding this one. The last part of this sentence is also unclear. What is meant 

by ‘parametric data with ground data’?  

• Lines 54-56: “Various fusion methods integrating multi-source satellite remote sensing 

data have been developed, falling into categorized like active-passive microwave and 

optical-microwave data integration.” This needs citations and it is also unclear why 

combining active and passive microwave sensors would increase the resolution of a dataset. 

It typically only increases coverage and reduces uncertainty.   

• Lines 56-57: “All these mentioned models encounter challenges related to model structure 

constraints, data quality, scale disparities, and geographic limitations (Peng et al., 2017; 

Werbylo and Niemann, 2014).” Werbylo and Niemann, 2014, compares two in-situ 

sampling approaches for use in downscaling, but doesn’t discuss challenges in 

downscaling.   

• Lines 76-77: “Existing ensemble machine learning often overlooks the incorporation of 

prior knowledge, a crucial regularization mechanism that prevents overfitting and enhances 

model generalization.” Priors can only prevent overfitting, if the overfitted solution is 

unlikely in prior space. A large sample size always overcomes any prior. Prior knowledge 

helps with small sample sizes. This needs a citation.   

Response: Thank you to the reviewer for highlighting this important issue. In response, we have 

restructured the introduction to provide a clearer rationale for the necessity of higher-resolution 

soil moisture datasets. We discussed the practical applications and research hypotheses driving the 

need for enhanced spatial resolution, including specific applications in water resource management, 

drought monitoring, and precision agriculture. Additionally, we have incorporated a review of 

influential studies in downscaling, highlighting their achievements and limitations, to clarify the 

current gaps that our study aims to address. We have also thoroughly reviewed and corrected the 
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citations, especially for sections where stronger claims lacked supporting references, ensuring that 

all citations are accurate and directly relevant to the points discussed. 

 

2. Study area and materials  

1) Figure 1: Mismatch between text and figure. How do the three station types in the plot 

(Meteorological, Crop and CERN stations) relate to the ones mentioned in section 2.2.5 (in-situ 

measurements, NZW, QXZ, CERN)?  

Response: Thank you for noting this discrepancy. We have revised Figure 1 to ensure consistency 

with the station types described in Section 2.2.5. Specifically, the figure now clearly distinguishes 

between the in-situ measurement types (NZW, QXZ, CERN) to align with the terminology and 

classification used in the text. 

 
Figure 1: Geographic Context of the Study Area. (a) Spatial distribution of land types and (b) 

elevation within the study area. The dots on the maps represent the precise locations of the selected 

ground stations employed in this research. (c) Photographic representation showcasing 

characteristic land types in northern China. 

 

2) Lines 123-125: “We use the combined active-passive ESA CCI products from 2003 to 2010, 

obtained from the ESA data archive (https://www.esa-soilmoisture-cci.org/)” The ESA CCI SM 

website clearly states that “If using the COMBINED product, the following is also compulsory in 

addition to the above: Preimesberger, W., Scanlon, T., Su, C. -H., Gruber, A. and Dorigo, W. (2021). 

Homogenization of Structural Breaks in the Global ESA CCI Soil Moisture Multisatellite Climate 

(a) 

(b) 
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Data Record, in IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 4, pp. 2845-

2862, April 2021, doi: 10.1109/TGRS.2020.3012896.”  

Response: Thanks for pointing out this issue. We have added this citation in the new version. 

 

3) Line 127: “The integration of MODIS products within satellite-derived soil moisture 

downscaling has been extensively employed” This needs a citation.   

Response: Thanks for highlighting this point. We have added an appropriate citation to support 

such statement in the revised manuscript. 

 

4) Line 157: “The CERN dataset comprises 34 stations, covering a period of approximately five 

days from 2005 to 2014.” There are only 5 measurements in 9 years? Is this correct?   

Response We apologize for the initial misdescription. In the revised manuscript, we have clarified 

this as follows: “The CERN dataset comprises soil moisture from 34 stations, covering the period 

from 2005 to 2014, with measurements taken at five-day intervals.”. 

 

3. Methods  

1) 3.1 Feasibility of chosen explanatory factors: The authors only use one (random forest) out of 

their 4 machine learning models for their feature importance analysis. Why this one and why not 

all? The results might be different for the different models. Furthermore, the authors should test 

for collinearity/correlation between explanatory variables to avoid overfitting their models.   

Lines 208-215: The linear regression analysis doesn’t add any scientific value to the paper. I would 

remove this paragraph along with Figure 3b.   

