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Abstract.  

Global population growth, economic growth, and climate change have led to a decline in groundwater resources, which are 10 

essential for sustaining groundwater dependent ecosystems (GDEs). To understand their spatial and temporal dependency on 

groundwater, we developed a framework for mapping GDEs at a large scale, using results from a high-resolution global 

groundwater model. To evaluate the proposed framework, we focus on the Australian continent because of the abundance of 

groundwater depth observations and the presence of a GDE atlas. We first classify GDEs into three categories: aquatic 

(focusing on rivers), wetlands (inland wetlands), and terrestrial (phreatophyte) GDEs. We then define a set of rules for 15 

identifying these different ecosystems based on, among others, groundwater levels and groundwater discharge. We run the 

groundwater model in both steady state and transient mode (period of 1979-2019) and apply the set of rules to map the different 

types of GDEs using model outputs. For the steady-state, we map the presence and absence of GDEs, and evaluate results 

against the Australian GDE atlas using a critical success index derived from hit rate, false alarm rate and missing rate. Results 

show a hit rate and a critical success index (CSI) above 80% for each of the three GDE types. From transient runs, we analyse 20 

the changes in groundwater dependency between two time periods, 1979-1999 and 1999-2019, and observe a decline in the 

average number of months that GDEs receive groundwater, pointing at an increasing threat to these ecosystems. The proposed 

framework and methodology provide a first step towards analysing how global climate change and water use may affect GDE 

extent and health. 
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1 Introduction  

Global water consumption has quadrupled in the last century due to population growth and industrialization in areas with 

limited precipitation and surface water resources, increasing the dependency on groundwater resources (Kummu et al., 2016). 

In addition, alterations in precipitation and recharge rates due to a changing climate have major impacts on groundwater 35 

resources (Cuthbert et al., 2019; Taylor et al., 2013). An increase in groundwater pumping and lower recharge rates have 

increased the rate of groundwater depletion in several regions globally (Bierkens & Wada, 2019). Overexploitation of 

groundwater resources by non-renewable groundwater use  in areas with low recharge rates leads to a decline in groundwater 

levels and a reduction of groundwater discharge to groundwater dependent ecosystems (GDEs) (Kløve et al., 2014). 

GDEs are defined as ecosystems that are reliant on groundwater to maintain their ecological function and structure (Kløve et 40 

al., 2014; Murray et al., 2006). The ecological integrity of GDEs depends on shallow groundwater levels or groundwater 

discharge, all year round, seasonally or periodically (Duran-Llacer et al., 2022; Foster et al., 2010). The degree of dependency 

of GDEs on groundwater varies with ecosystem type, geology, season, aquifer type, flow paths and catchment land use 

(Tomlinson & Boulton, 2010 ; Gleeson et al., 2023). In arid and semi-arid regions, groundwater is usually a major source of 

water for most ecosystems. GDE types include surface water systems (aquatic GDEs, which include rivers and lakes) that rely 45 

on groundwater discharge (Kløve et al., 2011), and groundwater dependent wetlands and terrestrial ecosystems (e.g. vegetation 

like phreatophytes) that tap into groundwater as a source of water (Robinson, 1958).  

It is evident that GDEs and their biodiversity and the ecosystem services they provide are at risk due to unsustainable 

groundwater extractions (Bierkens & Wada, 2019; Link et al., 2023) . It is, therefore, necessary to implement protection 

measures through groundwater management policies, such as the extension of buffer zones around groundwater recharge zones 50 

and appropriate land management in groundwater capture hotspots (Kløve, Balderacchi, et al., 2014; MacKay, 2006). A critical 

step towards the large-scale application of these water management strategies is to better understand the global distribution of 

GDEs and their response to environmental change. This, in turn, requires delineating the global spatial distribution and extent 

of GDEs, understanding temporal variations of the dependency of these ecosystems on groundwater and assessing how they 

are impacted by sectoral groundwater withdrawals. 55 

Until the past decade, mapping of GDEs was predominantly done at local scales, through laborious and costly methods that 

involved long hours of field surveys (Eamus et al., 2006; Hatton & Evans, 1998). More recently, GDEs have also been mapped 

based on satellite imagery such as MODIS (Castellazzi et al., 2019). Some large-scale satellite imagery-based mapping studies 

