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Abstract. Quantification of precipitation partitioning into evaporation and runoff is crucial for predicting future water 

availability. Within the widely used Budyko framework, which relates the long-term aridity index to the long-term evaporative 

index, curvilinear relationships between these indices (i.e., parametric Budyko curves) allow for the quantification of 

precipitation partitioning under prevailing climatic conditions. A common assumption is that movement along a specific 10 

Budyko curve with changes in the aridity index over time can be used as a predictor for catchment responses to changing 

climatic conditions. However, various studies have reported deviations around these curves, which raises questions about the 

usefulness of the method for future predictions. To investigate whether parametric Budyko curves still have predictive power, 

we quantified the global, regional, and local evolution of deviations of catchments from their parametric Budyko curves over 

multiple subsequent 20-year periods throughout the last century, based on historical long-term water balance data from over 15 

2000 river catchments worldwide. This process resulted in up to four 20-year distributions of annual deviations from the long-

term mean parametric curve for each catchment. To use these distributions of deviations to predict future deviations, the 

temporal stability of these four distributions of deviations was evaluated between subsequent periods of time. On average, it 

was found that the majority of 62 % of study catchments did not significantly deviate from their expected parametric Budyko 

curves. From the remaining 38 % of catchments that deviated from their expected curves, the long-term magnitude of median 20 

deviations remains minor, with 70 % of catchments falling within the range of ±0.025 of the expected evaporative index. When 

these median deviations were expressed as relative changes in discharge, catchments in arid regions showed higher 

susceptibility to larger discharge shifts compared to those in humid regions. Furthermore, a significant majority of catchments, 

constituting around the same percentage, were found to have stable distributions of deviations across multiple time periods, 

making them well-suited to statistically predict future deviations with high predictive power. These findings suggest that while 25 

trajectories of change in catchments do not strictly follow the expected long-term mean parametric Budyko curves, the 

deviations are minor and quantifiable. Consequently, taking into account these deviations, the parametric formulations of the 

Budyko framework remain a valuable tool for predicting future evaporation and runoff under changing climatic conditions, 

within quantifiable margins of error. 
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1 Introduction 30 

Climate change is likely to have a profound impact on future global water resources (Jaramillo et al., 2018; Xing et 

al., 2018) by causing major shifts in the water balance of river basins world-wide (Serpa et al., 2015; Hattermann et al., 2017). 

Robust quantitative estimates of future water resources are therefore required to develop policies and to design engineering 

interventions that will allow the mitigation of the potentially adverse effects of these shifts on water supply (Destouni et al., 

2013). 35 

From the early 20th century onwards, multiple authors have suggested analytical, functionally similar non-parametric, 

curvilinear relationships that describe the long-term average partitioning of precipitation into runoff and evaporative fluxes in 

terrestrial hydrological systems (Schreiber, 1904; Oldekop, 1911; Budyko, 1948). In spite of differences in their detailed 

mathematical formulation (Arora, 2002; Andréassian et al., 2016), all these relationships allow to map the long-term mean 

fraction of precipitation P that is evaporated, i.e., the evaporative index IE = EA/P, onto the long-term mean ratio of energy 40 

input, expressed as potential evaporation EP, over precipitation, referred to as aridity index IA = EP/P. Many studies have 

demonstrated that empirical evaporative indices IE of river catchments world-wide indeed scatter rather narrowly around these 

non-parametric Budyko curves (Turc, 1954; Budyko, 1961; Choudhury, 1999; Zhang et al., 2001; Donohue et al., 2007; 

Berghuijs et al., 2014; Van Der Velde et al., 2014; Andréassian et al., 2016; Jaramillo et al., 2018; Reaver et al., 2022). To 

better account for the scatter, several parametric reformulations of the non-parametric Budyko curves have been proposed 45 

(Turc, 1954; Mezentsev, 1955; Tixeront, 1964; Fu, 1981). These one-parameter formulations were shown to be functionally 

almost equivalent to each other (Yang et al., 2008). Their parameter, hereafter referred to as ω, defines catchment specific 

parametric Budyko curves that locate each catchment on a uniquely defined position in the space spanned by IA and IE  i.e., the 

Budyko framework. The ω parameter is widely interpreted to encapsulate all combined properties of a catchment that may 

influence the storage and release of water other than IA (Milly, 1994; Donohue et al., 2012; Shao et al., 2012). 50 

The fact that the long-term water balance exhibits such a relatively consistent behaviour across a wide spectrum of 

hydroclimatically and physiographically distinct environments has led to the hypothesis that the general shape of Budyko 

curves emerges for natural systems in a co-evolution of climate, soil water storage and vegetation properties (Milly, 1994; 

Porporato et al., 2004; Donohue et al., 2012; Gentine et al., 2012; Troch et al., 2013). Consequently, it may plausibly be 

assumed that once equilibrium is reached after a change in IA, the water partitioning in a catchment converges towards a new 55 

but predictable stable state (here: IE), by following its catchment specific parametric Budyko curve defined by ω. By extension, 

such a space–time symmetry under a changing climate may then allow estimates of future IE, and thus of EA and Q, based on 

changes in IA, inferred from future projections of P and EP (Roderick and Farquhar, 2011; Wang et al., 2016; Liu et al., 2020; 

Bouaziz et al., 2022). 

However, parametric Budyko curves and their ω parameters were originally not developed from physical reasoning 60 

but rather from a largely process-agnostic, mathematical perspective with the aim to statistically describe observed data. They, 
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therefore, do not have a clearly defined physical meaning and the interaction of actual processes, that control ω in specific 

environments, is poorly understood. Consequently, mechanistic evidence that supports the space–time symmetry hypothesis 

remains erratic. This poses a serious obstacle for the formulation of a general mechanistic description to quantitatively and 

mechanistically link ω of parametric Budyko curves (and thus IE) to catchment properties other than IA (Xu et al., 2013; Padrón 65 

et al., 2017). This further entails that estimates of ω and the associated IE for ungauged catchments or future climate conditions 

may be subject to major uncertainties and should therefore be interpreted from a probabilistic perspective (Greve et al., 2015). 

Recently, it was also argued that catchments should not be necessarily expected to follow their long-term average, 

catchment specific parametric Budyko curves when subject to climatic perturbations, expressed as changes in IA (Berghuijs 

and Woods, 2016; Jaramillo et al., 2018; Jaramillo et al., 2022; Reaver et al., 2022). Such deviations (εIEω) from the expected 70 

parametric Budyko curve, were previously referred to as residual or landscape-driven, indicating that many factors other than 

IA, such as human-induced changes in water and land use (e.g. afforestation, deforestation, irrigation, reservoir construction) 

also play a  role (Donohue et al., 2007; Wang and Hejazi, 2011; Sterling et al., 2012; Destouni et al., 2013; Van Der Velde et 

al., 2014; Jaramillo and Destouni, 2015; Levi et al., 2015; Nijzink et al., 2016; Daly et al., 2019; Gan et al., 2021; Hrachowitz 

et al., 2021). Where εIEω is defined as the absolute difference between the observed evaporative index (IE,o) and the predicted 75 

evaporative index (IE) derived from the expected parametric Budyko curve, making it dimensionless. As a consequence, Reaver 

et al. (2022) have warned that parametric Budyko curves may have no predictive power at all. This may be a too pessimistic 

perspective. First, the average magnitudes of εIEω so far reported in studies remain rather low (e.g. Tempel et al. (2024); Wang 

et al. (2024)). Second, there is increasing evidence that estimates in water yield are much less sensitive to fluctuations in ω 

