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Response to RC1： 

The major contribution of this paper is the use of Bayesian Model Averaging (BMA) to combine 

the outputs from several different empirical ("machine learning") techniques for soil moisture 

downscaling.  The authors test this methodological innovation by comparing to a large dataset of 

in-situ soil moisture sensors scattered across northern China.  I have several comments that I hope 

the authors will address. 

Response: Thank you for your insightful and constructive feedback, which has been invaluable in 

improving the quality of our manuscript. We have carefully addressed and responded to each 

comment in detail. Furthermore, we have introduced additional independent methods and regional 

comparisons to strengthen the robustness of our analysis and broaden the scope of our findings. 

 

1. First, I believe that statistical derivation of BMA assumes that the models are independent of 

each other.  It seems like the models developed here are likely not independent because they have 

been developed using the same inputs and the same training data.  Have the authors tested whether 

this assumption applies to their models?  If they are dependent, what is the impact on the results? 

Response: We appreciate this comment and recognize that BMA indeed assumes independence 

among models. However, achieving complete independence among models can be challenging in 

practice, especially when models rely on the same meteorological input data. In our study, we 

found Pearson correlations among the four models’ outputs to be approximately 0.75-0.85, 

indicating moderate dependency. 

While this dependency might influence the BMA assumption of model independence, it does 

not necessarily violate it. Generally, BMA’s independence assumption is not an absolute 

requirement for zero correlation but rather seeks models that contribute some level of unique 

information, thus reducing uncertainty in the ensemble [1, 2]. In practice, even with shared inputs, 

if the models exhibit unique structural differences such as ET and soil moisture [3, 4], Bayesian 

model can still effectively enhance ensemble accuracy by drawing on these differences. 

Additionally, the observed dependencies in our models resemble convergence toward the true 

target rather than redundancy, meaning that each model’s output aims to approximate the same 

objective (i.e., true soil moisture values) rather than merely replicating each other. As long as 

models are not entirely redundant (providing the same information), BMA can still yield effective 

integration and improvements in overall accuracy. 

To further explore the impact of dependency, we also conducted additional analyses, which 

have been added in the main text section 4.5 and supplementary Fig. S8. 

1) We assessed the sensitivity of the BMA ensemble by systematically removing one model 

at a time to evaluate any significant changes in accuracy. We observed accuracy reductions ranging 

from 7-12% when specific models were removed. This outcome suggests that each model 

contributes unique information that significantly impacts the ensemble’s performance. If the 

models were highly dependent, removing one would not cause a notable change in accuracy, as 

the remaining models would effectively compensate. This sensitivity analysis indicates that while 

the datasets are correlated, they are not redundant, as each provides distinct characteristics or 
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features. The purpose of BMA is to leverage unique information from each model through 

weighted averaging to reduce uncertainty. If there were strong dependencies, BMA’s weighting 

mechanism would be less effective. However, the observed impact on accuracy confirms that these 

dependencies do not compromise BMA’s integrative performance. Therefore, this analysis 

reasonably demonstrates that any interdependence among the models has only a limited impact on 

BMA’s effectiveness, and that each model contributes valuable information to the ensemble. 

2) To further investigate the impact of dependencies, we also compared BMA results with 

those from a Hierarchical Bayesian Model (HBM) [5, 6], which explicitly accounts for dependency 

structures. HBM incorporates each data source as a distinct hierarchical level, introducing a “data 

source bias” random effect to model deviations of each source from the global mean. This 

framework allows HBM to account for dependencies by quantifying and mitigating inter-model 

biases. Our results showed that HBM achieved an accuracy improvement of less than 8% over 

BMA, indicating that while HBM accounts for dependencies, these dependencies and any 

associated systematic biases only moderately impact ensemble accuracy. This suggests that BMA 

remains a viable approach for practical applications, particularly in scenarios where data 

complexity or computational constraints make it preferable. Although Bayesian methods like 

HBM offer advantages over traditional techniques, they are sensitive to prior settings. The choice 

of priors can strongly influence posterior distributions, and if observational data does not fully 

represent true conditions—due to factors such as low data quality or limited spatial coverage—

model calibration may affect overall accuracy. 

