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Abstract. Extreme flow conditions in river discharge have far-reaching environmental and economic consequences. 14 

The retention of surface water in lakes, wetlands, and floodplains can potentially moderate these extreme flows by 15 

modifying the timing, duration, and magnitude of flow generation. However, efforts to characterize the impact of 16 

surface water storage on river discharge have been limited in geographic extent. In this analysis, a suite of hydrologic 17 

signatures, quantifying components of watershed flow regimes, was calculated from daily discharge at 72 gaged 18 

watersheds across the conterminous United States. Random forest models were developed to explain variability in six 19 

hydrologic signatures related to flashiness and high and low flow conditions. In addition to traditionally considered 20 

variables such as climate, land cover, topography, and geology, a novel remote sensing (Sentinel-1 & 2) approach was 21 

used to study the contribution of surface water storage dynamics to each signature's variability. While climate variables 22 

explained much of the variability in the hydrologic signatures, models for five of the six signatures showed an 23 

improvement in explanatory power when landscape characteristics were added. Automated variable selection is part 24 

of the modeling process and can be indicative of the relative importance of certain variables over others. When all 25 

variables were considered, four of the six signature models selected remotely sensed inundation variables. The amount 26 

of semi-permanent and permanent floodplain inundation, for example, was both negatively correlated with, and 27 

showed the greatest variable importance for wet season flashiness. Further, increases in seasonal floodplain inundation 28 

were positively correlated with increases in peak flows. This suggests that the storage of surface water on floodplains 29 

is relevant to both flashiness and high flow signatures. In addition, spatial variability in the amount of semi-permanent 30 

and permanent non-floodplain water helped explain variability in the baseflow index. These findings suggest that 31 

watershed surface water storage dynamics explain a portion of streamflow signature variability. The results underscore 32 

the need for protection and restoration of surface water storage systems, such as wetlands, across watersheds. 33 
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Short Summary 38 

Streamflow signatures can help characterize a watershed’s response to rainfall and snowmelt events. We explored if 39 

surface water storage-related variables, which are typically excluded from streamflow signature analyses, may help 40 

explain the variability in streamflow signatures. We found that remotely sensed surface water storage watershed 41 

location and hydroperiod were correlated with or explained a portion of the variability in hydrologic signatures across 42 

72 streamflow gages. 43 

 44 

1 Introduction 45 

The response of streamflow to climate extremes has important environmental and economic implications. 46 

Drought events limit streamflow available for agriculture, drinking water, and wildlife (Stewart et al., 2020; Apurv 47 

and Cai, 2021), and have cost the United States $53 billion in just the past five years (2019-2023) (NOAA, 2024). 48 

Flood events, meanwhile, can endanger property, infrastructure, and human lives, and have caused global economic 49 

damages exceeding $1 trillion between 1980 and 2013 (Winsemius et al., 2016). Climate change is altering the 50 

frequency of these hydroclimatic extremes (Heidari et al., 2020) and may also alter how climate extremes propagate 51 

to impact runoff (Wu et al., 2022). In recent years, several studies have shown that surface water storage (e.g., 52 

wetlands, lakes, ponds), at least in some watersheds, can potentially increase baseflow and decrease peak flows (Rajib 53 

et al., 2020; Wu et al., 2020; Zeng et al., 2020), implying that consideration of surface water storage and storage 54 

dynamics in models could improve predictions of flood and drought impacts (Golden et al., 2021). However, surface 55 

water storage is typically excluded from both hydrological models (Golden et al., 2014; Jones et al., 2019) and analyses 56 

of river and stream hydrologic signatures (Addor et al., 2018; McMillan, 2019). Therefore, our understanding of when 57 

and where surface water storage influences river discharge is still very limited.  58 

Hydrologic signatures are quantitative metrics, typically calculated from streamflow time series, that can 59 

describe the magnitude, timing, rate of change, duration, and frequency of flow conditions (Richter et al., 1996; Daigle 60 

et al., 2011; McMillan et al., 2019). Hydrologic signatures are often selected for a specific hydrological or ecological 61 

application or objective. For example, some studies have developed signatures that reflect wet conditions such as 62 

flashiness or seasonal flooding (Hannaford and March, 2008; Hendry et al., 2019), while others have focused on 63 

applying hydrologic signatures to characterize late-season, low flow regimes (Daigle et al., 2011; Kelly and White, 64 

2016), or alternatively, the impact of hydrologic alterations, such as groundwater pumping, flow diversions, or land 65 

use conversion (Richter et al., 1996). The relationship between hydrologic signatures and watershed characteristics, 66 

such as climate and topography, has been characterized using statistical techniques such as correlation analyses 67 

(Berghuijs et al., 2016; Kuentz et al., 2017), random forest models (Trancoso et al., 2016; Addor et al., 2018; Oppel 68 

and Schumann, 2020) and regression functions (van Dijk, 2010; Beck et al., 2015; Kuentz et al., 2017), with studies 69 

finding variability in the model strength between different signatures (Beck et al., 2015; Addor et al., 2018).  70 

Previous research has shown that drivers of hydrologic signatures can reflect specific aspects of flow. For 71 

example, signatures that reflect high flow events are often best predicted by climate, including precipitation (van Dijk, 72 

2010; Kuentz et al., 2017), while signatures reflecting baseflow are often linked to geology (Kuentz et al., 2017), as 73 

well as potential evapotranspiration (van Dijk, 2010; Beck et al., 2013). Generally, hydrologic signatures are best 74 
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explained by climate variables, such as aridity, precipitation, and snowfall (Beck et al., 2015; Addor et al., 2018). 75 

Land cover, such as proportion forest, often acts as a secondary controlling process (Kuentz et al., 2017; Trancoso et 76 

al., 2016; Addor et al., 2018). While Beck et al. (2013) found baseflow to be positively correlated with the average 77 

proportion of open water, and Beck et al. (2015) found slope, which can be indicative of potential water storage 78 

capacity, to be helpful in explaining multiple signatures, efforts to model drivers of hydrologic signatures have rarely 79 

included or considered surface water storage capacity, and have not, to our knowledge, considered surface water extent 80 

dynamics or hydroperiod.  81 

Despite surface water storage being infrequently considered in the analysis of hydrologic signatures, it is 82 

widely accepted that wetlands and lakes have a significant influence on the hydrologic cycle (Bullock and Acreman, 83 

2003). In watersheds lacking surface water storage (e.g., lakes, ponds, reservoirs, and wetlands) when precipitation 84 

falls, it is captured by vegetation, infiltrates the soils, or is transported downgradient as infiltration-excess or 85 

saturation-excess runoff (Eamus et al., 2006). Conversely, in watersheds where surface storage availability exists, 86 

precipitation, snow water equivalent and runoff can be stored and gradually released through time from both floodplain 87 

and non-floodplain storage - via groundwater baseflow, fill-spill surface runoff, or merging with streams via fill-and-88 

spill mechanisms (Rains et al., 2016; Fritz et al., 2018; Lane et al., 2018; Stepchinski et al., 2023), creating a less 89 

“flashy” system (Shaw et al., 2012; Kuppel et al., 2015). Surface storage areas, both within and outside of the 90 

floodplain, can also contribute to streamflow when stream-connected water bodies rise, subsuming nearby, previously 91 

disconnected storage systems, e.g., upland wetlands (Vanderhoof et al., 2016). The influence of these disconnected 92 

systems, e.g., upland wetlands, can depend on the position of the wetlands relative to the stream network as well as 93 

watershed characteristics (Fritz et al., 2018; Lane et al., 2018; Wu et al., 2020). Although we know that lakes and 94 

wetlands can withhold and contribute water to river networks, it is less clear if surface water storage across multiple 95 

watersheds and regions has a measurable impact on river discharge dynamics.  96 

Our limited understanding of how surface water storage dynamics impact river discharge is in part 97 

attributable to surface water storage being traditionally ignored by hydrologic models (Golden et al., 2014; Jones et 98 

al., 2019). In recent years, studies have shown that integrating wetlands, particularly non-floodplain wetlands, into 99 

hydrologic models can improve streamflow simulation accuracy (Rajib et al., 2020; Golden et al., 2021). While recent 100 

modeling studies have been limited in spatial extents, have simplified wetland volume estimates, and have relied, most 101 

commonly, on topographic estimates of potential water storage, each have demonstrated that surface water storage 102 

can potentially increase baseflow (McLaughlin et al., 2014; Zeng et al., 2020) as well as potentially reduce peak flow 103 

and flood duration (Evenson et al., 2018; Ameli and Creed, 2019; Wu et al., 2020).  104 

Further research is needed to improve our understanding of when and where dynamic surface water storage 105 

influences river discharge across multiple diverse watersheds and regions. Here, we calculated a suite of hydrologic 106 

signatures to characterize variability in flow flashiness and high and low flow conditions across 72 diverse watersheds 107 

in the contiguous United States (CONUS). We developed two random forest models for each flow signature: one 108 

representing climate variables only and one representing climate, land cover, geology, topographic, and surface water 109 

storage input variables. This approach helped us to assess the relative ability of climate alone, compared to catchment 110 

characteristics that uniquely included novel remotely sensed surface water extent and hydroperiod, to explain the 111 
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variability in hydrologic signatures. Specifically, our research questions were: (1) What are the dominant explanatory 112 

variables explaining the variability in flow flashiness and high and low flow condition-related hydrologic signatures 113 

across watersheds representing different climates, topography, and land covers? and (2) To what extent do surface 114 

water storage-related variables correlate with or help explain variability in these selected hydrologic signatures?   115 

2. Materials and Methods 116 

2.1 Watersheds  117 

A total of 72 U.S. Geological Survey (USGS) stream gages and associated watersheds (Fig. 1) were selected 118 

across the conterminous U.S. (CONUS) from the GAGES-II dataset (Falcone 2011). Gaged watersheds, to the extent 119 

possible, were selected to be approximately co-located with regions used to train the Sentinel-1 and Sentinel-2 120 

satellite-based surface water algorithms to maximize the accuracy of the algorithms (Vanderhoof et al., 2023). The 121 

algorithms were used to map surface water extent over time at each of the watersheds. Watersheds with tidal wetlands 122 

were excluded to focus on freshwater aquatic systems. Further, potential watersheds were reviewed to minimize the 123 

inclusion of major dams, defined as dams 15.2 meters or more in height (storage capacity of 6.17 million cubic meters) 124 

near watershed outlets (National Atlas of the United States, 2006). While most watersheds, 80%, were between 1500 125 

km2 and 5000 km2, watersheds ranged in size from 292 km2 to 9918 km2.  126 

Across the selected watersheds, stream density, as calculated from the National Hydrography Dataset (NHDplus) 127 

high resolution dataset (USGS, 2022), ranged from 259 m km-2 to 4182 m km-2 across the selected watersheds, with a 128 

median density of 1461 m km-2 (Table A1). The proportion of each watershed classified as wetland by the National 129 