(and thus εIEω) than to changes in precipitation, in particular for humid environments (Roderick and Farquhar, 2011; Berghuijs 80 

et al., 2017). In addition, the assumption of steady conditions might not be applicable (Mianabadi et al., 2020) and the presence 

of uncertainties in the modelling process are inevitable (Westerberg et al., 2011; Nearing et al., 2016). In other words, some 

level of deviation from the parametric Budyko curves is to be expected, as different time periods will never be characterized 

by exactly the same environmental conditions. However, the mechanistic processes that control these deviations, and thus ω, 

are not well understood.  85 

Although part of several previous analyses (Destouni et al., 2013; Van Der Velde et al., 2014; Berghuijs and Woods, 

2016; Jaramillo et al., 2022; Reaver et al., 2022), to our knowledge, there has been no systematic, in-depth analysis of the 

distributions of εIEω or their evolution over multiple time periods at global, regional, and local scales explicitly reported in the 

literature. Jaramillo and Destouni (2014), Jaramillo et al. (2018) and Tempel et al. (2024) provide estimates of average εIEω for 

several regions but limited their analyses to two independent time periods, while Wang et al. (2024) analysed distributions of 90 

εIEω over multiple decades in one single river basin. In contrast, Reaver et al. (2022) quantified εIEω over multiple time periods 

but explicitly reported only estimates of εIEω maxima for individual catchments, thus describing merely the most extreme 

situations. 
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Our research question is whether the distributions and average magnitudes of εIEω remain stable and thus 

probabilistically predictable over time under changing environmental conditions in space and time. A positive answer to this 95 

question would imply that parametric Budyko curves can indeed be, at least over time scales of several decades, considered 

useful for predicting future IE under changing conditions within quantifiable margins of error. Based on historical long-term 

water balance data from > 2000 river catchments worldwide, we therefore here quantify the distributions of deviations of 

catchments from parametric Budyko curves, i.e., εIEω, at global, regional, and local scales between multiple 20-year periods 

throughout the 20th century. Specifically, we test the hypothesis that the distributions of εIEω are too wide and temporally too 100 

unstable so that IE from parametric Budyko curves needs to be considered practically unpredictable with the available data.  

2 Datasets and methods 

2.1 Meteorological and hydrological data 

Daily precipitation P [mm d-1] as well as maximum and minimum temperature T [oC] data at a spatial resolution of 

0.5o x 0.5o were obtained from the Global Soil Wetness Project Phase-3 (GSWP-3); (Dirmeyer et al., 2006) and spatially 105 

averaged for each study catchment over the time period 1901 – 2015. 

Potential evaporation EP [mm d-1] was estimated based on the method proposed by Hargreaves and Samani (1982): 

𝐸𝑃 =  𝛼𝑅𝑎(𝑇𝑎 + 17.8)√(𝑇max − 𝑇min)                    (1) 

Where 𝛼 ~ 0.0023 is a constant used to convert MJ m-2 day-1 to mm day-1, 𝑅𝑎 is the extraterrestrial radiation at the top of the 

atmosphere [MJ m-2 day-1] and 𝑇a,  𝑇max  and 𝑇min  are the daily average, maximum and minimum temperatures [oC], 110 

respectively. 𝑅𝑎 is estimated by using the method proposed by Duffie and Beckman (1980). 

In this study, we obtained annual river flow data from the Global Streamflow Indices and Metadata (GSIM) archive 

(Do et al., 2018; Gudmundsson et al., 2018) which consists of in situ streamflow observations data for over 30000 gauging 

stations worldwide. We selected stations with runoff data spanning at least 50 years in the 1901–2015 period, excluding those 

with a data quality flag marked as 'Caution'. After filtering, we retained 2387 river catchments with data series ranging from 115 

50 years to 100 years (median: 78 years). These catchments vary in size, from 4 to 3,475,000 km2 (median ∼1564 km²; Fig. 

1a). The catchments represent diverse hydro-climatic conditions (Fig. 1b-f), as indicated by the long-term average aridity 

indices (IA) that range from 0.19 to 6.66 (median: 0.97; Fig. 1e) and evaporative indices (IE) that range from 0.06 to 0.99 

(median: 0.65; Fig. 1f). 

 120 
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Figure 1: Spatial distribution of 2387 studied catchments along with topographic characteristics and long-term mean (1901-2015) 

climatic indices:  a) Catchment area, b) Precipitation P, c) Potential evaporation EP, d) Actual evaporation EA = P-Q, e) Aridity Index 

IA , f) Evaporative Index IE. 

2.2 Methods 125 

The subsequent experiment to estimate for each of the 2387 study catchments the deviations εIEω from its expected 

evaporative indices IE over multiple subsequent time periods is based on the parametric Tixeront-Fu reformulation of the 

Budyko hypotheses (Tixeront, 1964; Fu, 1981), as illustrated in Fig. 2: 
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Figure 2: A schematic representation of a catchment movement in Budyko space between two long-term time periods Ti and Ti+1. 

Case A: Catchment A moves along the same Budyko curve from the first period Ti to the next period Ti+1  (i.e., ωi = ωi+1). Case B: 

Catchment B has deviated from its expected parametric Budyko curve (i.e., ωi ≠ ωi+1), resulting in deviation ɛ𝐈𝐄𝛚,𝐢+𝟏 (Eq.(4)) 

 

This movement in Budyko space is governed by the following equation: 145 

𝐼𝐸 =
𝐸𝐴

𝑃
= 1 +

𝐸𝑃

𝑃
−  [1 +  (

𝐸𝑃

𝑃
)

𝜔

]

1

𝜔
                   (2) 

where ω is a catchment-specific parameter estimated from long-term averages of observed P, EP and EA = P – Q, assuming 

negligible change in storage dS/dt.  

Equation (2) suggests that with a given ω, hydro-climatic shifts between two periods Ti and Ti+1, expressed as changes in 

aridity index ΔIA = Δ(EP/P) will lead to predictable changes ΔIE,i+1 (Case A). In other words, catchments will follow their 150 

specific curves in period Ti+1, defined by parameter ω = ωi = ωi+1 to an expected new IE,i+1, which is expressed as: 

𝐼𝐸,𝑖+1 =  𝐼𝐸,𝑖 + ∆𝐼𝐸,𝑖+1  (Case A in Fig. 2)                                                                                                                    (3) 

However, in reality, as described above, ω is often not constant over time (Case B). Catchments therefore do not strictly follow 

their IE,i curve defined by ωi (from Ti) in a subsequent period Ti+1. For period Ti+1, this therefore leads to additional deviation 

ɛIEω,i+1 which is described as: 155 

ɛIEω,i+1 =  𝐼𝐸,𝑜,𝑖+1 −  𝐼𝐸,𝑖+1 ≠  0                                                                                                                               (4) 

representing the difference between the actually observed IE,o,i+1 from the expected IE,i+1. Thus, for period Ti+1, the observed 

IE,o,i+1 depends on the combination of the predicted change and these deviations, i.e., 

𝐼𝐸,𝑜,𝑖+1 =  𝐼𝐸,𝑖 +  ∆𝐼𝐸,𝑖+1 +  ɛIEω,i+1    (Case B in Fig. 2)                                     (5)                                                                                            



7 

 

Here, we have sub-divided the available data records of each catchment into up to five individual 20-year periods 160 

over the last century, denoted as Ti (Table 1), where Ti represents the ith 20-year period. This 20-year period was chosen 

deliberately to balance the need for a sufficiently long period to minimize the impact of storage changes, while preserving the 

temporal sequence in the data that allowed us to place each catchment into a specific temporal stability category (as described 

in Step-4). We assume that 20-year periods are long enough to satisfy dS/dt≈0, supported by Han et al. (2020), who 

demonstrated that in more than 80 % of catchments worldwide, dS/dt is less than 5 % over 20-year periods. Using longer 165 

periods, such as 30 years as used in previous studies (e.g. Destouni et al. (2013)), would have smoothed out potential shifts 

and limited the ability to detect systematic changes. In addition, 20-year periods align with planning horizons in many water 

resource management decisions. 

