
 

 

Re: Manuscript #hess-2024-118 entitled “Exploring the Potential Processes Controls for 
Changes of Precipitation-Runoff Relationships in Non-stationary Environments”. 
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1. Lines 75-82 the author wrote that hydrological models regionalize the PRR over a specific 
period, assuming minimal anthropogenic disturbance to simulate hydrologic processes. 
However, several hydrological models already consider anthropogenic effects on hydrological 
processes, such as WEP-L, watergap, and PCR-GLOBWB, which effectively incorporate 
anthropogenic impacts on hydrological processes into their simulations. So the statement 
"Hence, they may not be suitable for non-stationary hydrological processes" is inappropriate. 
Meanwhile, the list of PRR identification methods is not comprehensive. The author should 
highlight the similarities and differences between this study and these previous methods 
(hydrological model, machine learning, etc.), i.e., the research gaps, and emphasize the real 
advantages of the method in this study over the hydrological model, which has a physical 
mechanism, otherwise, it will be hard to be convincing. 
Reply: We appreciate the reviewer's comment and agree with their suggestion. The statement 
“Hence, they may not be suitable for non-stationary hydrological processes” has been revised. 
Additionally, we have delineated the similarities and differences between this study and 
previous methods (hydrological model, machine learning, etc.), i.e., the research gaps, and 
emphasized the real advantages of the method in this study over the hydrological model, 
thereby addressing the identified research gaps. 

Compared to traditional data-driven and process-driven approaches, the primary 
advantages of the method (DPRR index) proposed in this study are as follows: Continuous 
simulation of the PRR is accomplished through the application of data-driven hydrological 
models or process-based models with intricate model structures (Sikorska-Senoner and Quilty, 
2021; Nayak et al., 2013). Data-driven models such as Artificial Neural Networks (ANN) and 
Linear Perturbation Model (LPM) rely on empirical analysis to produce corresponding outputs 
based on specific input data (Tanty and Desmukh, 2015; Nash and Barsi, 1983). These models 
are heavily dependent on the characteristics of existing data and provide a relatively 
vague description of the hydrological cycle processes, failing to explicitly reflect the 
impact of individual factors within these processes.  

On the other hand, process-based hydrological models such as TOPMODEL and SWAT 
can reveal more details and mechanisms of physical processes (Beven et al., 2021; Krysanova 
and White, 2015). However, these models involve complex modeling processes and require 
careful selection based on adequate prior knowledge (Reichl et al., 2009). Furthermore, 
many traditional hydrological models regionalize the PRR over a specific period in 
stationary climatic and catchment conditions, assuming minimal human interference 
(Yang et al., 2022; Westra et al., 2014). As a result, they may not be suitable for non-
stationary hydrological processes.  

With the advancement of hydrological models, the impact of human activities is 
increasingly incorporated into the simulation of hydrological processes. Models such as WEP-



 

 

L, WaterGAP, PCR-GLOBWB, and CWatM not only simulate natural hydrological cycles 
but also effectively incorporate the influence of anthropogenic factors into their simulations 
(Jia et al., 2006; Müller Schmied et al., 2021; Sutanudjaja et al., 2018; Burek et al., 2020). 
However, it is crucial to recognize that such hydrological models have high data 
requirements, limiting their application in regions lacking sufficient observational data 
(Clark et al., 2016). For instance, long-term, high-quality data on human activities are often 
difficult to obtain comprehensively, and remote sensing datasets emerge as vital tools for the 
global analysis of human impacts on hydrological regimes. However, the impact of human 
activities on streamflow represented by these data is complex and cannot be directly used 
as model input. 

Therefore, there is a need for a flexible and effective PRR technique that has lower data 
requirements while being able to explore the impact of individual or specific driving factors on 
PRR under non-stationary conditions. Compared with the above methods, the DPRR index 
proposed in this study has the following advantages: (1) the DPRR index has lower data 
requirements and offers a simple and flexible technique for identifying the potential impacts of 
driving factors on PRR. (2) The inputs are not strictly restricted by temporal and spatial 
constraints or by format, especially when assessing the impacts of anthropogenic activities on 
streamflow. (3) It also addresses the limitations of traditional process-driven hydrological 
models with the assumption of stationarity in the run, which assume stationary conditions 
(Ammann et al., 2019; Jehanzaib et al., 2020). Hence, the proposed index offers crucial 
information for the hydrological cycle process driven by climate change or anthropogenic 
disturbances, which guides the construction of more robust hydrological models and the 
development of water resource management and allocation. (4) Considering the elimination of 
trends is a crucial step in accurately analyzing the relationships between complex non-
stationary systems (Zhao et al., 2012), the DPRR removes the non-stationary effects by 
subtracting local trends with appropriate polynomial orders, ensuring the normality of input 
signals for cross-correlation analysis (Zebende, 2011). (5) The effect of external factors on PRR 
may lead to spurious cross-correlation estimations (Yuan et al., 2015). Hence, the developed 
index applies the theoretical foundations of the DPCCA technique to reveal the “intrinsic” 
relations between precipitation and runoff time series with potential influences of other factors 
removed, such as evapotranspiration, groundwater, land cover, and anthropogenic interference. 
(6) The DPRR index characterizes the potential driving mechanisms influencing PRR on 
different time scales, which can improve our understanding of hydrological responses to 
climate forcing and anthropogenic activities at various time scales. (7) The DPRR index 
provides the driving level and direction and allows for comparisons of the index values among 
different driving factors with inconsistent data-sequence lengths and across various types of 
catchments. The relevant content has been supplemented in the Introduction and Methods 
section. 
 

