
 

 

Author’s Response to anonymous referees for hess-2024-118 

“Exploring the Potential Processes Controls for Changes of Precipitation-Runoff Relationships 

in Non-stationary Environments” by Lan et al. 

We would like to sincerely thank the anonymous reviewers for their time and thoughtful 

feedback on our manuscript. Their comments are highly encouraging and instrumental in 

improving the quality of our work. We have carefully considered and addressed all comments 

point-by-point, as detailed below. For clarity, the reviewers' comments are presented in black, 

and responses are provided in blue. 

 

Review 1 

Comment on hess-2024-118, Anonymous Referee #1 

 

The topic “Exploring the Potential Processes Controls for Changes of Precipitation-Runoff 

Relationships in Non-stationary Environments” is valuable for hydrology. But this paper reads 

like a case study. The impacts of the study for the general hydrology and its novelty are not 

clear. The three main objectives of this study are developing an integrated framework, 

proposing a novel driving index for changes in DPRR, and establishing a holistic conceptual 

model. But developed the framework, driving index and conceptual model are also not clear 

and seem not innovative enough. 

Reply: Thank you for affirming the value of this research in the field of hydrology. Regarding 

the applicability of this study, although we used the Wei River Basin, which is experiencing 

intensive anthropogenic activities and climate change as an example to demonstrate the 

proposed general framework, the general applicability of this study is emphasized in the 

Discussion and Conclusion. The specific revisions are in lines 405-409 and 591-594 of 

Manuscript. 

Regarding the innovation of the main objectives of this study, the first innovative point 

is the proposal of a novel Driving Index for Changes in Precipitation-Runoff Relationships 

(DPRR) to quantify the driving levels and directions of factors influencing precipitation-runoff 

links. This index primarily addresses the limitations of traditional indices or models that 



 

 

assume stationary conditions for assessing precipitation-runoff relationships in catchments 

exhibiting non-stationary behaviors. The second innovative point is the development of an 

integrated framework based on the proposed index, designed to explore the potential process 

controls on changes in precipitation-runoff relationships in non-stationary environments. The 

framework systematically includes detecting non-stationary processes, quantifying changes in 

PRR, assessing the driving levels and directions of potential influencing factors, analyzing 

hydrological responses to the temporal dynamics of driving factors, quantifying the nonlinear 

and intricate interplay among driving factors, and considering other anthropogenic influences 

such as large-scale surface water withdrawals from reservoirs and total water usage in the basin, 

including agricultural, industrial, and domestic sectors. The third innovative point, based on 

the aforementioned assessment results, is establishing a holistic conceptual model of catchment 

response to infer the potential processes controlling changes in precipitation-runoff 

relationships, which guides regional water use and resource allocation. 

 

Detail comments: 

1) To the best of my knowledge, the response of runoff to rainfall is non-linear, especially in 

the semi-arid regions, where infiltration excess runoff is dominant and the amount of runoff is 

sensitive to rainfall intensity. Rainfall as a major factor influencing the runoff coefficient should 

be considered, besides potential evapotranspiration. 

Reply: We agree with the reviewer that the response of runoff to rainfall is non-linear and that 

precipitation is the most crucial factor in runoff generation. Given the importance of 

precipitation, we have used it as the input variable for our proposed Driving Index for Changes 

in Precipitation-Runoff Relationships (DPRR). Other factors are primarily used to explore their 

driving effects on the precipitation-runoff relationship. 

 

2) In terms of anthropogenic activities, the constructions of check dams and reservoirs may be 

the more dominant factor influencing the runoff generation and the precipitation-runoff 

relationships in the region compared to ISR, NTL and POP. 

Reply: We agree with the reviewer’s viewpoint that the construction of check dams and 

reservoirs may be the dominant factor influencing precipitation-runoff relationships. This study 



 

 

quantitatively investigated the impacts of reservoirs and various types of water usage 

(agricultural, industrial, and domestic) on precipitation-runoff relationships in Section 4.5.2. 