 

Table 1: Symbols used in this study to present 20-year periods (Ti), changes between subsequent 20-year periods and distributions 170 
of deviations. 
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The experiment to estimate deviations εIEω between the five individual periods T1–T5 for the study catchments was 185 

then carried out in a systematic sequence of 5 specific steps as illustrated in Fig. 3 and described in the following: 

 

Step 1: Estimation of catchment-specific IE,i curves and the distribution of annual IE,o around it for each period Ti 

For each catchment and each individual 20-year time period Ti, the catchment-specific parametric Budyko curve IE,i 

defined by parameter ωi is obtained by fitting Eq.(2) to the set of 20 annual values of each catchment in the Budyko space, as 190 

computed from the observed water balance data. The decision to obtain the ωi for each 20-year period by fitting Eq.(2) to the 

set of n = 20 corresponding observed annual IE,o values instead of directly to their 20-year averages was a deliberate choice. 

Time period 

Symbols  

20-year periods 
Change between subsequent 

20-year periods 

Distributions of 

deviations 

1901-1920 T1 
Δ1-2 εIEΔ1 

1921-1940 T2 

Δ2-3 εIEΔ2 

1941-1960 T3 

Δ3-4 εIEΔ3 

1961-1980 T4 

Δ4-5 εIEΔ4 
1981-2000 T5 
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The fluctuations of the n = 20 annual IE,o values explicitly represent annual storage changes dS/dt between individual years. 

This subsequently allowed to treat the observed annual IE,o probabilistically as distributions around their expected values for 

that period Ti as defined by IE,i curve (Fig. 3a). 195 

 

Step 2: Distributions of annual deviations εIEΔj from expected IE,i+1 between subsequent time periods 

For each catchment we then used ωi from each time period Ti to compute the expected IE,i+1 for the subsequent period 

Ti+1 (i.e. point BTi+1* in Fig. 2). This then allowed to estimate the individual deviations of the 20 annual observed IE,o values 

from the expected IE,i+1 curve. For each pair of time periods Ti–Ti+1 (i.e. T1–T2, T2–T3, etc., hereafter referred to as Δ1-2, Δ2-3, 200 

etc.) this resulted in an individual distribution of annual deviations εIEΔj around a 20-year average in each catchment (Fig. 3b). 

This approach using a temporally changing (dynamic) baseline was chosen as it is more sensitive to capture trends and shifts 

in hydrological behaviour of catchments over time than a fixed baseline. For completeness, we also performed the same 

analysis by using a fixed baseline (i.e., using the earliest available period as a fixed baseline) and provide the results thereof 

in the Supplement. 205 

 Note, that catchments with data for all five time periods T1–T5, have the maximum of j = 4 distributions εIEΔj. In 

contrast, catchments with data for only two periods, e.g., T2 and T3, feature only j = 1 distribution of between-period deviations 

εIEΔj.  

Non-parametric Wilcoxon Signed Rank Tests were then used to test for each distribution εIEΔj the null hypothesis that 

the median deviation is not significantly different from zero. The lower the p-value, the higher the probability that the median 210 

deviation of εIEΔj of observed IE,o,i+1 from expected IE,i+1 is higher than zero for the comparison of εIEΔj between periods Ti and 

Ti+1. 

 

Step 3: Fit parametric distributions to the empirical distributions of annual deviations εIEΔj 

For each catchment we have then fitted Skew Normal Distributions to each of the j = 1–4 empirical distributions of 215 

deviations εIEΔj (Fig. 3c). The probability density function (PDF) of the skew normal distribution is given by: 

𝑓(𝑥) =  
2

λ
𝜙 (

𝑥−𝜉

λ
)𝛷 (𝛼) (

𝑥−𝜉

λ
)                                                                                                    (6) 

Where 𝜙 is the standard normal PDF, Φ is the standard normal cumulative distribution function, λ is a scale parameter, 𝜉 

location parameter and α is a shape parameter. 

 220 

 

 

 

 



9 

 

 225 

 

 

 

 

 230 

 

 

 

 

 235 

 

 

 

 

 240 

 

 

 

 

 245 

 

 

 

 

 250 

 

Figure 3:  Flow chart of methodology. Step 1: Estimation of catchment-specific IE,i curves and the distribution of annual IE,o around 

it for each period Ti. Step 2: Distributions of annual deviations εIEΔj from expected IE,i+1 between subsequent time periods. Step 3: 

Fit parametric distributions to the empirical distributions of annual deviations εIEΔj. Step 4: Evaluate temporal stability of the 

distributions εIEΔj in subsequent pairs of time periods. Step 5:  Aggregated long-term marginal distribution of annual deviations εIEω 255 
from expected IE for each catchment. Step 6: Evaluation of the sensitivity of the marginal distributions of annual deviations εIEω to 

the choice of 20-year averaging window. Note, the generated distributions of ϵIEω are illustrative examples that are not based on real 

data. 

 

Step 6 

Repeat step 1 to 
5 with one year 

moving window 
20 times 
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 260 
The mean of the distribution is computed as: 
 

𝑓(𝑥) =  𝜉 + (√2
𝜋⁄ )

λ𝛼

√1+𝛼2
                        (7) 

and the standard deviation is represented by: 

𝜎 =  λ√(1 −  
2𝛼2

(1+ 𝛼2)𝜋
)                                                                                                                                                                                 (8) 265 

 

 

Step 4: Evaluate temporal stability of the distributions εIEΔj in subsequent pairs of time periods 

For distributions of past deviations to be used to estimate deviations εIEω under projected hydro-climatic future 

conditions, it is necessary to upfront evaluate whether it is plausible to assume that they retain sufficient explanatory power 270 

under future conditions or if there is evidence against that. This was here done by analysing how stable the individual 

distributions in a catchment are over time. To do so, for each catchment the up to j = 4 distributions of deviations εIEΔj from 

expected IE,i+1 between subsequent time periods were compared and analysed for their changes over time (Fig. 3, Sub-steps 

4.1-4.3). We have followed three sub-steps: 

 275 

Sub-step 4.1 

At first, non-parametric Kolmogorov-Smirnov Tests with a significance level of 5 % were used on consecutive pairs 

of distributions, i.e. εIEΔj and εIEΔj+1 to test the null hypothesis that the distributions are not significantly different from each 

other. In case the null hypothesis is not rejected (p > 0.05), hereafter referred to with symbol “o”, we consider the catchment 

is stable over time and in such a case the past distributions may be directly used to estimate εIEω under future conditions with 280 

some confidence. 

Sub step 4.2 

If for a catchment significant differences between consecutive pairs of distributions (p ≤ 0.05) were found, it was 

further analysed whether the differences can be considered arbitrarily variable or whether there is indicative evidence for the 

potential presence of fluctuations or systematic shifts over time. Thus, in a second step, we have checked if the median of εIEΔj 285 

systematically decreased (“–“) or increased (“+”) over time. If the difference between three or more of the j distribution 

medians were characterized by the same sign, i.e., “–“ or “+”, this may be evidence for a systematic and thus non-variable 

shift in the median of εIEΔj over time. In that case, past distributions εIEΔj need to be assumed to have limited predictive power 

for estimating future εIEω. 

 290 
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Sub step 4.3 

In the alternative case, when less than three distributions showed the same sign, we have in a third step analysed, 

whether εIEΔj for Δj is influenced by the magnitude of IE,i and that e.g., after a 20-year period with a low IE,i, further future 295 

decreases and thus negative εIEΔj are unlikely and IE,i+1 will, more probably, swing back to higher values and thus positive εIEΔj. 