Wetland Inventory (NWI) dataset (USFWS, 2019) ranged from 1.1% to 48.7% with a median wetland proportion of 130 

5.6% (Table A1). Mean annual precipitation (2016-2023) ranged from 325 mm to 1659 mm, with a median annual 131 

average of 967 mm (GRIDMET; Abatzoglou, 2013). In addition, the dominant landcover class was cultivated crops 132 

or hay/pasture for 36 of the watersheds, with other dominant classes including forest (18 watersheds) and grassland-133 

shrub/scrub (13 watersheds) (Homer et al., 2020; Table A1). The watersheds were grouped by U.S. region, including 134 

West, Southwest, North Central, Gulf Coast, Midwest, and East, to facilitate data interpretation (Fig. 1).  135 

  136 
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 137 
  138 

Figure 1. Selected U.S. Geological Survey (USGS) gaged watersheds in relation to aridity (2016-2023), defined as 139 

annual actual evapotranspiration divided by annual precipitation, where maroon/orange indicates arid conditions and 140 

blue indicates less arid conditions.    141 

2.2 Hydrologic signatures: response variables 142 

Hydrologic signatures were calculated from daily discharge at each gage and were used as the response 143 

variables in our statistical analyses (Table 1). Daily rate of stream discharge was acquired from the USGS National 144 

Water Information System for 2016-2023 (USGS, 2024). The period was limited by the temporal availability of 145 

Sentinel-2 imagery (Sentinel-2a and -2b launched in June 2015 and March 2017, respectively), required for the 146 

surface water algorithm. Signatures were selected from the literature to represent discharge extremes (high flow and 147 

low flow) as well as variability in discharge. Signatures related to characterizing high flow conditions included a (1) 148 

wet season flashiness index, where flashiness reflected daily variability in discharge within the wet season, defined 149 

as the three months in each year with the highest average discharge (Baker et al., 2004). (2) The maximum annual 150 

30-day flow per drainage area (km2) (MAX30/area) reflected seasonal peaks in discharge (Hannaford and Marsh, 151 

2008); and (3) discharge exceeded 10% of the time, within a given year (Q10) minus discharge exceeded 95% of the 152 

time (Q95), within a given year ((Q10-Q95)/area) and averaged over multiple years, or the difference between high 153 

flows and the baseflow regime (National River Flow Archive, 2024). The (4) flashiness index, which reflected daily 154 

variability in discharge across seasons, was included as a metric on how rapidly a watershed responds to 155 

precipitation or snowmelt events (Baker et al., 2004). Low flow conditions were characterized using (5) a baseflow 156 

index (USFS, 2022), calculated as the ratio of the average annual baseflow volumes to the average annual flow 157 
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volumes, and (6) the average driest month discharge per area (DryMonth/area, Daigle et al., 2011) (Table 1). 158 

Signatures were either calculated to be unitless or divided by the drainage area (km2) so that they could be compared 159 

across watersheds (Daigle et al., 2011). The distribution of hydrologic signature values was evaluated using the 160 

Shapiro-Wilk test for normality. Variables with extreme outliers were normalized using log10 transform (Beck et 161 

al., 2015) and included the flashiness index and wet season flashiness index. To evaluate how the hydrologic 162 

signatures may depend on the analysis period selected, the signatures from the 8-year period (2016-2023), that 163 

corresponds with the time period of available imagery, were contrasted with signatures derived from daily discharge 164 

over a 24-year period (2000-2023), using Pearson correlation and relative bias. 165 

2.3 Independent variables 166 

2.3.1 Climate variables 167 

Climate variables were averaged over the 2016-2023 period. Total annual, average precipitation and actual 168 

evapotranspiration (ET) were derived from the daily University of Idaho Gridded Surface Meteorological Dataset 169 

(GRIDMET, 4 km resolution; Abatzoglou, 2013; Table 2). An aridity index was calculated as annual total ET divided 170 

by annual total precipitation, where higher values represent arid watersheds and lower values represent less arid 171 

watersheds (Budyko, 1958), and water availability was evaluated as annual precipitation – annual ET. Maximum daily 172 

temperature was derived from DAYMET, which has been found to outperform GRIDMET for temperature 173 

(Mehdipoor et al., 2018), and variables included temperature seasonality, defined as the difference between average 174 

summer (June, July, August) maximum temperature and average winter (December, January, February) maximum 175 

temperature, as well as the maximum temperature coefficient of variation (CV). A precipitation CV and precipitation 176 

seasonality were also included, using DAYMET daily precipitation, since DAYMET includes daily estimates of snow-177 

water equivalent (Table 2). DAYMET variables relied on 2016-2022 data, as 2023 was not yet available at the time 178 

of the analysis. To contextualize the climate conditions reflected in the 8-year period, (1) the GRIDMET 5-day Palmer 179 

Drought Severity Index values (PDSI; Abatzoglou, 2013) for the 2016-2023 period at each watershed were compared, 180 

using rank percentile, to the past 44 years (1980-2023).  181 
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Table 1. Hydrological signatures included in the analysis. MAX: maximum 182 

Signature 

Targeted 

flow 

regime 

Calculation Units Median Min Max Source 

Flashiness 

index 
All flows 

The sum of the absolute value of the changes in 
discharge from the day prior to the current day 

(discharge t2 – discharge t1) divided by the sum of the 

daily discharge values (log normalized). 

Unitless -0.81 -1.63 0.23 
(Baker et al., 

2004) 

Flashiness 

index (wet 
season) 

High flows 

The sum of the absolute value of the changes in 

discharge from the day prior in the three wettest 

months (highest discharge) divided by the sum of 
daily discharge values in those months (log 

normalized). 

Unitless -0.84 -1.89 0.23 
(Baker et al., 

2004) 

MAX30/ 

area 
High flows 

The flow rate for the 30 days per year with the highest 
flow rate, summed over the 30 days, and averaged per 

year, divided by the watershed area. 

m3/sec/km2 0.94 0.01 3.48 
(Hannaford 
and Marsh, 

2008) 

(Q10-

Q95)/area 
High flows 

Discharge exceeded 10% of the time (Q10) minus 

discharge exceeded 95% of the time (Q95), divided 
by watershed area. 

m3/sec/km2 0.016 0.000 0.056 

(National 
River Flow 

Archive, 

2024) 

DryMonth/ 
area 

Low flows 

Average annual discharge in the driest month 

(excluding snow cover months) divided by watershed 

area. 

m3/sec/km2 0.0019 0.0000 0.0112 
(Daigle et al., 

2011) 

Baseflow 
index 

 

Low flows 

The ratio of the average daily flow during the lowest 

annual 7-day flow (excluding snow cover conditions) 

to the annual average daily flow. 

Unitless 0.19 0.00 0.70 (USFS, 2022) 

2.3.2 Land cover, soils, topography, and wetland variables 183 

Vegetation was represented by the 2019 National Land Cover Database (NLCD), as the proportion of each 184 

watershed classified as (1) forest (evergreen, deciduous, or mixed), (2) developed, and (3) cultivated crops (Homer et 185 

al., 2020). Annual minimum depth to water table, average soil thickness, fraction clay and fraction sand were derived 186 

from the Soil Survey Geographic Database (SSURGO; Falcone, 2011). To represent topography, the percent slope 187 

and elevation range divided by average elevation were derived using the 10 m USGS Digital Elevation Model (DEM) 188 

(Table 2). The average watershed topographic diversity was also considered, calculated from the multi-scale 189 

Topographic Position Index (mTPI) and the Continuous Heat-Insolation Load Index (CHILI, 30 m; Theobald et al., 190 

2015). Stream density was calculated using the total stream length, defined by the NHDplus high resolution dataset 191 

(USGS, 2022). The National Wetland Inventory dataset (USFWS, 2019) was used to calculate the proportion of each 192 

watershed mapped as wetlands. The floodplain variable was defined as the proportion of each watershed classified as 193 

within the 100-year floodplain (Woznicki et al., 2019). Lastly, the connectivity of wetlands to streams can influence 194 

the timing of water moving into the stream network, so the proportion of each watershed mapped as geographically 195 

isolated wetlands (GIWs; Leibowitz, 2015), or non-floodplain wetlands (NFW), that are surrounded by upland, as 196 

well as the proportion of total wetland area mapped as GIWs was considered (Lane and D’Amico, 2016).  197 

2.3.3 Inundation variables 198 

In addition to including non-temporal water variables, such as wetland area, remote sensing platforms allow us 199 

to include variables that characterize the hydroperiod of surface water stored within watersheds, including lakes, 200 

ponds, wetlands, and temporary inundation in flood prone areas. Although Landsat can provide a longer temporal 201 

record of surface water dynamics, observations are limited to periods free of clouds, snow, and ice, which can limit 202 

the accuracy of temporary and seasonal patterns of inundation. Alternatively, the more frequent Sentinel-2 revisit, and 203 
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incorporation of a SAR satellite, like Sentinel-1, can help bypass these limitations. Sentinel-1 and Sentinel-2 based 204 

algorithms that map non-water, open water and vegetated water were previously developed using gradient boosted 205 

classifier algorithms for 12 sites across the conterminous U.S. (20 m resolution; Vanderhoof et al., 2023). Details on 206 

the surface water algorithms can be found in Vanderhoof et al., (2023). In this effort individual Sentinel-1 and Sentinel-207 

2 images, collected between January 1, 2016, and December 31, 2023, overlapping each of the gaged watersheds 208 

(n=72) were classified into open water, vegetated water, and non-water. The classified Sentinel-1 and classified 209 

Sentinel-2 time series were consolidated at a 14-day time step where pixel values were assigned as the majority 210 

classification, water (defined as open water plus vegetated water), or non-water (Fig. 2). If, observations of water and 211 

non-water were equal, then open water was prioritized followed by non-water, and lastly vegetated water (Fig. 2), 212 

consistent with the higher accuracy of the open water class relative to the vegetated water class (Vanderhoof et al., 213 

