
Summary: In this study, the authors applied a revised particle evolution Metropolis 

sequential Monte Carlo called PEM-SMC to single- and multi-objective optimization 

of the Common Land Model (CoLM) using measurements of the latent heat flux (LE) 

and net ecosystem exchange (NEE) from a typical evergreen needle-leaf forest 

observation site. The authors conclude that the revised PEM-SMC algorithm is a robust 

method for LE and NEE exhibit a trade-off, necessitating the estimation of these 

paraemters against LE and NEE data simultaneously. 

Evaluation: This paper is about an important topic in hydrologic modeling, namely the 

training of a land surface model so that its simulated output matches as closely and 

consistently as possible multiple different measurement types. Overall, the paper is 

reasonably well written, albeit at times using incorrect methodological terminology and 

language. I worked quite a bit on Bayesian methods and am always interested in the 

application of these methods to Earth-systems. I am not particularly excited and 

convinced by the work presented in this paper. I will summarize my comments next. 

Based on these comments, I recommended a major revision. This gives the authors an 

opportunity to revised their work. This may involve quite a bit of additional work as 

my comments will point out. 

Response: 

Thank you for taking the time to evaluate our work and for providing valuable feedback. 

We appreciate your recognition of the significance of our research topic in hydrologic 

modeling, as well as your expertise in Bayesian methods, which will be instrumental in 

enhancing our paper. We acknowledge that certain aspects of the manuscript, 

particularly with regard to methodological terminology and the application of Bayesian 

approaches, may require clarification. We are fully committed to addressing each of 

your concerns in detail. While we understand that the revisions may require 

considerable effort, we are prepared to undertake the necessary work to strengthen the 

manuscript and ensure its scientific rigor. We are grateful for the opportunity to submit 

a major revision and look forward to enhancing the quality and impact of our study 

based on your insightful comments. 

General Comments: 



While reading this manuscript, many thoughts went through my mind. In the first place, 

it was a trip down memory lane. The presented material reminded me of work done by 

Luis Bastidas and others about 3 decades ago, and my own work of about 15 years ago. 

Then, I was surprised to see that the authors do not reference much prior work and 

present the algorithm as if they invented all this themselves. Furthermore, the authors 

implemented a Bayesian approach, but they do not verify at all whether the assumptions 

they made were actually met in practice nor do they take advantage of their posterior 

distribution in analyzing model performance. Last but not least, I am not convinced yet 

that the mutation operator of their PEM-SMC algorithm (which is a crossover step!) 

leaves the target distribution invariant. I will now address each of these points in more 

detail. Before I do so, I must apologize for the fact that I heavily advertise my own work 

in my review below. In general, I do not like doing this, but this proved difficult in the 

present case. The authors’ paper demonstrates a keen interest in methodology. This 

methodology has various problems and shortcomings. To point this out, I must 

unfortunately refer to our own published works. The authors work with MATLAB, so 

it should be easy to evaluate/test my suggestions and test their method against “state-

of-the-art” methods in MATLAB I am pointing at. I hope my comments below clarify 

my concerns. 

Comment #1: The conclusion that Land-surface models exhibit a trade-off in 

describing different data types has been well-known to the community. In a series of 

papers in the 1990s Bastidas and co-authors have convincingly shown that LSM 

training results in different “optimal” parameter values if trained against different data 

types. They used a multi-objective optimization framework for this, along with a multi-

objective sensitivity analysis method to rank the relative importance of individual 

parameters in describing different data types. This problem did not resolve with the use 

of a more complex LSM but is a result of (among others) epistemic uncertainty (model 

structure errors) and measurement errors of the controlling variables (exogenous 

variables). This paper uses a Bayesian procedure and arrives at the same conclusions of 

Bastidas et al. 

Thus, fundamentally, the conclusion of the authors is not new. Then, let me look at the 



methodology used. Does this warrant publication in HESS? Before I move on to the 

methodology, I would want to clarify that the wording “multiple objective” is erroneous. 

In essence, the authors are lumping together in their likelihood function two different 

data streams. They do this by multiplying the likelihoods of LE and NEE. This is not 

multi-objective, as the authors only have 1 likelihood (= combined likelihood of NEE 

and LE). With the choice a Gaussian likelihood, the authors’s method is equivalent to 

weighted least squares. With a diagonal measurement error covariance matrix where 

the first n entries are the measurement error variances for the latent heat flux data and 

the next m entries are for the measurement error variances for the NEE data, you will 

arrive at exactly the same maximum a-posteriori (MAP) density solution [uniform prior 

is used]. What the authors did is maximum likelihood estimation with a weighted 

likelihood function. 

Response: 

The objective of this paper is not to restate the well-established conclusion regarding 

the importance of considering multiple target variables in the calibration of complex 

land surface models (LSMs). Rather, we aim to introduce a systematic framework for 

quantifying parameter uncertainty by integrating sensitivity analysis with the PEM-

SMC algorithm and to validate its effectiveness in calibrating multiple complex process 

variables within LSMs. Additionally, this study provides concrete case support and 

methodological guidance for the argument that accounting for multiple process/target 

variables is crucial for achieving reliable parameter calibration. In the revised 

introduction, we will further highlight the novelty of this framework and its significance 

in the context of model parameter calibration. 