Similar to above, if the median εIEω systematically decreased (“–“) or increased (“+”) with IE,i for three or more of the pairs of 

time periods j, this may be evidence for a systematic and thus non-variable shift in the median εIEω over time, indicating limited 

predictive power. 

 300 

Table 2: Decision criteria to classify the time stability of the j distributions εIEΔj for each catchment into one of the four qualitative 

categories “Stable”, “Variable”, “Alternating”, “Shift” and the associated predictive power of the marginal distribution of εIEω of a 

catchment, aggregating all j distributions of that catchment. 

 

Following the above, each catchment was classified into one of four qualitative categories of temporal stability of 305 

εIEω (Table 2). Note, that the use of formal quantitative statistical test was here hindered by the small sample size of a maximum 

of four pairs of time periods and thus omitted. The temporal stability was ranked as “Stable”, if between more than half of the 

j distributions in a catchment no significant differences in median εIEω was found, e.g., “o o o o” or “– o o o”. A catchment was 

ranked as “Variable”, if it showed an alternating sequence and thus no systematic shift of median εIEω over time e.g., “+ – +  –

“  or “– + + – ” and no relation between IE,i and median εIEω. In contrast, if a catchment was characterized by an alternating 310 

sequence and a dependency between IE,i and  median εIEω, it was tagged as “Alternating”. If, finally, between three or more of 

the j consecutive distributions in a catchment the median εIEω was found to increase or decrease, e.g., “– + + + “ or “ – – – –“,  

Tag 

Kolmogorov-

Smirnov 

Test 

Systematic 

shift of median 

Relation 

between 

IE,i and  εIEω 

Examples 
Predictive 

power 

No. of 

catchments 

Stable p > 0.05 No No 

“o o o o”  

or  

“– o o o” 

High 1651 

Variable p ≤ 0.05 No No 

“+ – +  –“   

or  

“– + + – ” 

Moderate 455 

Alternating p ≤ 0.05 No Yes 

“+ – +  –“   

or  

“– + + – ” 

Low 179 

Shift p ≤ 0.05 yes - 

“ – – – –“ 

or 

“– + + + “ 

Low 102 
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this may indicate the presence of a systematic shift over time and the temporal stability of deviations from expected IE was 

tagged as “Shift”. 

 315 

Step 5: Aggregated long-term marginal distribution of annual deviations εIEω from expected IE  for each catchment 

In this step the up to j = 4 distributions εIEΔj were aggregated into one marginal distribution of εIEω for each catchment 

(Fig. 3e). This distribution reflects the historical range of fluctuations in annual εIEω based on all available information for each 

catchment. Consequently, the median εIEω of the distribution in each catchment represents a measure of uncertainty around 

expected future IE based on current estimates of ω for each catchment, thereby making IE statistically predictable.  320 

To account for the potential effect of systematic shifts in distributions εIEΔj (Step 4) on the predictive power of the 

associated marginal distribution of deviations εIEω, we have tagged the marginal distribution of each catchment with a 

qualitative robustness flag as defined in Step 4. “Stable” distributions are characterized by the highest predictive power, 

distributions with “Variable” fluctuations can be expected to have moderate predictive power, while distributions tagged as 

“Alternating” or “Shift” do in the absence of more detailed data have rather low predictive power (Table 2). 325 

 

Step 6: Evaluate the sensitivity of the marginal distributions of annual deviations εIEω to the choice of 20-year averaging 

window 

To further quantify the sensitivity of the above aggregated, i.e. marginal distributions to the choice of the individual 

20-year averaging time periods, we have, in a last step, repeated the above Steps 1–5 twenty times to test all possible sequences 330 

of 20-year periods. More specifically, in a moving window analysis we first shifted each time period T1–T5 by one year, i.e. 

1902–1921 (T1), 1922–1941 (T2), etc. and repeated the above Steps 1–5. Subsequently we shifted T1–T5 by another year to 

1903–1922 (T1), 1923–1942 (T2), etc. and again repeated Steps 1–5. This was done twenty times until all years of the first 

period, i.e. 1901–1920, were the starting years of T2. 

3 Results 335 

3.1 Changes in hydro-climatic variables and movement in Budyko space (Step 1) 

Throughout the 100-year study period and across all study catchments, considerable hydro-climatic variability was 

observed, with some variables exhibiting trend-like behaviour over time and others more cyclic behaviour. Overall, mean 

annual precipitation over the individual 20-year periods systematically increased by ~ 18.4 mm century-1, on average (Fig. 4a), 

with 57 % of the catchments showing an increase between T1 and T2 (Δ1-2) and 83 % for Δ4-5. In contrast, mean annual 340 

temperatures (Fig. 4b) and the associated potential evaporation (Fig. 4c) were characterized by a more fluctuating pattern. 

These combined factors led to slightly more arid conditions in the first half of the 20th century, followed by a considerable 
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reduction of aridity index IA and thus to a shift towards somewhat more humid conditions towards the end of the century across 

all of the temporal stability categories (Fig. 4e), in which, on average 78 % and 75 % of the catchments showed decreases in 

IA for Δ3-4 and Δ4-5, respectively. The changes in IA were accompanied by related changes in potential evaporation EP and 345 

precipitation (Fig. 4c,a). The overall movement of catchments in the Budyko space due to hydro-climatic changes are 

illustrated in Fig. S1 (Jaramillo and Destouni, 2014). If these movements were driven only by changes in IA, catchments would 

be expected to move within the directional range of 45o < α < 90o or 225 < α < 270o (Jaramillo et al., 2022). However, observed 

movement of catchments are also found in other directions, indicating deviations (εIEω ≠ 0) from the expected IE, as elaborated 

in detail in Fig. S1 350 

It is worth mentioning here that the sample sizes vary between individual 20-year periods of comparison due to the 

length of the data availability. Therefore, to distinguish whether the climatic variability in Fig. 4 is associated to the 

hydroclimatic variables or due to the change in sample size, the same plot for the catchments that are present in all periods of 

comparison (n = 142) is provided in Fig. S2. It is found that the overall pattern of temporal variability in that sub-sample 

largely reflects that of the full sample. 355 
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Figure 4: Temporal stability category-wise mean 20-year changes in hydro-climatic variables for the studied catchments between 

two consecutive periods. a) Precipitation P, b) Temperature T, c) Potential evaporation EP, d) Actual evaporation EA, e) Aridity 

index IA, and f) Evaporative index IE. The boxes represent the 25th to 75th percentiles, while whiskers extend to the 10th and 90th 

percentiles. Diamonds denote the arithmetic mean, and outliers are not shown. 380 
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3.2 Distributions of annual deviations εIEΔj from parametric Budyko curve (Steps 2 & 3) 

The indicative evidence for presence of deviations εIEω ≠ 0 in at least some catchments is further supported by a more 

detailed analysis of the distributions of annual deviations εIEΔj between the pairs of subsequent 20-year periods for each of the 

2387 study catchments. The results of the Wilcoxon Signed Rank Tests indeed suggest that it is likely that the median εIEω ≠ 0 

for a significant proportion of catchments. For example, at a 95 % confidence level (i.e., p ≤ 0.05), 34–42 % of the distributions 385 

can be considered to feature deviations with a median εIEω ≠ 0 (Fig. 5a). Conversely, this also entails that for a majority of 58–

66 % of the distributions there is less evidence (i.e., p > 0.05) that the median εIEω are different form zero. Note that minor εIEω 

were observed in most catchments. Although these εIEω were not classified as significant based on the Wilcoxon Signed Rank 

Test used here, it may be too naive to assume that the deviations εIEω are strictly zero, as also demonstrated by Reaver et al. 

(2022). Overall, this is consistent with results from previous studies and shapes a picture in which catchments do not strictly 390 

and necessarily follow their expected parametric IE curves, but that the deviations thereof remain close to zero or very limited 

for many catchments.  

