
Observation-driven model for calculating water harvesting potential
from advective fog in (semi-)arid coastal regions
Felipe Lobos-Roco1,2, Jordi Vilà-Guerau de Arellano3, and Camilo del Río4

1Centro UC Desierto de Atacama, Pontificia Universidad Católica de Chile.
2Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile.
3Meteorology and Air Quality group, Wageningen University, the Netherlands.
4Instituto de Geografía, Pontificia Universidad Católica de Chile.

Correspondence: Felipe Lobos-Roco (flobosr@uc.cl; felipe.lobos.roco@gmail.com)

Abstract.

Motivated by finding complementary water sources in (semi-)arid regions, we develop and assess an observational-driven

model to calculate fog harvesting water potential. We aim to integrate this model with routine meteorological data collected

under complex meteorological and topographic conditions to characterize the advective fog phenomenon. Based on the mass

balance principle, the Advective fog Model for (semi-)Arid Regions Under climate change (AMARU) offers insights into fog5

water harvesting volumes in time and space domains. The model is based on a simple thermodynamic approach to calculate

the dependence of the liquid water content (rl) on height. Based on climatological fog collection records, we introduce an

empirical efficiency coefficient. When combined with rl, this coefficient facilitates the estimation of fog harvesting volumes (L

m−2). AMARU’s outputs are validated against in-situ observations collected over Chile’s coastal (semi-)arid regions at various

elevations and years (2018-2023). The model’s representations of the seasonal cycle of fog harvesting follow observations with10

errors of ∼10%. The model satisfactorily estimates the maximum rl (∼0.8 g kg−1) available for fog harvesting potential in the

vertical column. To assess spatial variability, we combine the model with satellite-retrieved data, enabling the mapping of fog

harvesting potential along the Atacama coast. Our approach enables the application of the combined observational-AMARU

model to other (semi-)arid regions worldwide that share similar conditions. Through the quantification of fog harvesting, our

model contributes to water planning, ecosystem delimitation efforts, and the study of the climatological evolution of cloud15

water, among others.

1 Introduction

Water resources in (semi-)arid regions are of critical value for social, economic, and ecological development. However, in re-

cent decades, climate change has enhanced drought periods, intensifying water stress in areas already facing scarcity. This has

resulted in a worldwide dryland expansion (Koppa et al., 2023). For example, Chile’s (semi-)arid and mediterranean regions20

have suffered a fifteen-year drought, experiencing a nearly 40% decrease in precipitation (Garreaud et al., 2021). Likewise,

other dry regions such as California, South Africa, Australia, Spain, and Morocco are confronting similar challenges related to

water scarcity, including new threats like fire risks, degradation of soil ecosystems, and impacts on food security (Goulden and
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Bales, 2019; Berbel and Esteban, 2019; Keeley and Syphard, 2021; Kogan and Kogan, 2019). Moreover, future IPCC’s climate

scenarios are discouraging, projecting even drier conditions by 2050 (Masson-Delmotte et al., 2021). Under this escalating25

water scarcity scenario, the exploration of new water resources is imperative.

In this context, the collection of freshwater from fog presents itself as a viable alternative to face water scarcity, especially in

(semi-)arid regions along the subtropical western coasts. Fog harvesting has long represented a significant untapped water po-

tential in the world’s dry regions (Klemm et al., 2012). For example, in the coastal Atacama Desert, fog and dew represent the30

sole water source across vast territories with almost null precipitations (Cereceda et al., 2008). However, quantifying this water

potential represents a scientific challenge, requiring a deep understanding of the physical processes controlling the formation

and dissipation of the marine stratocumulus (Sc) cloud deck over the ocean (Andersen et al., 2020; del Río et al., 2021b),

its interaction with coastal topography (Lobos-Roco et al., 2018), and the effectiveness of fog collector designs (Verbrugghe

and Khan, 2023). In addition, the lack of available and direct observations of the fog phenomenon, combined with the com-35

plexity of topography, makes it challenging to pinpoint where fog forms, identify optimal harvesting seasons, and determine

potential yield. Consequently, advancing our knowledge to quantify harvestable water from fog clouds is imperative to develop

this promising alternative water source. Estimating where, when, and how much water can be harvested from fog is socially

relevant. Estimating fog water potential can facilitate the transition from experimental fog harvesting practices to industrial

ones (Lobos-Roco et al., 2024), potentially enhancing the development of overlooked desert territories, and benfiting their40

local communities. Moreover, estimating potential fog water production can help us better understand the unique ecosystems

sustained by fog (Koch et al., 2019; Muñoz-Schick et al., 2001; Moat et al., 2021), contributing to the assessment of their

conservation status under a rapidly warming climate.