Thank you for your correction. We acknowledge that, from a terminologically precise 

perspective, our approach does not fall under the definition of multi-objective 

optimization. Multi-objective optimization typically involves the use of independent 

objective functions for each variable, with solutions balanced through a Pareto optimal 

solution set. In contrast, our approach combines LE and NEE data streams within a 

single likelihood function (i.e., a weighted likelihood), rather than using separate 

objective functions. Therefore, the term "multi-objective" is not accurate. In the revised 



manuscript, we will consider replacing "multi-objective optimization" with terms such 

as "weighted composite multi-variable optimization," "multi-variable combined 

optimization," or "joint target variable optimization" to more precisely describe how 

the inclusion of both single and multiple target variables affects parameter calibration 

results and model effectiveness in LSMs. 

Comment #2: The PEM-SMC algorithm the authors present & modify reminded me 

of my own work on particle-DREAM (Vrugt et al: Hydrology data assimilation using 

particle Markov chain Monte Carlo simulation: Theory, concept and applications), 

http://dx.doi.org/10.1016/j.advwatres.2012.04.002. Given the large overlap between 

the author’s PEM-SMC method and particle-DREAM I was surprised to see that there 

is not a single reference in their methodological description to the particle-DREAM 

paper. It is possible that the authors missed this work, but then their so-called mutation 

step in Equation 18 is taken directly from the partile-DREAM paper, and /or related 

papers on DE-MC and the DREAM algorithm. The authors use the same symbols in 

their paper for the jump-rate,gamma,parents, r1 and r2, etc. as we used in our 

publications. The authors should properly cite and acknowledge past work. 

Response: 

Thank you for your valuable feedback. We sincerely apologize for the oversight in not 

citing the relevant literature on the Differential Evolution Adaptive Metropolis 

(DREAM) algorithm in this paper. In fact, in our team’s earlier work where we 

introduced the PEM-SMC algorithm (Zhu et al. (2018): A new moving strategy for the 

sequential Monte Carlo approach in optimizing hydrological model parameters, 

https://doi.org/10.1016/j.advwatres.2018.02.007), we referenced four key papers 

related to the DREAM algorithm, fully acknowledging the contributions of previous 

research. 

In this paper, our focus was primarily on improving the computational efficiency of the 

PEM-SMC algorithm and its application to land surface models (LSMs), which led to 

the unintentional omission of relevant citations in the algorithm description. We 

sincerely apologize for this. In the revised manuscript, we will include appropriate 

references to the DREAM and DE-MC algorithms and clearly explain how the PEM-

http://dx.doi.org/10.1016/j.advwatres.2012.04.002
https://doi.org/10.1016/j.advwatres.2018.02.007


SMC algorithm builds upon and improves these earlier works. 

Thank you again for pointing this out, and we appreciate your understanding. 

References: 

Vrugt, J.A. , ter Braak, C.J.F. , Diks, C.G.H. , Schoups, G. , 2013. Hydrologic data 

assimilation using particle Markov chain Monte Carlo simulation: theory, concepts 

and applications. Adv. Water Resour. 51, 457–478.  

Vrugt, J.A. , ter Braak, C.J.F. , Diks, C.G.H. , Higdon, D. , Robinson, B.A. , Hyman, 

J.M. , 2009. Accelerating Markov chain Monte Carlo simulation by differential 

evolution with self-adaptive randomized subspace sampling. Int. J. Nonlinear Sci. 

Numer. Simul. 10 (3), 273–290.  

Vrugt, J.A., 2016. Markov chain Monte Carlo simulation using the DREAM software 

package: theory, concepts, and MATLAB implementation. Environ. Modell. Softw. 

75, 273–316.  

Vrugt, J.A., ter Braak, C.J.F., Clark, M.P., Hyman, J.M., Robinson, B.A., 2008. 

Treatment of input uncertainty in hydrologic modeling: doing hydrology backward 

with Markov chain Monte Carlo simulation. Water Resour. Res. 44, W00B09. 

https:// doi.org/10.1029/20 07WR0 06720 . 

Zhu, G., Li, X., Ma, J., Wang, Y., Liu, S., Huang, C., ... & Hu, X. (2018). A new moving 

strategy for the sequential Monte Carlo approach in optimizing the hydrological 

model parameters. Advances in Water Resources, 114, 164-179. 

Comment #2: Fundamentally, I am not confident that the Metropolis acceptance 

probability defined after Equation (18) leaves the target distribution invariant. We 

struggled with this in the Particle-DREAM paper and presented in Appendix B (Page 

476) a correct formulation of the acceptance probability so as to ensure ‘detail balance’. 

I suggest the authors study this Appendix and dtermine whether particle transitions 

guarantee an exact inference of the target distribution. This requires careful 

demonstration. As as side note, the PEM-SMC sampler has many elements in common 

with the ABC-Population Monte Carlo sampler used in Dadegh and Vrugt, (2013: see 

Appendix A, Page 4845). We also implemented a DREAM resampling step in that 

algorithm. 



