
 

1 

 

Mapping groundwater dependent ecosystems using a high-resolution global groundwater model 

Nicole Gyakowah Otoo1, Edwin H. Sutanudjaja1, Michelle T. H. van Vliet1, Aafke M. Schipper2,3,  

Marc F. P. Bierkens1,4 

1Department of Physical Geography, Utrecht University, The Netherlands 
2Radboud University, Radboud Institute for Biological and Environmental Sciences (RIBES), Nijmegen, The Netherlands 5 
3PBL Netherlands Environmental Assessment Agency, The Hague, The Netherlands  
4Unit Subsurface & Groundwater Systems, Deltares, Utrecht, the Netherlands 

Correspondence to: Nicole Gyakowah Otoo (n.g.otoo@uu.nl) 

Abstract.  

Global population growth, economic growth, and climate change have led to a decline in groundwater resources, which are 10 

essential for sustaining groundwater dependent ecosystems (GDEs). To understand their spatial and temporal dependency on 

groundwater, we developed a framework for mapping GDEs at a large scale, using results from a high-resolution global 

groundwater model. To evaluate the proposed framework, we focus on the Australian continent because of the abundance of 

groundwater depth observations and the presence of a GDE atlas. We first classify GDEs into three categories: aquatic 

(focusing on rivers and lakes), wetlands (inland wetlands), and terrestrial (phreatophyte) GDEs. We then define a set of rules 15 

for identifying these different ecosystems, which are based on, among others, on groundwater levels, and groundwater 

discharge. We run the groundwater model in both steady state and transient mode (period of 1979- 2019) and apply the set of 

rules to map the different types of GDEs using model outputs. For the steady-state, GDEs are mapped based onwe map the 

presence orand absence of GDEs, and evaluate results are evaluated against the Australian GDE atlas using a hit rate, false 

alarm, and critical success index. derived from hit rate, false alarm rate and missing rate. Results show a hit rate and a critical 20 

success index (CSI) above 80% for each of the three GDE types. From transient runs, we analyse the changes in groundwater 

dependency between two time periods, 1979-1999 and 1999-2019, and observe a decline in the average number of months that 

GDEs depend onreceive groundwater resources, pointing at an increasing threat to these ecosystems. The proposed framework 

and methodology provide a basis forfirst step towards analysing how global impacts of climate change and water use may 

affect GDEsGDE extent and health.  25 
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1 Introduction  

Global water consumption has quadrupled in the last century due to population growth and industrialization in areas with 35 

limited precipitation and surface water resources, increasing the dependency on groundwater resources (Kummu et al., 2016). 

In addition, alterations in precipitation and recharge rates due to a changing climate have major impacts on groundwater 

resources (Cuthbert et al., 2019; Taylor et al., 2013). An increase in groundwater pumping and lower recharge rates have 

increased the rate of groundwater depletion in several regions globally (Bierkens & Wada, 2019). Overexploitation of 

groundwater resources by non-renewable groundwater use  in areas with low recharge rates leads to a decline in groundwater 40 

levels and a reduction of groundwater discharge to groundwater dependent ecosystems (GDEs) (Kløve et al., 2014). 

GDEs are defined as ecosystems that are reliant on groundwater to maintain their ecological function and structure (Murray et 

al., 2006) (Kløve et al., 2014).(Kløve et al., 2014; Murray et al., 2006). The ecological integrity of GDEs depends on shallow 

groundwater levels or groundwater discharge, all year round, seasonally or periodically (Duran-Llacer et al., 2022; Foster et 

al., 2010). The degree of dependency of GDEs on groundwater varies with ecosystem type, geology, season, aquifer type, flow 45 

paths and catchment land use (Tomlinson & Boulton, 2010 ; Gleeson et al., 2023). In arid and semi-arid regions, groundwater 

is usually a major source of water for most ecosystems. This dependency of ecosystems on groundwater includesGDE types 

include surface water systems (aquatic GDEs, which include rivers and lakes) that rely on groundwater discharge (Kløve et 

al., 2011), and groundwater dependent wetlands and terrestrial ecosystems (e.g. vegetation like phreatophytes) that tap into 

groundwater as a source of water (Robinson, 1958).  50 

It is evident that GDEs and their biodiversity and the ecosystem services they provide are at risk due to unsustainable 

groundwater extractions (Bierkens & Wada, 2019; Link et al., 2023).It is evident that GDEs and their biodiversity and the 

ecosystem services they provide are at risk due to unsustainable groundwater extractions (Bierkens & Wada, 2019; Link et al., 

2023) . It is, therefore, necessary to implement protection measures through groundwater management policies, such as the 

extension of buffer zones around groundwater recharge zones and appropriate land management in groundwater capture 55 

hotspots (Kløve, Balderacchi, et al., 2014; MacKay, 2006). A critical step towards the large-scale application of these water 

management strategies is to better understand theirthe global distribution of GDEs and their response to environmental change. 