Response: Thank you for highlighting this important point. In the revised manuscript, we have 

included the feature importance results directly in the main text instead of in the supplementary 

material. Additionally, we have expanded our analysis to address potential correlation among the 

explanatory variables. Specifically, we conducted a correlation analysis among the explanatory 

variables, finding low correlations with Pearson correlation coefficients below 0.35. This supports 

the model’s stability by indicating minimal collinearity and reducing the risk of overfitting. 

      Regarding Figure 3b, we have integrated this into a broader figure illustrating autocorrelation 

among all relevant variables, including both satellite-derived and observed soil moisture data. This 

revised figure provides a clearer view of variable relationships, contributing to the overall 

readability and interpretability of the manuscript. 
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Figure 3: Assessment of explanatory variables’ feasibility. (a) Average (blue bar) and standard 

deviation (error bar) of permutation-based importance of explanatory variables concerning soil 

moisture. (b) Average Pearson correlation coefficients among different explanatory variables, 

including correlations with two independent soil moisture data sources. 

 

2) 3.2 Machine learning methods: it is unnecessary to explain these 4 very commonly used machine 

learning models.   

Line 253, Equation 4: The formula here is misleading, as x should be the result of a nonlinear 

transformation of the explanatory variables, not the “the value of each dimension in the training 

set”  

Response: Thanks for the reviewer’s suggestion. We have removed the related context in the new 

version. 

 

3) Lines 297-301: “In theory, calculating p(M_i|D) of a model involves computing the likelihood 

function for each model, multiplying it by the prior probability of each model, and dividing by the 

marginal likelihood. However, this method is rarely employed in practice due to the complexity of 

computing the likelihood function and prior distribution, especially for complex models with high-

dimensional parameter spaces. Instead, iterative estimation techniques such as Markov Chain 

Monte Carlo methods are commonly used. In our study, we utilized Markov Chain Monte Carlo 

Cube (MC3) for this purpose.” Given that BMA is the main innovation in their study, the authors 

should explain in more detail how they calculated the individual model probabilities. Citations are 

needed here too.  

(a) 

(b) 
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Response: Thank you for emphasizing this point. In response, we have revised the manuscript to 

provide a more detailed explanation of how individual model probabilities were calculated within 

the BMA framework, as this is central to our study. Specifically, we have expanded the 

methodology section to clarify the theoretical foundation and practical implementation steps 

involved in the estimation process. 

In our study, we employed the Markov Chain Monte Carlo Model Composition (MC³) method 

[1, 2], which efficiently addresses the computational complexities associated with high-

dimensional parameter spaces by iteratively sampling the model space. This approach facilitates 

the calculation of posterior probabilities by combining each model's likelihood with its prior 

probability, ultimately yielding the weight of each model in the ensemble. 

Additionally, we have elaborated on the role of ground observation data within the MC³ 

sampling process. Observational data are used to compute the likelihood values, thereby 

influencing model weights based on how well each model’s predictions align with observed soil 

moisture values. This integration allows the BMA framework to adjust model weights dynamically, 

ensuring that the final ensemble results more accurately reflect real-world conditions. 

 

Specific revision: “The core idea of extending BMA from statistical models to dynamic models is 

that there is an optimal forecast model or member in any set of forecasts, but it is impossible to 

determine which model is the best. Therefore, the uncertainty of the optimal model can be 

quantified by BMA. The dynamic model can be used to update its weights to better reflect the 

variability and uncertainty in the forecasting process. Here again, y is used to denote the predicted 

value. Bias correction can be applied to each deterministic prediction using any of the many 

possible bias correction methods to generate the bias-corrected prediction 𝑓𝑘. Then the prediction 

𝑓𝑘 is associated with the conditional PDF, 𝑔𝑘(𝑦|𝑓𝑘). Assuming 𝑓𝑘 is the best prediction in the set, 

it can be interpreted as the conditional PDF of y conditional on 𝑓𝑘. The BMA prediction model is 

then： 

𝑝(𝑦|𝑓1，…，𝑓𝑘) = ∑ 𝑤𝑘𝑔𝑘(𝑦|𝑓𝑘)𝑘
𝑖=1                                                                                                         (3) 

where 𝑤𝑘 is the posterior probability that prediction k is the best prediction and is based on the 

performance of prediction k during training. 𝑤𝑘 are probabilities, so they are non-negative and 

add up to 1, i.e., ∑ 𝑤𝑘 = 1𝐾
𝑘=1 . 