2023). Where no valid observations were present in the 14-day period, pixels were gap-filled using observations from 214 

the t-1 and t+1 timestep, as shown in Fig. 2. 215 

To limit commission error in the surface water time series, a water mask, defined as the maximum allowable 216 

surface water extent, was derived for each watershed, and applied across the time series. Pixels classified as water 217 

outside of the water mask were re-classified as non-water. To generate each water mask, the Sentinel-1 open water 218 

and vegetated water, and Sentinel-2 open water, and vegetated water percentile rasters were manually reviewed for 219 

each watershed (Fig. 2). Percentile thresholds were selected, below which the frequency of erroneously classified 220 

water pixels visually exceeded the frequency of correctly classified water pixels (Table A2). To help inform the 221 

threshold selection, ancillary data were used including the NWI dataset (USFWS, 2019), the 2019 NLCD (Homer et 222 

al., 2020), and base map imagery, delivered through ArcMap. The spatial extent where water pixels were retained was 223 

defined as pixels located within the 100-year floodplain (Woznicki et al., 2019), to account for short-term flood events, 224 

or pixels where the water percentile was greater than the selected threshold in any of the four 5-year percentile rasters 225 

(Table A2). The Sentinel-1 algorithm has a documented omission and commission error of 3.1% and 0.9% for open 226 

water, and a 28.4% and 16.0% commission error for vegetated water, respectively, while the Sentinel-2 algorithm has 227 

an omission and commission error of 3.1% and 0.5% for open water, and a 10.7% and 7.9% commission error for 228 

vegetated water, respectively, when validated against 36 high-resolution images (i.e., WorldView-2, WorldView-3, 229 

PlanetScope) (Vanderhoof et al., 2023). When consolidated at a monthly time-step to a S1-S2 water, non-water 230 

classification, errors of omission and commission for monthly surface water extent averaged 1.6% and 10.4%, 231 

respectively, when validated against 64 PlanetScope images (Vanderhoof et al., 2024). The use of a water mask was 232 

previously shown to reduce commission error, resulting in errors of omission and commission of 1.9% and 6.5%, 233 

respectively for the monthly surface water extent (Vanderhoof et al., 2024).  234 

After gap-filling and applying the water masks, the time series for each watershed was then consolidated into an 235 

8-year percentile. Categories of surface water, using the percent of watershed area, were defined in reference to the 236 

100-year floodplain (Woznicki et al., 2019), and included, (1) temporarily flooded, defined as an average of  ≥3 days 237 

but <1 month per year (Cowardin et al., 1979; Scott et al., 2019), (2) seasonally flooded, defined as inundated >1 238 

month but <6 months per year, on average, and (3) semi-permanently and permanently inundated, defined as >6 239 

months per year, on average (Cowardin et al., 1979; Donnelly et al., 2019) (Table 2). The total amount of inundation 240 
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of any hydroperiod within the 100-year floodplain, and outside of the 100-year floodplain was also included (Table 241 

2). The terms surface water extent and inundation are used interchangeably in this analysis. 242 

 243 

Table 2. Independent variables considered modeling hydrological signatures. DEM: Digital elevation model, SRTM: 244 

Shuttle Radar Topography Mission, NLCD: National Land Cover Database, SSURGO: Soil Survey Geographic 245 

Database, NHD: National Hydrography Dataset   246 
Variable 

Type  
Variable  Units  Min  Max  Median   Source  

Climate  

Precipitation (P, annual)  mm  325.3 1659.1 967.4 GRIDMET (Abatzoglou, 2013)  

Evapotranspiration (ET, annual)  mm  714 1934.1 1181.1 GRIDMET (Abatzoglou, 2013)  

Aridity index (ET/P, annual)  unitless  0.84 5.88 1.27 GRIDMET (Abatzoglou, 2013)  

Water demand (P - ET, annual) mm  -1586 265.6 -247.4 GRIDMET (Abatzoglou, 2013)  

Precipitation seasonality  mm  -396 276.6 105 DAYMET (Thornton et al., 2020)  

Precipitation coefficient of variation  mm  196.5 371.8 260.4 DAYMET (Thornton et al., 2020)  

Temperature seasonality  ⁰C  15.6 34.2 23 DAYMET (Thornton et al., 2020)  

Temperature coefficient of variation  ⁰C  26 151 57 DAYMET (Thornton et al., 2020)  

Land cover  

Forest (evergreen, deciduous, mixed)  % of area  0.059  56.1  17.5  NLCD (2019; Homer et al., 2020)  

Developed (low, medium, high intensity, open 
space)   

% of area  0.323  35.7  4.69  NLCD (2019; Homer et al., 2020)  

Cultivated crops  % of area  0.0  84.7  17.9  NLCD (2019; Homer et al., 2020)  

Stream density  m km2  259.2  4181.6  1460.9  
NHDPlus High Resolution (USGS, 
2022)  

Sub-surface  

Clay fraction fraction 0.08 0.47 0.23 SSURGO (Falcone 2011)  

Sand fraction fraction 0.07 0.74 0.33 SSURGO (Falcone 2011)  

Average soil thickness cm 81.3 152.4 145.8 SSURGO (Falcone 2011)  

Annual minimum depth to water table  meters  0.49  1.83  1.40  SSURGO (Falcone 2011)  

Topography  

Slope  %  0.5  32.5  3.7  DEM (Gesch et al., 2002)  

(Elevationmax - Elevationmin) / Elevationaverage  unitless  0.2  4.9  1.0  DEM (Gesch et al., 2002)  

Global SRTM topographic diversity  unitless  0.03  0.7  0.1  (Theobald et al., 2015)   

Inundation 
Dynamics  

Temporarily flooded, floodplain (3 days - 1 

month) 
% of area  0.07 4.16 0.65 (Vanderhoof et al., 2023)  

Temporarily inundated, non-floodplain (3 days 

- 1 month) 
% of area  0.03 5..85 1.29 (Vanderhoof et al., 2023)  

Seasonally inundated, floodplain (1 - 6 month) % of area  0.04 8.58 1.77 (Vanderhoof et al., 2023)  

Seasonally inundated, non-floodplain (1 - 6 
month) 

% of area  0.01 45.81 4.07 (Vanderhoof et al., 2023)  

Semi-permanently and permanently inundated, 

floodplain (>6 month) 
% of area  0 3.54 0.39 (Vanderhoof et al., 2023)  

Semi-permanently and permanently inundated, 

non-floodplain (>6 month) 
% of area  0 5.55 0.44 (Vanderhoof et al., 2023)  

 Total floodplain inundation % of area  0.42 15.46 3.08 (Vanderhoof et al., 2023)  

 Total non-floodplain inundation % of area  0.04 52.59 6.06 (Vanderhoof et al., 2023)  

Wetland  

Geographically Isolated Wetlands (GIW)  % of area  0.0  9.4  0.6  (Lane and D'Amico 2016)   

Proportion of wetland area identified as GIW % of area  0.6  80.9  11.4  
(Lane and D'Amico 2016; USFWS 

2019)   

Floodplain % of area  1.2  36.8  7.7  (Woznicki, et al., 2019)   

National Wetland Inventory (NWI) wetlands % of area  1.1  48.7  5.6  NWI (USFWS 2019)  

 247 
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2.4 Modeling analysis 248 

The relationships between multiple predictor variables and hydrologic signatures were modeled with random 249 

forest regressions developing using the ‘sklearn’ python package (Pedregosa et al., 2011). For each hydrologic 250 

signature, random forest models were generated that (1) considered the inclusion of climate-related variables only 251 

(MClimate), and (2) considered inclusion of all variables, including climate, topographic, land cover, and wetland and 252 

inundation related variables (MAll) (Table 2). The multi-model approach furthered our ability to quantify the relative 253 

contribution of different variable types to explain variability in the hydrologic signatures.  254 

Random forest models use a bootstrapping approach to generate hundreds of regression trees and make no prior 255 

assumptions about cause-and-effect relationships or correlations among variables (Hastie et al., 2009). They have also 256 

been previously used in the analysis of hydrologic signatures (e.g., Trancoso et al., 2016; Addor et al., 2018; Oppel 257 

and Schumann, 2020). While random forest techniques are generally insensitive to multicollinearity, the inclusion of 258 

highly correlated variables can make it more challenging to identify the most predictive variables, deflate or bias 259 

variable importance values, and complicate model interpretation (Murphy et al., 2010; Gregorutti et al., 2016). 260 

Conversely, an automated variable selection can be indicative of the relative importance of certain variables over 261 

others (Murphy et al., 2010). A stepwise forward selection routine was implemented where the set of potential 262 

predictors were sequentially tested. The predictor that contributed most to reducing the RMSE was selected. During 263 

each step, the remaining predictors were removed if they had a correlation value of 0.8 or greater with any of the 264 

selected predictors. This process was iterated until the improvement in the model’s RMSE was <0.001 with any 265 

additional variables (Sherrouse and Hawbaker, 2023). 266 

For each model the variable and hyperparameter selection process were concurrently run, where the potential 267 

models were compared using a nested cross-validation, KFold with 6 splits (Cawley and Talbot, 2010). The 268 

hyperparameters tested were n_estimators (the number of trees in the forest with tested values of 300, 500, 700, and 269 

1000), max_depth (the maximum depth of a tree with tested values of 2, 3, and 4). For all models, max_features (the 270 

number of features to consider when looking for the best split) was set at the square root of the number of features, 271 

and max_samples (the proportion of samples selected to train each estimator) was set at 0.8. The model with the 272 

highest cross-validated adjusted R2 was selected. 273 

Random forest models do not consider the spatial pattern between samples, therefore any clustering of the 274 

watersheds included in the analysis could potentially bias model predictions (Hengl et al., 2018). The residuals of each 275 

selected model were tested for spatial autocorrelation using Moran’s I (Klute et al., 2002). Of the random forest model 276 

residuals, 5 out of 12 showed significant (p<0.01) spatial autocorrelation, therefore an autocovariate, or additional 277 

model term, representing the mean neighborhood (defined as within 500 km of the catchment center, reflecting 278 

catchment clusters) model residual value, was included in the subset of models to account for spatial dependency 279 

(Betts et al., 2006). Performance of final random forest models was evaluated using the leave-one-out cross validation 280 

to account for the limited sample size (n=72) (Vabalas et al., 2019), and the cross-validated model RMSE, R2, adjusted 281 