Fog is a meteorological phenomenon defined by a boundary layer cloud in permanent contact with the Earth’s surface45

(Roach, 1995; Stull, 2012). The origins of fog are, influenced by different atmospheric boundary layer and local topographic

conditions. However, in most of the (semi-)arid regions along the (sub)tropical western margins of continents, fog formation is

driven by the ocean to land advection of the Sc cloud. The Sc cloud forms over the ocean in a vast deck controlled by a strong

inversion layer resulted from the interaction between the sea surface temperature and large-scale subsidence (Muñoz et al.,

2011). Here, one of the main physical involved in stratocumulus formation is the microphysical properties of cloud droplets,50

which are linked to cloud optical properties that have important climate effects (Wood, 2012). In the South East Pacific, cloud

droplet sizes of 5 to 15 µm are often found, whose concentration is ≤50 cm−350 cm−3 increasing to 200 cm−3 along coastal

areas of Chile (Painemal and Zuidema, 2011). The droplet size and concentration determines the liquid water content (Gultepe

et al., 2021), which essentially is the amount of water that can be harvested on land once Sc becomes fog. As well as, the sta-

bility of the marine boundary layer (MBL) determines the formation, maintenance, and dissipation of the Sc cloud. Formation55

and maintenance depend on how well-mixed (<3.1 x 10 −3 K m−1) the MBL is, while the dissipation is influenced by its

stratification (>3.1 x 10 −3 K m−1) (Lobos-Roco et al., 2018). This cloud forms at the upper part of the MBL, exhibiting a

clear vertical structure. This structure is characterized by an averaged cloud base ranging from 300 to 400 m (Lu et al., 2007),
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determined by the lifting condensation level. As the latter increases, the liquid water content progressively rises, peaking at

the cloud top (∼0.7 g kg−1) (Schween et al., 2022). The liquid water content abruptly drops to 0 g kg−1 just above the cloud60

top, where the air becomes stratified and extremely dry. The Sc cloud is advected into the continent by the typical strong

thermal-driven sea breeze of (semi-)arid regions (Lobos-Roco et al., 2021). Upon reaching land, the cloud deck is affected by

local conditions that, together with the high topography, lift it, forming fog belts (del Río et al., 2021b). Depending on latitude

and topography, these fog belts vary in altitude; for example, in the Atacama region, they are found in the coastal mountains

between 600 to 1200 m ASL (Cereceda et al., 2008; Garreaud et al., 2008). This narrow belt represents the area where fog can65

potentially be harvested.

The harvesting process is made by nature through specialized plants that accumulate water in their leaves, spines, and

branches, making it available for the soil and roots (Malik et al., 2014; García et al., 2021; Koch et al., 2019). However, fog can

also be harvested artificially through passive collectors, which efficiently harvest fog water using meshes (Schemenauer and70

Cereceda, 1994). Numerous studies have reported promising fog harvesting volumes worldwide in arid and semi-arid regions.

For example, rates between 6-8 L m−2 d−1 have been reported in the hyperarid Atacama Desert in Chile (Cereceda et al.,

2002; Larrain et al., 2002), 1-5 L m−2 d−1 along the western coast of South Africa (Klemm et al., 2012), and 7 L m−2 d−1 in

the Iberian Peninsula, Spain (Estrela et al., 2009).

75

In recent years, significant progress has been achieved in understanding the spatial variability of Sc cloud and fog (del Río

et al., 2021b; Andersen et al., 2020), as well as the vertical structure of the fog cloud (García et al., 2021; Lobos-Roco et al.,

2018) and the practical applications of fog and dew collection in water-stressed regions (Lobos-Roco et al., 2024; Baguskas

et al., 2021). Despite these advancements, there remains a need to integrate these findings into a unified model that can address

the questions of where, when, and how much water can be harvested from clouds. In this research, we present the Advective80

fog Model for (semi-)Arid Regions Under climate change (AMARU), a phenomenological model designed to estimate fog

harvesting potential volumes continuously in time and space.