Response: 

Thank you for your insightful comments. In the appendix of our previous paper 

introducing the PEM-SMC algorithm (Zhu et al. (2018)), we have demonstrated that 

the algorithm maintains a detailed balance and that. 𝜋𝑠(∙)  is the unique stationary 

distribution at each intermediate stage. However, we fully recognize the critical 

importance of ensuring detailed balance to guarantee the invariance of the target 

distribution. Therefore, we will carefully review the appendix of the particle-DREAM 

paper you mentioned to ensure that the Metropolis acceptance probability in our PEM-

SMC algorithm is correctly implemented and capable of accurately inferring the target 

distribution. 

In the revised manuscript's appendix, we will provide detailed proof that the PEM 

algorithm maintains both detailed balance and the unique stationary distribution, while 

also citing your work to strengthen our argument. 

Comment #3: In addition to my previous comment, even if the method is theoretically 

correct, then one cannot simply make a change to an algorithmic recipe and claim this 

revised method is robust ( as the authors do in their abstract). We cannot conclude 

anything about robustness using only the posterior distributions of the LE and NEE data. 

To inspire confidence in the reivised algorithm one needs to demonstrate that the 

mothod works well on a large range of problems – meaning it converges to the known 

posterior distribution in a series of benchmark experiments. Otherwise, claims of 

robustness are meaningless, and we must simply trust that the algorithm correctly infers 

the target distribution of the LSM parameters. 

Response: 

Thank you for your valuable feedback. In the Supporting Information of the original 

manuscript, we validated the algorithm's performance on a synthetic multi-dimensional 

bimodal normal distribution and the known parameter distribution of the CoLM model. 

However, this may not be sufficient to demonstrate its robustness in handling more 

complex distributions. As you pointed out, to build confidence in the revised algorithm, 

we need to show its performance across a range of benchmark problems and ensure 

stable convergence to known posterior distributions. In the revised manuscript's 



appendix, we will expand the benchmark experiments, drawing from the case studies 

in your previous work, "Markov chain Monte Carlo simulation using the DREAM 

software package: Theory, concepts, and MATLAB implementation," to further verify 

the convergence and robustness of the PEM-SMC algorithm. 

Comment #4: Then, one more time about Equation (18), how is the resampling 

inplemented? Are N candidate points generated simultaneously, and then pairwise the 

acceptance probability is computed to determine whether to accept the proposals or not. 

Or is the implementation sequential, that is, a proposal is created using Equation (18) 

and then is accepted (or not) with Metropolis probability α. If accepted, the proposal 

repalces its parent, and then the next candidate point is created? The algorithmic recipe 

suggests this latter approach. The reason I ask this is that the first parallel 

implementation does not guarantee reversibility. This proof only holds for the latter, 

sequential, approach. See Appendix (PAGE 444-445) of Vrugt and TerBraak, 

https://link.springer.com/article/10.1007/s11222-008-9104-9. 

Response: 

In our algorithm, we adopt a sequential approach. Specifically, the mutation step (or 

what you may refer to as the crossover step) is performed by iterating through the N 

particles one by one. At each step, we randomly select two particles (excluding the 

current one) to carry out differential mutation and generate a candidate particle (Figure. 

R1). We then decide whether to accept the new particle based on the Metropolis 

acceptance probability. If accepted, the new particle replaces the current one. 

In the process of generating other candidate particles, if the current particle is selected 

for differential mutation, we use the updated particle rather than the original one. 

Therefore, the entire process is sequential, rather than generating N candidate points 

simultaneously. This approach also aligns with the reversibility proof described by 

Vrugt and Ter Braak (pages 444-445), which applies specifically to sequential 

implementations. 

We will carefully review the references you mentioned and further clarify this point in 

the revised manuscript to ensure our method properly maintains both reversibility and 

detailed balance. 

https://link.springer.com/article/10.1007/s11222-008-9104-9


 

Figure. R1 The MATLAB code for the mutation operator. 

Comment #5: How does the algorithm handle the parameter boundaries? What is done 

to a particle if it is sampled outside the prior parameter ranges (by the authors’ mutation 

step)? Detailed balance requires that the proposals are assigned a zero likelihood, or 

better, the candidate points are folded [e.g. see Vrugt and Ter Braak, 2011: 

https://doi.org/10.5194/hess-15-3701-2011]. Which mechanism did the authors 

implement? 

Response: 

Thank you for your valuable feedback. In our current algorithm, we use a discard 

mechanism, meaning that when a new particle generated through differential evolution 

exceeds the prior parameter bounds, it is discarded, and other particles are randomly 

selected until one falls within the acceptable range. However, we recognize that this 

"discard" strategy may violate detailed balance. As you correctly pointed out, a more 

appropriate approach would be to assign zero likelihood to particles outside the bounds 

and reject them based on the acceptance probability, retaining the original particle. 

While this method preserves detailed balance, it may reduce sampling efficiency. 

You also suggested an alternative approach, where particles exceeding the parameter 

bounds are "folded" back into the parameter space. This folding mechanism offers a 

promising solution, as it avoids discarding particles altogether, improves sampling 

efficiency, and maintains detailed balance. 



In the revised manuscript, we will incorporate the folding mechanism into the candidate 

particle generation step to better balance detailed balance and sampling efficiency. 

