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Abstract. Recovery time, referring to the duration an ecosystem needs to return to its pre-drought condition, is a fundamental 16 

indicator of ecological resilience. Recently, flash droughts (FDs) characterized by rapid onset and development have gained 17 

increasing attention. Nevertheless, the spatiotemporal patterns of gross primary productivity (GPP) recovery time and the 18 

factors influencing it remain largely unknown. In this study, we investigate the recovery time patterns of terrestrial ecosystem 19 

in China based on GPP using a Random Forest (RF) regression model and the Shapley Additive Prediction (SHAP) method. 20 

A random forest regression model was developed for analyzing the factors influencing recovery time and establish response 21 

functions through partial correlation for typical flash drought recovery periods. The dominant driving factors of recovery time 22 

were determined by using the SHAP method. The results reveal that the average recovery time across China is approximately 23 

37.5 days, with central and southern regions experiencing the longest durations. Post-flash drought radiation emerges as the 24 

primary environmental factor, followed by aridity index and post-flash drought temperature, particularly in semi-arid/sub-25 

humid areas. Temperature exhibits a non-monotonic relationship with recovery time, where both excessively cold and hot 26 

conditions lead to longer recovery periods. Herbaceous vegetation recovers more rapidly than woody forests, with deciduous 27 

broadleaf forests demonstrating the shortest recovery time. This study provides valuable insights for comprehensive water 28 

resource and ecosystem management and contributes to large-scale drought monitoring efforts. 29 

1 Introduction 30 

Climate change has exacerbated drought, which has significant implications for achievement the Sustainable Development 31 

Goals (SDGs) (Lindoso et al., 2018). Among the 17 SDGs outlined in the 2030 Agenda, at least five are directly linked to 32 

drought: Goal 6 “Clean water and sanitation”, Goal 11 “Sustainable cities and communities”, Goal 12 “Responsible production 33 

and consumption”, Goal 13 “Climate action”, and Goal 15 “Life on land” (Zhang et al., 2019; Nilsson et al., 2016). Flash 34 

droughts, characterized by rapid onset and intensification, have gained increasing recognition among hydrologist and general 35 
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public globally (Yuan et al., 2023). These events significantly impact terrestrial ecosystem productivity, photosynthesis, and 36 

latent heat fluxes (Zhang et al., 2020a; Yang et al., 2023). The effects of flash droughts are not only felt during the events but 37 

also persist in their aftermath, with legacy effects post-drought (Liu et al., 2023a). Recovery time—defined as the duration 38 

required for an ecosystem to return to its pre-drought state, is a fundamental aspect of ecological resilience (Schwalm et al., 39 

2017; Wu et al., 2017). Recovery time is related to ecological thresholds, as it may trigger a critical "tipping point" that lead 40 

to shifts into new ecosystem state (Lenton et al., 2008). With the expectation of more frequent and severe flash droughts in the 41 

future (Sreeparvathy & Srinivas, 2022), exploring post-flash drought recovery trajectories is of paramount importance (Jiao et 42 

al., 2021). 43 

Drought recovery characteristics have been extensively observed at the ecosystem scale, typically using tree ring records, 44 

productivity or greenness measurements, and satellite data (Gazol et al., 2017; Kannenberg et al., 2019). These studies have 45 

identified varied recovery times across regions and ecosystems. Grasslands exhibit longer recovery times compared to other 46 

land covers types due to shallow-rooted plants and lower soil water retention capacity (Hao et al., 2023). Conversely, recovery 47 

in croplands is more influenced by human farming practices (Darnhofer et al., 2016). In forests, mixed forests tend to recover 48 

more quickly, whereas deciduous broadleaf forests have the longest recovery periods (He et al., 2018). Hydro-meteorological 49 

conditions also play a role, with semi-arid and semi-humid regions experiencing longer recovery times than humid and arid 50 

regions (Zhang et al., 2021). The longer recovery time in semi-arid and semi-humid regions may be related to the specific 51 

challenges these regions face, such as soil conditions, water availability, and climatic variability (Huxman et al., 2004; Zhang 52 

et al., 2021).  53 

However, the contribution of driving factors in flash drought recovery remains unclear. Some studies indicate that background 54 

value, drought return interval, post-drought meteor-hydrological conditions, and drought attributes (such as duration, intensity) 55 

are critical in regulating recovery (Kannenberg et al., 2020). Lower background value may result in more severe damage, 56 

abnormal post-drought meteor-hydrological conditions, and longer recovery times (Fu et al., 2017). Greater drought intensity 57 

and longer duration can lead to significant ecosystem losses (Godde et al., 2019). Favorable post-drought meteor-hydrological 58 

conditions (e.g., increased precipitation and suitable temperature) improve the chance of complete recovery (Jiao et al., 2021). 59 