(> 50km) have been done in Chile (Duran-Llacer et al., 2022), Colorado and Nevada (Werstak et al., 2012), California (Howard 

& Merrifield, 2010), The Netherlands (Bonte et al., 2013; Hoogland et al., 2010), Ireland (Kilroy et al., 2009), South Africa 60 

(Münch & Conrad, 2007), Spain (Martínez-Santos et al., 2021; Münch & Conrad, 2007) and Australia (Barron et al., 2014; 

Brim Box et al., 2022; Glanville et al., 2016). The first continental mapping was done for Australia (Doody et al., 2017), 

combining remote sensing, GIS and expert knowledge to create a GDE atlas for the continent.  
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All the studies mentioned above are static in the sense that they map the spatial distributions of GDEs at a given point in time. 

However, to understand the dynamics of these ecosystems, it is essential to develop a method that can capture changes over 65 

time. The use of machine learning to predict groundwater dependency by ecosystems is a promising tool for spatial simulations. 

However, little data and an insufficient understanding of catchment-scale dynamics limit the use of machine learning for 

mapping spatio-temporal GDE dynamics (Xu & Liang, 2021). Process-based groundwater flow models, preferably at high 

resolution, may be more suitable for spatio-temporal mapping of GDEs, since they enable explicit linkages between GDE 

expression and groundwater level and groundwater discharges. In addition, process-based groundwater flow models facilitate 70 

scenario analyses, i.e. they can be applied under various assumptions of future changes in climate, land use and human water 

use, which all may impact future changes in GDE extent (Fatichi et al., 2016). This was first shown globally  by De Graaf et 

al. (2019), who used a global groundwater model to project changes in groundwater discharge to streamflow. It is also possible 

to couple a process-based dynamic GDE mapping model to other model types such as a biodiversity or economic models to 

determine the relationship between GDEs and biodiversity or the values of ecosystem services (Barbarossa et al., 2021; Van 75 

Emmerik et al., 2014). 

The aim of this research is to explore the potential of mapping the spatio-temporal dynamics of GDEs based on a global 

groundwater model. This work expands on the earlier work of De Graaf et al. (2019) in that it considers a wider range of GDEs 

and uses a much higher resolution groundwater model. We first classify GDEs into aquatic, wetlands and terrestrial vegetation 

(phreatophytes) ecosystems (section 2.1). We then use a global coupled surface - groundwater model run at 1km resolution in 80 

steady state and transient mode (section 2.2) to map the distribution of these three GDE classes in Australia (section 2.3). We 

also analyze the temporal variations in groundwater contributions for the three different GDE types (section 3). We choose to 

focus on Australia because of the availability of an existing GDE atlas (Doody et al., 2017) and the abundance of groundwater 

monitoring data, which enable us to evaluate our method and results. Also, Australia has a large variation in hydro-climatology 

and topography, which will enable us to understand the potential of our developed framework and methodology in various 85 

landscape settings. 

 

2 Data and methodology 

This section is divided into subsections highlighting the entire GDE mapping framework, which entails model set-up and 

evaluation, GDE classification and temporal variation analysis. The framework for mapping GDEs is presented in Fig.1. Using 90 

this framework, firstly we define the GDE classes (step 1), and then we run the surface-groundwater model and evaluate the 

groundwater levels against well observations (step 2). Finally, we use the model output to analyze and evaluate the spatio-

temporal mapping of the three different classes of GDEs (Step 3). 

 

 95 
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Figure 1: Groundwater dependent ecosystems (GDE) mapping framework using a high-resolution 

groundwater model. 100 
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2.1 Defining GDE classes (step 1) 

We categorize groundwater dependent ecosystems into three classes based on interaction with groundwater (see Figure 2). 

These include 1) ecosystems that depend on sufficient groundwater discharge (aquatic GDEs such as streams and rivers); 2) 

ecosystems that need shallow groundwater tables and soil saturation (wetland GDEs); 3) ecosystems that depend on 

groundwater for root water uptake (terrestrial GDEs with phreatophyte vegetation). In case of aquatic ecosystems, we do not 105 

include lakes due to the complexities in determining the contribution of groundwater in lentic systems and exclusively focus 

on lotic systems in this case rivers.  Also, note that we focus on inland ecosystems only. Finally, we do not consider subsurface 

ecosystems that rely on groundwater, such as stygofauna communities (Foster et al., 2010), because of the complexity of 

mapping these communities similarly as previously done by Huggins et al., (2023) as well . 