 

 

Figure S8. Sensitivity analysis of the Bayesian Model Averaging (BMA) ensemble, evaluating the 

impact of systematically removing one model at a time on accuracy. Accuracy reductions of 7–12% 

were observed when specific models were excluded, indicating that each model contributes unique 

information critical to the ensemble’s performance. If the models were highly dependent, removing 

one would result in minimal accuracy changes, as the remaining models would compensate. This 

analysis demonstrates that while the datasets exhibit some correlation, they are not redundant, as 

each provides distinct and valuable features. To further explore the impact of model dependencies, 

we compared the BMA results with those from a Hierarchical Bayesian Model (HBM) (Sairam et 

al., 2019), which explicitly incorporates dependency structures. HBM treats each data source as 

a distinct hierarchical level and introduces a “data source bias” random effect to account for 

deviations of individual sources from the global mean. This approach enables HBM to quantify 
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and mitigate inter-model biases. Results showed that HBM achieved a modest accuracy 

improvement of less than 8% over BMA, suggesting that while HBM better accounts for 

dependencies, these dependencies and associated systematic biases have only a moderate effect 

on ensemble accuracy. These findings underscore BMA’s robustness and practicality, particularly 

in scenarios where data complexity or computational constraints make it preferable. While 

advanced Bayesian approaches like HBM offer benefits, such as explicitly modeling dependencies, 

they are sensitive to prior settings. The choice of priors can significantly influence posterior 

distributions, and inaccuracies in observational data—stemming from low quality or limited 

spatial coverage—can impact model calibration and overall accuracy. 
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2. Second, all the downscaling methods considered provide very little improvement in the soil 

moisture estimates.  A key goal of downscaling is to include fine scale spatial variability that is not 

present in the coarse resolution input.  However, when I examine the histograms in Figure 6, I see 

no increase in the variability of soil moisture when the downscaling methods are applied.  Some 

of the methods have less variability than the coarse resolution input.  Are these methods 

successfully introducing any variability in the patterns?  Also, the accuracy of the BMA method is 

only slightly better than the coarse resolution input.  The exact improvement is difficult to see 

because Table 4 does not include the performance of the coarse resolution input nor the overall 

performance across all the datasets used.  Those should be added).  The authors seem satisfied with 

the improvement in their discussion and conclusions, but it seems like the improvements do not 

warrant the huge processing involved.  The authors consider relatively few variables. Could better 

performance be achieved by using model inputs? 
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Response: Thank you for your constructive feedback, which has strengthened our study. 

1) Our study’s primary objective was to produce a 1-km soil moisture product by downscaling 

satellite-derived datasets and calibrating model bias with ground-based soil moisture 

measurements. This approach differs from traditional downscaling. Generally, in the remote 

sensing field, downscaling refers to using coarse-resolution data along with high-resolution 

auxiliary datasets to predict the target variable at finer resolutions. The primary focus here was not 

solely on increasing spatial variability but on generating reliable high-resolution soil moisture data 

for arid regions such as Northern China, where coarse-resolution ESA CCI data may overestimate 

surface moisture due to the limitations in capturing finer-scale processes [1, 2]. In arid and semi-

arid regions, high surface exposure and low vegetation cover lead to rapid surface drying. 

Consequently, ESA CCI’s microwave sensing, while sensitive to surface moisture, struggles to 

accurately capture deeper moisture levels, resulting in potential overestimation of surface soil 

moisture. 

Additionally, machine learning techniques, particularly those constrained by field 

observations, tend to smooth extreme values, resulting in reduced spatial variability [3, 4]. Current 

machine learning models often exhibit limitations in capturing extreme soil moisture values, 

especially under drought conditions, and tend to make conservative predictions, which can lead to 

underestimation in dry areas. 

It’s important to clarify that a narrower range in soil moisture values after downscaling does 

not imply a reduction in spatial variability [5-7]. The spatial variability depends on the model’s 

capability to capture local details and the heterogeneity present in the original data. Downscaling 

to higher resolution allows local features—such as topography, land cover, or moisture gradients—

to emerge more clearly, thereby enhancing spatial variability where appropriate. In fact, as 

observed in the histograms and box plots, our downscaled product shows increased clustering in 

the middle range, with values in this range trending upward after downscaling. Using metrics like 

the coefficient of variation (CV) and Moran’s I, we observe an increase in local spatial variability 

within the middle range, while the extreme ranges exhibit less pronounced variability.  

In the new version, we have added the related context in the main text section 4.1 and 

supplementary Table S3. 