This, in turn, requires delineating the global spatial distribution and extent of GDEs, understanding temporal variations of the 

dependency of these ecosystems on groundwater and assessing how they are impacted by sectoral groundwater withdrawals. 

Until the past decade, mapping of GDEs was predominantly done at local scales, through laborious and costly methods that 60 

involved long hours of field surveys (Eamus et al., 2006; Hatton & Evans, 1998). More recently, GDEs have also been mapped 

based on satellite imagery such as MODIS (Castellazzi et al., 2019). Some large-scale satellite imagery-based mapping studies 

(> 50km) have been done in Chile (Duran-Llacer et al., 2022), Colorado and Nevada (Werstak et al., 2012), California (Howard 

& Merrifield, 2010), The Netherlands (Bonte et al., 2013; Hoogland et al., 2010), Ireland (Kilroy et al., 2009), South Africa 

(Münch & Conrad, 2007), Spain (Martínez-Santos et al., 2021; Münch & Conrad, 2007) and Australia (Barron et al., 2014; 65 
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Brim Box et al., 2022; Glanville et al., 2016). The first continental mapping was done for Australia (Doody et al., 2017), 

combining remote sensing, GIS and expert knowledge to create a GDE atlas for the continent.  

All the studies mentioned above are static in the sense that they map the spatial distributions of GDEs at a given point (or year) 

in time. However, to understand the dynamics of these ecosystems, it is essential to develop a method that can simulatecapture 

changes over time. The use of machine learning to predict groundwater dependency by ecosystems is a promising tool for 70 

spatial simulations. However, little data and an insufficient understanding of catchment-scale dynamics limit the use of 

machine learning for mapping spatio-temporal GDE dynamics (Xu & Liang, 2021) for mapping spatio-temporal GDE 

dynamics.. Process-based groundwater flow models, preferably at high resolution, may be more suitable for spatio-temporal 

mapping of GDEs, since they enable explicit linkages between GDE expression and groundwater level and groundwater 

discharges. In addition, process-based groundwater flow models have the potential offacilitate scenario analyses, i.e. tothey 75 

can be applied under various assumptions of future changes in climate, land use and human water use, which all may impact 

future changes in GDE extent (Fatichi et al., 2016). This was first shown globally  by De Graaf et al. (2019) using), who used 

a global groundwater model to project changes in groundwater discharge to streamflow. It is also possible to couple a process-

based dynamic GDE mapping model to other model types such as a biodiversity or economic models to determine the 

relationship between GDEs and biodiversity or the values of ecosystem services (Barbarossa et al., 2021; Van Emmerik et al., 80 

2014). 

The aim of this research is to explore the potential of mapping the spatio-temporal dynamics of GDEs based on a global 

groundwater model. This work buildsexpands on the earlier work of De Graaf et al. (2019) in that it considers a wider range 

of GDEs and uses a much higher resolution groundwater model. We first classify GDEs into aquatic, wetlands and terrestrial 

vegetation (phreatophytes) ecosystems (section 2.1). We then use a global coupled surface - groundwater model run at 1km 85 

resolution in steady state and transient mode (section 2.2) to map the distribution of these three GDE classes in Australia 

(section 2.3). We also analyze the temporal variations in groundwater contributions for the three different GDE types (section 

3). We choose to focus on Australia because of the availability of an existing GDE atlas (Doody et al., 2017) and the abundance 

of extensive groundwater monitoring data, which enable us to evaluate our method and results. Also, Australia has a large 

variation in hydro-climatology and topography, which will enable us to understand the potential of our developed framework 90 

and methodology in various landscape settings. 

 

2 Data and methodology 

This section is divided into subsections highlighting the entire GDE modellingmapping framework, which entails model set-

up and evaluation, GDE classification and temporal variation analysis. The framework for mapping GDEs is presented in 95 

Fig.1. Using this framework, firstly we define the GDE classes (step 1), and then we run the surface-groundwater model and 
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evaluate the groundwater levels against well observations (step 2). Finally, we use the model output to map and analyze and 

evaluate the spatio-temporal mapping of the three different classes of GDEs (Step 3). 

 

 100 
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Figure 1: Groundwater dependent ecosystems (GDE) modellingmapping framework using a high-resolution 105 

groundwater model. 
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2.1 Defining GDE classes (step 1) 

We categorize groundwater dependent ecosystems into three classes based on interaction with groundwater (see Figure 2). 