For aquatic GDEs, any stream pixel where the ratio of groundwater discharge (Qgw) to total streamflow (Q)  
𝑸𝒈𝒘

𝑸
  > 0 for more 110 

than a month is classified as being groundwater dependent. The rationale behind using groundwater discharge as a metric is 

that it maintains streamflow during dry spells and due to the relatively constant temperature of groundwater, which modulates 

stream temperatures during warm periods. For terrestrial GDEs (phreatophyte vegetation) we assume that any cell with a 

vegetation type with maximum rooting depth (Drmax) lesser than the groundwater depth of that cell is groundwater dependent, 

assuming that in this case, the vegetation is able to access groundwater with its deepest roots during dry spells. 115 

We define wetland GDEs based on the fraction of saturated area (soil wetness) and groundwater level. Any cell that has a 

saturated area fraction (Fsat) greater than 50% and a groundwater table depth less than 5m is classified as a wetland GDE. 

While groundwater levels closer to the surface (0.5 to 3 meters) support core wetland functions (Eamus et al., 2006; Winter, 

1999), wetlands in arid and semi-arid regions can still exhibit groundwater dependence with water table depths up to 5 meters, 

particularly in peripheral or drought-adapted areas (Stromberg et al., 2010). Hence, the threshold of 5m accommodates both 120 

core and peripheral groundwater-supported zones across varied climates. We added the 50% soil saturation threshold to discern 

dry areas with shallow groundwater levels from actual wetlands, which are typically saturated at the surface. We performed a 

sensitivity analysis for varying groundwater depth thresholds (1 to 5 m) and saturated area fractions (0.1 to 1.0) with a total of 

100 combinations, showing that the threshold of 5 meters produces the highest critical success index when validating against 

the Australian GDE atlas (See Supplementary Figure S1). In the latter case, we assessed the “degree of groundwater 125 

dependency” for each GDE type identified on the basis of a monthly time step (Figure 1). 
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Figure 2: Criteria for defining groundwater dependent ecosystems, with Qgw = local groundwater discharge, 

Q = accumulated stream flow, Gwt = groundwater table depth, Fsat = saturated area fraction and dRmax = 130 

maximum rooting depth. 

 

 

2.2    Model set-up, sensitivity analysis and output evaluation (step 2) 

For this research, we use an integrated hydrological model that consists of two parts. The first part is a physically-based global 135 

hydrology and water resources model (PCR-GLOBWB version 2.0) (Sutanudjaja et al., 2018) that simulates global terrestrial 

hydrology including the human impacts (dams and human water use). The second is a time-dependent (transient) groundwater 

flow model, GLOBGM (Verkaik et al., 2022). The two models are linked through a one-way coupling, that is, the outputs of 

the PCR-GLOBWB model are used as inputs to the groundwater flow model (Sutanudjaja et al., 2011). We first run the PCR-

GLOBWB 2 with its own default groundwater parameterization and then use the time series outputs for surface water levels, 140 

saturated area fraction, and groundwater recharge as forcing for the groundwater flow model. Model input parameters and data 

source references as well as groundwater properties for the model can be found in the supplementary information (Figures S2 

and S3, and Table S1). 

2.2.1 PCR-GLOBWB 

PCR-GLOBWB 2 is a gridded integrated hydrology and water resources model with a latitude-longitude grid of 5 arcminutes 145 

spatial resolution that simulates terrestrial hydrology and human water use at a daily time step. A detailed model description 

can be found in Sutanudjaja et al. (2018). PCR-GLOBWB 2 is forced with precipitation, temperature and reference evaporation 

based on the W5DE5 meteorological data set (Cucchi et al., 2020; Lange et al., 2021). Soil parameters are based on the 

SoilGrids dataset (Hengl et al., 2017). We use the default model settings with four landcover types, aggregating land cover 

classes into tall natural vegetation, short natural vegetation, non-paddy irrigated crops and paddy irrigated crops (Sutanudjaja 150 
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et al., 2018). To simulate variations in the saturated area fraction, we use the improved Arno Scheme (Hagemann & Gates, 

2003; Todini, 1996), which is an integral part of PCR-GLOBWB 2 to assess the area subject to surface runoff. PCR-GLOBWB 

2 also has an irrigation and water use model that calculates water demand (Wada et al., 2014) and water withdrawal, water 

consumption and return flows for irrigation and domestic, livestock and industrial sectors. 