 

Table S3.  Coefficient of variation (CV) and Moran’s I index 

 ESA CCI RF MLR SVR XG BMA 

CV 0.321 0.328 0.313 0.324 0.332 0.324 

Moran’s I [0-100%] 0.994 0.964 0.955 0.994 0.946 0.972 

Moran’s I [0-15%] 0.991 0.755 0.876 0.991 0.846 0.86 

Moran’s I [15-85%] 0.99 0.795 0.922 0.989 0.825 0.803 

Moran’s I [85-100%] 0.991 0.864 0.921 0.991 0.895 0.902 
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Note: CV measures overall variability, with higher values indicating stronger heterogeneity. 

Moran’s I quantifies spatial distribution patterns, where higher values reflect weaker heterogeneity 

and stronger spatial autocorrelation. The CV is calculated for the entire dataset. Moran’s I index 

is determined using a simple four-neighborhood relationship, with brackets indicating different 

sample divisions. The 0-100% range represents the full sample, while the 0-15%, 15-85%, and 85-

100% ranges correspond to low-value, mid-range, and high-value distributions, respectively. 

Table 4. Comparison of BMA and individual machine learning  

Station

s 
Num 

R   

RF MLR SVR XG BMA ESA CCI 

All Mid All Mid All Mid All Mid All Mid All Mid 

NZW 
504

4 

0.32

3 

0.38

3 

0.33

8 
0.411 

0.32

1 

0.39

8 

0.32

5 

0.39

9 

0.34

2 

0.42

4 

0.32

1 

0.37

5 

CERN 263 
0.56

7 

0.66

4 

0.61

7 

0.69

3 

0.62

9 

0.70

5 

0.57

3 

0.67

2 

0.64

2 

0.72

1 

0.58

6 

0.64

7 

QXZ 
120

4 

0.47

7 

0.57

1 

0.48

0 

0.59

3 

0.47

8 

0.58

3 

0.46

8 

0.55

4 

0.51

4 

0.61

0 

0.47

9 

0.53

1 

Station

s 
Num 

RMSE（m3/m3) 

RF MLR SVR XG BMA ESA CCI 

All Mid All Mid All Mid All Mid All Mid All Mid 

NZW 
504

4 

0.13

8 

0.10

8 

0.13

6 

0.10

5 

0.13

8 

0.10

6 

0.13

7 

0.10

4 

0.13

7 

0.09

7 

0.13

8 

0.115 

CERN 263 
0.07

3 

0.06

0 

0.07

3 

0.05

9 

0.07

3 

0.06

0 

0.07

5 

0.06

1 

0.07

1 

0.05

4 

0.08

4 

0.06

4 

QXZ 
120

4 

0.16

9 

0.12

5 

0.16

9 

0.13

1 

0.16

8 

0.13

2 

0.16

9 

0.12

8 

0.16

9 
0.115 

0.16

8 

0.13

9 

Station

s 
Num 

MAE（m3/m3) 

RF MLR SVR XG BMA ESA CCI 

All Mid All Mid All Mid All Mid All Mid All Mid 

NZW 
504

4 
0.114 

0.09

2 
0.113 

0.09

1 
0.114 

0.09

5 
0.114 

0.09

5 
0.114 

0.08

9 

0.114 0.10

1 

CERN 263 
0.06

0 

0.03

8 

0.06

1 

0.03

9 

0.06

1 

0.03

9 

0.06

2 

0.04

0 

0.05

8 

0.03

2 

0.06

7 

0.04

5 

QXZ 
120

4 

0.15

7 
0.119 

0.15

8 

0.12

3 

0.15

6 
0.117 

0.15

8 

0.12

0 

0.15

8 
0.114 

0.15

7 

0.13

4 

Note: “All” refers to the full set of sample points, whereas “Mid” denotes the subset of sample 

points that fall within the 15-85% range. 
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2) We have revised Table 4 to include performance metrics for the coarse-resolution input, enabling 

clearer comparison across all datasets. While accuracy validation is crucial, it represents just one 

aspect of our evaluation. Site-scale validations are subject to scale effects, so we conducted a 

comprehensive assessment that included drought event capture and product comparisons. Our 

Bayesian framework, combined with ground observations, successfully generated a stable high-

resolution soil moisture dataset. 

Although the overall accuracy gains may appear modest due to the large study area and site 

data scale effects, our work remains unique. Few studies attempt site-based soil moisture 

downscaling over a large area such as northern China. When focusing on specific regions, such as 

the Loess Plateau and the North China Plain—semi-arid areas with rich site data—the accuracy 

improvements become more pronounced, highlighting the robustness and utility of our dataset and 

approach. 

