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S1 Evaluating the effectiveness and efficiency of the revised PEM-SMC algorithm 

Here, we couducted two case studies to compare the differences in optimization effectiveness and efficiency 

between the original PEM-SMC algorithm and its revised version.  

S1.1 Case study 1: synthetic 5-dimensional bimodal normal distribution 

To emulate the common feature of the parameter surface with multiple modes in Land Surface Models 

(LSMs), the first case study involves a synthetic multi-dimensional bimodal normal distribution: 

 𝜋(𝜃) =
1

3
𝑁𝑑(𝜃; −𝟓, 1) +

2

3
𝑁𝑑(𝜃; 𝟓, 1) (1) 

where 𝜃 denotes a five-dimensional parameter vector, with each parameter constrained with a feasible range 

of -10 to 10. The values -5 and 5 correspond to the true parameter values at the two peaks of the distribution 

function. The 1 represents the covariance of the tow normal distributions.  

 

Regarding optimization efficiency, for the same number of particles(Np=8000) and evolutions(S=1000), the 

original PEM-SMC algorithm required 87 seconds to run, whereas the modified PEM-SMC algorithm only 

took 53 seconds. This 40% reduction in run time is particularly significant for complex models with lengthy 

single-run times. In terms of optimization effectiveness, the enhanced PEM-SMC algorithm demonstrated 

no significant differences from the original in aspects such as particle diversity, evolutionary progression, 

and final particle distribution (Figure S1). When considering the optimized values of the five-dimensional 

parameters, both the improved and original PEM-SMC algorithms consistently achieved the posterior 

marginal distributions of the parameters, successfully identifying the true values for each parameter (Figure 

S2). Thus, the enhanced PEM-SMC algorithm substantially reduces run time while maintaining the original's 

optimization performance. 
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Figure S1. Evolutionary of the parameter in three randomly selected particles along the sampling path toward a 

five-dimension bimodal posterior distribution using (a) original PEM-SMC and (b) revised PEM-SMC samplers. 

The true target parameter values, -5 and +5, are denoted by ‘×’ at the right hand side. Each particle is uniquely 

identified by distinct symbols and colors. Despite the graphical depiction being limited to three particles, the 

randomness inherent in particle selection suggests that the convergence patterns of additional particles would 

yield a similar profile to the one presented. 
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Figure S2. The posterior marginal distributions of the five-dimension parameters (𝜽𝟏, 𝜽𝟐, 𝜽𝟑, 𝜽𝟒, 𝜽𝟓) as generated 

by (a) original PEM-SMC and (b) revised PEM-SMC samplers. The solid black line depcits the target distribution. 

S1.2 Case study 2: a benchmark experiment  

To ensure the accuracy of the subsequent optimization results, we performed a benchmark experiment on the 

PEM-SMC sampler algorithm. For each optimization scenario, we generated a simulated LE and NEE output 

dataset using the default values of the selected parameters and treated the simulated datasets as “observation 

datasets” to calibrate the selected parameters. By comparing the optimized values with the default values of 

the parameters, we can then determine whether the selected parameters and the PEM-SMC algorithm are 

adequate for the parameter calibration of CoLM. The particle sampling evolution results of selected 

parameters in three optimization scenarios are shown in Figure S3-S5. It is worth noting that although we 

have graphically displayed the evolution for only five particles, the randomness of particle selection 

guarantees that the graphical examination of the convergence of the algorithms for other particles would yield 

a similar picture. We can see that all the particles converge to a limiting distribution of the prior range at the 

last evolutionary iteration, and the median values of the posterior distributions of all parameters optimized 

by the PEM-SMC sampler match well with the actual parameter values in both single-objective and multi-
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objective optimization scenarios. Therefore, we believe that the PEM-SMC algorithm is highly stable and 

robust in searching for the most appropriate model parameter combinations under the constraints of the 

observed datasets.  

 

Figure S3. Transitions of the sampled parameter values in five randomly selected particles during the sampling 

path in the optimization scenario of Opt_ALL. The vertical axis denotes the prior range of the parameter and the 

horizontal axis denotes the number of evolutions. The cross symbol at the right-hand side of each plot indicates 

the actual parameter values and the solid circles are the median value of the posterior distribution of the 

parameters. 
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Figure S4. The same as in Figure S3 but for the selected parameters in the optimization scenario of Opt_LE. 