Comment #6: Then, on a related note, the authors do not address the question so as to 

why the machinery of a particle SMC method is required first of all to infer the posterior 

parameter distribution. I am most familiar with the DREAM algorithm as I developed 

this myself with Cajo Ter Braak (2008). I seriously question whether based on the listed 

algorithmic variables of S=100 and N=200 the SMC algorithm will succeed in 

generating samples of the target distribution. I hazard to predict that the DREAM 

algorithm (MATLAB toolbox:DREAM Package) will be computationally more 

efficient, in large part because the burn-in will be substantially smaller as one only 

needs to run N=3 Markov chains. This does not require a tempering schedule to move 

particles from a prior to a posterior distribution. This type of bridge sampling only 

complicates methodology. Most people are familiar with the DREAM algorithm, and 

so why do we need new machinery if “old methods” can do the job – and as I bet more 

efficiently that what is presented in the present paper. Also, the multi-try variant of 

DREAM allows a further speed-up of the convergence speed to the target(posterior) 

distribution as the chains are evaluated in parallel and multiple proposals are created in 

each chain in parallel as well. The best proposal is then accepted with a modified 

Metropolis acceptance probability. This methodology is described in 

https://doi.org/10.1029/2011WR010608. 

Response: 

Thank you for your detailed feedback regarding the use of the SMC and DREAM 

algorithms. We would like to address and clarify your concerns as follows: 

First, we acknowledge the effectiveness of the DREAM algorithm in sampling complex 

distributions, particularly its innovation in enhancing parameter space exploration 

through differential evolution. DREAM’s efficient chain mechanism significantly 

accelerates convergence, especially in multi-modal posterior distributions. However, 

we opted for the Sequential Monte Carlo (SMC) method due to its distinct advantages 

in handling complex, dynamic, and high-dimensional systems. As Land Surface Models 

(LSMs) become increasingly intricate, with more high-dimensional and nonlinear 

https://doi.org/10.1029/2011WR010608


parameters, their posterior distributions often exhibit multiple modes. Unlike MCMC-

based methods, SMC can progressively fit intermediate distributions, such as geometric 

bridge distributions, allowing for greater flexibility in adapting to these complex 

posterior distributions, particularly in dynamic systems and time-series analyses. This 

makes SMC particularly suited to capturing both multi-modal and high-dimensional 

distributions. 

While we recognize the efficiency of the DREAM algorithm—particularly its 

elimination of annealing schedules—as a strength in static models, the SMC 

algorithm’s particle diversity improvement mechanism, such as differential evolution, 

is also highly effective for exploring high-dimensional parameter spaces. This 

mechanism is conceptually similar to DREAM’s advanced differential evolution. 

Furthermore, the flexibility of SMC allows it to be extended over time and integrated 

with other methods, such as Dynamic Bayesian Networks, enhancing its suitability for 

time-varying systems. 

In terms of computational efficiency, while DREAM’s parallel chain design reduces 

burn-in periods and accelerates convergence, we found that for complex, high-

dimensional posterior distributions, SMC’s resampling and importance sampling steps 

enable quicker adaptation to the posterior distribution, particularly in multi-modal 

scenarios. To provide a more robust comparison of the two algorithms, we plan to 

include an additional experiment using the DREAM algorithm in the revised 

manuscript. This will further validate the performance of the PEM-SMC algorithm in 

fitting the target posterior distribution and allow us to compare the efficiency and 

accuracy of both approaches, offering a more comprehensive evaluation of their 

strengths and weaknesses. 

Comment #7: The authors assume a normal likelihood for the residuals of the LSM 

model. Why did they choice a normal likelihood. This is the default choice but must be 

supported by evidence. This require a-posterior checking of the residuals of the time 

series of measured and simulated latent heat fluxes and NEE. I bet the residuals will 

exhibit autocorrelation, a nonconstant variance, and deviate from normality. This would 

disqualify the use of the normal likelihood function. Good statistical practice requires 



the authors to evaluate that the assumptions about the likelihood function are met in 

practice. For example, consider Schoups and Vrugt, 2010. 

https://doi.org/10.1029/2009WR008933 

Response: 

Thank you for your valuable feedback and suggestions. After conducting a posterior 

analysis of the residuals for latent heat flux (LE) and net ecosystem exchange (NEE), 

we found that the residuals more closely follow a t-distribution rather than the initially 

assumed normal distribution (see Figure R2). While we initially selected the normal 

distribution due to its computational simplicity and widespread application, the heavy 

tails of the t-distribution make it more sensitive to extreme values, which may better 

suit our current dataset. 

Despite the significant differences between the likelihood functions of the normal and 

t-distributions in handling extreme values, both produce consistent outcomes when 

determining whether to accept or reject candidate particles—i.e., for a given particle, 

the likelihood results are expected to be the same for both distributions. Therefore, we 

anticipate that this change in likelihood function will have minimal impact on the final 

optimization results. Nevertheless, to ensure model robustness, we will include a 

detailed report of the posterior analysis of residuals in the revised manuscript, adopt the 

t-distribution likelihood function, and compare its performance with the normal 

distribution to validate our assumption. 

We also appreciate your reference to the work by Schoups and Vrugt (2010), and we 

plan to incorporate their methods, particularly in examining residual distributions and 

assessing model assumptions. This will help us ensure that the likelihood function is 

appropriate and well-suited to our data. 

https://doi.org/10.1029/2009WR008933


  

Figure R2 Comparison of the fitting performance between the normal distribution and 

t-distribution for the residuals of the LE and NEE target variables. 