3) Our choice of explanatory variables was guided by two main principles: (i) ensuring that we 

had stable, reliable remote sensing observations available at a large scale, thus allowing for future 

applications in other regions or even at a global scale; and (ii) selecting variables with strong 

correlations to soil moisture but minimal redundancy. The five variables we chose represent key 

drivers of soil moisture across meteorological, ecological, and hydrological dimensions, with low 

inter-correlation. Related context has been improved in the main text section 3.1 and Figure 3. 

 

 

Figure 3:  Assessment of explanatory variables’ feasibility. (a) Average (blue bar) and standard 

deviation (error bar) of permutation-based importance of explanatory variables concerning soil 

moisture. (b) Average Pearson correlation coefficients among different explanatory variables, 

including correlations with two independent soil moisture data sources. 
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Other potential variables, such as vegetation indices (e.g., EVI), downwelling radiation, and 

evapotranspiration, were excluded due to their high correlation with the selected variables, limited 

efficacy in arid and semi-arid regions like northern China, and inconsistency in accuracy at daily 

and fine spatial scales. Soil attributes, such as texture and classification, are often critical in soil 

moisture modeling [8], yet in our study, they contributed less than 2% to overall accuracy 

improvements. This may be due to the relative homogeneity in soil texture across northern China, 

where sandy soils and loams predominate, offering little spatial variation to capture soil moisture 

heterogeneity. Moreover, the spatial partitioning employed before model implementation likely 

accounted for soil characteristics within each subregion, further diminishing the impact of texture. 

Consequently, soil texture added minimal explanatory value. In summary, while our choice of 

variables may omit certain minor features, the overall accuracy is robust and serves as a valuable 

reference for large-scale and global soil moisture studies. 
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3. Third, little consideration is given as to whether the in situ dataset adequately captures 1-km 

spatial variations in soil moisture (which is the stated goal of the downscaling method).  The 

measurement support is likely very small and the spacing is likely much larger than 1-km.  Even 
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if the downscaling models reproduce this dataset exactly, have we really developed an accurate 1-

km resolution soil moisture estimate?  Can the authors provide some support that that a given in 

situ soil moisture observation is representative of its 1-km grid cell?  Also, can the authors show 

that the collection of 1-km grid cells that have in situ observations capture the range of conditions 

that occur within the region?  I believe some support along these lines would greatly strengthen 

the paper. 

Response: Thanks for pointing out this issue.  

1) We agree that scale effects are among the most significant challenges in remote sensing 

validation, especially for soil moisture downscaling to a 1-km resolution. Currently, there is no 

definitive solution to fully bridge the scale gap between in situ observations and satellite-based 

products. Capturing soil moisture variability at the 1-km scale is particularly challenging across 

northern China’s extensive 3-million-square-kilometer study area, where diverse climate and 

surface characteristics further complicate validation. In light of these challenges, our study 

employs a multi-faceted validation approach. In addition to site-based validation, we incorporate 

drought event analysis and cross-product comparisons. This broader evaluation framework aligns 

with mainstream practices in current remote sensing research to address validation limitations from 

scale effects.  

Furthermore, our results from a reduced-sample analysis suggest that the scale effect’s impact 

on model outcomes is less significant than anticipated, supporting the robustness and reliability of 

our findings despite scale challenges. These approaches together reinforce the credibility of our 

model outputs by considering spatial variability within the constraints of available data. 

2) One of the key strengths of our study is the integration of extensive ground data to calibrate 

remote sensing products and model outputs, reducing errors arising from surface heterogeneity 

and better aligning the model with actual ground conditions. However, while this integration helps 

minimize discrepancies, it can also introduce new mismatches between in situ and satellite data—

an area that requires further attention in future research and remains a focus in many recent studies. 

In this study, we address regional heterogeneity by dividing the study area into several 

subregions and calibrating the model with in situ data for each specific subregion. This process 

allows the model to learn distinct calibration parameters relevant to each area. Although this 

method effectively incorporates regional variations, it cannot fully eliminate scale-induced transfer 

effects at finer, localized scales. Moving forward, we plan to explore transfer learning techniques 

and develop specific loss functions designed to reduce scale-bias when calibrating 1-km satellite 

data with ground-based measurements. Such methods could enhance calibration accuracy and 

improve the model’s adaptability across different spatial scales. 

In the new version, we have added the related context in the main text section 4.5. 