R2, to account for differences in the number of variables selected. Variable importance was calculated with Python 282 

Scikit-learn as the permutation importance. Single variable correlations between the hydrologic signatures and the 283 
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predictor variables were also calculated using the non-parametric Spearman Rank Correlation Coefficient, as 284 

previously used by Berghuijs et al. (2016). Because of the number of comparisons, a Bonferroni correction was applied 285 

before significance was determined (Emerson, 2020). 286 

 287 

 288 
Figure 2. Flowchart of steps to generate the surface water variables and data analysis.   289 
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3. Results 290 

3.1 Climate and flow signature temporal context 291 

The minimum (i.e., driest), maximum (i.e., wettest) and median per watershed PDSI rank percentiles for 292 

2016-2023, relative to 1980-2023, averaged 5%, 100%, and 62%, respectively, where 50% represents the median 293 

PDSI for the 1980-2023 period (Table A1). This indicated that the period was slightly wetter, on average, relative to 294 

the longer 44-year period, and that most watersheds exhibited a large range of PDSI conditions (maximum – 295 

minimum) over the 2016-2023 period.  296 

While the period used was limited by the available Sentinel-1 and Sentinel-2 image record, signature 297 

uncertainty can increase when using shorter flow records (Kennard et al., 2010). Between-site variability in the 298 

hydrologic signatures derived from the 8-year period, was highly correlated with the between-site variability from a 299 

longer, 24- year period (2000-2023) (Table 3). The median value of hydrologic signatures showed some differences 300 

between the 8-year period (2016-2023) and the longer 24-year period (2000-2023). While both flashiness indices had 301 

a bias of <1%, the MAX30/area and (Q10-Q95)/area had a relative bias of 13.5% and 8.7%, respectively, indicating 302 

that average peak wetness conditions were wetter within the 8-year period, relative to the longer period. Additionally, 303 

the baseflow index and DryMonth/area showed a relative bias of -11.8% and -2.2%, indicating that these signatures 304 

reflected drier conditions, on average, within the 8-year period, relative to the longer period (Table 3). While the 305 

hydrologic signatures of the high and low flow conditions were amplified during the selected period, the signature 306 

values between the two periods were highly correlated, with Pearson R correlation values ranging from 0.94 to 0.99 307 

(Table 3). This suggests that the relative variations in hydrologic signature values between the long-term flow records 308 

(24 years) compared to the study period (8 years) are tightly associated. We considered this a solid justification for 309 

using the 8-year Sentinel data availability period for our analyses. 310 

 311 

Table 3. Pearson correlation values comparing the 2016-2023 hydrologic signatures with the same signatures derived 312 

from the 2000-2023 period. The relative bias compares the paired signature values from each watershed. All R values 313 

were significant at p<0.01. MAX: maximum 314 

Metric  

R (2016-

2023 vs 

2000-2023)  

Median 

relative 

bias (%) 

Flashiness index  0.99 0.9 

Flashiness index (wet season)  0.99 0.2 

MAX30/area  0.97 13.5 

(Q10-Q95)/area  0.98 8.7 

DryMonth/area  0.94 -2.2 

Baseflow index   0.95 -11.8 

  315 
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3.2 Flashiness signatures 316 

The flashiness and wet season flashiness signatures reflect how quickly discharge changes in response to 317 

episodic rainfall and snowmelt events, over the course of the year and within the wet season, respectively. Despite 318 

representing different portions of the year, the two signatures were highly correlated (R = 0.97, p<0.01). Flashiness 319 

and wet season flashiness were highest, on average, in the Southwest watersheds, and lowest in the West and North 320 

Central watersheds (Table A3, Fig. 3). Watershed flashiness and wet season flashiness were significantly correlated 321 

with very few of the independent variables considered. Most prominently, both significantly (p<0.01) decreased with 322 

an increase in areas mapped as semi-permanently and permanently inundated within the floodplain, and with increases 323 

in total area classified as wetland by the NWI dataset (Table 4). Correlations with climate variables were weaker 324 

relative to the other hydrologic signatures explored. The flashiness index and wet season flashiness index MAll models 325 

improved by 4.28% and 9.97%, respectively, in explanatory power and associated decreases in the RMSE, relative to 326 

MClimate, or when landscape and water variables were added for consideration (Table 5). Variability in the flashiness 327 

signature was best explained by the temperature CV, annual minimum depth to the water table, slope, and amount of 328 

semi-permanent-permanent inundation within the floodplain. The wet season flashiness MAll, model selected similar 329 

variables, but the amount of semi-permanent-permanent floodplain inundation had the greatest variable importance 330 

(Table 6; Fig. 4a). Improvement in model predictions, both across the year as well as in the wet season (Fig. 5a), were 331 

explained in part by more semi-permanently to permanently inundated water in the floodplain. 332 

3.3 Peak flow signatures 333 

Peak flow signature values, MAX30/area and (Q10-Q95)/area, were highest, on average, within the Gulf 334 

Coast watersheds, and lower, on average, within the Southwest, North Central, and West watersheds, although both 335 

signatures saw a higher degree of variability across the West region (Table A3, Fig. 3). The two signatures were 336 

positively correlated (R = 0.93, p<0.01). In relation to the independent variables considered, both signatures, 337 

MAX30/area and (Q10-Q95)/area, were most highly positively correlated with precipitation and water demand (P-338 

ET), and negatively correlated with aridity (ET/P) (Table 4). The MAX30/area and (Q10-Q95)/area were also 339 

significantly correlated with 4 and 3 remotely sensed inundation variables, respectively. An example of the Spearman 340 

rank correlation of (Q10-Q95)/area in relation to seasonally inundated area in the floodplain (R=0.69, p<0.01) is shown 341 

in Fig. 4b. The high flow signatures had a positive, significant (p<0.01) correlation with the total amount of inundation 342 

within the floodplain, the amount of seasonal inundation in the floodplain, and the amount of temporary inundation 343 

outside of the floodplain (Table 4). These correlation values were equivalent to or exceeded correlation with existing 344 

water variables, specifically the 100-year floodplain (Table 4). The MClimate and MAll models for both signatures were 345 

best explained by annual precipitation, followed by the aridity index (ET/P) or water demand (P-ET) (Table 6). Despite 346 

the high explanatory power of climate variables for both high flow signatures, the MAll models improved by 2.73% 347 

and 6.31%, relative to the MClimate models, for MAX30/area and (Q10-Q95)/area, respectively. The (Q10-Q95)/area 348 

MAll model added only stream density, while the landscape-based variables for MAX30/area included forest, stream 349 

density, clay fraction, and the amount of temporarily flooded area within the floodplain (Table 6). Greater area 350 
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temporarily flooded within the floodplain was also significantly positively correlated (p<0.01) with the MAX30/area 351 

(Table 4). 352 

3.4 Low flow signatures 353 

The DryMonth/area and baseflow index were highest within the East watersheds, on average, and lowest 354 

within the Southwest watersheds (Table A3, Fig. 3). Watersheds were also regionally variable. For example, 355 

DryMonth/area signature graded west (lower) to east (higher) within the North Central region (Fig. 3), concurrent 356 

with the aridity gradient within the region (Fig. 1). The two low flow signatures had a significant, but weaker 357 

correlation with one another (R = 071, p<0.01). 358 

The DryMonth/area was significantly correlated with many more independent variables than the baseflow 359 

index. Like the peak flow signatures, DryMonth/area was positively correlated with greater annual precipitation and 360 

water demand (P-ET) and negatively correlated with greater aridity (ET/P). The DryMonth/area was also positively 361 

correlated with total inundation within the floodplain, seasonally inundated area within the floodplain, and temporarily 362 

inundated area outside of the floodplain. No significant correlations, in contrast, were found with topographic or 363 

wetland variables (Table 4). The DryMonth/area had the greatest model explanatory power, relative to the other 364 

hydrologic signature models (Table 5). However, despite significant (p<0.01) correlations with remotely sensed 365 

inundation dynamics, there was no model improvement as landscape variables were added between the MClimate and 366 

MAll models (Table 5). The DryMonth/area was best explained by watershed aridity and annual precipitation. Further, 367 

the MClimate model showed significant spatial autocorrelation within the residuals so that a residual autocovariate was 368 

included in the model and had a strong variable importance value (Table 6). This suggests that the DryMonth/area 369 

model would benefit from the addition of an independent variable, not yet identified in the analysis. 370 

The baseflow index was negatively significantly (p<0.01) correlated with precipitation CV, 371 

evapotranspiration, and fraction of clay (Table 4). Adding landscape variables, unlike DryMonth/area, improved the 372 

baseflow index model by 5.43% (Table 5), and improved the relationship between the observed and predicted baseflow 373 

index values (Fig. 5b). While the precipitation CV was the most important variable in both the baseflow index MAll 374 

and MClimate models, the MAll model’s improvement was entirely attributable to the inclusion of the amount of non-375 

floodplain area classified as semi-permanent to permanent (i.e., large wetlands and lakes outside of the floodplain) 376 

(Table 6).   377 
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 378 
Figure 3. Hydrological signature values by watershed including (a) flashiness index, (b) wet season flashiness index, 379 

(c) MAX30/area (m3/sec/km2), (d) (Q10-Q95)/area (m3/sec/km2), (e) DryMonth/area (m3/sec/km2), and (f) baseflow 380 

index.381 
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Table 4. Spearman correlation values between hydrologic signatures and variables. Significance (p<0.01) correlations, 382 

after Bonferroni correction was applied, is shown in shaded gray. CV: coefficient of variation, FP: floodplain, NFP: 383 

non-floodplain, Prop: proportion, MAX: maximum, SP-P: semi-permanent and permanent 384 

Variable 

Type  
Variable 

Flashiness 

Index 

Flashiness 

(wet 

season) 