Comment #8: The authors multiply the likelihoods of the latent heat flux and NEE as 

if these two data types are independent. Is this a valid assumption? As an alternative, 

one could consider a composite likelihood, where the two likelihoods are additive – one 

can find applications of this in statistical literature, specifically in the application to 

spatial data. Then, this would constitute a novelty and justify publication in a highly 

rated journal such as HESS. 

Response: 

Thank you for your insightful feedback. In our initial parameter calibration, we 

assumed that latent heat flux (LE) and net ecosystem exchange (NEE) were 

independent variables, and therefore, we multiplied their likelihood functions. However, 

as you correctly pointed out, LE and NEE may be interdependent, particularly given 

the complex interactions between surface processes and climate dynamics. We 

acknowledge that such interdependence could affect the accuracy of the likelihood 

estimation. 

To better account for the potential dependencies between these variables and enhance 

the accuracy of our statistical inferences, we will introduce a composite likelihood 

method in the revised manuscript. This approach enables us to add, rather than multiply, 

the likelihood functions for LE and NEE, thereby accommodating their possible 

correlation. Additionally, we will compare the performance of the multiplicative and 

composite likelihood approaches in the context of parameter calibration, evaluating 

their respective impacts on model fit. 



Comment #9: Then, the toolbox of DREAM in MATLAB (called DREAM package) 

has built-in distribution-adaptive likelihood functions, such as the generalized 

likelihood and universal likelihood functions: 

https://doi.org/10.1016/j.jhydrol.2022.128542.These likelihood functions let the data 

speak for themseleves – and let the residuals determine the most appropriate form of 

the likelihood function. This includes treatment of heteroscedasticity, correlation and 

non-normality. This guarantees that the residual properties will match the likelihood 

assumptions – and inspire much more confidence in the posterior parameter 

distributions derived from the lated heat flux and NEE data. Certainly, if the authors 

use a Baysian approach, as they do in this paper, they must demonstrate that their 

residual assumpitions hold. Otherwise, the parameter estimates are not particularly 

meaningful. 

Response: 

Thank you for your valuable suggestions regarding the choice of likelihood function. 

In our current research, we initially selected the normal likelihood function due to its 

widespread use and computational simplicity. However, we fully acknowledge that if 

the residuals do not meet the normality assumption, the resulting parameter estimates 

may lack robustness. To improve the PEM-SMC algorithm’s ability to account for the 

residual characteristics of complex model variables, we will revise the likelihood 

function by adopting the adaptive generalized likelihood or universal likelihood 

functions you suggested. These methods are better equipped to handle issues such as 

heteroscedasticity, correlation, and non-normality, ensuring that the residuals align 

more accurately with the likelihood assumptions. 

Moreover, we plan to conduct additional experiments to assess the impact of the 

adaptive likelihood function on the posterior parameter distribution, ensuring that it 

accurately reflects the data's inherent characteristics. This approach will enhance both 

the reliability and robustness of parameter estimation, forming a key aspect of the 

study’s contribution. 

Comment #10: I do not understand why the authors use a complicated training SMC-

based procedure, whereas there is relatively little they do with the knowledge of the 

https://doi.org/10.1016/j.jhydrol.2022.128542.These


posterior parameter distribution. In the first place, the authors should present the 

Bayesian predictive distributions (time series of confidence and prediction intervals of 

the simulated output) in their time series figures (e.g. Figure 4). What is the coverage 

of the prediction limits? As it stands right now, the authors focus their attention on the 

MAP solutions and ignore in large part parameter uncertainty. A maximum likelihood 

method would have done the job. Then, stochastic gradient descent would have found 

the MAP solution and a first-order approximation around this optimum would have 

given a linear estimate of parameter uncertainty. 

Response: 

Thank you for your valuable feedback. 

We recognize that assessing the model’s performance deterministically using the 

optimal solution from the posterior distribution (e.g., the posterior median) diverges 

from the main objective of uncertainty analysis in the Bayesian framework. To address 

this, the revised manuscript will include the full Bayesian predictive distribution based 

on the entire posterior distribution of the parameters, along with associated confidence 

intervals. Additionally, we will incorporate probabilistic metrics and uncertainty 

evaluation methods, such as those grounded in scoring rules, to provide a more 

comprehensive assessment of the model’s fit. This approach will not only capture 

historical data but also fully utilize the advantages of Bayesian probabilistic analysis, 

thereby improving the model’s interpretability and enhancing the reliability of the 

results. 

Comment #11: The authors refer to Equation 15 as the “analytical method”. I am not 

familiar with this terminology. Equation 15 simply states that the measurement error 

standard deviation is equal to the square root of the sample variance of the residuals. 

They essentially use this as a sufficient statistic and embed this in their likelihood 

function. This is a common approach, but in the author’s, implementation raises two 

important questions. A) how was the sample variance of the residuals determined? This 

requires knowledge of the MAP (maximum a-posteriori density) LSM parameter values, 

and B) the estimate of the sample variance of the residuals will be biased as the residuals 

are likely to exhibit serial correlation. The “true” measurement error variance can only 



be determined after decorrelating this time series of MAP residuals. 