2.2.2 Groundwater model  155 

We use the two-layer groundwater model GLOBGM run at 30 arcsec (16 million active cells) to simulate groundwater depths, 

groundwater heads and groundwater discharge. The model code that is used is MODFLOW 2005 and the aquifer properties 

are taken directly from (de Graaf et al., 2017). The groundwater model is forced with surface water levels and net groundwater 

recharge (percolation minus capillary rise) over the period 1979-2019 at monthly time steps as obtained from runs with PCR-

GLOBWB 2. For net recharge simple resampling is used, while water levels are computed at 30 arcsecs based on a simple 160 

routing (method of characteristics, for details see Sutanudjaja et al., 2018) of the 5-arcminute specific discharge over a 30-

arcsecond drainage network based on Hydrosheds (Lehner et al., 2008). The steady-state groundwater model is run with 

average net groundwater recharge and surface water levels over 1979-2019. Subsequently, the transient run follows with the 

heads from the steady state run as the initial condition and after a sufficient  spinup period of 20 years. 

 165 

2.2.3 Sensitivity analysis and calibration of groundwater model parameters 

With groundwater recharge and boundary conditions as described above, the groundwater model results are possibly sensitive 

to aquifer transmissivity and storage coefficient, river bed conductance and the thickness of the confining layer, while these 

properties are often very uncertain at larger scales (Brunner et al., 2017). We perform a sensitivity analysis using 216 steady-

state simulations varying the following three parameters: riverbed conductance, vertical conductivity of the confining layer (if 170 

present) and transmissivity of the confined and unconfined aquifers. We change these parameters independently using a single 

prefactor k applied to the log-transformed parameter of concern, with k=1 the initial value of the parameter taken from De 

Graaf et al. (2017). See Eq. (1) for an example for the transmissivity: 

 

𝑻′ = 𝐞𝐱𝐩(𝒌 ∙ 𝐥𝐧(𝑻))                                                   (1) 175 

With 𝑇′ the perturbed transmissivity (M2 d-1), T the original transmissivity according to De Graaf et al. (2017) and k the 

prefactor applied. 

For each unique parameter combination, we evaluate the biases between the simulated steady state groundwater depth (surface 

elevation minus hydraulic head in the top layer) and time-averaged observed groundwater depths using data from 15,345 wells 

recorded from 1970 to 2019 at monthly time step. If there were multiple wells within a 1km cell, we calculate the average of 180 

these considering the same year. We then select the best parameter set with the least bias against observed well data and vary 
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the storage coefficient and conduct six transient runs to select the best parameter set for simulating transient groundwater 

levels. Based on this, we finally select the best parameter set for the GDE mapping.  

2.2.4 Evaluation of simulated groundwater depths  

We evaluate the transient simulated groundwater depths against observed groundwater well depth time series data (BOM 185 

AU,2023). We compare 5 million cells with simulated groundwater depths with the observed data from 1979 to 2019 in the 

Australian continent. The metrics used for evaluation are bias (Baker, 1987), Pearson correlation coefficient (Cohen et al., 

2009) and  relative variance (Grömping, 2007). 

 

2.3 GDE mapping (step 3) 190 

 

2.3.1 Steady-state GDE mapping 

After running the model in steady state (average forcing groundwater dependent), we map the three different classes of GDEs 

according to the classification rules described above (Figure 2). For aquatic GDEs, we derive an aquatic ecosystem dependency 

ratio to groundwater which is defined as 
𝑸𝒈𝒘

𝑸
 where Qgw is the local groundwater discharge and Q is the total streamflow.  195 

Wetland GDEs are mapped using the groundwater depth from the groundwater model and the average saturated area (1979-

2019) from PCR-GLOBWB 2. Terrestrial vegetation GDEs are mapped using the groundwater depth and a rooting depth map 

(Fan et al., 2017).  