2. The author described the catchment response conceptual model with a very detailed 
relational network in Fig.2, Fig.6, and Fig.7. use a slightly more concise presentation? It might 
be more reader-friendly. 



 

 

Reply: Thank you for the comment. We have removed the symbols representing feedback types 
from Figures 2, 6, and 7 and eliminated some minor relationship lines to emphasize the primary 
relationships and structures. The detailed figures have been moved to the Supporting 
Information. 
 
3. How to validate the effectiveness of the constructed methods in the study for the 
identification of non-stationary hydrological processes and their drivers? It seems 
unconvincing to describe its advantages over hydrological modeling only through text. There 
have been many studies analyzing the non-stationary hydrological processes in the Weihe River, 
and there is a need to compare with them to enhance the reliability of the results, as well as to 
quantify the uncertainties. 

Reply: We agree with the comment of the Referee. Mutual information theory and techniques 
have been further applied to quantitatively validate the effectiveness of the constructed methods 
in the study. In addition, various studies on the impact of various factors on runoff changes in 
the Wei River basin are investigated and compared. 

The method based on mutual information theory for validating the proposed index 
in this study is as follows. Entropy is a fundamental concept with wide-ranging applications 
across engineering and scientific disciplines (Mishra and Ayyub, 2019). It serves as a 
quantifiable metric for assessing signal uncertainty, simultaneously enabling the computation 
of mutual information between signal pairs. Mutual information (MI) is a measure of 
interdependence between variables (Cover, 1999). In these regards, we applied MI to develop 
an index for identifying the possible driving mechanisms in PRR using a nonlinear theory 
approach. By calculating mutual information between driving factors and precipitation (runoff), 
a Driving index for Precipitation-Runoff links with the nonlinear theory approach (DPRL) is 
developed and quantifies the nonlinear nature of their associations. Higher mutual information 
values signify stronger associations or interdependencies. The calculation procedure for the 
DPRL index is as follows. 

Step 1: Involve three time series: the runoff time series denoted as 𝑋 , the precipitation 
time series denoted as 𝑌 , and an influencing factor denoted as 𝑍 , where 𝑡 1,2, … ,𝑛, and 
𝑛 signifies the length of the time series. The initial computation entails deriving the cumulative 
frequency for each time series. Subsequently, the runoff time series is transformed into the 
following time series 𝑄 : 

𝑄

⎩
⎪
⎨

⎪
⎧

1, 𝑋 𝑋
2, 𝑋 𝑋 𝑋
3, 𝑋 𝑋 𝑋
4, 𝑋 𝑋 𝑋
5, 𝑋 𝑋

 (1) 

where  𝑋 ,𝑋 ,𝑋 , and 𝑋  correspond to 𝑋  when the cumulative frequencies are 20%, 
40%, 60%, and 80%, respectively. Similar processing is applied to the precipitation time series 
𝑋  and the influencing factor 𝑍 , resulting in the updated time series 𝑊  and 𝐹 . These time 
series are discretized into five equidistant intervals to reduce the impact of noise while 
capturing a wider range of time series values across various magnitudes. Notably, the division 



 

 

into five equidistant boxes is a deduced outcome derived from rigorous comparative analyses 
and verifications (Franzen et al., 2020). 

Step 2: Calculate the probability distribution functions for the time series: 

⎩
⎪
⎨

⎪
⎧ 𝑝 𝑞

count 𝑞
𝑛

𝑝 𝑤
count 𝑤

𝑛

𝑝 𝑓
count 𝑓

𝑛

 (2) 

where 𝑝 𝑞 , 𝑝 𝑤  and 𝑝 𝑓  are the probability distribution functions of 𝑄 , 𝑊  and 𝐹  

respectively; count 𝑞  , count 𝑤  and count 𝑓  represent the occurrences of numerical 

values in 𝑄 , 𝑊  and 𝐹 , respectively; 𝑖 1,2, … ,5; 𝑗 1,2, … ,5; 𝑘 1,2, … ,5. 
Step 3: The Shannon entropy of time series is calculated as follows: 

𝐻 𝑄 𝑝 𝑞 log 𝑝 𝑞  (3) 

where 𝐻 𝑄   is the Shannon entropy of 𝑄  . Here, entropy with a logarithm of base 2 is 
considered, such that entropy and related IT measures are in units of bits. 