Plant physiological response, including changes in leaf water potential and phenology, also play a crucial role in the recovery 60 

process (Miyashita et al., 2005). 61 

While the impacts of flash droughts on ecosystems have been well-documented, the recovery process remains underexplored. 62 

For instance, studies show that solar-induced fluorescence (SIF) and SIF yield values decline post-flash drought (Yao et al., 63 

2022), and 95% of the gross primary production (GPP) in the Indian region responded to flash droughts with an average 64 

response time of 10-19 days (Poonia et al., 2021). However, most research focus on the immediate ecological responses to 65 

flash droughts, rather than on the recovery process (Otkin et al., 2019). Notably, a substantial contrast exists in the definition 66 

of recovery stages between flash droughts and traditional slow droughts (Wang et al., 2016). These results lead to the 67 
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conclusion that recovery is a part of the former, while the recovery phase of the latter usually occurs at the end of the event 68 

(Qing et al., 2022). Furthermore, some studies suggest that flash drought recovery is more reliant on changes in soil moisture 69 

or peak evapotranspiration, while traditional slow drought recovery is typically assessed using ecological or hydrological 70 

indicators (Xu et al., 2023). For example, China has experienced frequent flash from 1980 to 2021, particularly in southwestern 71 

and central regions (Wang et al., 2022a). Moreover, there may be more severe and frequent flash droughts in the future 72 

(Christian et al., 2023). Research on flash drought recovery in Xiang and Wei River Basin found that most events recovered 73 

within 28 days (Wang et al., 2023a). However, there remains a lack of comprehensive studies on flash drought recovery and 74 

the factors influencing its spatiotemporal patterns across China. 75 

Drought can lead to water shortages, limiting access to clean drinking water. Effective drought management is therefore crucial 76 

for achieving SDGs. By utilizing newly available datasets and hydro-meteorological variables in China, this study assesses the 77 

extent of post-flash drought impacts, documents recovery times, and analyzes the factors contributing to variations in 78 

ecosystem recovery. The objectives of this study are to: (1) investigate the spatial pattern of post-flash drought recovery; (2) 79 

identify the most critical determinants of recovery; and (3) analyze the impact of various factors on flash drought recovery 80 

times. The following sections include Section 2, which provides a brief description of data and methods, Section 3, which 81 

presents the results presented by novel methods applied. Then, we provide a detailed discussion in Section 4. Section 5 gives 82 

the conclusions with some more information presented in supplementary materials. 83 

2 Data and methods 84 

2.1 Data 85 

2.1.1 Soil moisture datasets 86 

Daily root-zone soil moisture (SM) data for the period of 2001-2018 are obtained from Global Land Evaporation Amsterdam 87 

Model (GLEAM) (https://www.gleam.eu/). GLEAM estimates root-zone soil moisture using a multi-layer water balance 88 

approach. The depth of the root zone varies based on the type of land cover. For tall vegetation (e.g. trees), the depth is divided 89 

into three layers (0-10 cm, 10-100 cm, and 100-250 cm); For low vegetation (e.g. grass), there are two layers (0-10 cm and 90 

10-100 cm); Bare soil only has one layer (0-10 cm) (Martens et al., 2017; Miralles et al., 2011). It has been widely applied in 91 

the identification and impact assessment of flash drought events (Zha et al., 2023). We utilized the bilinear interpolation method 92 

to resample SM from a spatial resolution of 0.25° to 0.1°, aligning it with the accuracy of other datasets. This method is 93 

appropriate for continuous input values, easy to implement, and generally effective in converting coarse input data into spatially 94 

refined output (Chen et al., 2020).  95 
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2.1.2 Hydro-meteorological datasets of affecting variables of recovery time 96 