MAX 

30/area 

(Q10-

Q95)/area 

DryMonth 

/area 

Baseflow 

index 

Climate 

Precipitation (P) 0.06 0.01 0.86 0.87 0.68 0.16 

Evapotranspiration (ET)  0.43 0.32 0.18 0.14 -0.15 -0.47 

Aridity index (ET/P)  -0.03 -0.03 -0.84 -0.87 -0.84 -0.37 

Water demand (P - ET) -0.03 -0.02 0.78 0.83 0.82 0.41 

Precipitation seasonality  0.17 0.26 0.01 -0.04 0.21 0.2 

Precipitation CV 0.34 0.33 -0.26 -0.38 -0.55 -0.62 

Temperature seasonality  -0.29 -0.18 -0.3 -0.28 -0.05 0.24 

Temperature CV -0.4 -0.3 -0.31 -0.28 -0.06 0.3 

Land cover 

Forest -0.14 -0.17 0.28 0.32 0.18 0.15 

Developed 0.22 0.18 0.62 0.6 0.62 0.18 

Cultivated crops  -0.16 -0.13 0.03 0.06 0.3 0.27 

Stream density  0.36 0.29 0.37 0.35 -0.06 -0.33 

Sub-surface 

Clay fraction 0.4 0.37 0.25 0.15 -0.12 -0.44 

Sand fraction -0.23 -0.27 -0.32 -0.26 -0.07 0.16 

Average soil thickness -0.29 -0.3 0.14 0.18 0.32 0.2 

Water table depth 0.12 0.13 -0.54 -0.55 -0.45 -0.09 

Topography 

Slope  0.13 0.13 -0.23 -0.22 -0.27 0 

Elevation range 0.12 0.03 0.24 0.24 0.14 -0.04 

Topographic diversity  0.11 0.11 -0.17 -0.15 -0.2 0.04 

Inundation 

Dynamics 

Temporarily flooded, FP 0.27 0.23 0.42 0.40 0.24 -0.05 

Temporarily inundated, NFP -0.06 -0.03 0.49 0.51 0.58 0.30 

Seasonally inundated, FP -0.12 -0.15 0.66 0.69 0.59 0.15 

Seasonally inundated, NFP -0.21 -0.19 0.36 0.37 0.39 0.14 

SP-P inundated, FP -0.44 -0.46 0.24 0.33 0.33 0.14 

SP-P, inundated, NFP -0.34 -0.32 0.13 0.11 0.13 0.04 

Total inundation, FP -0.12 -0.15 0.60 0.63 0.52 0.12 

Total inundation, NFP -0.19 -0.17 0.37 0.37 0.41 0.17 

Wetland 

Geographically Isolated Wetlands (GIW) -0.31 -0.29 0.07 0.08 0.13 0.04 

Prop. of wetland area identified as GIW -0.08 -0.05 0.08 0.03 0.06 0.01 

Floodplain -0.02 -0.07 0.49 0.51 0.39 0 

National Wetland Inventory wetlands -0.44 -0.44 0.12 0.19 0.28 0.19 

 385 

386 
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Table 5. Model statistics for each hydrologic signature and version of the model including (1) climate variables only 387 

(MClimate) and (2) all variables including wetland and surface water variables (MAll). LOOCV: leave-one-out cross 388 

validation, RMSE: root mean square error, AC: autocovariate, adj: adjusted, MAX: maximum 389 

Signature Model 
R2 

(LOOCV) 

R2 adj. 

(LOOCV) 

RMSE 

LOOCV) 

Change in 

adj. R2 from 

MClimate to 

MAll (%) 

Trees 

Max. 

tree 

depth 

Residual 

AC 

included 

Variables 

selected 

Flashiness index 
MClimate 0.501 0.474 0.254  700 4  3 

MAll 0.545 0.494 0.242 4.28 500 4 x 6 

Flashiness index 

(wet season) 

MClimate 0.435 0.394 0.283  700 4  4 

MAll 0.482 0.434 0.271 9.97 700 4 x 5 

MAX30/area 
MClimate 0.666 0.648 0.463  700 4  2 

MAll 0.699 0.665 0.439 2.73 700 4  6 

(Q10-Q95)/area 
MClimate 0.753 0.730 0.007  500 3 x 5 

MAll 0.795 0.777 0.006 6.31 1000 4  5 

DryMonth/area 
MClimate 0.838 0.820 0.001  700 4 x 6 

MAll 0.838 0.820 0.001 0.00 700 4 x 6 

Baseflow index 
MClimate 0.576 0.545 0.118  1000 4  4 

MAll 0.603 0.574 0.114 5.43 1000 4   4 

 390 
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Table 6. Variable permutation importance of variables selected for MClimate: model in which only climate variables 391 

were considered, and MAll: all variables were considered, CV: coefficient of variation, min.: minimum, FP: floodplain, 392 

NFP: non-floodplain, Q1, Q2, Q3, Q4: quartile, MAX: maximum, SP and P: semi-permanent and permanent 393 

Variable 

Type 
Variable 

Flashiness index 
Flashiness index 

(wet season) 
MAX30/area (Q10-Q95)/area DryMonth/area Baseflow index 

MClimate MAll MClimate MAll MClimate MAll MClimate MAll MClimate MAll MClimate MAll 

Climate 

Precipitation 

(P) 
  0.22  0.65 0.36 0.38 0.4 0.15 0.15 0.12  

Evapo-
transpiration 

(ET) 

0.38  0.35  0.35    0.06 0.06 0.28 0.26 

Aridity index 
(ET/P) 

     0.32 0.31  0.28 0.28   

Water demand 

(P - ET) 
0.35  0.22     0.33     

Precipitation 

seasonality  
0.27  0.21    0.09 0.09 0.06 0.06 0.18 0.15 

Precipitation 

coefficient of 

variation  

        0.11 0.11 0.42 0.39 

Temperature 

coefficient of 
variation  

  0.27   0.27     0.06 0.08         

Landcover 

Forest        0.08         

Developed               

Stream density            0.13   0.11         

Sub-surface 

Clay fraction      0.06       

Sand fraction  0.12           

Annual 

minimum depth 
to water table  

 0.25  0.27         

Topography Slope   0.12   0.16                 

Inundation 
Dynamics 

SP and P 

inundated, FP 
 0.24  0.3         

SP and P 
inundated, NFP 

           0.2 

Temporarily 

flooded, FP  
          0.06             

Other 
Residual 
autocovariate  

  0   0     0.16   0.33 0.33     

 
Color Legend: Q1 (0-25%) Q2 (26-50%) Q3 (51-75%) Q4 (76-100%) 

 

   
 394 

 395 

 396 

 397 

  398 
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 399 

 400 
Figure 4. Scatter plot of (a) wet season flashiness versus the percent of semi-permanent and permanent floodplain 401 

(FP) inundation, which was included in the MAll, and (b) (Q10-Q95)/area in relation to the percent of seasonally 402 

inundated. To match the Spearman correlation analysis, both variables in panel b were converted to rank. FP: 403 

floodplain  404 

 405 

 406 

Figure 5. Scatter plots showing observed versus predicted with the Mclimate and Mall models for (a) flashiness (wet 407 

season, unitless) and (b) baseflow index (unitless).   408 
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4. Discussion 409 

4.1 Role of climate  410 

Climate variables often provide the highest predictive power for many hydrologic signatures (Beck et al., 411 

2015; McMillan et al., 2021). Similarly, in our analysis, climate variables showed the greatest variable importance 412 

within most of the models, especially in the high flow and low flow hydrologic signature models. The climate variables 413 

selected in the random forest models were generally consistent with variables in other studies exploring processes 414 

underlying hydrological signatures. Processes generating high discharge and flooding are variable across the United 415 

States (Berghujs et al., 2016), but rainfall and snowmelt (Jiang et al., 2022), as well as aridity (Sauqet et al., 2021), 416 

have been found to account for most peaks in discharge. Similarly, in our effort, annual precipitation, followed by 417 

aridity or water demand, had the greatest variable importance in predicting both seasonal peaks in discharge (i.e, 418 

MAX30/area) as well as the difference between baseflow and high flow conditions (i.e., (Q10-Q95)/area). For the low 419 

flow signatures, annual evapotranspiration was selected for both DryMonth/area and the baseflow index, and the 420 

baseflow index was negatively significantly correlated with annual evapotranspiration, a finding consistent with Beck 421 

et al. (2013) and van Dijk (2010). Several studies have also related low flow metrics to precipitation (e.g., Small, 2006, 422 

Kelly and White, 2016). Consistent with this finding, for both the MClimate and MAll baseflow index models, 423 

precipitation variability was an important variable.  424 

4.2 Role of surface water inundation  425 

There are still opportunities to incorporate new watershed descriptors that may improve the characterization 426 

of flow signatures (Gnann et al., 2020). Specifically, McMillan et al. (2021) argued that novel relationships may be 427 

discovered where hydrology is more important than climate. For example, flood signatures have been predicted using 428 

watershed drainage patterns (Oppel & Schumann, 2020), and surface waterbodies have been found to help predict 429 

baseflow signatures (Beck et al., 2013). More generally, the influence of a watershed’s landscape, including vegetation 430 

type (Trancoso et al., 2016; Addor et al., 2018), topography (Beck et al., 2015, and geology (Kuentz et al., 2017), on 431 

discharge has been well established. Therefore, it was unsurprising that in our analysis most of the hydrologic 432 

signatures, five of the six, showed an improvement in the model explanatory power, relative to using climate variables 433 

alone. However, novel to this study was that model improvement for four of the six hydrologic signatures–flashiness, 434 

wet season flashiness, MAX30/area, and the baseflow index–was attributable, at least in part, to the inclusion of a 435 

remotely sensed inundation dynamic variable. Model selection of remotely sensed inundation dynamic variables over 436 

existing wetland and floodplain dataset variables suggests that consideration of surface water hydroperiod, alongside 437 

landscape position, was more helpful in explaining these hydrologic signatures then static datasets representing the 438 

spatial extent of wetlands (e.g., NWI, GIW) and floodplains (e.g., 100-year floodplain). Additionally, five of the six 439 

hydrologic signatures were significantly correlated with one or more of the remotely sensed inundation dynamic 440 

variables. Although we acknowledge that the results could be influenced by watershed selection, watershed size, and 441 

hydrologic signatures included in the analysis (McMillan et al., 2021), an improved understanding of the potential 442 

influence of surface water storage, such as wetlands, on stream behavior can help support watershed management and 443 

guide surface water storage restoration efforts across landscapes (Walters and Babbar-Sebens, 2016).  444 
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 While it is evident that lakes and wetlands can store and contribute water to river networks (Fritz et al., 2018; 445 