Step 4: Calculate the joint distribution functions as follows: 

𝑝 𝑞 ,𝑓
count 𝑄 𝑞 ,𝐹 𝑓

𝑛

𝑝 𝑞 ,𝑤
count 𝑄 𝑞 ,𝑊 𝑤

𝑛

 (4) 

where 𝑝 𝑞 ,𝑓   is the joint distribution function of 𝑄   and 𝐹  ; 𝑝 𝑞 ,𝑤   is the joint 

distribution function of 𝑄  and 𝑊 ; count 𝑄 𝑞 ,𝐹 𝑓  is the number of simultaneous 
occurrences of 𝑄 𝑞   and 𝐹 𝑓  ; count 𝑄 𝑞 ,𝑊 𝑤   is the number of 

simultaneous occurrences of 𝑄 𝑞  and 𝐹 𝑓 . 
Step 5: Given the influencing factor, the quantification of uncertainty within the sequence 

becomes feasible through the utilization of conditional entropy. This measure is computed as 
follows: 

⎩
⎪
⎨

⎪
⎧ 𝐻 𝑄 |𝐹 𝑝 𝑞 ,𝑓 log

𝑝 𝑞 ,𝑓
𝑝 𝑓

𝐻 𝑄 |𝑊 𝑝 𝑞 ,𝑤 log
𝑝 𝑞 ,𝑤

𝑝 𝑤

 (5) 

where 𝐻 𝑄 |𝐹   is the conditional entropy of 𝑄   given 𝐹  ; 𝐻 𝑄 |𝑊   is the conditional 
entropy of 𝑄  given 𝑊 . 

Step 6: Mutual information 𝐼 𝑄 ;𝐹  , quantifies the reduction in uncertainty of one 
variable when another variable is known. It is the difference between entropy and conditional 
entropy. The calculation for mutual information is as follows: 



 

 

𝐼 𝑄 ;𝐹 𝐻 𝑄 𝐻 𝑄 |𝐹 𝑝 𝑞 ,𝑓 log
𝑝 𝑞 ,𝑓
𝑝 𝑞 𝑝 𝑓

 (6) 

Step 7: The DPRL index is further updated as follows: 

DPRL 𝑡
𝐼 𝑄 ;𝐹

𝐻 𝑄 |𝑊 1
 (7) 

where 𝐼 𝑄 ;𝐹   represents the mutual information between 𝑄   and 𝐹  . It quantifies the 
reduction in the uncertainty of 𝑄   when 𝐹   is given, providing insights into their 
interdependence. With regard to the impact of precipitation on runoff, this index introduces the 
concept of conditional entropy 𝐻 𝑄 |𝑊 , accounting for the conditional uncertainty within 
runoff given precipitation. Furthermore, incorporating the notion of relative error, a 
modification is applied to the denominator by adding +1. This adjustment prevents the 
denominator from becoming exceedingly small, which may lead to anomalous metric values 
of the index. 

The validation results from DPRL index (Figure R1b) illustrate that baseflow is the 
primary driving force influencing the PRR in the five sub-basins. The driving levels of 
baseflow are all greater than 0.4 in the five sub-basins, while the driving levels of other factors 
are all below 0.1. Baseflow is an important component of the Wei River Basin's runoff, 
particularly during the dry season (Miao et al., 2020), primarily contributing to runoff 
generation. Therefore, the driving levels of baseflow are higher. The impact of vegetation 
dynamics in WR4 and WR5 is stronger than in other sub-basins and significantly exceeds the 
impact of other factors in the two sub-basins. The finding aligns with the lower level of 
urbanization in WR4 and WR5. Furthermore, the impact of vegetation dynamics in WR5 is 
greater than in WR4, illustrating that the afforestation policy in WR5 has yielded positive 
results (Wu et al., 2023). Additionally, compared to WR2, WR3 has a higher proportion of 
irrigated areas, and the typical cropping pattern in these sub-basins includes winter wheat and 
summer maize. The vegetation dynamics within irrigation zones depend on changes in 
cropping patterns, thereby exerting complex effects on the PRR within the sub-basins. The 
impacts of ISR, NTL, and POP in WR3 are all in the top two levels, and their impacts in WR2 
are slightly smaller than those in WR3. Conversely, the impact of vegetation dynamics in WR2 
is greater than that in WR3. The rapid expansion of downstream urban clusters in WR3 is a 
significant factor contributing to this result. Simultaneously, in pursuit of higher economic 
income or a more convenient lifestyle, populations in WR4 and WR5 tend to migrate towards 
the central cities in WR3. This migration results in lower anthropogenic driving factors for 
PRR in WR4 and WR5. Additionally, as populations concentrate, local surface water resources 
become inadequate to meet regional water demands. Consequently, groundwater extraction and 
inter-basin water transfer are employed to alleviate water resource pressures, leading to 
complex artificial interventions that may impact the PRR. ET0 has a smaller impact on the PRR 
in all five sub-basins. The ranking pattern of driving levels of ET0 in the sub-basins is similar 
to that of vegetation dynamics. ISR and NTL have the strongest impact in WR1, likely due to 
its being the smallest basin area. 