In predicting remote sensing soil moisture, 𝑔𝑘(𝑦|𝑓𝑘)  can be viewed as a normally distributed 

density function. Its prediction mean result is a simple linear function of a single predicted result 

𝑎𝑘 + 𝑏𝑘𝑓𝑘 with standard deviation 𝜎. This can be expressed by： 

𝑦|𝑓𝑘~𝑁(𝑎𝑘 + 𝑏𝑘𝑓𝑘，𝜎2)                                                                                                                        (4) 

The above normal distribution density function is noted as： 

𝑔𝑘(𝑎𝑘 + 𝑏𝑘𝑓𝑘，𝜎2)                                                                                                                                  (5) 

where: 𝑎𝑘, 𝑏𝑘 are bias correction terms that can be found by linear regression methods. In this 

case, the BMA predicted mean is just the conditional expectation of y given the prediction, i.e. 

𝐸[𝑦|𝑓1，…，𝑓𝑘] =  𝑤𝑘(𝑎𝑘 + 𝑏𝑘𝑓𝑘)                                                                                                        (6) 
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This prediction can be considered as a deterministic prediction. It is also possible to compare the 

estimated values with individual estimates or set averages in a set. 

In this study, we used the Markov Chain Monte Carlo Model Composition (MC³) algorithm to 

determine the posterior probability and calculate the weights for each soil moisture product 

(Murray et al., 2013; Fragoso et al., 2018). Given the computational complexity involved in 

estimating the likelihood function and prior distribution, MC³ offered an efficient solution. 

Through this sampling process, ground observation data was incorporated to calibrate and refine 

the model weights, allowing the ensemble mean to align more closely with observed soil moisture 

values. This process also enables the model to extend beyond boundary values under extreme 

conditions, thus better capturing the variability inherent in observational data. 

To evaluate each model’s likelihood based on ground observations, we applied the Negative Log-

Likelihood function, reflecting the accuracy of each model’s predictions relative to observed values. 

Models yielding predictions that closely match observed data produce higher likelihood values, 

making them more likely to receive greater weights in the MC³ sampling process. The MC³ 

algorithm, a model combination optimization approach, efficiently samples the model space to 

estimate each model’s posterior weight. During each iteration, the algorithm records the current 

model state and its likelihood, continuing this sampling process until a preset number of iterations 

is reached. After sampling, the posterior weights for each model are calculated. Specifically, 

ground observation data is central to the MC³ sampling process in three key ways: i) It is used to 

calculate the likelihood values, allowing models with a better fit to observed data to attain higher 

weights. ii) By dynamically evaluating each model’s likelihood during sampling, the MC³ 

algorithm adjusts model weights in real time, bringing the final result closer to observed values. 

iii) For each sampling iteration, MC³ assesses the overall likelihood of model combinations based 

on ground observation data, enhancing the probability of selecting an optimal model combination. 

In the BMA framework, where multiple remote sensing soil moisture products are combined using 

ground observation data, MC³ initially calculates posterior probabilities (weights) at the station 

level. To generalize these station-based weights across the entire remote sensing image (non-

station scale), spatial interpolation is employed. This study uses Kriging interpolation, which 

adapts weights based on the spatial autocorrelation characteristics of station weights, providing 

more accurate estimates in areas with spatial variability. Additionally, Kriging interpolation offers 

uncertainty estimates for the interpolated results, which are essential for evaluating data reliability, 

particularly in areas with sparse station data. This uncertainty information further aids in 

assessing the confidence level of interpolated results in data-sparse regions.” 

 

[1] Fragoso, T. M., Bertoli, W., & Louzada, F. (2018). Bayesian model averaging: A systematic 

review and conceptual classification. International Statistical Review, 86(1), 1-28. 

[2] Giudici, P., & Castelo, R. (2003). Improving Markov chain Monte Carlo model search for data 

mining. Machine learning, 50, 127-158. 
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4) Lines 324-325: “Through a sensitivity analysis conducted with an independent dataset, 

maximum values for these parameters are chosen for the period spanning 2003 to 2010.” Which 

independent dataset?   

Response: Thank you for highlighting this point. In our study, a sensitivity analysis was conducted 

using an independent dataset from the period 2011 to 2013. This analysis was instrumental in 

determining the optimal parameter values for model implementation over the earlier period of 

2003 to 2010. Specifically, we tested various combinations of parameters, adjusting the temporal 

duration from 1 to 5 days (in 1-day increments) and the spatial window size from 3 to 10 units (in 

1-unit increments). We have clarified this information in the revised manuscript. 