Response: 

We are not entirely sure if we have fully understood your question. Regarding the 

estimation of residual variance (Issue A), the 𝜎 we use is based on the overall residual 

variance between the simulated target variable values and the observed data for the 

current parameter 𝜃 , rather than the variance associated with the final maximum a 

posteriori (MAP) estimate. 𝜎  is dynamically updated throughout the parameter 

optimization process as 𝜃 changes. This dynamic approach allows us to better capture 

the characteristics of the residuals across different parameter values, rather than relying 

solely on the final MAP estimate. 

For the issue of residual autocorrelation (Issue B), we agree that this could introduce 

bias in the sample variance estimation. To address this, we will incorporate 

autocorrelation tests, such as the Durbin-Watson or Ljung-Box tests, in the revised 

manuscript to assess any temporal autocorrelation in the residuals. If significant 

autocorrelation is detected, we will apply appropriate de-correlation methods to ensure 

that the estimation of the measurement error variance is accurate and unaffected by 

serial correlation. 

Comment #12: The authors refer to their particle resampling step as a mutation step. 

This is wrong. A mutation is a random alteration to the DNA of a particle. This can 

happen to any parameter at any time and is fully random. The differential evolution 

(DE-I) step the authors use from DE-MC, DREAM or Particle DREAM) is a crossover 

step. The proposed changes to the DNA of the particles are based on an underlying 

mechanism [= Equation 18], and augmented with an inconsequential random 

perturbation, zeta, to claim ergodicity. This is a crossover step wherein the DNA of two 

parents is combined to generate offspring (candidate particles). Note that in the original 

DREAM algorithm, there is no mutation step – only a crossover step. Then, why did 

the authors not consider the use of more than 1 pair (r1 – r2, r3 – r4, r5-r6, etc.), of 

differences to generate candidate points? We have shown that this enhances 

considerably the variability in the candidate points. Indeed, the pair r1/r2 has a 

1/N*1/(N-1) selection probability, where N significant the population size. r1,r2,…,r6 



on the contrary has a selection probability, of 1/N*1/(N-1)*1/(N-2) etc.; Thus one can 

generate a much large variation in the proposals with multiple pairs. The side-effect of 

this is that you may be able to reduce the population size. 

Response: 

We apologize for any confusion caused by our terminology. As you correctly pointed 

out, we inaccurately referred to the “mutation” step in our paper as a differential 

evolution-based operation. In fact, this process should be more accurately described as 

a “crossover” step. Specifically, this step involves applying the difference between two 

candidate particles to a third particle, which aligns with the strict definition of a 

crossover operation. 

In the initial version of our PEM-SMC algorithm, a crossover step was indeed included, 

where portions of the multidimensional parameter values of particles were exchanged 

to increase diversity, similar to the random subspace sampling strategy used in the 

DREAM algorithm. However, for efficiency reasons, we removed this crossover step 

in the revised version of the PEM-SMC algorithm. We believe that, by choosing an 

appropriate number of particles N and evolution steps S, the particles can sufficiently 

explore the parameter space, rendering the additional crossover step unnecessary. To 

distinguish this from the original crossover step, we referred to the differential evolution 

process as a "mutation," which involves modifying the parameter values of the particles 

to enhance exploration. 

Your suggestion of using multiple particle pairs to generate candidate points to improve 

acceptance rates and particle diversity is highly insightful. In our revised manuscript, 

we plan to rename the current “mutation” step to “crossover” and further explore the 

use of multiple sample pairs to generate candidate points, which could enhance both 

the acceptance probability and the diversity of the particles. 

Comment #13: Do I understand correctly that after convergence you have N=200 

samples from the target distribution? This is very small for a 17-dimensional parameter 

estimation problem and does not support an accurate depiction of the posterior 

parameter distribution. Again, why not just use an adaptive multi-chain Monte Carlo 

method such as DREAM_ZS or MT-DREAM_ZS? This machinery will do the job for 



you, while providing as byproduct a)automatic convergence monitoring (univariate and 

multivariate scale reduction factors, etc.), b) diagnostic checks of the residuals, c) 

confidence and prediction limits of the Bayeisan forecast (simulation) PDF, d) scoring 

rules (CRPS, LS, QS, etc) of the predictive distribution and access to distribution-

adaptive likelihoods. 

Response: 

Thank you for your comments and suggestions. Indeed, after convergence, we used 

N=200 particles to represent the target distribution. However, the mention of 17 

dimensions is inaccurate. In our three optimization scenarios, the parameter dimensions 

are 6, 5, and 6, respectively, and each was optimized separately. While we acknowledge 

the strong capability of the DREAM algorithm, based on the MCMC framework, in 

generating samples from complex distributions, Sequential Monte Carlo (SMC) is also 

an important framework for Bayesian parameter inference. 

Our research aims to develop an algorithm, PEM-SMC, that integrates the principles of 

differential evolution, making it equally applicable to the optimization of complex 

model parameters. This algorithm is intended to provide a novel methodological option 

for parameter optimization, contributing to the development and application of 

algorithms, rather than simply applying existing methods. 