However, the collection of data for reservoirs and different types of water use in some 

catchments presented challenges, and some regions may not be influenced by reservoirs or 

dams. Additionally, acquiring long-term, continuous data on anthropogenic activities presents 

significant challenges. Remote sensing has proven to be an essential tool for identifying and 

assessing the temporal and spatial distributions of anthropogenic activities (An et al., 2024). 

Considering the study's applicability across various types of catchments, this study also uses 

various types of remote sensing data, including Impervious Surface Ratio (ISR) data, Night-

Time Light (NTL) data, and Population (POP) data to comprehensively collect data on 

anthropogenic activities. 

 

3) Vegetation dynamics are affected by both climate and afforestation, and how to distinguish 

them or consider their relationship with other factors? 

Reply: We selected vegetation dynamics as a distinct control factor to explore its impact on 

PRR, primarily referencing the study by Fowler et al. (2022). In addition, the influence of 

climate change and human activities on vegetation dynamics, and consequently on the PRR, is 

highly complex. Therefore, we explore the impacts of climate forcing, anthropogenic 

influences, and vegetation dynamics on PRR, respectively. 

 

4) Lines 96-97. What does the driving level and direction refer to? 

Reply: Within a specified period, the driving level of DPRR signifies the influence level 

exerted by a particular factor on the correlation between precipitation and runoff during the 

period, and the driving direction of DPRR signifies whether a particular factor has positive or 

negative effects on the PRR during the period. The relevant content has been supplemented in 

lines 261-263 of Manuscript. 

 

5) Figure 1-2. These sub-figures for each basin in Fig 1 and Fig 2(b) can be removed. 

Reply: Thanks for the reviewer's comment. The sub-figures for each basin in Figure 1 have 

been removed to simplify the presentation of the study area. However, we have better explained 



 

 

the content of Figure 2b, which is “Visual synthesis of selected process explanations for 

potential driving mechanisms of the changes in PRR under non-stationary processes depicting 

a general catchment affected by anthropogenic interference,” and there are no “sub-figures for 

each basin”. 

 

6) Figure 3. It is inappropriate to put tables and graphs together in a figure. 

Reply: Thanks for the reviewer's reminder. The table highlights the significant variation 

characteristics shown in Figure 3. The table and graphs have been separated. 

 

7) 302-315. The heat map in Fig 4b is hard to understand and more detail is needed to explain. 

What’s the relationship among these sub-figures. It seems inappropriate to put these in a figure. 

Reply: Thanks for the reviewer's comment. The five sub-figures in Figure 4b correspond to the 

PRR results of the five basins. The content of the figures shows the PRR at various periods and 

time scales in each basin, that is, the DCCA values at various periods and time scales in each 

basin. The relevant content has been supplemented in the explanation (lines 326-327) of Figure 

4b. 
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Review 2 

Comment on hess-2024-118, Anonymous Referee #2 

 

1. Lines 75-82 the author wrote that hydrological models regionalize the PRR over a specific 

period, assuming minimal anthropogenic disturbance to simulate hydrologic processes. 

However, several hydrological models already consider anthropogenic effects on hydrological 

processes, such as WEP-L, watergap, and PCR-GLOBWB, which effectively incorporate 

anthropogenic impacts on hydrological processes into their simulations. So the statement 

"Hence, they may not be suitable for non-stationary hydrological processes" is inappropriate. 

Meanwhile, the list of PRR identification methods is not comprehensive. The author should 

highlight the similarities and differences between this study and these previous methods 

(hydrological model, machine learning, etc.), i.e., the research gaps, and emphasize the real 

advantages of the method in this study over the hydrological model, which has a physical 

mechanism, otherwise, it will be hard to be convincing. 

Reply: We appreciate the reviewer's comment and agree with their suggestion. The statement 

“Hence, they may not be suitable for non-stationary hydrological processes” has been revised. 

Additionally, we have delineated the similarities and differences between this study and 

previous methods (hydrological model, machine learning, etc.), i.e., the research gaps, and 

emphasized the real advantages of the method in this study over the hydrological model, 

thereby addressing the identified research gaps. 