We analyse the recovery time considering multiple influencing factors such as meteorological variables, drought-related 97 

variables, and land cover (He et al., 2018). Meteorological data from the China Meteorological Forcing Dataset (CMFD), 98 

accessible at https://westdc.westgis.ac.cn/, is utilized for the period spanning 2001 to 2018 (Yang et al., 2019). The near-99 

surface air temperature, downward shortwave radiation, downward longwave radiation, precipitation rate and wind speed are 100 

used in this study. VPD is calculated based on temperature, and specific humidity using Eq. (1) - (3) (Peixoto & Oort. 1996) 101 

(Zotarelli et al., 2020). 102 

𝑆𝑉𝑃 = 0.618exp⁡(
17.27𝑇

𝑇+273.73
)                                                                                                                                                      (1) 103 

𝐴𝑉𝑃 ≈
𝑞𝑠∙𝑝

𝜀
                                                                                                                                                                                 (2) 104 

𝑉𝑃𝐷 = 𝑆𝑉𝑃 − 𝐴𝑉𝑃                                                                                                                                                                   (3) 105 

where SVP and AVP is saturated vapor pressure and actual vapor pressure (kPa), respectively. And 𝑇is temperatures (°C),𝑞𝑠 is 106 

the specific humidity, 𝑝⁡is the atmospheric pressure (kPa), 𝜀= 6.22 is the ratio of water vapor molecular weight to dry air weight. 107 

Aridity index is calculated as the ratio of precipitation to potential evapotranspiration. Typically, the multi-year average of the 108 

aridity index serves as an indicator of water availability and drought timing within a particular region (Huang et al., 2016). 109 

Aridity index is obtained from  https://doi.org/10.6084/m9.figshare.7504448.v5 (Zomer et al., 2022). To analyze the distinct 110 

responses of different vegetation types, we employ the MODIS dataset from the International Geosphere-Biosphere 111 

Programme (IGBP) MCD12C1 (Friedl et al., 2002) (Figure. S1). 112 

2.1.3 Gross primary productivity 113 

Gross Primary Productivity (GPP) is widely used as an indicator for monitoring post drought photosynthesis dynamics (Gazol 114 

et al., 2018). The FluxSat GPP dataset (Version 2), derived from Moderate Resolution Imaging Spectroradiometer (MODIS), 115 

is calibrated using FLUXNET 2015 and OneFlux tier 1 data, and validated with independent datasets (Joiner et al., 2021). 116 

It shows strong agreement with flux data at most sites and performs reliably across a majority of global regions (Bennett et al., 117 

2021). Additionally, it has been widely used in examining the impacts of extreme climate events on the terrestrial carbon cycle 118 

(Byrne et al., 2021). The dataset provides a spatial resolution of 0.05° and a daily temporal resolution. To match the flash 119 

drought event, daily soil moisture data were resampled to 0.1° and aggregated to pentad-mean (five-days) data. This study 120 

chooses the growing seasons (April to October) from 2001 to 2023 as the study period. 121 

2.2 Method 122 

2.2.1 The identification of flash drought events and recovery time 123 

In this study, we identify flash drought events by analysing changes in soil moisture, taking into account their rapid 124 

intensification and duration. Evaporation demand is often used as a warning indicator for flash droughts (Rigden et al., 2020). 125 

https://doi.org/10.6084/m9.figshare.7504448.v5
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Because it may overestimate flash droughts (Lesinger & Tian. 2022). To identify flash drought events, the daily soil moisture 126 

data is aggregated into pentad-mean data. These averages are then converted into percentiles based on the climatology of each 127 

pentad period during the growing season. The identification of flash droughts should meet the following criteria: soil moisture 128 

(SM) must decrease from above the 40th percentile to below the 20th percentile within a 5-day period, with an average rate of 129 

decline per pentad not less than the 5th percentile. A flash drought terminates if the declining SM rises back to the 20th 130 

percentile. The duration of a flash drought event must be at least 4 pentads (20 days) (Yuan et al., 2019, Zhang et al., 2020a). 131 