After mapping these GDEs in steady state we evaluate the results by comparing these with the GDEs mapped by the Australian 

GDE Atlas using similarity index metrics. These metrics are the hit rate h (a class is present that is also mapped), false alarm 200 

rate f (a class is mapped that is not present) and miss rate m (a class is present that is not mapped). From these metrics, we also 

calculate the critical success index (CSI) for the mapping of each GDE type, defined as Eq. (2):  

CSI =
ℎ

ℎ+𝑓+𝑚
                                           (2)   

Note that the Australian GDE Atlas distinguished between actually observed GDEs and likely GDEs (Doody et al., 2017), 

where the latter are mapped based on landcover type. When evaluating the mapping, we did not distinguish between known 205 

and likely GDEs, because of the overall good performance in our mapping approach and similarity in the hit-rates between the 

known and likely GDEs (See Figure S4).  

2.3.2 Transient GDE mapping  

For the transient analysis of the  GDEs, we use monthly time series of groundwater depth, groundwater discharge and saturated 

area fraction from the transient simulation over the period 1979 – 2019. We use the same criteria for mapping GDEs as used 210 
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for mapping in a steady state and use the extent of the steady state mapped GDEs as a given. Within these areas we consider 

the temporal variability in the contribution of groundwater. For aquatic GDEs we use monthly values of 
𝑄𝑔𝑤

𝑄
 to classify each 

month as low-dependent (ratio < 0.25) moderately dependent (ratio between 0.25 and 0.75) and highly dependent (ratio > 0.75) 

on groundwater. For terrestrial and wetland GDEs, we record the average number of months per year that the system is 

classified as groundwater dependent. We separately identify these transient GDE measures for two 20-year periods (1-1-1979 215 

to 31-12-1999 and 1-1-2000 till  01-01-2019) to assess potential changes in the contribution of groundwater between these two 

time periods.  

3. Results 

We first present the evaluation of the groundwater model simulations, as a first performance indicator of the proposed GDE 

mapping methodology (section 3.1). We then evaluate the coincidence of GDE types mapped with the steady-state groundwater 220 

model with GDEs mapped by the Australian GDE atlas (Doody et al., 2017) (section 3.2). Finally, we show the temporal 

change in the degree of groundwater dependency of the different GDE classes based on the transient simulations over the 

period groundwater dependent (section 3.3).  

3.1 Performance of the groundwater model in simulating groundwater heads 

From the sensitivity analysis and calibration, it turned out that the performance metrics calculated from the groundwater heads 225 

observations where rather insensitive to the pre-factors (see Figure S5). We therefore decided to use the default parameters for 

further analyses. In general, the cumulative frequency distributions show a good agreement in timing (~ 75 % shows r > 0.25). 

The dissimilarities between the observed and the simulated heads are due to the bias. Our simulated heads are deeper than the 

observed, with ~ 70 % having a bias ranging from 0 to 5 m. Plotting the biases per depth category of the observation data 

(wells) (Figure S6), we observe a smaller bias for shallower depths compared to the deeper depths. This shows that where it 230 

matters for GDEs (i.e. shallower depths), the biases are also smaller. The relative variance shows an underestimation of 

groundwater level variation of ~ 80% with a relative variance < 0. 6).  

The groundwater head of the first layer as simulated with the steady-state groundwater model and the best parameter set from 

the sensitivity analyses is shown in Figure S7, presenting a wide range in groundwater heads over Australia (0.25m to >320m). 

Figure S8 shows the differences in simulated (steady state) groundwater heads for areas where a confining layer is present. 235 

The red areas are those where there is a confining layer and the heads in the aquifer underlying the confining layer are larger 

than those in the confining layer itself. In these areas, it is possible that deep incising surface waters could receive groundwater 

discharge from the lower aquifer. 
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Figure 3 shows maps as well as cumulative frequency distributions of the bias (in m; difference in temporal mean heads: 

simulated minus observed), Pearson correlation coefficient (between the observed and simulated groundwater heads over time) 240 

and the relative variance (temporal variance of simulated time series divided by the temporal variance of the observed time 

series). Note that we compared the simulated groundwater depths from layer 1 with all available observation wells. Due to a 

lack of data on the wells’ filter depths, we were not able to exclude the wells with filters in confined aquifers. This will likely 

have a negative effect on model performance. Results show that the evaluation metrics perform better in Tasmania and areas 

where the wells are likely not in a confined aquifer, i.e., the red areas in Figure S8 (with r > 0.6, bias <= 3 m)).  245 