Compared to traditional data-driven and process-driven approaches, the primary 

advantages of the method (DPRR index) proposed in this study are as follows: Continuous 

simulation of the PRR is accomplished through the application of data-driven hydrological 

models or process-based models with intricate model structures (Sikorska-Senoner and Quilty, 

2021; Nayak et al., 2013). Data-driven models such as Artificial Neural Networks (ANN) and 

Linear Perturbation Model (LPM) rely on empirical analysis to produce corresponding outputs 

based on specific input data (Tanty and Desmukh, 2015; Nash and Barsi, 1983). These models 

are heavily dependent on the characteristics of existing data and provide a relatively 

vague description of the hydrological cycle processes, failing to explicitly reflect the 



 

 

impact of individual factors within these processes.  

On the other hand, process-based hydrological models such as TOPMODEL and SWAT 

can reveal more details and mechanisms of physical processes (Beven et al., 2021; Krysanova 

and White, 2015). However, these models involve complex modeling processes and require 

careful selection based on adequate prior knowledge (Reichl et al., 2009). Furthermore, 

many traditional hydrological models regionalize the PRR over a specific period in 

stationary climatic and catchment conditions, assuming minimal human interference 

(Yang et al., 2022; Westra et al., 2014). As a result, they may not be suitable for non-

stationary hydrological processes.  

With the advancement of hydrological models, the impact of human activities is 

increasingly incorporated into the simulation of hydrological processes. Models such as WEP-

L, WaterGAP, PCR-GLOBWB, and CWatM not only simulate natural hydrological cycles 

but also effectively incorporate the influence of anthropogenic factors into their simulations 

(Jia et al., 2006; Müller Schmied et al., 2021; Sutanudjaja et al., 2018; Burek et al., 2020). 

However, it is crucial to recognize that such hydrological models have high data 

requirements, limiting their application in regions lacking sufficient observational data 

(Clark et al., 2016). For instance, long-term, high-quality data on human activities are often 

difficult to obtain comprehensively, and remote sensing datasets emerge as vital tools for the 

global analysis of human impacts on hydrological regimes. However, the impact of human 

activities on streamflow represented by these data is complex and cannot be directly used 

as model input. 

Therefore, there is a need for a flexible and effective PRR technique that has lower data 

requirements while being able to explore the impact of individual or specific driving factors on 

PRR under non-stationary conditions. Compared with the above methods, the DPRR index 

proposed in this study has the following advantages: (1) the DPRR index has lower data 

requirements and offers a simple and flexible technique for identifying the potential impacts of 

driving factors on PRR. (2) The inputs are not strictly restricted by temporal and spatial 

constraints or by format, especially when assessing the impacts of anthropogenic activities on 

streamflow. (3) It also addresses the limitations of traditional process-driven hydrological 

models with the assumption of stationarity in the run, which assume stationary conditions 



 

 

(Ammann et al., 2019; Jehanzaib et al., 2020). Hence, the proposed index offers crucial 

information for the hydrological cycle process driven by climate change or anthropogenic 

disturbances, which guides the construction of more robust hydrological models and the 

development of water resource management and allocation. (4) Considering the elimination of 

trends is a crucial step in accurately analyzing the relationships between complex non-

stationary systems (Zhao et al., 2012), the DPRR removes the non-stationary effects by 

subtracting local trends with appropriate polynomial orders, ensuring the normality of input 

signals for cross-correlation analysis (Zebende, 2011). (5) The effect of external factors on PRR 

may lead to spurious cross-correlation estimations (Yuan et al., 2015). Hence, the developed 

index applies the theoretical foundations of the DPCCA technique to reveal the “intrinsic” 

relations between precipitation and runoff time series with potential influences of other factors 

removed, such as evapotranspiration, groundwater, land cover, and anthropogenic interference. 