The speed of flash drought (Ospd) is the ratio of the difference between the 40th percentile and the lowest percentile of the 132 

onset stage to the length of onset. The frequency refers to the overall number of occurrences within a given time frame (e.g., 133 

per year or per decade). Severity is the accumulated soil moisture percentile deficits from the threshold of 40th. We employed 134 

anomaly GPP to estimate post-flash drought vegetation recovery times at the pixel scale. The recovery time was defined as the 135 

period between the point when GPP reached its maximum loss and when it returned to its pre-flash drought level (Wang et 136 

al., 2023a) (Figure.1). To ensure data consistency and minimize noise, we first applied a smoothing process to the pentad GPP 137 

data using a 3-pentad forward-moving window at the pixel scale. After smoothing the data, we calculate the GPP anomaly 138 

using the following equation:  139 

GPP⁡anomaly =
𝐺𝑃𝑃−𝜇𝐺𝑃𝑃

𝜎𝐺𝑃𝑃
                                                                                                                                                        (4) 140 

where, 𝜇𝐺𝑃𝑃and 𝜎𝐺𝑃𝑃 are mean and standard deviation of the pentad time series of GPP. 141 

The beginning of the recovery stage is identified when the post-flash drought GPP anomaly is negative and reaches its 142 

minimum value, indicating the point of maximum GPP loss. The recovery stage concludes when the GPP anomaly returns to 143 

a positive value, signifying that productivity has reached or exceeded its pre-drought level. However, if no flash drought event 144 

occurs during the period of negative GPP anomaly, if the GPP anomaly is already negative before the onset of the flash drought 145 

event, or if negative GPP anomalies only occur for one pentad, the corresponding GPP data series is excluded from the analysis 146 

to prevent misleading results. 147 

 148 
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Figure 1. The identification of recovery time. GPP anomaly is detrended vegetation production index on a time series, 0 is 149 

defined as the threshold of a negative anomaly. Below the dashed line represents that vegetation production is in a negative 150 

abnormal state. We quantify recovery time as: the recovery time begins when the vegetation production loss reaches the 151 

maximum and ends when the detrended vegetation production index is above 0.  152 

2.2.2 Response functions 153 

Partial dependence plots based on the random forest algorithm are utilized for visualizing response functions (Schwalm et al., 154 

2017; Sun et al., 2016). The analysis of partial dependence focuses on evaluating the marginal impact of a covariate (or 155 

independent variable) on the response variable, while keeping other covariates constant (Liaw & Wiener. 2002). It facilitates 156 

the exploration of insights within large datasets, particularly when random forests are primarily influenced by low-order 157 

interactions (Martin, 2014). In addition, it is valuable tools for identifying significant features, detecting non-linear 158 

relationships, and gaining insights into the overall behavior of a predictive model.  159 

2.2.3 Attribution analysis of ecosystem recovery 160 

In order to better understand the potential factors driving terrestrial ecosystem productivity recovery after flash droughts, we 161 

conduct attribution analysis. We selected downward radiation (the sum of downward shortwave radiation and downward 162 

shortwave radiation), temperature, wind speed, precipitation rate, VPD, flash drought speed (Ospd), flash drought severity 163 

(Osev), flash drought duration (Odur), aridity index, land cover types as explanatory variables. It should be noted that these 164 

variables are considered within the recovery period. The feature importance of random forest can only indicate the extent to 165 

which the input variables influence the model's output, but it does not reveal how these input variables specifically impact the 166 

model's output (Wang et al., 2022b). The Shapley Additive Prediction (SHAP) method has emerged as a valuable tool that 167 

addresses the limitations of traditional machine learning methods (Štrumbelj&Kononenko,2014). As a result, the SHAP 168 

method is widely utilized in attribution analysis of variables (Wang et al., 2022b; Lundberg & Lee, 2017).  169 
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where,𝜑𝑚(𝑣) represents the contribution of covariate 𝑚, 𝑁 denotes the set of all covariates, 𝑆 is a subset of 𝑁, and 𝑣(𝑆) 171 

represents the value of that subset. 172 

We utilized a random forest model and employed these variables as predictive factors to estimate the productivity recovery 173 

time for all study grid cells. Then, we used the SHAP value to quantify the marginal contribution of each predictive variable 174 

and rank their relative importance based on the average absolute SHAP value. 175 
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3 Results 176 

3.1 Characteristics of flash droughts 177 

Figure 2 presents the frequency, duration, severity, and speed of flash droughts over China during 2001-2019. Approximately 178 