 

 

 395 

 

 

 

 

 400 

Figure 5:  Distribution of p-values from statistical tests a) Wilcoxon Signed Rank Test performed to test whether the long-term 

median ϵIEω of the individual 20-year distributions εIEΔj is significantly different from zero. The percentage above the significance 

line (0.05) shows data points where median ϵIEω are not significantly different from zero, while the percentage below indicates those 

that are significantly different  b) Kolmogorov-Smirnov Test performed on the distributions of two consecutive time periods (εIEΔj 

and εIEΔj+1) to test whether the two distributions of deviations are significantly different from each other. Here, the percentage above 405 
the significance line presents data points where the distributions of two consecutive time periods are not significantly different from 

each other, while the percentage below indicates significant differences. Each violin plot displays the distribution of p-values, with 

the central black box representing the interquartile range (25th to 75th percentiles) and whiskers extending to the smallest and 

largest data points within 1.5 times the interquartile range. The dotted black line represents the significance level of 0.05. 

 410 

A characteristic selected example for the latter is the sequence of the four distributions of annual deviations in the 

Chemung River at Chemung (New York; 6455 km2; ID US_0000832) across the four pairs of subsequent 20-year periods over 

the 20th century (Fig. 6a-c). The annual deviations εIEω with an interquartile range of IQR ~ 0.062 (Fig. 6c) concentrate quite 

narrowly around the medians. The medians themselves range between merely εIEω = -0.006–0.012 (Fig. 6b). The associated p-

values from the Wilcoxon Signed Rank Test (p= 0.27–0.84) further suggest that there is only limited evidence that the median 415 
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deviations εIEω of distributions εIEΔj are different from zero. In spite of a somewhat wider spread with an IQR ~ 0.094 (Fig. 6f), 

a similar pattern with consistently low median εIEω= -0.017–0.018 (Fig. 6e) (p = 0.09–0.47) was observed in the second selected 

example, the Lee River (Ireland; 1019 km2; ID GB_0000078). 

In contrast, more variable patterns were found for other catchments (Fig. 6g-o). For example, in the Sava River at 

Radece (Slovenia; 6004 km2; ID SI_0000007) the four distributions of the annual deviations all display a wider spread, with 420 

IQR ~ 0.113, indicating a higher degree of storage fluctuation between individual years (Fig. 6i). This variability may largely 

be attributed to hydropower developments and the associated changes in hydropower production levels (Levi et al., 2015), 

which disrupt natural flow regimes by increasing runoff during high demand and altering seasonal flow patterns (Renofalt et 

al., 2010; Lee et al., 2023). In addition, the medians do considerably deviate from zero, as indicated by median εIEω ranging 

between -0.023 and 0.118 (Fig. 6h).  425 

The set of 20-year average IE values and the associated parameters of the fitted parametric distributions of deviations for each 

of the time periods in the individual study catchments are provided in the Supplementary data downloadable from Zenodo 

(https://doi.org/10.5281/zenodo.14060926). 

3.3 Temporal stability of the distributions εIEΔj (Step 4) 

Based on the Kolmogorov-Smirnov Tests, it was found that overall 68 % of the distributions εIEΔj between consecutive 430 

pairs of time periods are not significantly different from each other (p > 0.05; Fig. 5b). Following the criteria defined in Sect. 

2.2, this resulted in 1651 catchments classified as “Stable” (Table 2; Fig. 7a). For these catchments, together corresponding to 

~ 70 % of all 2387 study catchments, their respective marginal distribution of εIEω can thus be plausibly considered to have 

rather high predictive power. Example cases are the Chemung and Lee Rivers (Fig. 6a-f), which are characterized by sequences 

“o o o o” and “o o o o”, respectively.  435 

Similarly, 455 additional catchment (19 % of all study catchments), whose distributions exhibited fluctuations over 

time (Kolmogorov-Smirnov Test p ≤ 0.05), but which featured only limited evidence for both, the presence of systematic shifts 

over time as well as for a dependency between IE,i and εIEω, were tagged as “Variable”. An example of such a case is shown in 

Fig. 6g-i for the Sava River at Radece (Slovenia; 6004 km2; ID SI_0000007). It can be seen that the distributions εIEΔj between 

the four pairs of time periods vary considerable with medians ranging from -0.023 and 0.118. However, the fluctuations appear 440 

to occur alternatively (“ - + - +”) and do suggest neither the presence of a systematic shift over time (Fig. S4b) nor a dependency 

between IE,i and median εIEω (Fig. S4a). Despite these fluctuations, the marginal distribution of εIEω aggregated from the 4 

individual distributions εIEΔj (Fig. 6i) can, although wider than for catchments tagged as “Stable”, thus be assumed to be an at 

least moderately robust representation of εIEω. 

 445 

https://doi.org/10.5281/zenodo.14060926
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 450 

Figure 6: Mean annual position of catchments (light colour dots) in Budyko space along with long-term mean (dark colour dots) and 

expected parametric Budyko curves (left column). Individual distribution of deviations (εIEΔ1, εIEΔ2, εIEΔ3 and εIEΔ4) with long term 

median deviation ϵIEω values (middle column) and long-term marginal distribution of annual deviations along with long-term median 

values of εIEω  and IQR of εIEω values (right column) for five example catchment: Chemung River (a-c), Lee River (d-f), Sava River 

(g-i), Kaituna River (j-l) and Zschopau River (m-o). 455 
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Figure 7: a) Temporal stability, b) long-term median εIEω values map of aggregated long-term marginal distributions for the study 

catchments, and c) change in Q as a result of long-term median ϵIEω values. Histogram and cumulative density of change in Q, and 

change in Q across different IA bins are presented as two insets. Change in Q reflects the change due to median deviations εIEω from 485 
the expected parametric Budyko curve only (i.e., excluding any change resulting from a change in aridity and its associated 

movement along the expected curve). Catchments highlighted with a black border represent the 5 selected examples from Fig. 6, 

while those outlined in red denote three additional selected example catchments shown in the Supplement (Fig. S5). The boxes 

represent the 25th to 75th percentiles, while whiskers extend to the 10th and 90th percentiles. Diamonds denote the arithmetic mean, 

and outliers are not shown. 490 
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In contrast, 7 % of the catchments were tagged as “Alternating” and a dependency between IE,i and εIEω could not be 

ruled out. A characteristic example for this type of catchments is the Kaituna catchment (New Zealand;  706 km2, ID 

NZ_0000003) in Fig. 6j-l. This catchment features major fluctuations with median εIEω between -0.115 and 0.198. In addition, 

although no systematic evolution of median εIEω over time was evident (Fig. S4d), the data suggest the potential presence of a 

dependency on IE,i as shown in Fig. S4c. The pronounced alternating behaviour of the εIEω fluctuations between -0.115 and 495 

0.198, could not be readily explained by factors such as land use changes as estimated from the Hilda+ gridded land cover 

product (Winkler et al., 2021), Seasonality Index (SI) of liquid precipitation input (i.e., rainfall + snowmelt), Parde Coefficients 

or median rainfall intensity (Fig. S3a,c,e-f). The SI was calculated using the formula proposed by Gao et al. (2014). A  higher 

SI value indicates that most of the precipitation falls within a few months, while a lower value reflects more evenly distributed 

precipitation throughout of the year. This suggests that other additional drivers, or a combination of drivers, influence this 500 

catchment’s alternating behaviour. 

The remaining 102 catchments (4 %) were tagged as “Shift”, as they exhibit a rather consistent shift of median εIEω 

over time. This can be seen for a selected example in Fig. 6m-o.The median εIEω in this catchment of the Zschopau River 

(Germany; 1544 km2; ID DE_0000027) does not only significantly vary between -0.055 and 0.037 but it does so rather 

systematically into one dominant direction after εIEΔ1 (“+ - ++”; Fig. 6n). This shift aligns with a gradual decrease in the 20-505 

year Seasonality Index (SI) (Fig. S3e) of liquid precipitation input (i.e., rainfall + snowmelt). In the Zschopau river catchment, 

this decrease in SI towards the end of the century signifies a shift towards a more evenly distributed precipitation pattern. 