These include 1) ecosystems that depend on sufficient groundwater discharge (aquatic GDEs such as streams, and rivers and 

lakes); and); 2) ecosystems that need shallow groundwater tables and soil saturation (wetland GDEs); 3) ecosystems that 110 

depend on groundwater for root water uptake (terrestrial GDEs with phreatophyte vegetation). Note that we focus on only 

inland ecosystems onlyIn case of aquatic ecosystems, we do not include lakes due to the complexities in determining the 

contribution of groundwater in lentic systems and exclusively focus on lotic systems in this case rivers.  Also, note that we 

focus on inland ecosystems only. Finally, we do not consider subsurface ecosystems that rely on groundwater, such as 

stygofauna communities (Foster et al., 2010) because of the complexity of mapping these communities similarly as previously 115 

done by Huggins et al., (2023) as well. 

For aquatic GDEs, any stream or lake pixel where the ratio of groundwater discharge (Qgw) to total streamflow (Q)  
𝑸𝒈𝒘

𝑸
  > 0 

for more than a month is classified as being groundwater dependent. The rationale behind using groundwater discharge as a 

metric is that it maintains streamflow during dry spells and due to the relatively constant temperature of groundwater, which 

modulates stream temperatures during warm periods.  120 

For terrestrial GDEs (phreatophyte vegetation) we assume that any cell with a vegetation type with maximum rooting depth 

(Drmax) lesser than the groundwater leveldepth of that cell is groundwater dependent, assuming that in this case, the vegetation 

is able to access groundwater with its deepest roots during dry spells. 

We define wetland GDEs based on the fraction of saturated area (soil wetness) and groundwater level. Any cell that has a 

saturated area fraction (Fsat) greater than 50% and a shallow groundwater table (less than 5m) is classified as a wetland GDE. 125 

The 5 meter groundwater level threshold was obtained from (Gerla, 1992), while the 50% soil saturation was added to discern 

dry areas with shallow groundwater levels from actual wetlands that are typically situated in areas with topographic 

convergence. Note that we can make this classification based on steady-state groundwater model results as well as based on 

transient model results. In the latter case, we assess the “degree of groundwater dependency” for each GDE type identified at 

a monthly time step. 130 
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We define wetland GDEs based on the fraction of saturated area (soil wetness) and groundwater level. Any cell that has a 

saturated area fraction (Fsat) greater than 50% and a groundwater table depth less than 5m is classified as a wetland GDE. 

While groundwater levels closer to the surface (0.5 to 3 meters) support core wetland functions (Eamus et al., 2006; Winter, 

1999), wetlands in arid and semi-arid regions can still exhibit groundwater dependence with water table depths up to 5 meters, 135 

particularly in peripheral or drought-adapted areas (Stromberg et al., 2010). Hence, the threshold of 5m accommodates both 

core and peripheral groundwater-supported zones across varied climates. We added the 50% soil saturation threshold to discern 

dry areas with shallow groundwater levels from actual wetlands, which are typically saturated at the surface. We performed a 

sensitivity analysis for varying groundwater depth thresholds (1 to 5 m) and saturated area fractions (0.1 to 1.0) with a total of 

100 combinations, showing that the threshold of 5 meters produces the highest critical success index when validating against 140 

the Australian GDE atlas (See Supplementary Figure S1). In the latter case, we assessed the “degree of groundwater 

dependency” for each GDE type identified on the basis of a monthly time step (Figure 1). 

 

 



 

9 

 

Figure 2: Criteria for defining ecosystem dependency on groundwater dependent ecosystems, with Qgw = 145 

local groundwater discharge, Q = accumulated stream flow, Gwt = groundwater table depth, Fsat = saturated 

area fraction and dRmax = maximum rooting depth. 

 

 

2.2                                                                                                                                                                                                                                                     2.2    150 

Model set-up, sensitivity analysis and output evaluation (step 2) 

For this research, we use an integrated hydrological model that consists of two parts. The first part is a global physically-based 

global hydrology and water resources model (PCR-GLOBWB version 2.0) (Sutanudjaja et al., 2018) that simulates global 

terrestrial hydrology including the human impacts (dams and human water use). The second is a time-dependent (transient) 

groundwater flow model, GLOBGM (Verkaik et al., 2022). The two models are linked through a one-way coupling, that is, 155 

the outputs of the PCR-GLOBWB model are used as inputs to the groundwater flow model (Sutanudjaja et al., 2011). We first 

run the PCR-GLOBWB 2 with theits own default groundwater modelparameterization and then use the time series outputs for 

surface water levels, saturated area fraction, and groundwater recharge as forcing for the groundwater flow model. Model input 

parameters and data source references as well as groundwater properties for the model can be found in the supplementary 