You mentioned adaptive multi-chain Monte Carlo methods such as DREAM_ZS or 

MT-DREAM_ZS, which indeed offer several advantages, including automatic 

convergence monitoring, residual diagnostics, Bayesian prediction intervals, and the 

application of scoring rules. 

In the Discussion of revised manuscript, we will further expand on these aspects and 

conduct a detailed comparison between the PEM-SMC and DREAM algorithms to 

evaluate their respective strengths, weaknesses, and applicable contexts. We believe 

this comparative analysis will help demonstrate the effectiveness of PEM-SMC in 

specific applications while providing more empirical evidence for its comparison with 

well-established methods like DREAM. 

Comment #14: In principle, the authors have access to the predictive distribution of 

the model, but in their model evaluation resort only to common deterministic measures 



of model performance. This includes the NSE and RMSE in Equations 19 and 20. Their 

use entails a large loss of information about model performance. This is just a side note: 

The authors should consider evaluating the full predictive distribution using scoring 

rules. I hesitate to advertise my own work, but here it is, Distribution-Based Model 

Evaluation and Diagnostics: Elicitability, Propriety, and Scoring Rules for Hydrograph 

Functionals: https://doi.org/10.1029/2023WR036710. This merely serves as a note to 

alert the authors against the use of deterministic measures of goodness of fit, in case 

one has access to the full Bayes predictive distribution. This allows for the use of 

information-theoretic principled metrics – which offer more protection against 

misinformation, disinformation, etc. 

Response: 

Thank you for your valuable feedback. We acknowledge that our current method of 

evaluating model performance by relying on a single optimal solution from the 

posterior distribution (such as the posterior median) falls short of fully addressing the 

central goal of uncertainty analysis within the Bayesian framework. In the revised 

manuscript, we will address this limitation by generating Bayesian predictive 

distributions and their associated credible intervals, based on the complete posterior 

distribution of the parameters. Furthermore, we will incorporate evaluation metrics 

grounded in scoring rules, such as the Continuous Ranked Probability Score (CRPS), 

Logarithmic Score (LS), and Quadratic Score (QS), to offer a more comprehensive 

assessment of the model’s predictive performance. This approach will not only improve 

our ability to fit historical data but also fully leverage the probabilistic insights of 

Bayesian analysis, enhancing both the interpretability of the model and the reliability 

of its predictions. 

Comment #15: Then, the authors use different sensitivity analysis methods to decide 

which parameters are sensitive and which ones are not. A critical assumption in this 

analysis is that the parameters are independent. This assumption is convenient but may 

not be realistic in practice. As an idea, the authors could determine sensitivity using 

their posterior parameter samples. This would equate to probabilistic variance-based 

sensitivity analysis and relies on high dimensional model presentation (HDMR), an 



extension of Sobol to correlated variables. HDMR and HDMR with extended bases are 

computationally quite demanding, so this may pose problems with their LSM. 

Nevertheless, given their strong interests in computational methods I thought I’d point 

at the HDMR/HDMR_EXT toolboxes, which are available in MATLAB. Alternatively, 

they should consider the multi-criteria sensitivity analysis method of Bastidas, in 

evaluating sensitivity in the presence of more than one data type. But, realistically, why 

not do inference on all the parameters and then assess parameter sensitivity from the 

posterior LSM parameter distribution(s)? One could use measures such as the Kullback 

Leibler divergence (= divergence of the logarithmic score, see Vrugt, 2024) to 

determine the distance between the marginal prior and marginal posterior distribution 

of each parameter. This is cheap to compute and will convey which parameters are most 

sensitive and which others are not. Indeed, for parameters that are sensitive one would 

expect its posterior marginal distribution to be small relative to its marginal prior. On 

the contrary, for a parameter that is insensitive it is common to see that its prior and 

posterior marginals are nearly equivalent. Maybe this approach simplifies the paper. 

Response: 

Thank you for your insightful suggestions. We recognize the theoretical value of your 

proposed sensitivity analysis method based on posterior parameter samples. However, 

calibrating all parameters and comparing their prior and posterior distributions would 

significantly increase both the computational cost and the complexity of the calibration 

process. In complex models, not all parameters exert a substantial influence on the 

simulation of target variables. Therefore, focusing on calibrating only the most 

influential parameters allows us to improve model accuracy while maintaining 

computational efficiency. 

To identify these key parameters, we employed both qualitative and quantitative 

sensitivity analysis techniques to determine which parameters are most strongly 

correlated with one or more target variables, and we calibrate only those. This approach 

effectively balances model precision with computational efficiency, providing a fast 

and practical solution. 

That said, your suggestion regarding variance-based sensitivity analysis is highly 



valuable. In our revised manuscript, we will incorporate metrics such as Kullback-

Leibler divergence (i.e., the divergence of log scores, as noted by Vrugt, 2024) to 

validate the key parameters identified through sensitivity analysis. By comparing the 

marginal prior and posterior distributions after calibration, we can further verify the 

accuracy of the sensitivity analysis. Nevertheless, we still believe that combining 

sensitivity analysis with the PEM-SMC calibration framework is the most suitable 

approach for our specific application. 