These changes coincide with an increase in forest cover towards the end of century, as estimated from Hilda+ data (Fig. S3b). 

Additionally, Renner et al. (2014) and Renner and Hauffe (2024) reported a gradual recovery of forests in the Zschopau 

catchment during this period, which may further contribute to the observed shift. 510 

As can be seen in Fig. 7a, the time stability of the study catchments is geographically rather homogenously distributed. 

Catchments tagged as “Stable” and “Variable” can be found globally, while also no regional concentrations of catchments 

tagged as “Alternating” and “Shift” could be identified. 

 

3.4 Aggregated long-term marginal distribution of annual deviations εIEω (Step 5) 515 

By aggregating its j individual distributions, a long-term marginal distribution of εIEω for each catchment was build. 

For a large majority of catchments, the long-term median εIEω remains very close to zero. More specifically, ~50 % of all study 

catchments are characterized by a median deviation εIEω that does not exceed ± 0.015 and ~ 70 % by a median within the 

interval ± 0.025 (Fig. 8a). Depending on the time stability of the j individual distributions in a catchment, the spread of annual 

deviations around these medians showed more variable pattern. Overall, for > 50 % of the study catchments, the IQR of annual 520 

deviations remained below 0.08 and for ~ 70 % below 0.10 (Fig. 8b). While catchments with “Stable” distributions exhibit in 

general a rather narrow spread with an average IQR ~ 0.08, catchments with distributions tagged as “Variable” feature a bit 
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wider spread with average IQR ~ 0.10, while still centring closely around zero. This can also clearly be seen by the selected 

examples in Fig. 6. The medians of the marginal distributions of the Chemung and Lee Rivers, both tagged as “Stable”,  are 

~0.006 and ~0.004 respectively, with narrow IQRs of 0.062 and 0.094 (Fig. 6c,f). In contrast, while also featuring a marginal 525 

distribution with a median deviation εIEω~ 0.021, the Sava River catchment (Fig. 6i), tagged as “Variable”, is characterized by 

a considerably wider scatter of the annual deviations around the median, as evident by the higher IQR of ~0.113. Three 

additional illustrative examples of well-known river basins are presented in Fig. S5. In contrast, the analysis, which uses the 

earliest available period as a fixed base line, shows an increase in the number of “Stable” catchments along with a slightly 

higher median εIEω values. Further details are provided in the Supplement (Fig. S6a-f) 530 

Figure 8: Visualization of long-term a) Median ϵIEω and b) Interquartile Range (IQR) of ϵIEω for  aggregated long-term marginal 

distribution of ϵIEω across all catchments (2387) along with  the corresponding Cumulative Distribution Function (CDF). The varying 

colour palette in Fig. 8a aligns with the palette used in Fig. 7b to maintain consistency. In Fig. 8b, a uniform colour is used since IQR 

values are all positive. 

 535 
Overall, it can be observed that median deviations εIEω close to zero are dominant globally, with no obvious spatial 

clustering of more pronounced deviations (Fig. 7b). However, it can also be seen that there is some geographic grouping in the 

direction, i.e. the sign, of the median εIEω. While for many catchments in the central US and southern Brazil median deviations 

are negative, i.e. εIEω < 0, the rest of the study catchments globally are dominated by εIEω > 0. Overall, median deviations from 

the expected parametric Budyko curve resulted in regionally distinct relative changes in Q across the studied catchments with 540 

around ~68 % of the catchments exhibiting changes ∆Q of less than  ±10 % (Fig. 7c). However, catchments in some regions, 

notably in central US and Southern Africa, can be characterized by ∆Q exceeding ±25 %. Overall, the results indicate that 

catchments in more arid regions (IA>2) are particularly susceptible to relative changes in discharge as compared to more humid 

regions (inset Fig. 7c). 

For a more regional evaluation, the yearly εIEω values for individual catchments were aggregated into regional 545 

marginal distributions of εIEω stratified according to the long-term mean aridity index IA and varied latitude bands (Fig. 9a). 

These regional distributions capture the variability of yearly εIEω across regions with the median εIEω serving as a robust 
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measure of central tendency. The general pattern found across most regions with available data are broadly consistent. 16 out 

of 20 regions are characterized by median deviations εIEω that do not exceed ± 0.02. Similarly, no consistent directional pattern 

in the magnitude of regional median εIEω could be identified either (Fig. 9b). For higher latitude regions beyond ±30o, the minor 550 

fluctuations in median εIEω bear no evidence for a relationship with IA. On the other hand, the data suggest that the spread 

around the regional medians consistently decreases with increasing IA across all latitude bands except 50o N–90o N band as 

shown by the sequence of IQR in Fig. 9c. This indicates that catchments in more humid regions across the study domain are 

subject to more pronounced annual water storage fluctuations. 

 555 
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Figure 9: a) Regional marginal distributions of ϵIEω for defined latitude and IA bins. The three numerical values in small brackets at 565 
the top of each panel presents number of catchments in that category, long-term median ϵIEω and IQR value of ϵIEω respectively, b) 

and (c) presents variation of median and IQR values of ϵIEω for the regional marginal distribution of ϵIEω, d) Long-term position 

(1901-2015) of catchments in Budyko space. The colour of the dots corresponds to the regional marginal distributions of ϵIEω for the 

corresponding IA bin. 
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The parameters of the fitted parametric regional and catchment-specific marginal distributions together with the 570 

associated predictive robustness flags, as defined by the time stability of the j individual distributions for each catchment are 

provided in Supplementary data (https://doi.org/10.5281/zenodo.14060926) and can be used, depending on their robustness 

flag, to estimate IE,t = IE,i + εIEω for a catchment under future hydro-climatic conditions. 

 

3.5 Sensitivity of marginal distributions of deviations εIEω to the choice of 20-year averaging window (Step 6) 575 

The moving window analysis to quantify the sensitivity of the marginal distributions of εIEω resulted in 20 individual, 

yet not uncorrelated, marginal distributions for each study catchment. Through this approach, we observed that the aggregated 

marginal distributions of εIEω, may indeed be subject to differences. The magnitudes of the fluctuations vary between 

catchments, but remain in general rather minor. 

The Chemung and Lee Rivers are two examples for a very low sensitivity of the marginal distributions of ε IEω to the 580 

choice of time periods. The differences of the medians of the two most extreme marginal distributions does not exceed ~ 0.008 

for the Chemung (Fig. 10a) and 90 % of the medians of the 20 marginal distributions fall within an interval of merely 0.01. In 

addition, the distributions maintain comparable shapes. A similar behaviour was observed for the Lee River (Fig. 10b), with 

the medians of the two most extreme distributions differing only by ~ 0.014. In this case, 75 % of the medians are observed 

within an interval of 0.01. 585 

However, in case of catchments, that are tagged as “Variable”, “Alternating” or “Shift”, the difference in medians of 

the two extreme marginal distributions is observed to be increased. For the Sava River catchment (Fig. 10c), tagged as 

“Variable”, the difference between the two extreme marginal distributions is ~ 0.018 with 75 % of the medians within an 

interval of 0.032. For Kaituna River (Fig. 10d), tagged as “Alternating”, the difference between the medians of the two extreme 

marginal distributions is quite large with a value of 0.060. For 15 out of the 20 marginal distributions, the medians are found 590 

to fall within the range of 0.046. A similar pattern for Zschopau River (Fig. 10e), tagged as “Shift”, is observed with a median 

difference for two extreme two marginal distributions to be 0.029. 