information (Figures S2 and S3, and Table S1). 160 

2.2.1 PCR-GLOBWB 

PCR-GLOBWB 2 is a gridded integrated hydrology and water resources model with a latitude-longitude grid of 5 arcminutes 

spatial resolution that simulates terrestrial hydrology and human water use at a daily time step. A detailed model description 

can be found in Sutanudjaja et al. (2018). PCR-GLOBWB 2 is forced with precipitation, temperature and reference evaporation 

based on the W5DE5 meteorological data set (Cucchi et al., 2020; Lange et al., 2021) meteorological data set.. Soil parameters 165 

are based on the SoilGrids dataset (Hengl et al., 2017). TheWe use the default model settings ofwith four landcover types were 

used, aggregating land cover classes into tall natural vegetation, short natural vegetation, non-paddy irrigated crops and paddy 

irrigated crops (Sutanudjaja et al., 2018). To simulate variations in the saturated area fraction, we use the improved Arno 

Scheme (Todini, 1996)(Hagemann & Gates, 2003; Todini, 1996), which is an integral part of PCR-GLOBWB 2 to assess the 

area subject to surface runoff, is utilized.. PCR-GLOBWB 2 also has an irrigation and water use model that calculates water 170 

demand (Wada et al., 2014) and water withdrawal, water consumption and return flows for irrigation and domestic, livestock 

and industrial sectors. 

2.2.2 Groundwater model  

We use athe two-layer groundwater model GLOBGM run at 30 arcsec (16 million active cells) to simulate groundwater depths, 

groundwater heads and groundwater discharge. The model code that is used is MODFLOW 2005 and the aquifer properties 175 
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are taken directly from (de Graaf et al., 2017). The groundwater model is forced with surface water levels and net groundwater 

recharge (percolation minus capillary rise) over the period 1979-2019 at monthly time steps as obtained from runs with PCR-

GLOBWB 2. For net recharge simple resampling is used, while water levels are computed at 30 arcsecs based on a simple 

routing (method of characteristics, for details see Sutanudjaja et al., 2018) of the 5-arcminute specific discharge over a 30-

arcsecond drainage network based on Hydrosheds (Lehner et al., 2008). The steady-state groundwater model is run with 180 

average net groundwater recharge and surface water levels over 1979-2019. ConsequentlySubsequently, the transient run 

follows with the heads from the steady state run as the initial condition and after a sufficient  spinup period of 20 years. 

 

2.2.3 Sensitivity analysis and calibration of groundwater model parameters 

With groundwater recharge and boundary conditions as described above, the groundwater model results are possibly sensitive 185 

to aquifer transmissivity and storage coefficient, river bed conductance and the thickness of the confining layer, while these 

properties are often very uncertain at larger scales (Brunner et al., 2017). We perform a sensitivity analysis using 216 steady-

state simulations varying the following three parameters: riverbed conductance, vertical conductivity of the confining layer (if 

present) and transmissivity of the confined and unconfined aquifers. We change these parameters independently using a single 

prefactor k applied to the log-transformed parameter of concern, with k=1 the initial value of the parameter taken from De 190 

Graaf et al. (2017). See Eq. (1) for an example for the transmissivity: 

 

𝑻′ = 𝐞𝐱𝐩⁡(𝒌 ∙ 𝐥𝐧(𝑻))                                                   (1) 

With 𝑇′ the perturbed transmissivity (M2 d-1), T the original transmissivity according to De Graaf et al. (2017) and k the 

prefactor applied. 195 

For each unique parameter combination, we evaluate the biases between the simulated steady state groundwater depth (surface 

elevation minus hydraulic head in the top layer) and time-averaged observed groundwater depths using data from 15,345 wells 

recorded from 1970 to 2019 at monthly time step. If there were multiple wells within a 1km cell, we takecalculate the average 

of these considering the same year. We then select the best parameter set with the least bias against observed well data and 

vary the storage coefficient and conduct six transient runs to select the best parameter set for simulating transient groundwater 200 

levels. Based on this, we finally select the best parameter set for the GDE mapping.  

2.2.4 Evaluation of simulated groundwater depths  

We evaluate the transient simulated groundwater depths against observed groundwater well depth time series data (BOM 

AU,2023). A total ofWe compare 5 million cells with simulated groundwater depths are evaluated againstwith the observed 

data from 1979 to 2019 in the Australian continent. The metrics used for evaluation are bias (Baker, 1987), Pearson correlation 205 

coefficient (Cohen et al., 2009) and  relative variance (Grömping, 2007). 
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2.3 GDE mapping (step 3) 

 215 

2.3.1 Steady-state GDE mapping 

After running the model in steady state (average forcing groundwater dependent), we map the three different classes of GDEs 

according to the classification rules described above (Figure 2). For aquatic GDEs, we derive an aquatic ecosystem dependency 

ratio to groundwater which is defined as 
𝑸𝒈𝒘

𝑸
 where Qgw is the local groundwater discharge and Q is the total streamflow.  