 

Figure S5. The same as in Figure S3 but for the selected parameters in the optimization scenario of Opt_NEE. 

S2 The configuration of the tunable parameters 

The forty chosen static parameters of the CoLM are delineated in Table S1, with their prior ranges determined 

as follows: For the parameters depending on the vegetation and soil type, such as the light reflection and 

transmission coefficients of the canopy (P20-P27), vegetation biochemical parameters (P19, P29, P31, P35, 

P36), and some soil physical parameters that empirically produced based on the soil texture characteristics 

(P2-P9), we defined the range as the lower and upper bounds among all the forest types in the 24-

category(USGS) vegetation dataset and all the 17-category soil types, respectively. For some other 

parameters that cannot be calculated explicitly, we determined their ranges in the evergreen needleleaf forest 

ecosystem based on their physical meaning and commonly recognized conclusions. For example, the 

aerodynamic roughness length (𝑍0𝑚 ) is empirically estimated as being about 1/10 of the height of the 

roughness elements (Wallace et al., 2006). Therefore, we define the range of this parameter as 2-3 according 

to the approximate tree height (20-30m)of the needleleaf forest. In addition, the default value of the quantum 

efficiency of vegetation photosynthesis(“effcon”) is 0.08 in all forest ecosystems. To make it variable and 

have basic biochemical significance, we set its range to 0.06-0.08 according to Landsberg et al, (2011). For 

some parameters that are defined as constants (P28, P30, P32), we add and subtract half of their values based 

on the original values as their variable ranges. 

Table S1. Adjustable parameters for sensitivity analysis and optimization in CoLM. 

Para. Parameter Physical meaning Category Min Max 
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P1 zlnd roughness length for soil surface soil 0.005 0.015 