7% of grids did not experience a flash drought event, while the remaining 93% of grids experienced at least one event. The 179 

middle and lower reaches of the Yangtze River exhibited a high frequency value with above 12 events/decade, whereas other 180 

regions mainly ranged from 0 to 9 events/decade. There is a clear spatial pattern for the duration, ranging from 0 to 20 days 181 

over China. The Southwestern and the middle and lower reaches of the Yangtze River had longer durations, exceeding 90 days 182 

(Figure. S2). In addition to the higher severity of flash droughts in the southwest region, a similar spatial pattern was observed 183 

for severity and speed. Regarding speed, areas with faster speed were primarily concentrated in the lower reaches of the 184 

Yangtze River. Overall, the middle and lower reaches of the Yangtze River and the southwestern region are considered hot 185 

spots, although the latter's speed is not rapid. 186 

 187 

Figure 2. Frequency (a), duration (b), severity (c), speed (d) of flash drought over China during 2001–2023. 188 

3.2 Spatial pattern of ecosystem recovery time and recovery rate 189 

Vegetation productivity showed a clear response to flash droughts, and this response typically had a certain lag (Figure. S3). 190 

Ecosystems exhibited distinct spatial differences in recovery times to flash droughts (Figure. 3). The mean recovery time for 191 
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Chinese ecosystems was 37.5 days (7.5 pentads) calculated by GPP. Most regions were able to recover to their normal state 192 

within 50 days. However, certain areas, such as central China and southern China, required 90 days or more to recover. In 193 

terms of time series, there was no evident trend in the mean recovery time, with fluctuations occurring within 7.5 pentads. On 194 

average, the recovery rate of grids in China ranged from 0 to 2 per pentad, and approximately 90% of grids had a recovery rate 195 

of less than 1 per pentad. There is no significant trend in recovery rate over time. To further illustrate the impact and recovery 196 

of flash droughts on different vegetation types, we calculated the recovery time and recovery rate for each type (Figure. 4). 197 

Among the different vegetation types, DBF had a shorter recovery time and a higher recovery rate. Additionally, CRP showed 198 

moderate recovery rates, while GRS had relatively low rates of recovery. This reflects the fact that flash droughts had a more 199 

significant impact on GRS and resulted in greater productivity losses. By employing various recovery thresholds (80%, 90%, 200 

100%, and 110% of the original state), we confirmed although the recovery time of some grid pixels can vary, the overall 201 

spatial pattern of recovery time remains consistent regardless of the threshold (Figure.S4). 202 

   203 

Figure 3. Spatial pattern of recovery time (a-c) and recovery rate (d-f). (a) and (d) represent the recovery time (pentad) 204 

and recovery rate (gC m-2 day-1 pentad-1) calculated by using GPP data respectively. (b) and (e) represent the density of different 205 

recovery times and recovery rate respectively, the horizontal axis represents the recovery time (pentad), recovery rate (gC m-2 206 

day-1 pentad-1) and the vertical axis is the density. Regions with sparse GPP or no droughts are masked with white.  207 
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 208 

Figure 4. The recovery time and recovery rate across different vegetation types. The vegetation types are: ENF (evergreen 209 

coniferous forest), EBF (evergreen broad-leaved forest), DNF (deciduous coniferous forest), DBF (deciduous broad-leaved 210 

forest), MF (mixed forests), WS (closed shrubland, open shrubland, and woody savannas), SAV (savannas (temperate)), GRS 211 

(grasslands), CRP (croplands). 212 

3.3 Response functions for flash drought recovery time 213 

The random forest regression model explained 55% of the out-of-bag variance in recovery time (Figure. 5). Radiation emerged 214 

as the most influential factor impacting flash drought recovery time, with lower solar radiation conditions leading to prolonged 215 

the recovery time (Figure. 5a). Temperature did not exhibit a monotonic response in relation to recovery time. Excessively 216 

cold or overheated temperatures resulted in longer recovery times, whereas slightly higher temperatures promoted vegetation 217 

recovery (Figure. 5b). Specifically, a slight increase in temperature facilitated vegetation restoration, while higher temperatures 218 

extended the recovery time of flash droughts. This suggests that the projected rise in extreme high temperatures will further 219 

lengthen the recovery time (Li et al., 2019). In terms of flash drought characteristics, the difference in recovery time was 220 

related to the discrepancy in severity and duration, albeit to a lesser extent than speed (Figure. 5c, h & i). Recovery time 221 

increased in a stepwise manner as the duration increased. Ecosystems experiencing prolonged durations of flash droughts 222 

typically exhibit longer recovery times. In addition, semi-arid/sub-humid areas (0.2<AI<0.65) have longer recovery times 223 