Wetland GDEs are mapped using the groundwater depth from the groundwater model and the average saturated area (1979-220 

2019) from PCR-GLOBWB 2. Terrestrial vegetation GDEs are mapped using the groundwater depth and a rooting depth map 

(Fan et al., 2017).  

After mapping these GDEs in steady state we evaluatedevaluate the results by comparing these with the GDEs mapped by the 

Australian GDE Atlas using similarity index metrics. These metrics are the hit rate h (a class is present that is also mapped), 

false alarm rate f (a class is mapped that is not present) and miss rate m (a class is present that is not mapped). From these 225 

metrics, we also calculate the critical success index (CSI) for eachthe mapping of each GDE type, defined as Eq. (2):  

CSI⁡ =
ℎ

ℎ⁡+⁡𝑓⁡+⁡𝑚
⁡                                           (2)   

Note that the Australian GDE Atlas distinguished between actually observed GDEs and likely GDEs (Doody et al., 2017), 

where the latter are mapped based on landcover type. When evaluating the mapping, we did not distinguish between known 

and likely GDEs.., because of the overall good performance in our mapping approach and similarity in the hit-rates between 230 

the known and likely GDEs (See Figure S4).  

2.3.2 Transient GDE mapping  

For the mapping of transient analysis of the  GDEs, we use monthly time series of groundwater depth, groundwater discharge 

and saturated and saturated area fraction from the transient simulation over the period 1979 – 2019. We use the same criteria 

for mapping GDEs as used for mapping in a steady state and use the extent of the steady state mapped GDEs as a given. Within 235 

these areas we then consider the temporal variability in the contribution of groundwater as well. For aquatic GDEs we use 
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monthly values of 
𝑄𝑔𝑤

𝑄
 to classify each month as low-dependent (ratio < 0.25) moderately dependent (ratio between 0.25 and 

0.75) and highly dependent (ratio > 0.75) on groundwater. For terrestrial and wetland GDEs, we record the average number of 

months per year that the system is classified as groundwater dependent. We separately identify these transient GDE measures 

for two 20-year periods (1-1-1979 to 31-12-1999 and 1-1-2000 to 31-12till  01-01-2019) to assess potential changes in the 240 

contribution of groundwater between these two time periods.  

3. Results 

We first present the evaluation of the groundwater model simulations used, as a first performance indicator of the proposed 

GDE mapping methodology (section 3.1). We then evaluate the coincidence of GDE types mapped with the steady-state 

groundwater model with GDEs mapped by the Australian GDE atlas (Doody et al., 2017) (section 3.2). Finally, we show the 245 

temporal change in the degree of groundwater dependency of the different ecosystemGDE classes based on the transient 

simulations over the period groundwater dependent (section 3.3). Further information on the simulated groundwater levels, 

evaluation metrics and sensitivity analyses can additionally be found in the S3. 

3.1 Performance of the groundwater model in simulating groundwater depthheads 

From the sensitivity analysis and calibration, it turned out that in this case the performance metrics calculated from the 250 

groundwater levelheads observations where rather insensitive to the pre-factors (see Figure S3S5). We therefore decided to 

use the default parameters for further analyses. In general, the cumulative frequency distributions show a good agreement in 

timing (~ 75 % shows r > 0.25). The dissimilarities between the observed and the simulated head isheads are due to the bias. 

Our simulated heads are deeper than the observed, however with ~ 70 % having a bias ranging from 0 to 5 m. Plotting a 

scatterthe biases per depth category of the bias against the simulated headsobservation data (wells) (Figure S4S6), we observe 255 

a smaller bias for shallower depths compared to the deeper depths. This shows that where it matters for GDEs, (i.e. shallower 

depths), the biases are also smaller. The relative variance shows an underestimation of groundwater level variation of ~ 80% 

with a relative variance < 0. 6).  

The groundwater depthhead of the first layer as simulated with the steady-state groundwater model and the best parameter set 

from the sensitivity analyses is shown in Supplementary Information Figure S1S7, presenting a highwide range in groundwater 260 

depthheads over Australia (0.25m to >320m). Figure S2S8 shows the differences in simulated (steady state) groundwater heads 

for areas where a confining layer is present. The red areas are those where there is a confining layer and the heads in the aquifer 

underlying the confining layer are larger than those in the confining layer itself. In these areas, it is possible that deep incising 

surface waters could receive groundwater discharge from the lower aquifer... 
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Figure 3 shows maps as well as cumulative frequency distributions of the bias (in m; difference in temporal mean depthsheads: 265 

simulated minus observed), Pearson correlation coefficient (between the observed and simulated time seriesgroundwater heads 

over time) and the relative variance (temporal variance of simulated time series divided by the temporal variance of the 

observed time series). Note that we compared the simulated groundwater depths from layer 1 with all available observation 

wells. Due to a lack of data on the wells’ filter depths, we were not able to exclude the wells with filters in confined aquifers. 