3.2 Steady state mapping and evaluation of GDEs  

To map the locations of GDEs we use the steady-state outputs from our groundwater model. For the aquatic GDEs, we observe 

that most streams of well-known river basins such as the Darling River depend on groundwater. Quite some vegetation located 

in dry areas tap into groundwater levels, while wetlands, showing large ranges in size, depend on groundwater predominantly 

when located close to rivers, likely being wetlands in or nearby floodplains.  250 

Evaluating our mapped GDEs against the Australian GDE atlas by Doody et al. (2017), we observed a high hit rate of 87%, 

92% and 95% for aquatic, terrestrial and wetland GDEs, respectively (Figure 4). Despite the overall bias observed in the 

groundwater model (Figure 3), the impact on representing GDEs is limited since this bias is smaller for shallower groundwater 

levels than for deeper groundwater levels (Figure S6). For the aquatic GDEs, most of the false alarms are in the near coastal 

areas and  in the Great Artesian basin. We miss some terrestrial GDEs in western Australia due to a lack of good rooting depth 255 

data. We also wrongly identify a large area of wetlands in New South Wales. 
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Figure 3: Evaluation statistics of observed groundwater depths against simulated groundwater head; top row: maps with values per 

observed location; bottom row: associated cumulative frequency distributions; left column: Bias (m); middle column: Pearson 260 
correlation coefficient; right column: relative variance. The white areas on the maps are locations without observation data. 
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Figure 4: Mapped GDEs based on steady state groundwater model results evaluated against the Australian GDE atlas showing hit 

rate, false alarm rate, miss rate and the CSI for the three GDE classes. Blue colour represents missed ecosystems, dark red represents 

false alarm and green represents hit rate. 265 

3.3 Transient GDE mapping  

To understand how the contribution of groundwater to the different ecosystems varied in the past, we divided the simulated 

periods into two-time intervals (period 1: 1979-2000; period 2: 2001-2019) and estimated for each time interval the average 

number of months per year that each GDE type relies on groundwater. Next, we calculated the changes in number of months 

of groundwater dependency: period 2 minus period 1 (Figures 5 and 6). We used the mapped steady state extent as a given for 270 

the evaluation of the degree of groundwater influence on GDEs for the transient runs. In other word, we did not look into 

extent dynamics.  

For aquatic GDEs, we assessed temporal changes in the different dependency ratio 
𝑄𝑔𝑤

𝑄
 categories. We observe that there is a 

decline in the average number of months in all dependency classes ecosystems (Figure 5) and that the decline in groundwater 

contribution is mostly observed in streams in the Murray Darlin Basin. This is in accordance with the decline in groundwater 275 

levels between the two periods in both the simulations and the observations (Figure S9). It is important to realize that the 

dependency ratio depends on both the groundwater depth and related groundwater discharge 𝑄𝑔𝑤and the streamflow itself. 

This is illustrated in Figure 6 that shows simulated time series of 
𝑄𝑔𝑤

𝑄
, groundwater depth and total streamflow. The figure 

shows that the groundwater levels are constrained at the top by the drainage system and also shows the intermittent character 

of the Australian climate, with wet periods alternating with dry periods where groundwater levels decline, and streamflow 280 

becomes almost zero. The top figure shows a negative trend in groundwater levels. However, streamflow is also declining,  
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offsetting the decline in groundwater discharge, resulting in a smaller negative trend in groundwater dependency 
𝑄𝑔𝑤

𝑄
. The 

zoom at the bottom shows the importance of discharge variability. November 2005 and July 2006 show almost the same 

shallow water table. However, streamflow peaks in November 2005, which makes for a low dependency ratio, while the 2006 

streamflow is low in July, making the dependency on groundwater discharge large. 285 

 

Figure 5: Change in groundwater dependency of aquatic GDEs between 1979-2000 and 2001-2019; (a) Maps of the direction of 

change in the average number of months that aquatic GDEs depend on groundwater; the left figure shows the change in the number 

of months 
𝑸𝒈𝒘

𝑸
 > 0 (low to high dependency), the middle figure 

𝑸𝒈𝒘

𝑸
 > 0.5 (moderate to high dependency) and the right figure 

𝑸𝒈𝒘

𝑸
 > 

0.75 (high dependency); Red areas indicate a decrease in the average number of months with groundwater dependency and blue 290 
indicates an increase; (b) associated frequency distributions of change in number of months. 
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 300 

Figure 6: Example time series of 
𝑸𝒈𝒘

𝑸
 for a downstream river reach location in the Darling River (location indicated in the aquatic 

GDE map on top). Top: time series of simulated 
𝑸𝒈𝒘

𝑸
 , total streamflow (Q) and groundwater depth, including trendlines. Right: zoom 
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into a selected timeframe (green bar in the left figure) to show how the variability of dependence of 
𝑸𝒈𝒘

𝑸
 depends on groundwater 

level and streamflow. 