 

4. Results and Discussions  

1) The maps from Figure 5 are of too limited quality to really assess whether their method leads 

to improved resolution of spatial patterns in soil moisture.    

Response:  Thank you for your valuable feedback. In the revised version, we have refined Figure 

5 to focus on several key months to provide a clearer assessment of spatial patterns.  

Additionally, we have introduced the Coefficient of Variation (CV) and Moran’s I index to 

better illustrate local and range-specific performance. These indices offer a quantitative evaluation 

of spatial variability, particularly highlighting an increase in variability in the mid-range of soil 

moisture values. It means that our approach, though conservative on extreme values, effectively 

captures the subtle spatial variability essential for accurate soil moisture analysis at finer 

resolutions. Detailed context could be found in the main text section 4.1. 
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Figure 5: Spatial distribution of soil moisture across six data sources, representing the 15th day of 

April-October 2009. Columns, from left to right, show the 25-km ESA CCI soil moisture and the 

1-km downscaled soil moisture derived from random forest (RF), multiple linear regression (MLR), 

support vector regression (SVR), extreme gradient XG Boost (XG), and Bayesian model averaging 

(BMA), respectively. 

Table Coefficient of variation (CV) and Moran’s I index 

 ESA CCI RF MLR SVR XG BMA 

CV 0.321 0.328 0.313 0.324 0.332 0.324 

Moran’s I [0-100%] 0.994 0.964 0.955 0.994 0.946 0.972 

Moran’s I [0-15%] 0.991 0.755 0.876 0.991 0.846 0.86 

Moran’s I [15-85%] 0.99 0.795 0.922 0.989 0.825 0.803 

Moran’s I [85-100%] 0.991 0.864 0.921 0.991 0.895 0.902 

Note: CV measures overall variability, with higher values indicating stronger heterogeneity. 

Moran’s I quantifies spatial distribution patterns, where higher values reflect weaker heterogeneity 

and stronger spatial autocorrelation. The CV is calculated for the entire dataset. Moran’s I index is 

determined using a simple four-neighborhood relationship, with brackets indicating different 

sample divisions. The 0-100% range represents the full sample, while the 0-15%, 15-85%, and 85-

100% ranges correspond to low-value, mid-range, and high-value distributions, respectively. 
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2) Lines 388-390: “It is evident that the downscaled data produced by the BMA method exhibit 

more pronounced differences compared to the original data, particularly in terms of histogram 

distributions shifting towards the peak. This implies that the downscaled method effectively 

captures the disparities between the 25km and 1km products.” Downscaled datasets should have 

broader distributions than the original data, as the original data should represent an average over 

the HR pixels contained within them. A narrowing of the distribution indicates a loss of 

information, rather than a gain.  

Response: Thank you for highlighting this important point. In response, we have clarified the 

implications of the distribution changes observed in our downscaled dataset. The related context 

could be found in the main text section 4.1 and 4.2. 

 As is well known, traditional machine learning-based downscaling methods may lead to a 

narrower distribution due to a tendency to smooth extreme values and prioritize certain patterns in 

the training data, producing more conservative estimates [1, 2]. In our study, high soil moisture 

values made up less than 10% of the dataset. With limited representation of extreme moisture 

values, the model may not fully capture this range, leading it to rely predominantly on mid-to-low 

value ranges. This can result in underestimation at the higher end, especially in arid and semi-arid 

regions where high-moisture samples are sparse. 

Additionally, machine learning models, such as regression and random forests, often tend 

toward conservative predictions to minimize overall prediction error. This can mean that extreme 

high values are "pulled" toward the mean, reducing variance at the higher end. During the 

downscaling process, the need to integrate fine-scale features such as topography and vegetation 

cover further complicates the capture of variability, particularly in high-moisture areas (e.g., near 

irrigated zones or rivers). These combined effects can lead to an underestimation of high values, 

while mid-range variability is effectively preserved, suggesting that the model still captures spatial 

heterogeneity meaningfully. 

Importantly, the observed narrowing of the range should not automatically be interpreted as 

a loss of information [3-5]. In the context of remote sensing downscaling, a narrower range does 

not conflict with the enhancement of spatial variability. Increasing spatial resolution allows the 

model to capture finer distinctions in features such as topography, land cover, and moisture 

gradients. This often results in greater spatial variability across the landscape, even if the range of 

values is more focused. Our histograms and box plots indicate that the downscaled dataset shows 

more pronounced clustering around local median values, and this clustering trend intensifies post-

downscaling. 