This will likely have a negative effect on model performance. Results show that the evaluation metrics perform better in 270 

Tasmania and areas where the wells are likely not in a confined aquifer, i.e., the red areas in Figure S2S8 (with r > 0.6, bias 

<= 3 m)).  

3.2 Steady state mapping and evaluation of GDEs  

To map the locations of GDEs we use the steady-state outputs from our groundwater model. For the aquatic GDEs, we observe 

that most streams of well-known river basins such as the Darling River depend on groundwater. Quite some vegetation located 275 

in dry areas tap into groundwater levels, while wetlands, showing large ranges in size, depend on groundwater predominantly 

when located close to rivers, likely being wetlands in or nearby floodplains.  

Evaluating our mapped GDEs against the Australian GDE atlas by Doody et al. (2017), we observed a high hit rate and critical 

success index (CSI) of 87%, 92% and 95% for aquatic, terrestrial and wetland GDEs, respectively (Figure 4). Despite the 

overall bias observed in the groundwater model (Figure 3), the impact on representing GDEs is limited since this bias is smaller 280 

for shallower groundwater levels than for deeper groundwater levels (Figure S4S6). For the aquatic GDEs, most of the false 

alarms are in the near coastal areas and also in the Great Artesian basin. We miss some groundwater dependent terrestrial 

vegetations (phreatophytes)GDEs in western Australia due to a lack of good rooting depth data. We also wrongly identify a 

large area of wetlands in New South Wales. 



 

14 

 

 285 

 

Figure 3: Evaluation statistics of observed groundwater depths against simulated groundwater depthhead; top row: maps with 

values per observed location; bottom row: associated cumulative frequency distributions; left column: Bias (m); middle column: 

Pearson correlation coefficient; right column: relative variance. The white areas on the maps are locations without observation data. 
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 290 

 

Figure 4: Mapped GDEs based on steady state groundwater model results evaluated against the Australian GDE atlas showing hit 

rate, false alarm ratiorate, miss rate and the CSI for the three GDE classes. Blue colour represents missed ecosystems, dark red 

represents false alarm and green represents hit rate. 
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3.3 Transient GDE mapping  295 

To understand how the dependencycontribution of groundwater to the different ecosystems varied in the past, we divided the 

simulated periods into two-time intervals (period 1: 1979-2000; period 2: 2001-2019) and estimated for each time interval the 

average number of months per year that each GDE type relies on groundwater. Next, we calculated the changes in number of 

months of groundwater dependency: period 2 minus period 1 (Figures 5 and 6). As stated in the Methods, weWe used the 

mapped steady state extent as a given for the evaluation of the degree of groundwater influence on GDEs  for the transient 300 

runs. In other word, we did not look into extent dynamics.  

For aquatic GDEs, we assessed temporal dependencychanges in the different dependency ratio 
𝑄𝑔𝑤

𝑄
 categories. We observe 

that there is a decline in the average number of months in all dependency classes ecosystems (Figure 5) and that the decline in 

groundwater contribution is mostly observed in streams in the Murray Darlin Basin. This is in accordance with the decline in 

groundwater levels between the two periods in both the simulations and the observations (Figure S5S9). It is important to 305 

realize that the dependency ratio depends on both the groundwater depth and related groundwater discharge 𝑄𝑔𝑤and the 

streamflow itself. This is illustrated in Figure 6 that shows simulated time series of 
𝑄𝑔𝑤

𝑄
, groundwater depth and total 

streamflow. The figure shows that the groundwater levels are constrained at the top by the drainage system and also shows the 

intermittent character of the Australian climate, with wet periods alternating with dry periods where groundwater levels 

decline, and streamflow becomes almost zero. The top figure shows a negative trend in groundwater levels. However, since 310 

streamflow is also declining, these offsets offsetting the decline in groundwater discharge, resulting in a smaller negative trend 

in groundwater dependency 
𝑄𝑔𝑤

𝑄
. The zoom at the bottom shows the importance of discharge variability. November 2005 and 