 305 

Figure 7 shows the change in the number of months that the terrestrial GDEs and wetland GDEs are groundwater dependent. 

For wetland GDEs, we observe a decline in groundwater contribution of on average four months per year in most regions, with 

an exception in some wetland areas in New South Wales and South Australia where an average increase of eight months of 

groundwater dependency is observed. For wetland GDEs, this decline can also be caused by a decline of the saturated area 

fraction, which is a driving factor for the decrease in wetland GDE dependency in Central Australia since these areas show 310 

only limited declines in groundwater levels. Terrestrial GDEs (phreatophytes) show a limited decline in groundwater 

dependency of one month on average for most locations. These changes are exclusively due to a decline in groundwater levels 

since the rooting depth is kept constant (See Figure S7). 

 

We have performed some additional analyses to provide insight in the drivers of groundwater level changes between both 315 

periods. Figure S10 shows the difference in simulated groundwater recharge between the periods 2001-2019 relative to 1979-

2000 and the simulated groundwater withdrawal over the 2001-2019 period. The changes in groundwater recharge reflect the 

impact of climate variability and/or change on the groundwater system, while the locations with groundwater withdrawal 

reflect the direct human impacts. A thorough factor analysis is beyond the scope of this study, but a comparison of Figures 7 

with S9 suggests that climate variability mainly explains the changes in groundwater depth in North, Central and Western 320 

Australia while both factors play a role in Eastern Australia. Note that the variability of the simulated groundwater levels is 

half of that of the observed ones. This reflects the underestimation of the variability in groundwater depth as shows in Figure 

3. Possible explanations for this are an underestimation of recharge and recharge variability in drylands (Quichimbo et al., 

2021), an overestimation of storage coefficients and an underestimation of groundwater withdrawals.  

 325 
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Figure 7: Change in average number of months of groundwater the dependency of terrestrial GDEs (phreatophytes) and wetland 

GDEs; a) direction of change in terrestrial GDEs (phreatophytes); b) direction of change wetland GDEs. Red areas indicate a 

decrease in the average number of months with groundwater dependency, green indicates no change between the periods and blue 

indicates an increase; (c) and (d) associated cumulative frequency distributions of change in number of months. 330 

                                   

4 Discussions and conclusions 

In this research, we developed and evaluated a framework using a surface-groundwater model at 30 arcsec resolution to map 

aquatic, wetland and terrestrial groundwater-dependent ecosystems. We evaluated the simulated groundwater heads with 

observed groundwater level observations and the mapped GDE occurrence with the GDE atlas of Australia. Groundwater 335 

resources are crucial for GDEs as they partially or fully contribute to their water budget. Analysing the spatial and temporal 

changes in groundwater dependency is required for understanding threats to GDEs. In the context of global population growth, 

industrialization, economic growth and climate change driving global groundwater depletion, this will inform relevant 

stakeholders on threatened ecosystems and direct groundwater allocation. This study introduces a method for GDE mapping 
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that offers the possibility to improve understanding of the spatial distribution and temporal dynamics of GDEs in relation to 340 

the spatiotemporal dynamics of groundwater systems.  

Our research complements previous work on mapping GDEs combining expert knowledge, GIS and field visits by (Doody et 

al., 2017), previous global groundwater modelling efforts (De Graaf et al. 2019), as well as work by (Eamus et al., 2015), who 

investigated GDEs responses to changes in groundwater depth using satellite images and field studies for selected locations. 