Furthermore, metrics such as the Coefficient of Variation (CV) and Moran’s I index confirm 

an increase in spatial variability, particularly in the mid-range. These metrics support the notion 

that, while conservative in extreme values, our downscaling method effectively captures nuanced 

spatial variability essential for soil moisture analysis at finer resolutions. This approach ensures 
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that critical regional heterogeneity is well-represented, enhancing the utility of the downscaled 

dataset for hydrological and environmental applications. 

 

Table Coefficient of variation (CV) and Moran’s I index 

 ESA CCI RF MLR SVR XG BMA 

CV 0.321 0.328 0.313 0.324 0.332 0.324 

Moran’s I [0-100%] 0.994 0.964 0.955 0.994 0.946 0.972 

Moran’s I [0-15%] 0.991 0.755 0.876 0.991 0.846 0.86 

Moran’s I [15-85%] 0.99 0.795 0.922 0.989 0.825 0.803 

Moran’s I [85-100%] 0.991 0.864 0.921 0.991 0.895 0.902 

Note: CV measures overall variability, with higher values indicating stronger heterogeneity. 

Moran’s I quantifies spatial distribution patterns, where higher values reflect weaker heterogeneity 

and stronger spatial autocorrelation. The CV is calculated for the entire dataset. Moran’s I index is 

determined using a simple four-neighborhood relationship, with brackets indicating different 

sample divisions. The 0-100% range represents the full sample, while the 0-15%, 15-85%, and 85-

100% ranges correspond to low-value, mid-range, and high-value distributions, respectively. 

 

[1] Sadayappan, K., Kerins, D., Shen, C., & Li, L. (2022). Nitrate concentrations predominantly 

driven by human, climate, and soil properties in US rivers. Water Research, 226, 119295. 

[2] Bo, Y., Li, X., Liu, K., Wang, S., Li, D., Xu, Y., & Wang, M. (2024). Hybrid theory‐guided data 

driven framework for calculating irrigation water use of three staple cereal crops in China. Water 

Resources Research, 60(3), e2023WR035234. 

[3] Wang, F., & Tian, D. (2024). Multivariate bias correction and downscaling of climate models 

with trend-preserving deep learning. Climate Dynamics, 62(10), 9651-9672. 

[4] Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., ... & 

Thiele‐Eich, I. (2010). Precipitation downscaling under climate change: Recent developments to 

bridge the gap between dynamical models and the end user. Reviews of geophysics, 48(3). 

[5] Latombe, G., Burke, A., Vrac, M., Levavasseur, G., Dumas, C., Kageyama, M., & Ramstein, 

G. (2018). Comparison of spatial downscaling methods of general circulation model results to 

study climate variability during the Last Glacial Maximum. Geoscientific Model 

Development, 11(7), 2563-2579. 

 

3) Lines 397-398: “While most of the downscaling results exhibit lower values compared to the 

original ESA CCI values during most months, this variance is not of substantial magnitude.” This 

is not a variance, but a bias.    

Response: Thank you for highlighting this distinction. We have revised the statement in the new 

version to accurately refer to this as a “bias” rather than “variance”. 

 

4) Line 398-399: “This pattern can be attributed to the inherent characteristics of the BMA 

ensemble approach, which combines multiple machine learning outcomes to prevent excessively 

high or low values.” This might explain the lower variance, but not the bias.  
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Response: We appreciate your guidance, which has helped us clarify these aspects in the 

manuscript. In the revised version, we have removed this statement to avoid potential confusion. 

Additionally, we have provided a more detailed explanation of the lower variance observed in the 

results in Section 4.2 and 4.3, where we discuss the inherent properties of the BMA ensemble 

approach.  

 

5) Lines 419-420: “The absence of in situ data in the western desert-dominated region potentially 

weak the model training, exerting a negative effect on the resultant model accuracy.” Until this 

point, we don’t know how the in-situ data is used in training. I assume it enters the model 

probabilities in the BMA, but this is never explained.   

Response: Thank you for pointing out the need for clarity on the use of in-situ data within the 

BMA framework. We have now expanded our explanation to describe how in-situ soil moisture 

data is used in the model training and weighting process. The related context could be found in the 

main text section 3.3. 

In this study, we incorporate in-situ soil moisture observations as point-specific ground truth 

data to refine and calibrate model weights, which enhances the ensemble’s alignment with real-

world soil moisture variability. This in-situ data is essential for ensuring the model’s ability to 

accurately capture soil moisture patterns and to mitigate any biases due to limited data coverage 

in specific regions, such as the western desert areas. 