(Figure. 5d). The wind speed exhibited a bimodal pattern, indicating that the recovery time was shortest when it closely aligned 224 

with the multi-year average or was 3.5 times higher than the multi-year average (Fig. 5e). Adequate precipitation following a 225 

flash drought assisted in recovery, although excessively extreme precipitation could also hinder it (Fig. 5f). Extreme vapor 226 

pressure deficit (VPD), whether high or low, prolonged the recovery time (Fig. 5g). Among different vegetation types, 227 

herbaceous vegetation recovered more rapidly than woody forests. Deciduous broadleaf forests (DBF) demonstrated the 228 

shortest recovery time (Figure. 5j). 229 
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 230 
Figure 5. Response functions for flash drought recovery time, reflecting the response of recovery time to a single dependent 231 

variable when others are unchanged. Note difference in the y-axis scales. The covariates a to j are the deviations from the 232 

baseline. Positive (negative) indicates above (below) the average value.  233 
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3.4 Drivers of flash drought recovery time 234 

We then performed an attribution analysis using SHAP method to quantify the relative importance of the considered variables. 235 

The results were consistent with the results of section 3.3. In general, radiation and aridity index were the most relevant controls 236 

of spatial variations of post-flash drought recovery time (Figure 6). Temperature was the third most impactful variable overall, 237 

primarily due to its high impact in predicting the recovery time where it has an absolute mean SHAP value of 0.62. Compared 238 

to other variables, the impact of speed and duration of flash droughts were relatively low. In addition, during the process of 239 

flash drought recovery, the losses caused by flash droughts can also affect productivity recovery. The relationship between 240 

recovery time and the attributes of flash drought (speed, severity, duration) is usually negative. That is to say, faster, more 241 

severe, and longer lasting flash droughts often have a longer recovery time. Specifically, the speed of flash droughts 242 

characteristics is one of the main controlling factors for recovery time.  243 

 244 

Figure 6. Identifying drivers of patterns of post-flash drought recovery time. (a) The summary plot of SHAP values in 245 

random forest machine learning. (b) The SHAP Importance (averaged absolute SHAP values) for recovery time. Considered 246 

drivers include flash drought characteristics (in red), post-flash drought hydro-meteorological conditions (in blue). 247 

4 Discussions 248 

4.1 Assess flash drought recovery time based on vegetation productivity 249 

Given the prevalence of drought in regions over the past few decades, drought is a major natural disaster worldwide (WMO. 250 

2021). In addition, its exposure, vulnerability, and risk are expected to further increase under future climate and socio-economic 251 

changes (Tabari & Willems. 2018; Cook et al., 2020). Flash drought is widely recognized as a sub-seasonal phenomenon that 252 

develops rapidly (Tyagi et al., 2022). Flash droughts have varying degrees of impact on the photosynthesis, productivity, and 253 

respiration of ecosystems (Mohammadi et al., 2022). Reducing drought risks and strengthening social drought resistance are 254 
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also important tasks in order to achieve SDGs by 2030 (Tabari et al., 2023). Flash droughts interact with ecological droughts, 255 

with ecological droughts potentially making ecosystems more vulnerable to flash droughts, while flash droughts can exacerbate 256 

the effects of persistent ecological droughts (Cravens et al., 2021; Xi et al., 2024). The interplay between these two types of 257 

droughts can intensify the pressure on ecosystems, complicating and prolonging the recovery process. The response frequency 258 

of Solar-Induced Fluorescence (SIF) in the China basin to flash droughts exceeds 80%, with 96.85% of the regional response 259 

occurring within 16 days (Yang et al., 2023). Previous studies have calculated the recovery time of flash drought based on 260 

changes in soil moisture, ranging from 8 to 40 days (Otkin et al., 2019). Additionally, the recovery time is generally longer in 261 

humid areas compared to arid areas. However, not all flash drought events result in a decrease in ecosystem productivity (Liu 262 

et al., 2019). For instance, a study conducted by Zhang et al. (2020b) revealed that between 2003 and 2018, 81% of flash 263 

droughts in China displayed negative normalized anomalies in GPP, while the remaining 19% of the events did not exhibit 264 

such negative anomalies. Therefore, GPP serves as a more appropriate indicator for monitoring post-drought photosynthesis-265 

related dynamics and evaluating ecosystem recovery time (Yu et al., 2017). Based on GPP, most flash drought events in the 266 