2 Model formulation and evaluation

The AMARU aims to estimate in a simple way the adiabatic liquid water content of Sc clouds and the potential for fog har-

vesting. Our goal is to design a model that use the available routine meteorological observations in an area with significant85

ocean-land contrasts and very complex topography. Figure 1 shows the physical assumptions and processes along with the re-

spective variables and units. The model is derived from the mass conservation equation. The sequence of physical mechanisms

are: (i) during a fog event, a certain amount of liquid water (Wh) is retained from the total fog inflow when passing through

a passive collector. We assume that the harvested fog water results from the difference between fog inflow (Fin) and outflow

(Fout) in g kg−1 m s−1. This equation reads as follows:90
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Wh = Fin−Fout, (1)

(ii) Fog inflow and outflow are described as fluxes of the mixing ratio:

Fin = rlux, (2)

Fout = Fin(1− η), (3)

where rl is the liquid water mixing ratio, defined as the amount of liquid water (ml in Fig.1) per unit mass of dry air (md)95

that contains it, expressed in grams of water per kilograms of dry air. To calculate the inflow we use ux, which represents the

perpendicular (mean ± std) wind speed (m s−1) relative to the collector. (iii) The term η is a dimensionless ratio representing

the collector efficiency. This coefficient is described as:

η =
Wh

Fin
, (4)

where η corresponds to the percentage of water harvested over the total water that can potentially pass through the collector100

(calculation in Section 2.2). Reordering the terms, we express Equation (1) in net terms as:

Wh = rluxη. (5)

The Wh units are then g kg−1 m s−1. However, in giving the final output, we convert L m−2s−1 (equivalent to mm) once

grams are transformed to liters and dry air density (kg m−3) is included as:

Wh = rlρauxη. (6)105

Finally, Wh is integrated over a period as:
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W
∆t
h =

t1∫
t0

Whdt (7)

where t0 and t1 correspond to the initial and ending times. The model has three main assumptions described as follows: (1)

Fin > Fout; (2) since the model aims to reproduce advective fog collection, it is assumed that condensation only occurs in the

atmosphere under the conditions rl= rv - rs; (3) the mixing ratio (rv) being two orders of magnitude higher than rl, is nearly110

conserved.

Figure 1. AMARU model physical interpretation, including terms from equations (1) to (7).

In Equation (6), rl and η depend on location and condensation processes. Regarding location, rl varies in height (the vertical

dimension of the model) and depends on the conditions of the marine Sc cloud over the ocean and its interaction with the
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topography. To estimate this variable using routine data, we assume that water vapor condenses once it reaches the thermody-

namic conditions to reach saturation, This assumption implies that we do not take microphysical properties such droplet size,115

nucleation or droplet concentration into the calculations. The second term, η groups cloud microphysics, the collector design,

and its material properties. To delve into the detailed calculation of rl and η, we break down the analysis of Equation (6) into

two parts: the thermodynamic and water potential modules (section 2.1 and 2.2). In addition, we introduce a third module for

representing the model’s horizontal spatial variability of Wh trough spatial interpolation creating a fog harvesting potential

map.120

2.1 Thermodynamic module: obtaining liquid water mixing ratio (rl)

Liquid water mixing ratio is a complex variable to estimate and measure. It can be obtained from complex and computationally

expensive atmospheric models (Large-Eddy Simulation (LES); Weather Research and Forecasting (WRF)) (Bergot, 2016)

or by sophisticated and expensive instrumentation (fog measurements divices; microwave radiometers) (Kim et al., 2022;

Gultepe and Milbrandt, 2007). However, our objective here is to estimate rl using routine meteorological data. To achieve125

this, we propose employing the air parcel method (Wetzel, 1990), which calculates thermodynamic changes related to an air

parcel while it is uplifted from the surface. The strategy here is to obtain the adiabatic liquid water mixing ratio including the

mixing during the lifting. This method has been successfully tested in the Atacama region by Lobos-Roco et al. (2024, 2018),

who averaged the meteorological conditions of two meteorological stations located at different heights (z1 and z2) along a

topographic transect. This strategy allows for observation at two-combined points within the MBL during advective fog events:130

z1 represents near-surface marine meteorological conditions, while z2 represents inland meteorological conditions close to the

MBL top, where fog formation occurs. Figure 2a schematizes the strategy for estimating rl using the parcel method. This

estimation involves four steps, which are described and evaluated in the following subsections.

2.1.1 Fog cover fraction frequency

AMARU is a phenomenological model that relies on the presence of advective fog, which typically occurs under a well-mixed135

MBL regime (Lobos-Roco et al., 2018). Thus, we propose three criteria for fog estimation using routine meteorological data.