P2 𝜃𝑠𝑎𝑡−𝑠 surface soil porosity soil 0.35 0.55 

P3 𝜃𝑠𝑎𝑡−𝑑 deep soil porosity soil 0.35 0.55 

P4 𝐵𝑠 Clappp and Hornberger “b” parameter soil 4.5 7 

P5 𝐵𝑑 Clappp and Hornberger “b” parameter soil 4.5 7 

P6 𝐾𝑠𝑎𝑡−𝑠 saturated hydraulic conductivity of surface soil soil 0.001 0.176 

P7 𝐾𝑠𝑎𝑡−𝑑 saturated hydraulic conductivity of deep soil soil 0.001 0.176 

P8 𝜓𝑠 minimum soil suction of surface soil soil 50 500 

P9 𝜓𝑑 minimum soil suction of deep soil soil 50 500 

P10 wtfact fraction of shallow groundwater area soil 0.15 0.45 

P11 wimp factor controlling whether water is impermeable soil 0.01 0.1 

P12 pondmx maximum ponding depth for soil surface soil 5 15 

P13 csoilc the drag coefficient for the soil under the canopy soil 0.002 0.006 

P14 zsno roughness length for snow snow 0.0012 0.0036 

P15 capr tuning factor of soil surface temperature soil 0.17 0.51 

P16 cnfac Crank Nicholson factor canopy 0.25 0.5 

P17 dewmx maximum ponding of leaf area canopy 0.05 0.15 

P18 𝑍0𝑚 aerodynamic roughness length canopy 2 3 

P19 𝜒𝐿 leaf-angle distribution factor canopy 0.01 0.25 

P20 𝛼𝑉,𝑙 leaf reflectance, visible, live canopy 0.07 0.1 

P21 𝛼𝑉,𝑑 leaf reflectance, visible, dead canopy 0.16 0.36 

P22 𝛼𝑁,𝑙 leaf reflectance, near IR, live canopy 0.35 0.45 

P23 𝛼𝑁,𝑑 leaf reflectance, near IR, dead canopy 0.39 0.58 

P24 𝛿𝑉,𝑙 leaf transmittance, visible, live canopy 0.05 0.07 

P25 𝛿𝑉,𝑑 leaf transmittance, visible, dead canopy 0.001 0.3 

P26 𝛿𝑁,𝑙 leaf transmittance, near IR, live canopy 0.1 0.25 

P27 𝛿𝑁,𝑑 leaf transmittance, near IR, dead canopy 0.001 0.38 

P28 slti slope of low-temperature inhibition function canopy 0.1 0.3 

P29 hlti 1/2 point of low-temperature inhibition function canopy 278 288 

P30 shti slope of high-temperature inhibition function canopy 0.15 0.45 

P31 hhti 1/2 point of high-temperature inhibition function canopy 303 313 

P32 sqrtdi the inverse of the square root of the leaf dimension canopy 2.5 7.5 

P33 𝛼 quantum efficiency of vegetation photosynthesis canopy 0.06 0.08 

P34 𝑉𝑚𝑎𝑥25 maximum carboxylation rate 25°C canopy 10 200 

P35 𝑚 the slope of the conductance-photosynthesis model canopy 4 9 

P36 𝑏 intercept of conductance-photosynthesis model canopy 0.01 0.04 

P37 𝑁 coefficient of leaf nitrogen allocation canopy 0.5 0.75 

P38 smpmax wilting point potential canopy -2e5 -1e5 

P39 smpmin restriction for min of soil potential soil -1e8 -9e7 

P40 𝐸𝑡𝑟𝑚𝑎𝑥 maximum transpiration for vegetation canopy 1e-4 100e-4 

S3 The leaf stomatal photosynthesis-conductance module of CoLM 

In CoLM, leaf stomatal resistance is coupled to leaf photosynthesis in a manner way: 
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𝑟𝑠
= 𝑚

𝐴

𝑐𝑠

𝑒𝑠

𝑒𝑖
𝑝𝑠 + 𝑏 (2) 

where 𝑟𝑠 is leaf stomatal resistance; 𝑚(𝑃35)  and 𝑏(𝑃36) are the slope and intercept of the linear regression 

equation, respectively; 𝑐𝑠  and 𝑒𝑠  are the CO2 concentration and vapor pressure at the leaf surface, 

respectively; 𝑒𝑖 is saturation vapor pressure inside the leaf; 𝑝𝑠 is atmospheric pressure at the surface; A is the 

leaf photosynthesis and is calculated by: 

 A = min(wc, wj, we) (3) 

 wc =
(ci−Γ∗)Vmax25

ci+Kc(1+oi/Ko)
 (4) 

 wj =
(ci−Γ∗)4.6𝜙𝛼

ci+2Γ∗
 (5) 

 we = 0.5 Vmax (6) 

where wc and wj are the Rubisco and light limited rate of carboxylation, respectively; ci and oi are CO2 and 

O2 concentration, respectively; Kc and Ko are Michaelis-Menten constants for CO2 and O2, respectively; Γ∗ 

is the CO2 compensation point; 𝛼(𝑃33) is the quantum efficiency; 𝜙 is the absorbed photosynthetically 

active radiation;  Vmax is the maximum rate of carboxylation varies with temperature, foliage nitrogen, and 

soil water: 

 Vmax = Vmax25avmax

Tv−25

10 f(N)f(Tv)f(w) (7) 

where Vmax25(𝑃34)  is the maximum rate of carboxylation at 25ºC; avmax  is a temperature sensitivity 

paramter; f(N), f(Tv), and f(w) are the limitations of foliage nitrogen, temperature, and soil water, 

respectively. 

 

Figure S6. The multi-year(2015-2020) energy balance closure of flux observation in the study site. Note that the 

results above are obtained after eliminating moments with missing or invalid values for net radiation, sensible 

heat flux, latent heat flux, and soil heat flux observations. 
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Figure S7. Transitions of the sampled parameter values in five randomly selected particles during the sampling 

path in the optimization scenario of Opt_LE. The vertical axis denotes the prior range of the parameter and the 

horizontal axis denotes the number of evolutions. The solid circles are the median value of all particles at the end 

of evolutions. 

 
Figure S8. The same as in Fig. S7 but for the optimization scenario of Opt_NEE. 
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Figure S9 The same as in Fig. S7 but for the optimization scenario of Opt_ALL. 