Lane et al., 2018), it is less clear if surface water storage across multiple watersheds and regions has a measurable 446 

impact on river discharge dynamics. In our analysis, we found that although baseflow was significantly correlated 447 

with very few independent variables, the improvement in the baseflow index model from MClimate to MAll was entirely 448 

attributable to the addition of the semi-permanent to permanent non-floodplain inundation variable. This finding 449 

suggests that baseflow may be influenced by wetlands and lakes that persist during dry seasons and years and are 450 

external to the floodplain. Similarly, previous research within select watersheds has found that wetlands stabilize low 451 

flow conditions (McLaughlin et al., 2014; Ameli and Creed, 2017; Blanchette et al., 2019). Geographically isolated 452 

wetlands, specifically, can contribute to baseflow (Evenson et al., 2015) and contribute water to as well as from 453 

shallow groundwater, like a sponge (McLaughlin et al., 2014; Yeo et al., 2019).  454 

 Surface water inundation variables also helped explain the flashiness signatures. Flashiness signatures 455 

represent streamflow response to high rainfall and snowmelt events, where streams that rise and fall quickly are 456 

considered flashier than those that maintain a steadier flow (Hannaford and March, 2008). Both flashiness signatures 457 

were inversely and significantly related to semi-permanent to permanent inundation within the floodplain, i.e., the 458 

locations of large wetlands and lakes continuous with, adjacent to, or near the stream network. Semi-permanent to 459 

permanent inundation within the floodplain was also selected by both MAll models and had the greatest variable 460 

importance of all selected variables for the wet season flashiness MAll model. While non-floodplain wetlands decrease 461 

streamflow variability (Yeo et al., 2019) and reduce flashiness (McLaughlin et al., 2014) in select watersheds, our 462 

analysis suggests that floodplains may also provide inundation storage important to stabilizing flow, a finding that 463 

confirms an abundance of prior research (Fritz et al., 2018; Wohl, 2022), and supports resilience against watershed-464 

scale hydrological disturbances (Lane et al., 2023). The importance of variables that tend to be correlated with patterns 465 

of inundation has been previously documented, such as topography which has been found to control flashiness in 466 

streams across Europe (Kuentz et al., 2017), and soil moisture, which has been found to be helpful in explaining flood 467 

generation (Berghuijs et al., 2016) and the runoff coefficient (Trancoso et al., 2016). Yet, our flashiness findings were 468 

novel as most high flow signatures have not yet explicitly tested inundation- related, observation-based variables. 469 

4.3 Challenges and limitations 470 

Even when incorporating novel, remotely sensed inundation data, characterizing the potential influence of 471 

surface water storage on river discharge is challenging (Golden et al., 2021). In our analyses, river discharge and 472 

surface water extent were significantly related to climate variables, including like precipitation (+), evapotranspiration 473 

(-), and aridity (-) (Song et al., 2018; Tulbure and Broich, 2019; Xia et al., 2019). Therefore, a correlation between 474 

surface water extent and river discharge may not necessarily be indicative of an interaction or influence and may 475 

simply suggest they are driven by the same climate forcing functions. For instance, in our analysis, watersheds with 476 

large seasonal peaks in discharge, MAX30/area and (Q10-Q95)/area, also tended to co-occur, or be significantly 477 

correlated with, watersheds that contained more floodplain and greater temporary and seasonal inundation. Yet, it is 478 

still unclear if the seasonal flooding acts to reduce or otherwise impact the peak discharge amount. Process-based 479 

hydrologic models can therefore potentially be used to complement statistical analyses and to help distinguish between 480 
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correlation and causality. For example, large wetlands have been shown to reduce storm-induced discharge peaks 481 

using a semi-distributed process-based watershed model (SWAT; Evenson et al., 2018). Further, discharge simulations 482 

for 96 watersheds across the globe demonstrated that surface water storage in wetlands reduced peak flows (Stacke 483 

and Hagemann, 2012). However, process-based hydrologic models are typically developed for a single or series of 484 

nested watersheds (Jones et al., 2019), limiting our ability to compare geographically disparate watersheds. 485 

Hydrological signatures, conversely, can facilitate the rapid comparison of many different, diverse watersheds. 486 

A related challenge is deciphering the relative importance of environmental variables when they are highly 487 

correlated with another. Temporal variability in surface water extent, for instance, is a function of climate inputs, 488 

topography, and sub-surface characteristics (Heimhuber al., 2016; Hayashi et al., 2016; Vanderhoof et al., 2018), 489 

making it difficult to clearly identify the influence of wetland and surface water inundation variables from other 490 

landscape variables. For example, in our study, slope was highly correlated (Spearman R>0.7) with seasonal, semi-491 

permanent to permanent and total non-floodplain inundation variables, and the amount of temporary and seasonal 492 

non-floodplain inundation variables were significantly correlated with watershed aridity and water demand (Table 493 

A4). Therefore, while a forward selection process, guided by reduction in the RMSE, was used to select model 494 

variables, there could be some uncertainty in the model selection of one variable over another. In other cases, 495 

correlations between the inundation dynamic variables and previously available datasets can provide insights on the 496 

potential value-add of new independent variables. For example, while the NWI wetland dataset had a high correlation 497 

with semi-permanent and permanent inundation (R=0.86 and R=0.81, for floodplain and non-floodplain, respectively), 498 

weaker correlations were observed with temporary and seasonal patterns of inundation (Table A4). Additionally, while 499 

surface water extent was used to represent surface water storage, the two are distinct measurements, and in the future, 500 

conversion of surface water (2D) to storage (3D) will facilitate improved modeling of total water distribution. 501 

4.4 Management implications 502 

Hydrologic signatures have been used to support watershed management. For example, signatures related to 503 

flow magnitude, high flow frequency and flow variability have applications for flood management (Mogollon et al., 504 

2016), wildlife habitat condition (Lowe et al., 2019), and riparian vegetation (Richter et al., 1996). Further, changes 505 

in hydrologic signatures over time have been used to examine the impacts of management actions or to assess a 506 

watershed’s vulnerability or resilience to change (Hannaford and Marsh, 2008; Mogollon et al., 2016; McMillan et 507 

al., 2021; Lane et al., 2023).  508 

Applying results linking different watershed characteristics (e.g., climate, land use, geology) to hydrologic 509 

signature variability can therefore help inform future watershed management actions. However, a challenge is how to 510 

synthesize this information in a useful way (Gnann et al., 2020). One approach would be to focus on managing 511 

watershed characteristics that are highly correlated with a pre-determined flow signature target (e.g., those associated 512 

with flood risks). For example, in our analyses, the association of greater semi-permanent and permanent floodplain 513 

inundation with less flashiness suggests that protection and restoration of floodplains may be particularly important 514 

in watersheds with flashy discharge. On the other hand, we found that non-floodplain surface water inundation helped 515 

explain the variability in the baseflow index, which describes the proportion of flow coming from groundwater, and 516 
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by inference the relative potential vulnerabilities for drought and extreme low flow conditions. Results from our 517 

analyses–and other future analyses leveraging large satellite-based data sets against streamflow records–can therefore 518 

advance our ability to support improved watershed management, e.g., in the face of future floods and drought 519 

(Winsemius et al., 2016; Stewart et al., 2020). 520 

5. Conclusion 521 

Here we demonstrate that in addition to the insights hydrologic signatures provide about process-based 522 

streamflow dynamics (Addor et al., 2018; McMillian, 2019), they can also be used to assess the potential influence of 523 

surface water inundation dynamics on river discharge. While climate variables represented the dominant explanatory 524 

variables, additional variables, in particular the novel, remotely sensed inundation dynamics, also contributed to 525 

explaining variability in many of the hydrologic signatures. Five of the six flow signatures, or all except the baseflow 526 

index, were significantly correlated with surface water inundation dynamic variables, and four of the six signature 527 

models that included all variables included surface water inundation dynamics as significant variables. Our models 528 

suggest that increased floodplain inundation co-occurs with decreased streamflow flashiness and higher peak flows. 529 

These results highlight the importance of protecting and restoring surface water storage capacities within floodplains. 530 

Additionally, our model results suggest that protection and restoration of non-floodplain wetlands could potentially 531 

benefit baseflow conditions–and thereby minimize or moderate drought and low flow extremes. The study further 532 

underscores that managing risks and watershed resilience associated with high and low flow river conditions may 533 

require consideration of watershed-wide surface water storage dynamics.  534 
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Appendix 769 

Table A1. The 72 U.S. Geological survey gages and watersheds included in the analysis. The 2016-2023 period is 770 

shown relative to the Palmer Drought Severity Index (PDSI, 1980-2021). NHD: National hydrographic dataset, NWI: 771 

National Wetland Inventory. CC: cultivated crops, DF: deciduous forest, D: developed, HP: hay/pasture, EF: 772 

evergreen forest, WW: woody wetlands, MF: mixed forest, SS: shrub/scrub, H: herbaceous  773 

Gage ID  
Site 

ID  

U.S. 

State(s)  

Area 

(km2) 

NHD 

Density        

(m km2) 

NWI 

(% 

area) 

PDSI 

(min, 

%)  

PDSI 

(max, 

%)  

PDSI 

(median, 

%)  