(6) The DPRR index characterizes the potential driving mechanisms influencing PRR on 

different time scales, which can improve our understanding of hydrological responses to 

climate forcing and anthropogenic activities at various time scales. (7) The DPRR index 

provides the driving level and direction and allows for comparisons of the index values among 

different driving factors with inconsistent data-sequence lengths and across various types of 

catchments. The relevant content has been supplemented in lines 75-93 and 248-265 of 

Manuscript. 

 

2. The author described the catchment response conceptual model with a very detailed 

relational network in Fig.2, Fig.6, and Fig.7. use a slightly more concise presentation? It might 

be more reader-friendly. 

Reply: Thanks for the reviewer's comment. We have removed the symbols representing 

feedback types from Figures 2, 6, and 7 and eliminated some minor relationship lines to 

emphasize the primary relationships and structures. The detailed figures have been moved to 

lines 356-369 of Supporting Information. 

 

3. How to validate the effectiveness of the constructed methods in the study for the 



 

 

identification of non-stationary hydrological processes and their drivers? It seems 

unconvincing to describe its advantages over hydrological modeling only through text. There 

have been many studies analyzing the non-stationary hydrological processes in the Weihe River, 

and there is a need to compare with them to enhance the reliability of the results, as well as to 

quantify the uncertainties. 

Reply: We agree with the comment of the Referee. Mutual information theory and techniques 

have been further applied to quantitatively validate the effectiveness of the constructed methods 

in the study. In addition, various studies on the impact of various factors on runoff changes in 

the Wei River basin are investigated and compared. 

The method based on mutual information theory for validating the proposed index 

in this study is as follows. Entropy is a fundamental concept with wide-ranging applications 

across engineering and scientific disciplines (Mishra and Ayyub, 2019). It serves as a 

quantifiable metric for assessing signal uncertainty, simultaneously enabling the computation 

of mutual information between signal pairs. Mutual information (MI) is a measure of 

interdependence between variables (Cover, 1999). In these regards, we applied MI to develop 

an index for identifying the possible driving mechanisms in PRR using a nonlinear theory 

approach. By calculating mutual information between driving factors and precipitation (runoff), 

a Driving index for Precipitation-Runoff links with the nonlinear theory approach (DPRL) is 

developed and quantifies the nonlinear nature of their associations. Higher mutual information 

values signify stronger associations or interdependencies. The calculation procedure for the 

DPRL index is as follows. 

Step 1: Involve three time series: the runoff time series denoted as 𝑋௧, the precipitation 

time series denoted as 𝑌௧, and an influencing factor denoted as 𝑍௧, where 𝑡 ൌ 1,2, … ,𝑛, and 

𝑛 signifies the length of the time series. The initial computation entails deriving the cumulative 

frequency for each time series. Subsequently, the runoff time series is transformed into the 

following time series 𝑄௧: 



 

 

𝑄௧ ൌ

⎩
⎪
⎨

⎪
⎧

1, 𝑋௧ ൑ 𝑋ଶ଴

2, 𝑋ଶ଴ ൏ 𝑋௧ ൑ 𝑋ସ଴

3, 𝑋ସ଴ ൏ 𝑋௧ ൑ 𝑋଺଴

4, 𝑋଺଴ ൏ 𝑋௧ ൑ 𝑋଼଴

5, 𝑋௧ ൐ 𝑋଼଴

 (1) 

where  𝑋ଶ଴,𝑋ସ଴,𝑋଺଴, and 𝑋଼଴ correspond to 𝑋௧ when the cumulative frequencies are 20%, 

40%, 60%, and 80%, respectively. Similar processing is applied to the precipitation time series 

𝑋௧ and the influencing factor 𝑍௧, resulting in the updated time series 𝑊௧ and 𝐹௧. These time 

series are discretized into five equidistant intervals to reduce the impact of noise while 

capturing a wider range of time series values across various magnitudes. Notably, the division 

into five equidistant boxes is a deduced outcome derived from rigorous comparative analyses 

and verifications (Franzen et al., 2020). 