In comparison, our research proposes a methodology to understand the long-term temporal responses of different GDE types 345 

to changes in groundwater levels at a large spatial extent and at high resolution. Our method relies on outputs from a process-

based high-resolution large-scale groundwater model and has potential for identifying hotspots of ecosystems threatened by 

groundwater extractions on a large scale. It proved to be effective for identifying GDEs in Australia with a hit rate over 87% 

and CSI over 80 %. GDEs occur in areas with a shallow water table and, notably, our framework was well able to simulate 

groundwater depths at these locations. The transient component of this methodology also facilitates in-depth understanding of 350 

the temporal dynamics of the reliance on groundwater resources by GDEs. At a monthly time scale, we were able to simulate 

the different levels of dependency by aquatic GDEs as well as the levels of reliance or non-reliance on groundwater resources 

by wetlands and phreatophyte communities.  

It is important to note that the dependency ratio of aquatic GDEs is dependent on both total streamflow and groundwater depth. 

Thus, increased groundwater discharge coupled with a decrease in streamflow may shift a river section to be more dependent 355 

and vice versa. Although streamflow and groundwater levels are likely positively correlated at larger time scales, they may 

not be in phase at shorter time scales due to the different response times of surface water and groundwater systems. This makes 

the degree of groundwater dependency of aquatic GDEs more intermittent than compared to GDEs that rely on groundwater 

depth and soil wetness (wetlands) or groundwater depth only (phreatophyte communities). Phreatophytes may be even more 

resilient to change as they are able to adapt to groundwater level declines through deeper rooting (Naumburg et al., 2005), 360 

although there are limitations to this adaptive capacity between species, implying that a decline in groundwater level may 

result in changes in phreatophyte community composition (Sommer & Froend, 2014). 

The model performance evaluation in the transient analysis revealed a fair overall agreement between simulated and observed 

groundwater head data, yet also an overall overestimation in simulated groundwater depth. However, since biases for shallow 

groundwater levels were limited, the performance in identifying the GDEs was very good, as indicated by the different 365 

performance metrics. The calibration results show that the groundwater model was not very sensitive to global changes in 

parameter sets (Figure S5). This calls for more sophisticated groundwater calibration methods that allow for regional 

differentiation in model parameters. Also, further improvements can be expected if the recharge simulated with PCR-

GLOBWB 2 could be better constrained. Therefore, a calibration approach more sophisticated than pre-factor parameter 

change must be implemented to improve the groundwater model simulations and derived mapping of GDEs.  370 

One of the limitations of the current groundwater model setup is its it relatively simple hydrogeologic schematisation obtained 

from De Graaf et al. (2017). Although this makes the framework globally applicable, it may suffer from a lack of geological 

detail needed for representing groundwater discharge and springs over, for example, the Great Artesian Basin. Another 
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limitation is the assumption that the rooting depth of phreatophytes is constant, due to a lack of temporal rooting depth data. 

This assumption contrasts with studies that have shown the ability of plants to adapt to changes in groundwater levels (Fan et 375 

al., 2017; Robinson, 1958). 

Although we noted a decline in groundwater contribution to Australian GDEs over the past decades, we have not explicitly 

factored in potential impacts from climate change or unsustainable groundwater extraction on GDE extent. Also, we cannot 

conclude on GDE loss solely from our findings, as we have not observed a consistent lack of groundwater contribution 

throughout the year. The potential underestimation of groundwater level changes (Figure S9) and withdrawals at a high 380 

resolution (Figure S10) in our simulations could be a contributing factor. 

In future work we intend to apply our framework to the global scale and better assess the individual impacts of groundwater 

withdrawals and climate change on the extent of GDEs under different scenarios. This would also require us to translate the 

change in degree of groundwater contribution to a change in GDE extent. This work will be accompanied by improved 

hydrogeological schematization and better calibration methods, with the aim to provide a good basis for ecological 385 

assessments, where changes in GDE extent are linked to changes in species richness.  

In summary, the framework introduced in this study represents a GDE mapping approach that allows the assessment of spatio-

temporal dynamics associated with the dependency of ecosystems on groundwater resources. This generic methodological 

framework not only enhances our understanding of the spatial distribution of GDEs but also establishes a foundation for 

interdisciplinary research between ecology and hydrology. By offering a global perspective on hotspot areas of GDEs under 390 

various hydroclimatic conditions, this methodology can inform decision-making processes regarding groundwater allocation 

and species conservation efforts. Such initiatives are crucial for advancing the objectives outlined in for example the Kunming-

Montréal Global Biodiversity Framework and Sustainable Development Goal 15, which aims to halt biodiversity loss. 
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