The weighting process in BMA is accomplished through the Markov Chain Monte Carlo 

Model Composition (MC3) algorithm, an efficient sampling approach that approximates the 

posterior distribution of each model’s weight. This iterative process utilizes ground observations 

to adjust the weight of each model based on its predictive alignment with observed data. The main 

steps are as follows: i) likelihood calculation with observational data: to gauge each model’s 

predictive accuracy, we calculate a likelihood measure using the Negative Log-Likelihood 

function, comparing model predictions to observed soil moisture values. Models that closely match 

these observations yield higher likelihood scores, which in turn increases their probability of 

receiving a higher weight during the sampling process. ii) dynamic weight adjustment: during each 

iteration of the MC3 process, the algorithm recalibrates model weights based on the observed 

alignment with in-situ data. This dynamic adjustment allows ground observations to continually 

influence model weights, making each iteration progressively more representative of field 

conditions. iii) iterative sampling and optimal combination selection: over multiple iterations, MC3 

records the model combinations and their likelihood scores, refining weight estimates with each 

cycle. The sampling continues until a preset sample size is reached, allowing for a stable estimation 

of the posterior weights based on cumulative likelihood values from the entire sampling process. 

Collectively, our framework allows the ensemble to achieve a closer alignment with observed field 

conditions, as the in-situ data informs each model’s contribution based on its performance relative 

to ground truth data. 
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6) Figure 7: colour scales are confusing, high MAE should correspond to low R (and thus have the 

same colours)  

Response: Thank you for highlighting this important point regarding the color scales in Figure 7. 

We have now adjusted the color scale to ensure consistency, with high Mean Absolute Error (MAE) 

values and low correlation (R) values aligned in similar colors to reflect the expected inverse 

relationship.  

 

 

Figure 7: Performance evaluation of downscaled soil moisture. (a) Correlation coefficient (R) and 

(b) mean absolute error (MAE) illustrating the accuracy of BMA-based downscaled soil moisture 

when compared against in situ measurements from three ground station networks. 

 

7) Lines 431-439: The authors should include confidence intervals for these metrics. Furthermore, 

I wonder how they compare to their coarse-grained modelled dataset? I assume they would be very 

similar, which would suggest that the downscaling has little effect, but that the results rather stem 

from the models smoothing the data (at any scale).   

Response: Thank you for your valuable comments. We have analyzed the confidence intervals for 

our metrics to check the reliability of our results. Our analysis of confidence levels in the 

correlation validation results revealed that only the CERN station achieved a significance level 

(a) 

(b) 
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below 0.05, while the other two stations did not display statistically significant confidence levels. 

However, we recognize that the confidence level of correlation between ground station data and 

downscaling results may not fully validate model performance alone, highlighting in several other 

studies [1-2], as accuracy is also influenced by factors such as spatial scale mismatches, error 

propagation, and inherent uncertainties. This is the reason why most current studies tend to 

incorporate additional metrics beyond correlation analysis, specifically Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE), which offer a fuller picture of model accuracy. 

      Additionally, we compared downscaled results with the original coarse-resolution remote 

sensing data and observed notable differences. The inclusion of high-resolution explanatory 

variables contributed substantially to improving accuracy and capturing heterogeneity, particularly 

on local scales and within mid-range values. Beyond the two heterogeneity metrics discussed 

earlier, we also assessed the accuracy within the middle range of values [15–85%], where we 

observed a significant improvement compared to overall accuracy. These localized metrics 

effectively illustrate the impact of our algorithm, suggesting that the downscaling approach 

enhances both spatial resolution and reliability across the dataset. 

In the new version, we have added the related context could be found in the main text section 

4.3 and supplementary Fig. S5. 

 
Figure S5. Correlation between 1-km downscaled soil moisture and the original 25-km satellite-

derived soil moisture, including the difference between the two datasets. 

 

Table 4. Comparison of BMA and individual machine learning 

Stations Num 

R   

RF MLR SVR XG BMA ESA CCI 

All Mid All Mid All Mid All Mid All Mid All Mid 

NZW 5044 0.323 0.383 0.338 0.411 0.321 0.398 0.325 0.399 0.342 0.424 0.321 0.375 

CERN 263 0.567 0.664 0.617 0.693 0.629 0.705 0.573 0.672 0.642 0.721 0.586 0.647 

QXZ 1204 0.477 0.571 0.480 0.593 0.478 0.583 0.468 0.554 0.514 0.610 0.479 0.531 

Stations Num 

RMSE（m3/m3) 