The first criterion posits fog occurrence when air temperatures reach the dew temperature (Ta-Td = 0 ). However, this condition

has been rarely observed, particularly in the coastal Atacama, even during fog formation. For this reason, we propose and test

four alternative thresholds. For this estimation, we exclusively use data from station z2. The second criterion is that MBL

must be well-mixed. Our criteria for fulfilling this assumption is that the thermal gradient (∂θ/∂z) between θ(z1) and θ(z2)140

is minimal. Here, we propose and test four thresholds close to 0 K m−1. The third criterion is similar to the second one but

employs the specific humidity vertical gradient (∂q/∂z) to assess MBL mixing. Similar to the first criterion we propose and

test four thresholds to determine how well-mixed is the MBL in terms of temperature and specific humidity.

Figure 3 shows a statistical comparison between the estimated fog occurrence (in %) derived from the three proposed

criteria and thresholds, and observations obtained from a Standard Fog Collector, SFC (Schemenauer and Cereceda, 1994).145

The observations were conducted in the fog oases of Alto Patache (z2) within the Atacama Desert during the year 2018 (20.82°
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Figure 2. (a) Schematic vertical cross-section representing the estimation of liquid water content (rl) using the air parcel method. (b) Physical

representation of the topographic uplifting of Sc cloud and its interaction in the ocean-land transition. Blue (orange) arrows indicate latent

heat flux (sensible heat flux) from the surface (c). Representation of the combined meteorological conditions from stations z1 and z2 in the

cloud base, cloud top, and rl representation.
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Figure 3. (a) Taylor diagram comparing the proposed criteria and thresholds for estimating fog occurrence. The diagram deploys correlation

(r), standard deviation, and root mean square error (RMSE) between the criteria-thresholds and observations. (b) Comparison of the annual

diurnal cycle of fog occurrence between observations (SFC) and the best-performing criteria. Note that numbers 11 and 12 have slightly

negative correlation, placing behind the line and at the left of y-axis

S; 70.14° W; 850 m ASL, 5 km from the coast). In addition, we also use data from the meteorological station at Diego Aracena

Airport, z1 ( 20.52° S; 70.15° W; 48 m ASL), to calculate the vertical gradients.

In general terms, among the three proposed criteria, those based on Ta -Td (blues) show the strongest correlation with

directly observed fog collection. Among these, the threshold Ta -Td < 1.5 k (n.4 in Fig. 3a) emerges as the most accurate,150

exhibiting a standard deviation aligned with observations (18%), a correlation coefficient (r) of 0.95, and a root mean square

error (RMSE) of 6%. However, the remaining thresholds yield similar results, suggesting that fog occurs when Ta -Td spans

from 2 to 1.15 K. The second and third criteria are based on the parcel method and the mixing layer theory, which states that

Sc cloud formation occurs under well-mixed MBL conditions. The chosen thresholds have been studied before in the coastal

Atacama region by Lobos-Roco et al. (2018, 2024), del Río et al. (2021a) and García et al. (2021). The second criteria (depicted155

in orange) show promising results when compared to observations, displaying a standard deviation ranging between 17 to 20%,

an r value ranging from 0.5 to 0.7, and a RMSE of ∼17%. These values suggest that the MBL tends to be thermally well-

mixed (exhibiting minimal vertical gradients) during fog occurrences. The last criteria (purple ones) demonstrate insufficient

performance in detecting fog occurrence, exhibiting no correlation with observations. This suggests that fog occurrence is not

contingent upon MBL being well-mixed in terms of moisture. The disparity in the correlation between thermal and moisture160

vertical gradients with fog frequency can be attributed to the aridity of the observation location. On one hand, the arid terrain

thermally contributes less to the MBL during fog events (low radiation during the day over the coastal arid), showing well-
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mixed MBL. Conversely, when fog is absent, for example during night, the arid slopes contributes to a stable stratified MBL.

On the other hand, the arid landscape does not contribute moisture to the MBL during fog occurrences, nor does it when fog

is absent, thereby showing no correlation with fog frequency. Figure 3b illustrates the diurnal cycle of fog frequency observed165

at the Alto Patache fog oasis throughout the year 2018, as measured by the Standard Fog Collector (SFC) and estimated

using the threshold with the best performance (number 4). This threshold successfully estimates fog occurrence using simple

meteorological data for any day and time throughout the year.

2.1.2 Cloud Base, CB

Once fog occurrence is estimated, we proceed to calculate the height of the fog-cloud base (CB). This process is summarized in170

Figure 2. The calculation assumes that the lifting condensation level (LCL) in boundary layer clouds such as Sc is equivalent to

the cloud base. To compute this, we adopt two approaches inspired by the parcel method of (Wetzel, 1990). The first approach

solely considers data from the lowest station (z1), representative of surface-marine conditions, where LCL corresponds to the

height at which mixing ratio equals to saturated mixing ratio: rv-rs=0, (Fig. 2a). This LCL represents the CB over the ocean.