The maximum kernel density values of the absolute values of the DPRR (Figure R1a) are 
employed for comparing the results of DPRR and the mutual information approach. The 



 

 

patterns exhibited by DPRR and the mutual information approach are generally 
consistent, which mutually validates the reliability of their assessment outcomes. Both 
DPRR and mutual information approach results illustrate that baseflow is the primary factor 
influencing PRR. Excluding WR5, the DPRR values of baseflow are the highest among the six 
factors. In WR5, the DPRR value of baseflow ranks second only to ET0. The mutual 
information approach values of baseflow are significantly higher than those of other factors in 
all five sub-basins. Furthermore, the DPRR and mutual information approach results for ISR, 
NTL, and POP demonstrate the differences between WR2 and WR3. WR2 is located upstream 
of WR3 and there is a large urban cluster downstream of WR3. Therefore, ISR, NTL, and POP 
have a greater impact on PRR in WR3 compared to WR2. In contrast, WR4 and WR5 have 
smaller urban areas, so vegetation dynamics exhibit positive impacts in DPRR results and high-
level influence in mutual information approach results. However, due to the distinct 
foundations of DPRR and mutual information approach, which are based on nonstationary and 
nonlinear theories, respectively. Their results exhibit minor disparities. For instance, in WR5, 
the results from DPRR show that ET0 has a much higher impact on PRR than other factors, 
whereas, in mutual information approach results, the driving level of ET0 is extremely low, 
almost equal to other factors. This disparity might be attributed to the implementation of 
afforestation policies in WR5, which altered the local climate, thereby causing an increase in 
the driving level of ET0 on PRR during specific periods. DPRR captures the influence of ET0 
on PRR, hence demonstrating a high driving level in the maximum kernel density results.  

 

Figure R1 a, Maximum kernel density values of the absolute values of DPRR for possible 
influencing factors. b, Results of mutual information approach for possible influencing factors. 
 

Various studies on the impact of various factors on runoff changes in the Wei River 
basin are further investigated and compared. Gao et al. (2013) found that human activities 
contributed as much as 82.80% to the reduction in streamflow in the Wei River basin. Zhan et 
al. (2014a) used the SIMHYD model to partition the effects of climate change and human 
activities on surface runoff in the Wei River basin and found that the contribution of human 
activities to streamflow change was more than 65%. Zhan et al. (2014b) proposed the improved 
climate elasticity method to investigate the contributions of climate change and human 
activities to runoff changes in the Wei River basin, with results showing a climatic contribution 
to runoff decrease of 22–29% and a human contribution of 71–78%. Chang et al. (2015), using 
the VIC model, found that the percentages of runoff change due to climate change were 36%, 



 

 

28%, 53%, and 10% in the 1970s, 1980s, 1990s, and 2000s, respectively. The percentages of 
runoff change caused by human activity were 64%, 72%, 47%, and 90%, respectively. It can 
thus be concluded that human activity has a greater impact on basin runoff than climate change 
factors. He et al. (2019), based on the Budyko framework, found that for the upper reaches of 
the Beiluo River, the contribution of land-use change variations to runoff reduction was 95.3%. 
Gao et al. (2020), using the SWAT model, found that in the Jing River basin, the influence of 
climatic factors decreased from 85.70% to 42.43%, while that of anthropogenic factors 
increased from 14.3% to 57.57% between 1961 and 2015. These studies indicate that human 
activities are the primary factor influencing PRR in the Wei River basin, which is 
consistent with the findings of this study. However, most existing research broadly 
categorizes influencing factors into climatic and anthropogenic factors, with some studies 
considering changes in potential evapotranspiration and land use as influencing factors. 
The quantitative assessment of human-induced impacts is often derived from the results 
of climatic factors without using specific data on human activities. In these regards, the 
method proposed in this study aims to the exploration of the impact of individual or 
specific driving factors on PRR. The validation content based on the mutual information 
technique has been provided in the Supporting Information. Comparison with other studies has 
been supplemented in the Discussion section. 
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