Step 2: Calculate the probability distribution functions for the time series: 

⎩
⎪
⎨

⎪
⎧ 𝑝ሺ𝑞௜ሻ ൌ

countሺ𝑞௜ሻ
𝑛

𝑝൫𝑤௝൯ ൌ
countሺ𝑤௝ሻ

𝑛

𝑝ሺ𝑓௞ሻ ൌ
countሺ𝑓௞ሻ

𝑛

 (2) 

where 𝑝ሺ𝑞௜ሻ, 𝑝൫𝑤௝൯ and 𝑝ሺ𝑓௞ሻ are the probability distribution functions of 𝑄௧, 𝑊௧ and 𝐹௧ 

respectively; countሺ𝑞௜ሻ , count൫𝑤௝൯ and countሺ𝑓௞ሻ represent the occurrences of numerical 

values in 𝑄௧, 𝑊௧ and 𝐹௧, respectively; 𝑖 ൌ 1,2, … ,5; 𝑗 ൌ 1,2, … ,5; 𝑘 ൌ 1,2, … ,5. 

Step 3: The Shannon entropy of time series is calculated as follows: 

𝐻ሺ𝑄௧ሻ ൌ െ෍ 𝑝ሺ𝑞௜ሻlogଶ𝑝ሺ𝑞௜ሻ
ହ

௜ୀଵ
 (3) 

where 𝐻ሺ𝑄௧ሻ  is the Shannon entropy of 𝑄௧ . Here, entropy with a logarithm of base 2 is 

considered, such that entropy and related IT measures are in units of bits. 

Step 4: Calculate the joint distribution functions as follows: 

൞
𝑝ሺ𝑞௜ ,𝑓௞ሻ ൌ

countሺ𝑄௧ ൌ 𝑞௜ ,𝐹௧ ൌ 𝑓௞ሻ
𝑛

𝑝൫𝑞௜ ,𝑤௝൯ ൌ
countሺ𝑄௧ ൌ 𝑞௜ ,𝑊௧ ൌ 𝑤௝ሻ

𝑛

 (4) 

where 𝑝ሺ𝑞௜ ,𝑓௞ሻ  is the joint distribution function of 𝑄௧  and 𝐹௧ ; 𝑝൫𝑞௜ ,𝑤௝൯  is the joint 

distribution function of 𝑄௧ and 𝑊௧; countሺ𝑄௧ ൌ 𝑞௜ ,𝐹௧ ൌ 𝑓௞ሻ is the number of simultaneous 



 

 

occurrences of 𝑄௧ ൌ 𝑞௜  and 𝐹௧ ൌ 𝑓௞ ; countሺ𝑄௧ ൌ 𝑞௜ ,𝑊௧ ൌ 𝑤௝ሻ  is the number of 

simultaneous occurrences of 𝑄௧ ൌ 𝑞௜ and 𝑊௧ ൌ 𝑤௝. 

Step 5: Given the influencing factor, the quantification of uncertainty within the sequence 

becomes feasible through the utilization of conditional entropy. This measure is computed as 

follows: 

⎩
⎪
⎨

⎪
⎧ 𝐻ሺ𝑄௧|𝐹௧ሻ ൌ෍ ෍ 𝑝ሺ𝑞௜ ,𝑓௞ሻlogଶ

𝑝ሺ𝑞௜ ,𝑓௞ሻ

𝑝ሺ𝑓௞ሻ

ହ

௞ୀଵ

ହ

௜ୀଵ

𝐻ሺ𝑄௧|𝑊௧ሻ ൌ෍ ෍ 𝑝൫𝑞௜ ,𝑤௝൯logଶ
𝑝൫𝑞௜ ,𝑤௝൯

𝑝൫𝑤௝൯

ହ

௝ୀଵ

ହ

௜ୀଵ

 (5) 

where 𝐻ሺ𝑄௧|𝐹௧ሻ  is the conditional entropy of 𝑄௧  given 𝐹௧ ; 𝐻ሺ𝑄௧|𝑊௧ሻ  is the conditional 

entropy of 𝑄௧ given 𝑊௧. 