RF MLR SVR XG BMA ESA CCI 

All Mid All Mid All Mid All Mid All Mid All Mid 



20 
 

NZW 5044 0.138 0.108 0.136 0.105 0.138 0.106 0.137 0.104 0.137 0.097 0.138 0.115 

CERN 263 0.073 0.060 0.073 0.059 0.073 0.060 0.075 0.061 0.071 0.054 0.084 0.064 

QXZ 1204 0.169 0.125 0.169 0.131 0.168 0.132 0.169 0.128 0.169 0.115 0.168 0.139 

Stations Num 

MAE（m3/m3) 

RF MLR SVR XG BMA ESA CCI 

All Mid All Mid All Mid All Mid All Mid All Mid 

NZW 5044 0.114 0.092 0.113 0.091 0.114 0.095 0.114 0.095 0.114 0.089 0.114 0.101 

CERN 263 0.060 0.038 0.061 0.039 0.061 0.039 0.062 0.040 0.058 0.032 0.067 0.045 

QXZ 1204 0.157 0.119 0.158 0.123 0.156 0.117 0.158 0.120 0.158 0.114 0.157 0.134 

Note: “All” refers to the full set of sample points, whereas “Mid” denotes the subset of sample 

points that fall within the 15-85% range. 

[1]  Crow W T, Van den Berg M J. An improved approach for estimating observation and model 

error parameters in soil moisture data assimilation. Water Resources Research, 2010, 46(12). 

[2] Miralles D G, De Jeu R A M, Gash J H, et al. Magnitude and variability of land evaporation 

and its components at the global scale. Hydrology and Earth System Sciences, 2011, 15(3): 967-

981. 

 

8) Lines 440-450: I don’t see how this paragraph is relevant to the paper. Accurately predicting 

soil moisture during Monsoon season is not a question of downscaling. The authors also never 

mention a particular focus on Monsoon prediction in the introduction or elsewhere.   

Response: Thank you for your valuable feedback. Based on input from multiple reviewers, we 

have removed the references to Monsoon season predictions, as they were not directly relevant to 

the scope and focus of this study. Instead, we have added a more detailed analysis of soil moisture 

accuracy and heterogeneity across various ranges, as the above Table 4. This additional 

information enhances the evaluation of our model’s performance and provides a more 

comprehensive assessment of its effectiveness in different soil moisture conditions. 

 

9) In Figure 9, the time-series values from the BMA are either consistently higher or lower than 

all of the underlying model predictions. A weighted average must lie somewhere between its 

constituent values! This suggests that the authors are making an error in their calculations.   

Response: Thank you for this insightful observation. The BMA approach used in our study is more 

than a straightforward weighted average of model outputs. By integrating observational data, 

accounting for model uncertainty, and incorporating error correction, BMA can align more closely 

with real-world observations. This approach allows BMA to produce values that may occasionally 

fall outside the range of the individual model predictions, particularly for extreme high or low 

values. The selected stations in Figure 9, which represent relatively arid or humid conditions, help 

illustrate this behavior. 

      Unlike traditional weighted averaging, Bayesian integration utilizes observational data to 

update the posterior probability distributions for each model [1, 2]. This mechanism allows BMA 
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to adjust results beyond typical model averages, favoring values that align with observed data. 

Specifically, when there is a marked difference between model outputs and observations, the 

Bayesian framework shifts the final estimate toward the observed values through these posterior 

updates. Observational data play a significant role in recalibrating model weights iteratively, often 

using techniques such as maximum likelihood estimation to produce an output that more accurately 

reflects the actual environmental conditions. 

      Moreover, BMA dynamically adjusts model weights with correction coefficients that account 

for model errors and uncertainties [3, 4]. These coefficients apply focused adjustments to each 

model's output, so the final integrated result is a refined estimate rather than a simple average. 

When models exhibit considerable deviations from observed values, BMA down-weights these 

models and increases the influence of those models that align more closely with observations. This 

process allows the ensemble to extend beyond the boundary values of individual models, 

ultimately generating a more realistic and accurate downscaled product that closely mirrors true 

soil moisture conditions. 

    In the new version, we have added the related context could be found in the main text 

section 4.3. 

 

[1] Xu, T., & Valocchi, A. J. (2015). A Bayesian approach to improved calibration and prediction 

of groundwater models with structural error. Water Resources Research, 51(11), 9290-9311. 

[2] Wang, C., Wang, K., Tang, D., Hu, B., & Kelata, Y. (2022). Spatial random fields-based 

Bayesian method for calibrating geotechnical parameters with ground surface settlements induced 

by shield tunneling. Acta Geotechnica, 17(4), 1503-1519. 