Overall, it was found that for 78 % of the study catchments 15 out of 20 time windows, i.e. 75 %, feature median 

deviations εIEω within an interval of ±0.035. This further suggests that, although some sensitivity to the choice of time period 

can occur, the magnitude of the fluctuations remains rather minor for a large majority of catchments. 595 

 

https://doi.org/10.5281/zenodo.14060926
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Figure 10: Aggregated marginal distributions of εIEω for 20 moving window time periods for five example catchments: a) Chemung 

River, b) Lee River, c) Sava River, d) Kaituna River, and e) Zschopau River. The red line represents the original marginal 

distribution of ϵIEω. The orange and aqua-coloured dotted lines depict the maximum and minimum median ϵIEω values corresponding 

to their respective moving window time periods. The grey shaded area visually portrays the difference between the extreme 

maximum and minimum median ϵIEω values across the moving window time periods. 625 

 

Similarly, the distribution of the median εIEω of all study catchments, i.e. Fig. 7b, remains rather stable when evaluated 

over the 20 subsequent moving windows, as shown in Fig. 11, with neither the medians nor the spread of the distributions 

experiencing marked variations. Although lumping the medians of all catchments into one distribution may conceal 
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fluctuations between moving windows of individual catchments, it nevertheless allows the observation that there is no 630 

systematic larger scale effect. 
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Figure 11: Variation of global long-term median, mean, 10th & 90th percentiles and 25th & 75th percentiles of ϵIEω for all of the 

catchments with respect to each moving window. 645 

4 Discussion 

Our analysis revealed that most study catchments underwent continuous multi-decadal hydro-climatic fluctuations 

throughout the 20th century (Fig. 4 & Fig. S1). Notably, these fluctuations were largely consistent across the different temporal 

stability categories.  Unlike previous studies comparing only two time periods (Jaramillo and Destouni, 2014), here the higher 

temporal resolution into with up to five 20-year periods, showed that these fluctuations were not one-directional, with the first 650 

half of the century trending towards higher aridity and the latter half towards increased humidity, suggesting cyclic behaviour 

over longer time scales. 

In alignment with previous studies (Berghuijs and Woods, 2016; Jaramillo et al., 2018; Jaramillo et al., 2022; Reaver 

et al., 2022), our analysis suggests that following disturbances and thus changes in IA, catchments do not necessarily and strictly 

follow their specific parametric Budyko curves as defined by parameter ω. In our analysis we found that the general magnitudes 655 

of the median deviations εIEω across all study catchments throughout the 20th century are very minor with median εIEω ≤ ±0.015 

for 50 % and ≤ ±0.025 for 70 % of the catchments. This corresponds well with the results of Jaramillo and Destouni (2014) 

and Jaramillo et al. (2018), who estimated over two multi-decade periods absolute mean deviations from the expected IE of 

εIEω ~ 0.01–0.02, for different regions in the world, based on an analysis of several hundred catchments. 

Based on annual water balance data of ~400 catchments in the United States, Berghuijs and Woods (2016) reported 660 

an average difference of around 28 % between the spatial and the temporal sensitivity of IE  to changes in IA. However, a back-
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of-the-envelope calculation assuming an average ω = 2.6 (Greve et al., 2015) suggests that even with a pronounced shift in 

aridity of ΔIA = 0.2 (Jaramillo and Destouni, 2014) such a 28 % difference in sensitivity leads to only minor absolute deviations 

from the expected IE with εIEω ~ 0.01–0.04 (4–8 %) for regions with the most common IA = 0.5–2.5, which broadly corresponds 

with the results of our study. In contrast, (Reaver et al., 2022), using data from ~700 CAMELS US and UK catchments, 665 

provided a detailed and exhaustive analysis of possible temporal trajectories through the Budyko space over several decades. 

They report the mean of all study catchments’ maximum relative deviations of the actually observed, empirical values IE,o from 

the predicted values of IE by catchment-specific curves with εIEω,max = IE,o,max – IE,max ~ 26 %. However, that mean value of all 

catchment maxima is strongly biased by a few rather extreme outliers in their analysis and the vast majority of their study 

catchments (>650 out of 728) exhibits much lower errors, with a median maximum deviation of εIEω,max ~ 9 % (see Fig. 3 in 670 

Reaver et al. (2022). It may thus prove more informative to interpret the results of Reaver et al. (2022) based on the mean 

instead of the maximum deviations as these average conditions do almost certainly occur more frequently. Doing so, it is 

plausible to assume that the deviations εIEω will be considerably lower than the maximum εIEω,max ~ 9 % and potentially closer 

to the range of 4–8 % estimated above and thus overall consistent with the results of our analysis. 

However, we also note that these minor deviations may have different practical implications in different climates 675 

(Fig. 7c). For example, in a humid catchment with IA = 0.5 (e.g. mean annual P = 2000 mm year-1, EP = 1000 mm year-1 and 

Q = 1120 mm year-1), a deviation of εIEω = 0.02 results in ΔQ ~ 40 mm year-1, equivalent to merely 3 % of water yield, which 

hardly affects water supply. In contrast, the practical effects are more pronounced in arid environments. In a typical catchment 

with IA = 2 (e.g. P = 500 mm year-1, EP = 1000 mm year-1, Q = 60 mm year-1), the same deviation will lead to a ΔQ ~ 10 mm 

year-1, equivalent to ~15 % of the available water yield, and thus have considerable higher relevance for water resources 680 

planning. For such environments, a robust quantification of expected deviations may thus prove beneficial for future estimates 

of water resources availability. 

Despite some spatial clustering, the deviations εIEω from the expected parametric Budyko curves do not exhibit any 

clear and unambiguous relationships with several climatic variables (Fig. S7). The detailed processes and reasons underlying 

the deviations thus remain so far unknown and may be assumed to be manifold and to vary depending on the characteristics 685 

of specific sites. In any case it is plausible to assume that the reasons are a combination of factors, including amongst others 

changes in precipitation volumes, seasonality and phase, changes in atmospheric water demand, changes in land cover, human 

interventions, such as reservoir operation or irrigation, but also violations of the assumption that dS/dt ~ 0 over the 20-year 

time periods (Han et al., 2020) and other uncertainties in the available data (Beven, 2016). Note, that a detailed exploration of 

this issue is beyond the scope of this paper. 690 

To our knowledge, this is the first study to quantify the evolution of median εIEω over multiple time periods. This 

allowed to build distributions to predict future εIEω based on historic data, together with an indicative robustness flag, describing 

their temporal stability and thus their suitability to predict εIEω under future hydro-climatic conditions. It was found that, 

globally, median εIEω does not only remain minor but, perhaps even more importantly, also rather stable over time. For ~70 % 
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of the study catchments the annual distributions of εIEω, and thus also their 20-year medians, were classified as “Stable”. In 695 

other words, the available data suggest that over multiple 20-year periods in the past century the samples of annual deviations 

originate from the same distribution. This further allows some confidence to plausibly assume that εIEω and the associated IE 

under projected future hydro-climatic conditions can, at least for several decades, be robustly predicted based on these 

distributions. However, it is important to note that the 20-year time periods used in this study, while effective for medium-

term projections, may limit the ability to make long-term climate projections. 700 

Further 19 % of catchments were classified as “Variable” as their distributions of annual deviations for the individual 

20-year periods exhibit some variability. Despite this, there is no indicative evidence to link this variability to alternating 

fluctuations or systematic, one-directional shifts and thus to quantifiable deterministic processes. In this case, the fluctuations 

can be assumed to be arbitrarily variable, allowing the aggregation of a marginal distribution that reflects all available past 

knowledge. Although the uncertainty of that distribution may often exceed that of “Stable” catchments, resulting in somewhat 705 

lower predictive power (Montanari and Koutsoyiannis, 2014), it is reasonable to assume that εIEω remains predictable. The 

fitted parametric marginal distributions of catchments tagged as “Stable” and “Variable” can be directly used to sample 

distributions of future annual εIEω and to estimate the average εIEω for that future period from the expected future IE based on 

ω of the past 20-year period. 