July 2006 show almost the same shallow water table. However, streamflow peaks in November 2005, which makes for a low 

dependency ratio, while the 2006 streamflow is low in July, making the dependency on groundwater discharge large. 
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Figure 5: Change in groundwater dependency of aquatic GDEs between 1979-2000 and 2001-2019; (a) Maps of the direction of 

change in the average number of months that aquatic GDEs depend on groundwater; the left figure shows the change in the number 

of months 
𝑸𝒈𝒘

𝑸
 > 0 (low to high dependency), the middle figure 

𝑸𝒈𝒘

𝑸
 > 0.5 (moderate to high dependency) and the right figure 

𝑸𝒈𝒘

𝑸
 > 

0.75 (high dependency); Red areas indicate a decrease in the average number of months with groundwater dependency and blue 320 
indicates an increase; (b) associated frequency distributions of change in number of months. 
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 330 

Figure 6: Example time series of 
𝑸𝒈𝒘

𝑸
 for a downstream river reach location in the Darling River. (location indicated in the aquatic 

GDE map on top). Top: time series of simulated 
𝑸𝒈𝒘

𝑸
 , total streamflow (Q) and groundwater depth, including trendlines. Right: zoom 

into a selected timeframe (green bar in the left figure) to show how the variability of dependence of 
𝑸𝒈𝒘

𝑸
 depends on groundwater 

level and streamflow. 

 335 



 

20 

 

Figure 7 shows the change in the number of months that the terrestrial GDEs and wetland GDEs are groundwater dependent. 

For wetland GDEs, we observe a decline in groundwater contribution of on average four months per year in most regions, with 

an exception in some wetland areas in New South Wales and South Australia where an average increase of eight months of 

groundwater dependency is observed. For wetland GDEs, this decline can also be caused by a decline of the saturated area 

fraction, which is a driving factor for the decrease in wetland GDE dependency in Central Australia since these areas show 340 

only limited declines in groundwater levels. Terrestrial GDEs (phreatophytes) show a limited decline in groundwater 

dependency of one month on average for most locations. These are small changes and can only be attributedare exclusively 

due to a decline in groundwater levels since the rooting depth is kept constant (See Figure S5S7). 

 

We have addedperformed some additional analyses to improve understanding ofprovide insight in the drivers'drivers of 345 

groundwater level changes between both periods. Figure S6S10 shows the difference in simulated groundwater recharge 

between the periods 2001-2019 relative to 1979-2000 and the simulated groundwater withdrawal over the 2001-2019 period. 

The changes in groundwater recharge reflect the impact of climate variability and/or change on the groundwater system, while 

the locations with groundwater withdrawal reflect the direct human impacts. A thorough factor analysis is beyond the scope 

of this study, but a comparison of Figures S57 with S6S9 suggests that climate variability mainly explains the changes in 350 

groundwater depth in North, Central and Western Australia while both factors play a role in Eastern Australia. Note that the 

variability of the simulated groundwater levels is half of that of the observed ones. This reflects the underestimation of the 

variability in groundwater depth as shows in Figure 3. Possible explanations for this are an underestimation of recharge and 

recharge variability in drylands (Quichimbo et al., 2021), an overestimation of storage coefficients and an underestimation of 

groundwater withdrawals.  355 
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Figure 7: Change in average number of months of groundwater the dependency of terrestrial GDEs (phreatophytes) and wetland 

GDEs; a) direction of change in terrestrial GDEs (phreatophytes); b) direction of change wetland GDEs. Red areas indicate a 

decrease in the average number of months with groundwater dependency, green indicates no change between the periods and blue 360 
indicates an increase; (c) and (d) associated cumulative frequency distributions of change in number of months. 

                                   

4.0 Discussions and conclusions 

In this research, we developed and evaluated a framework using a high-resolution surface-groundwater model at 30 arcsec 

resolution to map aquatic, wetland and terrestrial groundwater-dependent ecosystems. We evaluated the simulated 365 

groundwater depthheads with observed groundwater level observations and the mapped GDE occurrence with the GDE atlas 

of Australia. Groundwater resources are crucial for GDEs as they partially or fully contribute to their water budget. Analysing 

the spatial and temporal changes in groundwater dependency is required for understanding threats to GDEs. In the context of 

global population growth, industrialization, economic growth and climate change driving global groundwater depletion, this 

will inform relevant stakeholders on high-riskthreatened ecosystems and direct groundwater allocation. This study introduces 370 
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a method for GDE mapping that offers the possibility to improve understanding of the spatial distribution and temporal 

dynamics of GDEs in relation to the spatiotemporal dynamics of groundwater systems.  