[3] Bao, L., Gneiting, T., Grimit, E. P., Guttorp, P., & Raftery, A. E. (2010). Bias correction and 

Bayesian model averaging for ensemble forecasts of surface wind direction. Monthly Weather 

Review, 138(5), 1811-1821. 

[4] Fraley, C., Raftery, A. E., & Gneiting, T. (2010). Calibrating multimodel forecast ensembles 

with exchangeable and missing members using Bayesian model averaging. Monthly Weather 

Review, 138(1), 190-202. 

 

10) Lines 488-489: “As illustrated in Fig. 10, the R and MAE distributions of the ERA5 data within 

the study area and the Noah data within the Loess Plateau are utilized.” Why is the Noah data not 

used for the whole study area too? Unless a reason for this is given, it looks like cherry-picking.   

Response: Thank you for bringing up this important point. We recognize that limiting the use of 

the Noah model to only a portion of the study area could appear selective without further 

clarification. The decision to use the Noah model only for the Loess Plateau region, rather than the 

entire study area, was driven by the model’s high computational demands, which require 

significant resources. Given the time and budget constraints of this research, running the Noah 

model across the entire study area would not have been feasible [1]. To address these constraints 

while meeting our research objectives, we applied the Noah model specifically to the Loess Plateau, 
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a key area of interest, and used the more computationally efficient ERA5 data for the surrounding 

regions. 

      The Loess Plateau was selected as the focal area for the Noah model due to its unique soil 

structure and hydrological characteristics [2]. This region also encompasses typical semi-arid and 

arid landscapes, including forests and agricultural land, making it highly representative and 

relevant to the study’s goals. We believe that applying the Noah model in this specific region allows 

us to capture finer-scale soil and hydrological dynamics with greater accuracy. In contrast, using 

ERA5 data in other regions achieves an acceptable balance between computational demand and 

overall data representativeness, ensuring that our findings remain robust and applicable across the 

broader study area. 

    In the new version, we have added the related context could be found in the main text section 

2.2.6 and 3.5. 

 

[1] Niu G Y, Yang Z L, Mitchell K E, et al. The community Noah land surface model with 

multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale 

measurements[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D12). 

[2] Liu K, Li X, Wang S, et al. Unrevealing past and future vegetation restoration on the Loess 

Plateau and its impact on terrestrial water storage[J]. Journal of Hydrology, 2023, 617: 129021. 

 

11) Lines 489-491: “Results reveal that the BMA ensemble outcomes exhibit reasonable 

performance in terms of higher R values and lower MAE values when compared to both the ERA5 

and Noah datasets.” Higher R and lower MAE compared to what? The original CCI SM dataset? 

Please specify.   

Response: Thank you for pointing out this need for clarification. In the revised version, we have 

specified the comparison as follows: “Results reveal that the BMA ensemble outcomes exhibit 

reasonable performance in terms of higher R values and lower MAE values when evaluated 

against the ERA5 and Noah datasets as reference standards, respectively.” 

 

12) Section 4.6 Uncertainty analysis: this paragraph does not constitute uncertainty analysis, but a 

feature importance analysis.  

Response: Thank you for highlighting this distinction. After reviewing this section alongside issue 

#14, we have revised Sections 4.5 and 4.6 by combining them into a single, cohesive section now 

titled “Model performance assessment”. This section now appropriately reflects the focus on 

feature importance and model performance analysis. 

 

13) Table 5: The authors should not mix R and R², but rather pick one and transform the other. 

They should report the overall R, rather than the range over in-situ networks. This is misleading.   

Response: Thank you for your valuable feedback. In the revised version, we have standardized the 

metric to report only the correlation coefficient, “R,” throughout the table for consistency. It should 

be clarified that the range shown for evaluation metrics represents calculations made individually 
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for each in-situ network within the study area, rather than an overall metric across all networks. 

We have added this in the new version. 

 

14) Figures S6 and S7 (comparing the model performance with and without clustering and the 

spatiotemporal searching window) should be incorporated into the main manuscript, as they 

highlight the superiority of their novel approach. Figures 11 and 12 could move to the supporting 

information as they don’t add much value to the paper.   

Response: Thank you for the reviewer’s suggestion. Based on the reviewer’s comments, we have 

moved Figures S6 and S7 into the main manuscript and combined them with Figure 11. 

Additionally, we have moved Figure 11 to the supporting information. 

 