Xiangjiang River Basin (XRB) and Weihe River Basin (WRB) recovered within 2 to 8 days. Moreover, the recovery time in 267 

the XRB, which is located in a humid area, tends to be longer (Wang et al., 2023a). It should be noted that this study only 268 

investigated the aforementioned two watersheds and did not include semi-humid/semi-arid areas. Our study revealed that the 269 

average recovery time for flash droughts in the China is approximately 37.5 days (7.5 pentads) (Figure 3). 270 

4.2 The factors that affect drought recovery time 271 

The solar radiation and aridity index were the primary factors that influence the recovery time (Figures 5 & 6, Figure S5). The 272 

recovery time was regulated by a combination of drought characteristics (drought return interval, severity, duration), post-273 

drought hydro-meteorological conditions, and vegetation physiological characteristics (Fathi-Taperasht et al., 2022; Liu et al., 274 

2019). Physiological responses, such as the decline rate of productivity upon exposure to flash drought also influence recovery 275 

time. Notably, there is a significant negative correlation between the decline rate and the recovery rate (Lu et al., 2024). In the 276 

case of flash droughts characterized by rapid development, the speed is one of the most important factors controlling the 277 

recovery time (Figure 6). The Yangtze River Basin experienced one of the most severe flash droughts on record during the 278 

summer of 2022, primarily driven by abnormal high temperatures and abrupt changes in precipitation (Liu et al., 2023b). The 279 

high temperatures accelerated the onset of the drought (Wang et al., 2023b). As a result, the total Gross Primary Production 280 

(GPP) loss from July to October 2022 was 26.12 ± 16.09 Tg C, representing a decrease of approximately 6.08% compared to 281 

the 2001-2021 average (Li et al., 2024). Ecological drought, characterized by prolonged conditions lasting months to years 282 

and resulting in long-term changes to ecosystem functions and structure (Sadiqi et al., 2022). In contrast, flash drought develops 283 

rapidly within days to weeks due to extreme weather, leading to immediate reductions in soil moisture and plant health (Yuan 284 

et al., 2023). The long-term nature of ecological drought can cause profound impacts such as reduced plant populations, 285 

increased soil erosion, and decreased biodiversity, necessitating a longer recovery period (Cravens et al., 2021). In contrast, 286 

flash droughts, while shorter in duration, cause rapid plant wilting, reduced crop yields, and soil cracking, with significant 287 



13 

 

long-term consequences for ecosystem recovery (Xi et al., 2024). These two types of droughts can interact, with ecological 288 

droughts potentially making ecosystems more susceptible to flash droughts, and flash droughts exacerbating the impacts of 289 

ongoing ecological droughts (Hacke et al., 2001; Schwalm et al., 2017). The combined effects of both types can intensify stress 290 

on ecosystems, complicating and prolonging the recovery process. Previous studies have shown that the spatial patterns of 291 

flash drought recovery were similar to those of precipitation, temperature, and radiation (Wang et al., 2023a). Increased 292 

radiation energy and precipitation post a drought can promote vegetation photosynthesis (Zhang et al., 2021). Additionally, 293 

there are regional variations in the time required for drought recovery. Generally, semi-arid and semi-humid areas took longer 294 

to recover to their pre-drought state (Figure 5). Ecosystems in these areas exhibited higher overall sensitivity to drought 295 

(Vicente et al., 2013; Yang et al., 2016). Vegetation in arid areas adapted to long-term water deficit through various 296 

physiological, anatomical, and functional mechanisms, resulting in high drought resistance (Craine et al., 2013). In humid 297 

areas, sufficient water storage helped resist drought (Liu et al., 2018; Sun et al., 2023). Vegetation also played a crucial role in 298 

regulating the recovery trajectory. The drought resistance of plants was determined by various traits such as stomatal 299 

conductance, hydraulic conductivity, and cell turgor pressure (Bartlett et al., 2016; Martínez-Vilalta et al., 2017). Grasslands 300 

and shrublands could quickly recover from drought, while forest systems require longer periods of time (Gessler et al., 2017). 301 