Primary land cover  

01491000  MD1  MD, DE  292 2030.7 28.6 32.6 100.0 66.5 CC (47%)  

01578475  MD2  MD, PA  458 1069.2 2.6 6.1 100.0 72.4 CC (43%)  

01580520  MD3  MD, PA  425 1130.1 2.1 8.9 100.0 67.4 DF (30%)  

01594440  MD4  MD  907 1571.9 6.4 16.7 100.0 64.4 D (36%)  

01643000  MD5  MD, PA  2112 1394.3 3.0 4.2 100.0 57.5 HP (27%)  

02049500  VA1  VA  1583 1497.8 15.7 33.0 100.0 79.3 EF (29%)  

02131500  SC1  SC, NC  1720 1451.6 10.3 18.3 100.0 53.7 EF (26%)  

02135000  SC2  SC, NC  7256 1628.6 27.2 8.5 100.0 78.0 WW (31%), CC (31%)  

02136000  SC3  SC  3211 1738.0 27.0 17.6 100.0 75.2 CC (32%), WW (31%)  

02175000  SC4  SC  7077 1163.0 17.3 27.1 98.0 75.5 EF (25%), WW (24%)  

02198000  GA1  GA  1676 1365.2 12.0 19.4 96.6 61.1 EF (26%)  

02202500  GA2  GA  6887 1249.8 16.8 21.1 97.7 60.2 EF (26%)  

05056000  ND1  ND  4862 283.9 10.6 1.2 100.0 56.3 CC (52%)  

05057200  ND2  ND  1897 259.2 11.6 0.0 100.0 65.0 CC (67%)  

05062500  MN1  MN  2407 745.9 23.9 3.4 100.0 58.6 CC (39%)  

05066500  ND3  ND  3218 774.1 6.9 0.3 100.0 63.4 CC (81%)  

05078500  MN2  MN  3518 862.3 23.5 1.2 100.0 54.5 CC (48%)  

05090000  ND4  ND  1742 1068.9 3.7 1.5 100.0 51.0 CC (73%)  

05123400  ND5  ND  3206 515.6 12.2 1.0 97.8 48.8 CC (48%)  

05131500  MN3  MN  4384 608.9 42.4 4.5 100.0 84.4 WW (49%)  

05132000  MN4  MN  3895 537.3 48.7 5.6 100.0 71.1 WW (49%)  

05244000  MN5  MN  2683 471.2 23.8 0.9 100.0 52.3 DF (27%)  

05300000  MN6  MN, SD  2468 1286.4 11.5 11.6 100.0 66.6 CC (68%)  

05304500  MN7  MN  4899 733.6 17.0 4.8 100.0 62.5 CC (66%)  

05313500  MN8  MN, SD  1801 1129.0 8.8 8.5 100.0 58.8 CC (80%)  

05336700  MN9  MN  2252 676.5 34.1 17.0 100.0 87.8 WW (34%)  

05388250  IA1  IA, MN  2010 1548.4 2.7 9.2 100.0 76.1 CC (61%)  

05412500  IA2  IA  3858 1414.9 2.4 6.9 100.0 81.6 CC (66%)  

05418500  IA3  IA  4019 1452.5 2.1 6.3 100.0 70.8 CC (69%)  

05422000  IA4  IA, MN  6049 1248.5 4.6 5.9 99.7 70.2 CC (79%)  

05434500  WI1  WI, IL  2677 1618.6 3.0 5.1 100.0 71.9 CC (44%)  

05447500  IL1  IL  2576 1115.6 1.9 20.7 100.0 74.9 CC (85%)  

06018500  MT1  MT  9373 1628.9 3.9 0.3 89.3 50.9 SS (47%)  

06052500  MT2  MT, WY  4634 1376.2 2.9 1.2 97.4 61.8 EF (47%)  

06076690  MT3  MT  2189 1695.3 4.3 1.4 98.1 62.7 H (35%)  

06468170  ND6  ND  2809 302.6 7.4 1.0 100.0 66.3 CC (67%)  

06471200  ND7  ND, SD  1869 627.2 11.2 1.2 100.0 70.8 CC (62%)  

06479525  SD1  SD  2467 947.8 9.8 19.3 100.0 67.4 CC (59%)  

06481500  SD2  SD  1604 1102.0 8.7 8.8 100.0 62.0 CC (72%)  

06815000  NE1  NE, KS  3473 1688.2 1.8 4.1 99.2 52.8 CC (54%)  

06821190  MO1  MO, IA  6179 1925.6 4.8 11.3 99.0 56.6 CC (50%)  

06908000  MO2  MO  2895 1737.9 4.2 3.5 90.4 51.9 HP (38%)  

06916600  KS2  KS, MO  8387 1685.9 3.8 12.3 100.0 57.5 HP (37%)  

06918060  MO3  MO, KS  2773 1669.2 5.4 4.7 100.0 57.0 HP (56%)  
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Gage ID  
Site 

ID  

U.S. 

State(s)  

Area 

(km2) 

NHD 

Density        

(m km2) 

NWI 

(% 

area) 

PDSI 

(min, 

%)  

PDSI 

(max, 

%)  

PDSI 

(median, 

%)  

Primary land cover  

06928000  MO4  MO  3275 1538.7 1.8 12.8 100.0 79.9 DF (45%), HP (43%)  

07047950  AR1  AR  1985 1864.2 12.5 20.2 100.0 82.5 CC (73%)  

07169500  KS3  KS  2098 1781.3 2.9 4.9 100.0 62.0 H (595)  

07288500  MS1  MS  2009 1809.9 9.8 7.1 97.9 55.9 CCs (82%)  

07290000  MS2  MS  7124 2565.5 10.0 13.3 100.0 74.8 EF (19%), MF (19%)  

07346070  TX1  TX  1809 2010.3 9.3 6.5 100.0 70.4 HP (27%)  

07363500  AR2  AR  5429 1762.5 3.0 28.8 99.1 83.0 EF (40%)  

07364200  LA1  AR, LA  3138 1507.9 14.6 22.8 100.0 79.5 CC (31%)  

08033500  TX2  TX  9406 1712.0 8.0 3.2 99.9 64.9 EF (29%)  

08068090  TX4  TX  2539 1695.0 9.9 10.9 100.0 71.4 EF (32%)  

08110000  TX5  TX  2616 1630.0 4.8 8.9 100.0 73.8 HP (55%)  

08117500  TX6  TX  1869 1085.4 5.6 6.4 98.6 64.8 HP (43%)  

08164000  TX7  TX  2124 1435.4 2.1 8.8 94.1 52.3 HP (59%)  

09439000  AZ1  AZ, NM  9279 1679.3 1.2 1.2 98.1 40.2 SS (45%)  

09485700  AZ2  AZ  2238 2347.0 2.1 0.0 95.4 48.3 SS (64%)  

09487000  AZ3  AZ  2028 3229.6 2.3 0.0 87.7 42.4 SS (79%)  

09512800  AZ4  AZ  2876 1639.6 1.3 0.1 88.1 47.1 SS (68%)  

09517000  AZ5  AZ  3967 1664.7 1.7 0.2 90.8 50.6 SS (81%)  

09537500  AZ6  AZ  2912 1392.5 1.1 0.0 96.6 46.0 SS (67%)  

11348500  CA1  CA  3884 1469.4 8.0 0.0 84.1 55.6 SS (50%)  

11376000  CA2  CA  2313 2450.2 1.9 0.0 89.1 29.9 SS (56%)  

11473900  CA3  CA  1925 4181.6 1.2 0.0 88.2 35.5 EF (45%)  

11501000  OR1  OR  4121 1028.4 8.2 0.0 83.3 43.4 EF (55%)  

11517500  CA4  CA  2047 1495.8 5.6 0.0 94.6 17.6 EF (37%)  

11519500  CA5  CA  1714 2381.7 3.8 0.0 97.6 26.3 EF (46%)  

12324680  MT4  MT  4590 1287.2 3.5 1.4 97.7 46.4 EF (45%)  

13302005  ID1  ID  2143 1615.5 1.2 0.5 97.8 51.2 SS (76%)  

13305000  ID2  ID  2412 1443.0 1.3 0.5 93.6 48.6 SS (59%)  

All 

(median) 
~ ~ 2647 1461.0 5.6 5.0 100.0 62.0 ~ 

  774 
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Table A2. Thresholds selected from 5-year Sentinel-1 (S1) and Sentinel-2 (S2) based surface water percentiles to 775 

account for variable accuracy between sites, sensors, and classes (open water (OW) compared to vegetated water 776 

(VW). ~ indicates that this output was excluded from the allowable water mask. 777 

Site 

ID 

S1 

OW 

(%) 

S1 

VW 

(%) 

S2 

OW 

(%) 

S2 

VW 

(%) 

Site 

ID 

S1 

OW 

(%) 

S1 

VW 

(%) 

S2 

OW 

(%) 

S2 

VW 

(%) 

AR1 15 30 15 30 MN7 10 35 5 25 

AR2 5 20 10 25 MN8 10 25 5 15 

AZ1 10 5 15 10 MN9 5 25 5 25 

AZ2 5 15 10 15 MO1 10 20 10 20 

AZ3 5 10 10 15 MO2 5 15 15 25 

AZ4 5 20 15 20 MO3 5 30 10 30 

AZ5 5 20 20 15 MO4 10 15 10 35 

AZ6 10 15 10 ~ MS1 10 30 10 35 

CA1 5 15 10 20 MS2 5 10 5 30 

CA2 10 10 15 15 MT1 25 ~ 10 30 

CA3 10 ~ 15 15 MT2 25 ~ 15 40 

CA4 10 15 20 20 MT3 30 ~ 10 40 

CA5 10 10 20 15 MT4 30 ~ 10 30 

GA1 5 5 5 20 ND1 15 20 5 10 

GA2 5 10 10 15 ND2 20 20 10 20 

IA1 ~ 15 10 15 ND3 15 ~ 5 20 

IA2 ~ 10 10 20 ND4 15 35 5 30 

IA3 10 10 10 20 ND5 20 30 5 25 

IA4 10 20 10 20 ND6 15 30 5 25 

ID1 30 ~ 15 35 ND7 20 30 5 20 

ID2 30 ~ 20 35 NE1 15 15 10 20 

IL1 10 30 10 15 OR1 10 20 25 25 

KS2 10 20 10 30 SC1 5 20 10 35 

KS3 ~ 15 10 20 SC2 5 25 5 25 

LA1 10 25 15 35 SC3 5 30 5 30 

MD1 5 ~ 10 20 SC4 5 30 10 35 

MD2 5 15 10 20 SD1 10 25 5 25 

MD3 5 10 10 15 SD2 15 25 5 25 

MD4 5 10 10 15 TX1 5 10 10 30 

MD5 10 30 15 ~ TX2 5 30 10 35 

MN1 15 20 5 20 TX4 5 30 10 35 

MN2 10 20 5 30 TX5 5 20 10 ~ 

MN3 10 30 10 30 TX6 10 ~ 10 35 

MN4 5 30 5 30 TX7 5 35 10 30 

MN5 10 30 5 25 VA1 5 30 10 45 

MN6 15 25 5 20 WI1 ~ 15 10 20 

  778 
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Table A3. Hydrologic signatures by watershed. The blue to red shading reflects the high to low values for each 779 

signature. The bold values indicate the average values for the watersheds within each region. 780 

Region ID Gage 
Flashiness 

Index 

Flashiness 

index 

(wet 

season) 