Comment #16: Figure 2: The x-labels are not readable and strangely chosen. If the 

authors want to demonstrate that the different optimization scenarios lead to different 

marginal distributions of the parameters, then why not use a single x-axis, linearly-

scaled, and just plot the 3 distributions on top of this. Thus the same as now but with a 

linear scale of the x-axis. This would show immediately the differences between the 

methods. Then, I have my doubts whether the marginal distribution of the parameters 

shown are truly Gaussian. This may be an artifact of an insufficient sample of the target 

distribution, as commented on earlier in 7. 

Response: 

Thank you for your valuable suggestions. In the revised manuscript, we will improve 

Figure 3 by using a single linear x-axis to more clearly display the differences in the 

marginal distributions of parameters across the various optimization scenarios. 

Additionally, we will include a plot showing the actual distribution of the 200 particles 

in the parameter space, rather than relying on a simple probability density histogram, 

which will provide a more accurate representation of the posterior distribution. 

As for the original fitted curve, it was an initial attempt to approximate the posterior 

distribution of the parameters. However, we recognize that it may not fully capture the 

true posterior and could potentially mislead readers. To avoid any confusion, we will 

remove the fitted curve in the revised version. 

Comment #17: Figure 4: Maybe this is explained in the text and I missed it but why 

are the observations indicated with a pink interval? Noisy observations? Personally, I 

would prefer plotting the data as discrete points, alternatively, one can think of 

averaging the data (measurements) so there are fewer data points in return and then 



accompany these time-averaged estimates with error bars. As it stands right now, I see 

three deterministic simulations and then a wide range of possible data values. If the 

authors are interested in quantifying measurement uncertainty, then the nonparametric 

estimator of de Oliveira and Vrugt comes to mind: 

https://doi.org/10.1029/2022WR032263. Again, this is a sidenote, but it may help the 

authors present their data better. Maybe the authors can use this to their advantage. 

Response: 

Thank you for your suggestion. The purple shaded area was originally used to 

emphasize the differences between the observed data and the four simulation results, 

without considering observational noise. In response to your feedback, we will revise 

the manuscript by plotting the observational data as discrete points to enhance clarity. 

Furthermore, we will update Figure 4 to include Bayesian predictive distributions 

derived from the full posterior distribution, along with the corresponding credible 

intervals. 

Comment #18: Section 4.2: This is not a difference between single and multiobjective 

methods. All the results correspond to a single objective, albeit with one or more 

weighted data streams. I commented on this before. 

Response: 

Thank you for your correction. We acknowledge that our study did not focus on multi-

objective parameter calibration. In the revised manuscript, we will adjust the discussion 

to move away from the distinction between single-objective and multi-objective 

methods. Instead, we will focus on the more relevant issue of how using a single target 

variable versus a weighted combination of multiple variables impacts parameter 

calibration results and model performance in the context of complex land surface model 

(LSM) calibration. 

Comment #19: Then, the authors use the terminology of optimization scenarios. 

Personally, I do not like the terminology of optimization in a Bayesian context. 

Optimization focuses on finding the single best solution whereas Bayesian inference is 

fundamentally different in that it wants to find a distribution of statistically acceptable 

solutions – this should include the MAP parameter values (= ML with uniform prior) 



but cannot be considered optimization. Some authors call it Bayesian calibration, I 

prefer Bayesian training or estimation. I leave this to the authors. 

Response: 

Thank you for your valuable feedback. We recognize that our previous terminology did 

not clearly distinguish between parameter optimization and parameter inference. In 

response to your suggestion, we will revise the manuscript to replace the term 

"parameter optimization" with "parameter estimation," which more accurately aligns 

with the Bayesian framework. 

In summary, this paper needs a lot of work before it can be judged to make a significant 

contribution to the literature. I am sorry for highlighting my own work, but I felt this 

was relevant and necessary as the authors’ methodology has important flaws, 

shortcomings and needs to be reconsidered. Amongst others, I believe that a) the 

authors should properly demonstrate that their method is indeed robust and that the 

changes made to the PEC-SMC sampler leave the target distribution invariant, b) they 

must properly recognize past literature contributions, consider how their method differs 

from past methods, and articulate why we would need the SMC machinery after all to 

obtain the posterior LSM parameter distribution if current state of the arts method can 

do this job (and the maximum likelihood method/weighted least squares will do in the 

current implementation of the authors), c) test the residual properties (diagnostic checks 

of autocorrelation, distribution and variance homogeneity) so as to demonstrate that the 

assumptions of the normal likelihood function are indeed met, d) present the confidence 

and prediction limits of the Bayes predictive distributions, e) clean up their language of 

single and multiple objective, mutation and crossover step, etc. and f) possibly, consider 

more powerful model evaluation metrics rather than the deterministic measures used 

by the authors. No doubt, these comments and those listed above will involve 

substantial work. But this should significantly enhance the quality of the work presented 

in this paper. 

Response: 

Thank you for your thorough evaluation of our paper and your detailed feedback on the 

PEM-SMC method. We fully recognize the importance of the improvements you have 



suggested. Although these revisions will require substantial effort, we are confident that 

they will significantly enhance both the robustness of the algorithm and the overall 

quality of the manuscript. We are committed to addressing each of your 

recommendations and look forward to your continued guidance and feedback to further 

improve the paper. Once again, we greatly appreciate your review and valuable 

suggestions. 