Step 6: Mutual information 𝐼ሺ𝑄௧;𝐹௧ሻ , quantifies the reduction in uncertainty of one 

variable when another variable is known. It is the difference between entropy and conditional 

entropy. The calculation for mutual information is as follows: 

𝐼ሺ𝑄௧;𝐹௧ሻ ൌ 𝐻ሺ𝑄௧ሻ െ 𝐻ሺ𝑄௧|𝐹௧ሻ ൌ෍𝑝ሺ𝑞௧ ,𝑓௧ሻlogଶ
𝑝ሺ𝑞௧ ,𝑓௧ሻ
𝑝ሺ𝑞௧ሻ𝑝ሺ𝑓௧ሻ

 (6) 

Step 7: The DPRL index is further updated as follows: 

DPRLሺ𝑡ሻ ൌ
𝐼ሺ𝑄௧;𝐹௧ሻ

𝐻ሺ𝑄௧|𝑊௧ሻ ൅ 1
 (7) 

where 𝐼ሺ𝑄௧;𝐹௧ሻ  represents the mutual information between 𝑄௧  and 𝐹௧ . It quantifies the 

reduction in the uncertainty of 𝑄௧  when 𝐹௧  is given, providing insights into their 

interdependence. With regard to the impact of precipitation on runoff, this index introduces the 

concept of conditional entropy 𝐻ሺ𝑄௧|𝑊௧ሻ, accounting for the conditional uncertainty within 

runoff given precipitation. Furthermore, incorporating the notion of relative error, a 

modification is applied to the denominator by adding +1. This adjustment prevents the 

denominator from becoming exceedingly small, which may lead to anomalous metric values 

of the index. 

The validation results from DPRL index (Figure R1b) illustrate that baseflow is the 

primary driving force influencing the PRR in the five sub-basins. The driving levels of 

baseflow are all greater than 0.4 in the five sub-basins, while the driving levels of other factors 

are all below 0.1. Baseflow is an important component of the Wei River Basin's runoff, 

particularly during the dry season (Miao et al., 2020), primarily contributing to runoff 



 

 

generation. Therefore, the driving levels of baseflow are higher. The impact of vegetation 

dynamics in WR4 and WR5 is stronger than in other sub-basins and significantly exceeds the 

impact of other factors in the two sub-basins. The finding aligns with the lower level of 

urbanization in WR4 and WR5. Furthermore, the impact of vegetation dynamics in WR5 is 

greater than in WR4, illustrating that the afforestation policy in WR5 has yielded positive 

results (Wu et al., 2023). Additionally, compared to WR2, WR3 has a higher proportion of 

irrigated areas, and the typical cropping pattern in these sub-basins includes winter wheat and 

summer maize. The vegetation dynamics within irrigation zones depend on changes in 

cropping patterns, thereby exerting complex effects on the PRR within the sub-basins. The 

impacts of ISR, NTL, and POP in WR3 are all in the top two levels, and their impacts in WR2 

are slightly smaller than those in WR3. Conversely, the impact of vegetation dynamics in WR2 

is greater than that in WR3. The rapid expansion of downstream urban clusters in WR3 is a 

significant factor contributing to this result. Simultaneously, in pursuit of higher economic 

income or a more convenient lifestyle, populations in WR4 and WR5 tend to migrate towards 

the central cities in WR3. This migration results in lower anthropogenic driving factors for 

PRR in WR4 and WR5. Additionally, as populations concentrate, local surface water resources 

become inadequate to meet regional water demands. Consequently, groundwater extraction and 

inter-basin water transfer are employed to alleviate water resource pressures, leading to 

complex artificial interventions that may impact the PRR. ET0 has a smaller impact on the PRR 

in all five sub-basins. The ranking pattern of driving levels of ET0 in the sub-basins is similar 

to that of vegetation dynamics. ISR and NTL have the strongest impact in WR1, likely due to 

its being the smallest basin area. 