MAX30 

/area 

(Q10-

Q95)/area 

Dry 

Month 

/area 

Baseflow 

index 

East 

East -0.74 -0.78 1.37 0.023 0.0065 0.38 

MD1 01491000 -0.48 -0.45 2.16 0.034 0.0072 0.28 

MD2 01578475 -0.44 -0.43 1.52 0.024 0.0105 0.55 

MD3 01580520 -0.52 -0.64 1.45 0.024 0.0112 0.54 

MD4 01594440 -0.43 -0.42 1.38 0.021 0.0089 0.49 

MD5 01643000 -0.35 -0.40 1.98 0.028 0.0058 0.24 

VA1 02049500 -0.87 -1.01 1.27 0.028 0.0060 0.36 

SC1 02131500 -0.66 -0.64 1.29 0.022 0.0059 0.39 

SC2 02135000 -1.05 -1.07 1.55 0.025 0.0055 0.35 

SC3 02136000 -0.91 -1.04 1.22 0.023 0.0039 0.28 

SC4 02175000 -1.13 -1.20 0.89 0.017 0.0055 0.44 

GA1 02198000 -0.90 -0.95 0.86 0.016 0.0043 0.37 

GA2 02202500 -1.09 -1.17 0.92 0.017 0.0030 0.24 

Gulf 

Coast 

Gulf Coast -0.79 -0.83 1.88 0.032 0.0026 0.09 

AR1 07047950 -0.99 -1.01 3.48 0.050 0.0057 0.18 

MS1 07288500 -0.79 -0.90 2.23 0.056 0.0035 0.04 

MS2 07290000 -0.85 -0.93 2.22 0.046 0.0030 0.10 

TX1 07346070 -0.74 -0.71 1.64 0.025 0.0006 0.02 

AR2 07363500 -0.82 -0.86 2.46 0.050 0.0024 0.05 

LA1 07364200 -1.45 -1.58 1.37 0.044 0.0030 0.16 

TX2 08033500 -0.94 -1.01 1.19 0.024 0.0027 0.08 

TX4 08068090 -0.35 -0.31 2.30 0.016 0.0022 0.09 

TX5 08110000 -1.00 -1.02 0.54 0.020 0.0024 0.08 

TX6 08117500 -0.51 -0.59 2.10 0.021 0.0019 0.08 

TX7 08164000 -0.21 -0.23 1.13 0.003 0.0010 0.07 

Midwest 

Midwest -0.62 -0.60 1.43 0.021 0.0042 0.28 

IA1 05388250 -0.78 -0.68 1.51 0.025 0.0083 0.47 

IA2 05412500 -0.73 -0.62 1.53 0.024 0.0066 0.37 

IA3 05418500 -0.80 -0.69 1.11 0.016 0.0077 0.59 

IA4 05422000 -0.99 -1.06 1.14 0.023 0.0060 0.41 

WI1 05434500 -1.12 -1.01 0.96 0.014 0.0094 0.70 

IL1 05447500 -0.79 -0.78 1.03 0.018 0.0055 0.38 

NE1 06815000 -0.25 -0.21 0.96 0.007 0.0013 0.24 

MO1 06821190 -0.52 -0.55 1.14 0.016 0.0018 0.19 

MO2 06908000 -0.40 -0.44 1.61 0.022 0.0010 0.05 

KS2 06916600 -0.55 -0.60 1.48 0.023 0.0013 0.09 

MO3 06918060 -0.39 -0.45 2.13 0.030 0.0020 0.06 

MO4 06928000 -0.38 -0.34 2.24 0.026 0.0024 0.10 

KS3 07169500 -0.42 -0.36 1.69 0.032 0.0015 0.06 

North-

Central 

North-Central -0.93 -0.93 0.52 0.008 0.0016 0.19 

ND1 05056000 -1.04 -0.98 0.11 0.002 0.0005 0.08 

ND2 05057200 -0.83 -0.88 0.21 0.004 0.0004 0.07 

MN1 05062500 -0.94 -0.92 0.48 0.007 0.0014 0.24 

ND3 05066500 -0.76 -0.79 0.54 0.006 0.0007 0.09 

MN2 05078500 -0.81 -0.77 0.54 0.006 0.0011 0.23 

ND4 05090000 -0.78 -0.82 0.34 0.004 0.0004 0.05 

ND5 05123400 -1.09 -1.11 0.10 0.002 0.0001 0.06 
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Region ID Gage 
Flashiness 

Index 

Flashiness 

index 

(wet 

season) 

MAX30 

/area 

(Q10-

Q95)/area 

Dry 

Month 

/area 

Baseflow 

index 

MN3 05131500 -0.90 -0.86 1.15 0.018 0.0028 0.19 

MN4 05132000 -1.01 -0.95 0.77 0.013 0.0020 0.27 

MN5 05244000 -1.45 -1.46 0.31 0.006 0.0038 0.68 

MN6 05300000 -0.99 -0.96 0.65 0.011 0.0019 0.21 

MN7 05304500 -1.16 -1.14 0.46 0.010 0.0029 0.34 

MN8 05313500 -0.90 -0.89 0.83 0.015 0.0025 0.18 

MN9 05336700 -0.77 -0.78 1.69 0.027 0.0055 0.25 

ND6 06468170 -0.93 -0.93 0.18 0.003 0.0001 0.04 

ND7 06471200 -0.68 -0.64 0.24 0.002 0.0002 0.09 

SD1 06479525 -1.00 -1.09 0.23 0.005 0.0010 0.22 

SD2 06481500 -0.73 -0.73 0.48 0.009 0.0016 0.18 

Southwest 

Southwest -0.12 -0.16 0.06 <0.001 <0.0001 0.01 

AZ1 09439000 -0.61 -0.83 0.09 0.001 0.0000 0.03 

AZ2 09485700 0.07 0.12 0.08 0.000 0.0000 0.00 

AZ3 09487000 0.23 0.23 0.01 0.000 0.0000 0.00 

AZ4 09512800 -0.08 -0.09 0.16 0.001 0.0000 0.00 

AZ5 09517000 -0.30 -0.34 0.02 0.000 0.0001 0.05 

AZ6 09537500 -0.02 -0.03 0.01 0.000 0.0000 0.00 

West 

West -1.03 -1.09 0.67 0.012 0.0009 0.26 

MT1 06018500 -1.23 -1.41 0.04 0.001 0.0004 0.44 

MT2 06052500 -1.18 -1.06 0.69 0.013 0.0022 0.32 

MT3 06076690 -1.04 -1.01 0.18 0.004 0.0007 0.32 

CA1 11348500 -0.70 -0.77 0.22 0.004 0.0001 0.02 

CA2 11376000 -0.51 -0.69 1.62 0.023 0.0006 0.06 

CA3 11473900 -0.51 -0.69 3.31 0.051 0.0003 0.01 

OR1 11501000 -1.25 -1.24 0.31 0.005 0.0011 0.35 

CA4 11517500 -1.13 -1.27 0.14 0.003 0.0005 0.21 

CA5 11519500 -0.82 -0.95 0.92 0.023 0.0003 0.03 

MT4 12324680 -1.16 -1.07 0.33 0.006 0.0015 0.38 

ID1 13302005 -1.63 -1.89 0.12 0.002 0.0019 0.61 

ID2 13305000 -1.22 -1.08 0.20 0.003 0.0012 0.40 

 781 

 782 
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Table A4. Spearman correlation values between remotely sensed surface water variables and other independent 783 

variables. Significant (p<0.01) correlations, after Bonferroni correction has been applied, are shown shaded in gray. 784 

CV: coefficient of variation, FP: floodplain, NFP: non-floodplain, temp: temporarily, inun: inundation, 785 

Geographically Isolated Wetlands: GIW 786 

 787 

Variable 

Type 
Variable 

Temp. 

flooded, 

FP 

Temp. 

inun., 

NFP 

Seasonally 

inun., FP 

Seasonally 

inun., NFP 

SP-P 

inun., FP 

SP-P 

inun., NFP 

Total 

inun., 

FP 

Total 

inun., 

NFP 

Climate 

Precipitation (P) 0.39 0.52 0.75 0.44 0.41 0.21 0.69 0.45 

Evapo-
transpiration 

(ET)  

0.4 -0.12 0.19 -0.22 -0.1 -0.27 0.19 -0.23 

Aridity index 

(ET/P)  
-0.3 -0.62 -0.66 -0.45 -0.34 -0.14 -0.58 -0.49 

Water demand (P 
- ET) 

0.22 0.61 0.61 0.46 0.34 0.16 0.53 0.5 

Precipitation 

seasonality  
0.03 0.19 0.06 0.29 0.03 0.09 0.11 0.26 

Precipitation CV -0.02 -0.28 -0.18 -0.03 -0.08 0.06 -0.11 -0.07 

Temperature 

seasonality  
-0.37 0.02 -0.25 0.19 0.06 0.23 -0.21 0.19 

Temperature CV -0.44 0.02 -0.29 0.17 0.08 0.26 -0.26 0.18 

Land cover 

Forest 0 0.3 0.1 -0.02 0.06 0 0.04 0.04 

Developed 0.39 0.37 0.63 0.28 0.28 0.04 0.58 0.28 

Cultivated crops  0.07 0.05 0.21 0.28 0.17 0.16 0.23 0.25 

Stream density  0.43 -0.11 0.13 -0.32 -0.24 -0.48 0.13 -0.32 

Sub-surface 

Clay fraction 0.39 -0.01 0.27 0 0 -0.1 0.27 -0.06 

Sand fraction -0.35 0.05 -0.17 0.08 0.1 0.22 -0.18 0.09 

Average soil 
thickness 

-0.12 0.33 0.49 0.71 0.66 0.69 0.51 0.68 

Water table 

depth 
-0.18 -0.51 -0.68 -0.78 -0.67 -0.64 -0.72 -0.73 

Topography 

Slope  0.02 -0.3 -0.55 -0.77 -0.63 -0.76 -0.56 -0.71 

Elevation range 0.21 0.02 0.12 -0.22 -0.13 -0.23 0.04 -0.18 

Topographic 

diversity  
0.02 -0.22 -0.5 -0.71 -0.57 -0.7 -0.51 -0.65 

Wetland 

GIW -0.27 0.32 0.37 0.8 0.73 0.89 0.4 0.76 

Proportion of 

wetland area 

identified as 
GIW 

-0.09 0.14 0.26 0.55 0.38 0.62 0.29 0.5 

Floodplain 0.64 0.28 0.84 0.36 0.55 0.19 0.92 0.3 

National 
Wetland 

Inventory 

wetlands 

-0.27 0.48 0.45 0.81 0.86 0.85 0.46 0.8 

788 
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