This may because those have relatively simple vegetation structures, shorter life cycles, and faster growth rates (Ru et al., 302 

2023). In contrast, forest systems have more complex vegetation structures and ecological processes (Tuinenburg et al., 2022). 303 

Deep roots enhance tree tolerance to drought (McDowell et al., 2008; Nardini et al., 2016). Compared to shallow roots, deep 304 

roots have larger conduit diameters and vessel cells, resulting in higher hydraulic conductivity. During droughts, deep roots 305 

may play a critical role in water absorption, as increased root growth with soil depth could represent an adaptation to drought 306 

conditions (Germon et al., 2020), enabling rapid access to substantial water reserves stored in deeper soils (Christina et al., 307 

2017). 308 

4.3 Limitations and perspectives 309 

We emphasized that the post-flash drought recovery trajectory of ecosystem is influenced by several factors, including post-310 

flash drought hydrological conditions, flash drought characteristics, and the physiological characteristics of vegetation. 311 

However, we should note that in this study, the same percentile threshold (20%, 40%) was used to identify flash drought events 312 

based on empirical values from previous research findings. Further investigation should investigate how to determine region-313 

specific thresholds and examine the sensitivity of these thresholds to flash drought recognition (Gou et al., 2022). Furthermore, 314 

it is important to consider that plant strategies for coping with flash drought can vary due to species differences (Gupta et al., 315 

2020). There is still a need for improvement in understanding the physiological and ecological mechanisms involved in flash 316 

drought recovery. To gain a more comprehensive understanding, future research should explore the mechanism of ecosystem 317 

restoration from multiple perspectives, such as evaluating greenness and photosynthesis. Although flash droughts can lead to 318 

significant short-term disruptions, there remains a need to explore their long-term effects more comprehensively. Future 319 

research should prioritize understanding how these intense, short-term drought events might evolve into more conventional 320 
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droughts and the persistence of their impacts over time (Liu et al., 2023a). Understanding these dynamics will be crucial for 321 

predicting and managing the carbon balance and resilience of ecosystems under changing climate conditions. 322 

5 Conclusions 323 

Effectively reducing drought risk and reducing drought exposure are crucial for achieving sustainable development goals 324 

(SDGs) related to health and food security. This study applied a random forest regression model to analyze the factors 325 

influencing recovery time and the response functions settled up by partial correlation for typical flash drought recovery time. 326 

The most important environmental factor affecting recovery time is post-flash drought radiation, followed by aridity index and 327 

post-flash drought temperature. Recovery time prolongs with lower solar radiation conditions. Semi-arid/sub-humid areas have 328 

longer recovery time. Temperature does not exhibit a monotonic response in relation to recovery time; excessively cold or 329 

overheated temperatures lead to longer recovery times. Herbaceous vegetation recovers more rapidly than woody forests, with 330 

deciduous broadleaf forests demonstrating the shortest recovery time.  331 

Our study assessed the recovery time of ecosystems to flash droughts based on GPP dataset and identified the dominant factors 332 

of recovery time. Results show that 78% of ecosystems could recover within 0 to 50 days. However, certain areas, such as 333 

central China and southern China, required 90 days or more to recover. The analysis of the response functions showed that 334 

radiation emerged as the most influential factor impacting flash drought recovery time, with lower solar radiation conditions 335 

leading to prolonged recovery time. Additionally, temperature did not exhibit a monotonic response in relation to recovery 336 

time. In terms of flash drought characteristics, the difference in recovery time is more associated with speed than severity and 337 

duration. 338 

Although this study provides a good basis for further investigation of flash drought characteristics, it is important to note that 339 

the further extension of this study may lead to more understanding of flash drought for hydrological application or worldwide 340 

practices. It is important to determine region-specific thresholds and examine the sensitivity of these thresholds to flash drought 341 

recognition. Furthermore, plant strategies for coping with flash drought can vary due to species differences. To gain a more 342 

comprehensive understanding of flash drought recovery, future research should also explore the mechanism of ecosystem 343 

restoration from multiple perspectives, such as evaluating greenness and photosynthesis. 344 
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