The maximum kernel density values of the absolute values of the DPRR (Figure R1a) are 

employed for comparing the results of DPRR and the mutual information approach. The 

patterns exhibited by DPRR and the mutual information approach are generally 

consistent, which mutually validates the reliability of their assessment outcomes. Both 

DPRR and mutual information approach results illustrate that baseflow is the primary factor 

influencing PRR. Excluding WR5, the DPRR values of baseflow are the highest among the six 

factors. In WR5, the DPRR value of baseflow ranks second only to ET0. The mutual 

information approach values of baseflow are significantly higher than those of other factors in 



 

 

all five sub-basins. Furthermore, the DPRR and mutual information approach results for ISR, 

NTL, and POP demonstrate the differences between WR2 and WR3. WR2 is located upstream 

of WR3 and there is a large urban cluster downstream of WR3. Therefore, ISR, NTL, and POP 

have a greater impact on PRR in WR3 compared to WR2. In contrast, WR4 and WR5 have 

smaller urban areas, so vegetation dynamics exhibit positive impacts in DPRR results and high-

level influence in mutual information approach results. However, due to the distinct 

foundations of DPRR and mutual information approach, which are based on nonstationary and 

nonlinear theories, respectively. Their results exhibit minor disparities. For instance, in WR5, 

the results from DPRR show that ET0 has a much higher impact on PRR than other factors, 

whereas, in mutual information approach results, the driving level of ET0 is extremely low, 

almost equal to other factors. This disparity might be attributed to the implementation of 

afforestation policies in WR5, which altered the local climate, thereby causing an increase in 

the driving level of ET0 on PRR during specific periods. DPRR captures the influence of ET0 

on PRR, hence demonstrating a high driving level in the maximum kernel density results.  

 

Figure R1 a, Maximum kernel density values of the absolute values of DPRR for possible 

influencing factors. b, Results of mutual information approach for possible influencing factors. 

 

Various studies on the impact of various factors on runoff changes in the Wei River 

basin are further investigated and compared. Gao et al. (2013) found that human activities 

contributed as much as 82.80% to the reduction in streamflow in the Wei River basin. Zhan et 

al. (2014a) used the SIMHYD model to partition the effects of climate change and human 

activities on surface runoff in the Wei River basin and found that the contribution of human 

activities to streamflow change was more than 65%. Zhan et al. (2014b) proposed the improved 

climate elasticity method to investigate the contributions of climate change and human 



 

 

activities to runoff changes in the Wei River basin, with results showing a climatic contribution 

to runoff decrease of 22–29% and a human contribution of 71–78%. Chang et al. (2015), using 

the VIC model, found that the percentages of runoff change due to climate change were 36%, 

28%, 53%, and 10% in the 1970s, 1980s, 1990s, and 2000s, respectively. The percentages of 

runoff change caused by human activity were 64%, 72%, 47%, and 90%, respectively. It can 

thus be concluded that human activity has a greater impact on basin runoff than climate change 

factors. He et al. (2019), based on the Budyko framework, found that for the upper reaches of 

the Beiluo River, the contribution of land-use change variations to runoff reduction was 95.3%. 

Gao et al. (2020), using the SWAT model, found that in the Jing River basin, the influence of 

climatic factors decreased from 85.70% to 42.43%, while that of anthropogenic factors 

increased from 14.3% to 57.57% between 1961 and 2015. These studies indicate that human 

activities are the primary factor influencing PRR in the Wei River basin, which is 

consistent with the findings of this study. However, most existing research broadly 

categorizes influencing factors into climatic and anthropogenic factors, with some studies 

considering changes in potential evapotranspiration and land use as influencing factors. 

The quantitative assessment of human-induced impacts is often derived from the results 

of climatic factors without using specific data on human activities. In these regards, the 

method proposed in this study aims to the exploration of the impact of individual or 

specific driving factors on PRR. The validation content based on the mutual information 

technique has been provided in lines 261-355 of Supporting Information. Comparison with 

other studies has been supplemented in lines 547-564 of Manuscript. 
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