3) In response to these concerns, we conducted an additional experiment to examine the impact of 

scale effects on model accuracy. This experiment focused on the Maqu region [1, 2], located at the 

transition zone between the Tibetan Plateau and the Loess Plateau. Maqu’s relatively flat terrain 

and predominantly grassland cover makes it suitable for comparative analysis, and the presence of 
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20 ground stations within a 5x5 grid enhances its suitability as a case study for evaluating scale 

effects. 

Our model showed a significant accuracy improvement in this flat, homogeneous region of 

Naqu, highlighting the pronounced influence of scale effects in regions with minimal topographic 

variation. Furthermore, we conducted a sequential data reduction analysis, removing 10%, 20%, 

30%, and 40% of ground training data while maintaining the same validation dataset. Although 

model accuracy was somewhat affected by the reduction in training data, the impact was relatively 

modest. This finding indicates that while sample data quantity influences the overall outcome, the 

scale effect on model validation remains relatively minor. Specifically, even with reduced training 

samples, the validation accuracy remained stable, suggesting that the scale information learned by 

the model from ground station data is sufficiently generalized to apply to the validation set. In 

essence, this stability implies that the scale difference between ground station data and 1-km 

remote sensing data does not introduce significant bias in model validation [3,4]. 

In the new version, we have added the related context in the main text section 4.5 and 

supplementary Fig. S7. 

 

 
Figure S7. Additional experiment examining the impact of scale effects on model accuracy and the 

representativeness of in situ datasets in capturing soil moisture spatial variations. (a) The 

experiment was conducted in the Maqu region, a transitional zone between the Tibetan Plateau 

and the Loess Plateau, characterized by relatively flat terrain and predominantly grassland cover. 

(b) These features, combined with the presence of 20 ground stations arranged in a 5x5 grid, make 

(a) 

(b) (c) 
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Maqu an ideal case study for evaluating scale effects. (c) The model demonstrated significant 

accuracy improvements in this flat, homogeneous region, underscoring the pronounced influence 

of scale effects in areas with minimal topographic variation. A sequential data reduction analysis 

was also performed, removing 10%, 20%, 30%, and 40% of the ground training data while 

maintaining the same validation dataset. Although the reduction in training data modestly 

impacted model accuracy, the effect was relatively minor. The validation accuracy remained stable 

even with fewer training samples, suggesting that the model effectively generalized the scale 

information learned from ground station data to the validation set. This stability indicates that the 

scale differences between ground station data and 1-km remote sensing data introduce negligible 

bias in model validation, reaffirming the robustness of the model’s performance in addressing scale 

effects. 

 

[1] Dente, L., Vekerdy, Z., Wen, J., & Su, Z. (2012). Maqu network for validation of satellite-

derived soil moisture products. International Journal of Applied Earth Observation and 

Geoinformation, 17, 55-65. 

[2] Liu, K., Li, X., Wang, S., & Zhang, H. (2023). A robust gap-filling approach for European 

Space Agency Climate Change Initiative (ESA CCI) soil moisture integrating satellite observations, 

model-driven knowledge, and spatiotemporal machine learning. Hydrology and Earth System 

Sciences, 27(2), 577-598. 

[3] Dorigo, W. A., Gruber, A., De Jeu, R. A. M., Wagner, W., Stacke, T., Loew, A., ... & Kidd, R. 

(2015). Evaluation of the ESA CCI soil moisture product using ground-based 

observations. Remote Sensing of Environment, 162, 380-395. 

[4] Brocca, L., Hasenauer, S., Lacava, T., Melone, F., Moramarco, T., Wagner, W., ... & Bittelli, M. 

(2011). Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and 

validation study across Europe. Remote Sensing of Environment, 115(12), 3390-3408. 

 

4. I would suggest removing the Noah results because they really don't contribute to testing the 

innovation that is presented.  

Response: We acknowledge that capturing soil moisture variability at a 1-km resolution is 

particularly challenging across northern China’s extensive 3-million-square-kilometer study area, 

where diverse climate and surface conditions further complicate the validation process. Given 

these challenges, our study employs a multi-faceted validation approach. In addition to site-based 

validation, we incorporate drought event analysis and cross-product comparisons. This 

comprehensive evaluation framework aligns with mainstream practices in remote sensing research 

and is designed to address the limitations posed by scale effects in validating downscaled products. 

In response to the feedback from the editor-in-chief and reviewers, we have retained the Noah 

results but revised this section to clarify its relevance. We also streamlined some parts of the 

manuscript by moving certain elements of the uncertainty analysis from the appendix to the main 

text, ensuring a clearer focus on the innovative aspects of our methodology. 

 

 