Our research builds uponcomplements previous work on mapping GDEs combining expert knowledge, GIS and field visitvisits 

by (Doody et al., 2017), previous global groundwater modelling efforts (De Graaf et al. 2019), as well as work by (Eamus et 

al., (2015), who investigated GDEs responses to changes in groundwater depth using satellite images and field studies for 375 

selected locations. In comparison, our research proposes a methodology to understand the long-term temporal responses of 

different GDE types to changes in groundwater levels at a large spatial extent and at finehigh resolution. Our method relies on 

outputs from a process-based high-resolution large-scale groundwater model and has potential for identifying hotspots of 

ecosystems threatened by groundwater extractions on a large scale. It proved to be effective for identifying GDEs in Australia 

with a hit rate over 87% and CSI over 80 %. GDEs occur in areas with a shallow water table and, notably, our framework was 380 

well able to simulate groundwater depths at these locations well. The transient component of this methodology also facilitates 

in-depth understanding of the temporal dynamics of the reliance on groundwater resources by GDEs. At a monthly time, scale, 

we were able to simulate the different levels of dependency by aquatic GDEs as well as the levels of reliance or non-reliance 

on groundwater resources by wetlands and phreatophyte communities.  

It is important to note that the dependency ratio of aquatic GDEs is dependent on both total streamflow and groundwater depth. 385 

Thus, increased groundwater discharge coupled with a decrease in streamflow may shift a river section to be more dependent 

and vice versa. Although streamflow and groundwater levels are likely positively correlated at larger time scales, they may 

not be in phase at shorter time scales due to the different response times of surface water and groundwater systems. This makes 

the degree of groundwater dependency of Aquaticaquatic GDEs more intermittent than othercompared to GDEs that rely on 

groundwater depth and soil wetness (Wetlandswetlands) or groundwater depth only (and.phreatophyte communities) .). 390 

Phreatophytes may be even more resilient to change as they are able to adapt to groundwater level declines through deeper 

rooting (Naumburg et al., 2005), although there are limitations to this adaptive capacity between species, implying that a 

decline in groundwater level may result in changes in phreatophyte community composition (Sommer & Froend, 2014). 

The model performance evaluation in the transient analysis revealed a fair overall agreement withbetween simulated and 

observed groundwater depthhead data, yet also an overall overestimation in simulated groundwater depth. However, since 395 

biases for shallow groundwater levels were limited, the performance in identifying the GDEs was very good, as indicated by 

the different performance metrics. The calibration results show that the groundwater model was not very sensitive to global 

changes in parameter sets (Figure S4S5). This calls for more sophisticated groundwater calibration methods that allow for 

regional differentiation in model parameters. Also, further improvements can be expected if the recharge simulated with PCR-

GLOBWB 2 could be better constrained. Therefore, a calibration approach more sophisticated than pre-factor parameter 400 

change must be implemented to improve the groundwater model simulations and derived mapping of GDEs.  

One of the limitations of the current groundwater model setup is its it relatively simple hydrogeologic schematisation obtained 

from De Graaf et al. (2017). Although this makes the framework globally applicable, it may suffer from a lack of geological 

detail needed for representing groundwater discharge and springs over e.g.,, for example, the Great Artesian Basin. Another 
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limitation is the assumption that the rooting depth of phreatophytes is constant, due to a lack of temporal rooting depth data. 405 

This assumption contrasts with studies that have shown the ability of plants to adapt to changes in groundwater levels (Fan et 

al., 2017; Robinson, 1958). 

Although we'vewe noted a decline in groundwater contribution to Groundwater Dependent Ecosystems (Australian GDEs), 

we haven't over the past decades, we have not explicitly factored in potential impacts from climate change or unsustainable 

groundwater extraction on GDE extent. Also, we can'tcannot conclude on GDE habitat loss solely from our findings, as we 410 

haven'thave not observed a consistent lack of groundwater contribution throughout the year. The potential underestimation of 

groundwater level changes (Figure S5S9) and withdrawals at a high resolution (Figure S6S10) in our simulations could be a 

contributing factor. 

In future work we intend to apply our framework to the global scale and better assess the individual impacts of groundwater 

withdrawals and climate change on the extent of GDEs under different scenarios. This would also require us to translate the 415 

change in degree of groundwater contribution to a change in GDE extent. This work will be accompanied by improved 

hydrogeological schematization and better calibration methods, with the aim to provide a good basis for ecological 

assessments, where changes in GDE extent are linked to changes in species richness.  

In summary, the framework introduced in this study represents a GDE mapping approach that allows the assessment of spatio-

temporal dynamics associated with the dependency of ecosystems on groundwater resources. This generic methodological 420 

framework not only enhances our understanding of the spatial distribution of GDEs but also establishes a foundation for 

interdisciplinary research between ecology and hydrology. By offering a global perspective on hotspot areas of GDEs under 

various hydroclimatic conditions, this methodology can inform decision-making processes regarding groundwater allocation 

and species conservation efforts. Such initiatives are crucial for advancing the objectives outlined in for example the Kunming-

Montréal Global Biodiversity Framework and Sustainable Development Goal 15, which aims to halt biodiversity loss. 425 
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