For catchments tagged as “Alternating” or “Shift”, the above assumption may be too optimistic. Although the sample 710 

size characterizing the evolution of εIEω over the study period is with a maximum of j = 4 pairs of 20-year periods very small 

and thus no meaningful formal statistical tests could be executed, the data do not rule out the possibility that ε IEω in these 

catchments is characterized by alternating or shift-like behaviours. In other words, εIEω may not be sampled from different 

distributions that change arbitrarily over time, but from distributions that (here) depend either on IE of the preceding time 

period or systematically increase or decrease over time. In these cases, the aggregated marginal distribution may produce 715 

spurious predictions of εIEω.  

For catchments tagged as “Alternating”, the user may instead want to consider to construct and use a conditional 

distribution in the form of εIE|ωi, i.e. a distribution of εIEω given the position IE,i, for more reliable estimates. However, note that 

the limited data available for a maximum of four pairs of time periods, poses a practical complication to construct a meaningful 

conditional distribution εIE|ωi, which is necessary to infer εIE|ωi. Alternatively, the user can decide to base predictions only on 720 

basis of the εIEω distribution of the last available time period to avoid the use of the marginal distribution (Montanari and 

Koutsoyiannis, 2014). For predictions in catchments with suspected presence of a systematic shift, tagged as “Shift”, users 

may choose to extrapolate the fitted distribution parameters of the individual pairs of periods to account for their shifts over 

time. However, here the reliability of this will depend on the strength of the individual relationship over the past and needs to 

be evaluated on a case-to-case basis as both categories are likely to lead to rather unreliable future estimates.  725 

Additionally, empirical models like the Budyko framework have inherent weakness in dealing with previously unseen 

changes of the underlying distribution of a specific variable (here: εIEω). Our classification of catchments into “Stable”, 
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“Variable”, “Alternating” and “Shift” categories aims to capture varying levels of sensitivity to changes in underlying 

distributions. Catchments classified as “Alternating” or “Shift”, are more likely to have experienced large changes in the 

underlying distributions and may thus remain sensitive to future changes, making empirical model less robust for predictions 730 

in these cases. Conversely, “Stable” and “Variable” catchments exhibited much less sensitivity to past climatic variability. In 

the absence of statistical evidence for changing distributions, it is reasonable to assume that they remain relatively insensitive 

to change in the near future, allowing empirical models to provide plausible predictions. 

It is important to note that approximately 89 % of the study catchments are either “Stable” or “Variable” and with 

only a small minority (~11 %) exhibiting “Alternating” or “Shift” behaviour. This predominance of “Stable” or “Variable” 735 

catchments supports the broad applicability of the Budyko framework for predictive purposes. Although there is no clear 

spatial pattern, the regional distributions of ϵIEω remain, with medians of ~ 0 – 0.02 (Fig.9a), broadly consistent with the global 

distribution (Fig.8a) but also with each other across most spatial and climatic classes. This indeed suggests that the overall 

pattern is rather homogenous, and regional effects remain limited, making probabilistic predictions feasible in the absence of 

a deterministic description (Montanari and Koutsoyiannis, 2014). Thus, the presented distributions (Figs. 8a,9a) are in the 740 

absence of further information useful to quantitatively estimate the uncertainty for any specific catchment based on past 

information in a probabilistic way. However, caution is advised for out-of-sample catchments, where the assumption of 

stationarity may lead to less reliable predictions, as the framework cannot take into account systematic shifts or alternating 

behaviour. 

Despite the challenges associated with catchments classified as “Alternating” and “Shift” the Budyko framework 745 

remains useful for identifying human-driven changes to the water cycle. Although many catchments showed only minor 

deviations, these deviations are key for recognizing drivers of change. Categorizing catchments into ”Stable”, “Variable”, 

“Alternating” and “Shift” can guide targeted future research. For example, catchments in the “Alternating” and “Shift” 

categories may in the past either have been subject to more substantial human interference than those in the other categories 

or they may be more sensitive to human-induced changes. Further investigations into the drivers of these deviations may 750 

strengthen our understanding of how human-induced changes influence catchments responses differently in different 

environments. 

It was further found that the choice of a specific 20-year window can indeed lead to fluctuations in the distributions of εIEω. 

However, the magnitude of these fluctuations remains rather limited for the vast majority of catchments. To avoid 

misinterpretations, we have therefore added the IQR of median εIEω from the 20 individual moving windows as additional 755 

robustness flag for each catchment in Supplementary data downloadable from Zenodo repository 

(https://doi.org/10.5281/zenodo.14060926). Lower IQR then indicate lower sensitivity to the choice of the 20-year window 

and thus a higher robustness of the marginal distribution for predictions of εIEω under future conditions. 

A complete list of the parameters and robustness flags of the individual 20-year distributions as well as of the local aggregated 

marginal distributions with associated changes in Q for each of the 2387 study catchments, but also of the regional distributions 760 

https://doi.org/10.5281/zenodo.14060926
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as stratified by latitude and IA are provided in the Supplementary data (https://doi.org/10.5281/zenodo.14060926). These 

distributions of annual εIEω can be directly used to predict the median εIEω under future conditions locally in these catchments 

or regionally by sampling over 20 projected future years. 

5 Conclusions 

Based on up to 100 years of hydro-climatic and streamflow data for 2387 river catchments world-wide we have here 765 

tested whether catchments follow their specific parametric Budyko curves as defined by parameter ω over multiple 20-year 

periods throughout the 20th century. 

We have found that: 

(1) 62 % of the catchments do not significantly deviate from their expected parametric Budyko curves, although minor 

deviations were still observed. However, this also entails that a fraction of 38 % does indeed deviate.  770 

(2) The overall magnitude of deviations is minor. For ~70 % of the catchments the median deviations do not exceed εIEω = ± 

0.025, which is equivalent to ~ 1–4 %, depending on IE. These median εIEω, when expressed as relative changes in Q, 

result in less than a ±10 % change in discharge for most catchments. 

(3) For 89 % of the study catchments, εIEω can be considered highly or at least moderately well predictable based on historical 

data, as distributions of εIEω in the past were shown to be stable over multiple time periods or characterized by variable 775 

fluctuations. The framework works well for most catchments; however, for out-of-sample catchments showing systematic 

shifts or alternating behaviour, additional analysis may be required. 

The above implies that while catchments indeed may not strictly follow their parametric Budyko curves, as defined by 

parameter ω, the deviations remain in general minor and predictable. The latter is of particular importance for catchments in 

water-limited regions, where already small deviations can considerably affect available water supply and where robust 780 

predictions of these deviations are instrumental for effective future water resources planning and management. 

 

Data availability. Daily precipitation and temperature data were acquired via the GSWP-3 dataset, accessible at 

https://data.isimip.org/10.48364/ISIMIP.886955 (Lange, 2020). GSIM discharge data was obtained from 

https://doi.pangaea.de/10.1594/PANGAEA.887477 (Do et al., 2018) and https://doi.pangaea.de/10.1594/PANGAEA.887470 785 

(Gudmundsson et al., 2018). Supplementary data containing topographic and climatic characteristics, parameters for fitted 20-

year parametric distributions of deviations, robustness flags indicating the temporal stability of aggregated marginal 

distributions, and associated changes in Q across 2387 study catchments is available at 

https://doi.org/10.5281/zenodo.14060926. Regional parameters for fitted parametric marginal distributions are also provided. 
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