The second approach considers two physical processes involved in the Sc-to-fog transition: environmental mixing and topo-175

graphic uplifting. Firstly, to represent the mixing with the environment experienced by an air parcel during adiabatic ascent,

and based on (Lobos-Roco et al., 2018), we combined the meteorological conditions measured at both transect stations (z1, z2)

using a mixing parameter m as follows:

ψp(z) = (1−m
z

zLCL
)ψs+(1−m

z

zLCL
)ψML, (8)

Where ψ is a scalar for potential temperature (θ) or specific humidity (q), super script p represents the state of the air parcel,180

s indicates the conditions at the lowest station used (z1), ML refers to mixed-layer, which is an average of conditions observed

at the two stations, m is the mixing parameter ranging from 0 (no mixing) to 1 (maximum mixing), and zLCL is the height at

which LCL is reached. Secondly, to account for the inland effect (observed at z2 station), LCL is calculated iteratively using

an averaged θ and q (ψML) from z1 and z2. This ψML and LCL are used in Equation 8 to estimate the air parcel state ψp
(z),

which is then used to calculate a new LCL. This calculation is repeated several times, with ψML being re-averaged with the185

conditions at station z2 in each iteration. This repetitive calculation ensures that the inland conditions (z2) in the MBL’s state

are accurately represented. Our estimations show that the appropriate number of iterations is related to the distance in km

between z1 and z2. For example, if z1 and z2 are separated by 5 km, we iterate five times.

The physical interpretation of this topographic uplifting is depicted in Figure 2b, where the initial iteration represents an

equal (averaged) influence of marine (z1) and inland (z2) conditions. Subsequent iterations represent the dominance of in-190

land conditions over marine conditions. Dominant marine conditions exhibit a higher latent heat flux (blue arrow in Fig. 2b)

compared to sensible heat flux (orange arrow in Fig. 2b). Conversely, inland-dominant conditions showcase a prevalence of

sensible heat fluxes over latent heat fluxes (Fig. 2b). The shift in surface energy partitioning towards dominant sensible heat
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Figure 4. (a) Annual, (b) monthly-averaged, and (c) typical diurnal cycle of CB and CT comparisons between observations (obs) and

modeling (mod). The number sub scripts refers to the equation number in sections 2.1.2 and 2.1.3.

flux (inland conditions) leads to the LCL being reached at a higher altitude, resulting in the uplifting of the Sc cloud (Fig. 2c).

This phenomenon is due to the warmer and drier conditions prevalent over land. It is important to note that during the advection195

of the Sc cloud, the MBL remains well-mixed, thereby minimizing differences between marine (z1) and inland conditions (z2).

To assess the accuracy of our CB estimations, Figure 4 presents a multi-temporal comparison between CB estimations

derived from the AMARU model and observations conducted in the Atacama Desert in 2017 as a part of the Ground Optical

Fog Observations (GOFOS) experiment (del Río et al., 2021a). The GOFOS experiment entailed year-long monitoring of

cloud base and top dynamics during an ENSO-neutral year (2017), employing optical cameras placed across the terrain to200

record the vertical movement of Sc cloud and fog. The left panel of Figure 4a illustrates that CB estimates generated by the

model using Equation 8 (CBmod(8)) closely align with those observed in 2017. The mean values of the estimated CB stand

at 879 m compared to the observed average of 870 m, with similar standard deviations of 88 m and 93 m, respectively. This

satisfactory performance of the model in estimating CB is also observed at a monthly scale in Figure 4b, where the estimated

CB generally differs by ∼50 m from the observed values on a monthly basis. To assess the model’s capacity to replicate the205

diurnal cycle of CB, Figure 4c shows a representative foggy day in the Atacama region. It is evident from the figure that the

estimated CB closely tracks its diurnal cycle, with errors of ∼100 m observed during the afternoon.
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2.1.3 Cloud Top, CT

The parcel method, upon which our CB calculations are founded, determines rl from the LCL level upward, according to

atmospheric pressure decreases. However, atmospheric pressure also decreases beyond the MBL, where the Sc stands. Conse-210

quently, it becomes necessary to estimate the Cloud Top (CT [m]) in order to calculate the rl within the cloud layer. Given the

challenges associated with estimating CT using basic meteorological data and taking advantage of the homogeneity of Sc as a

cloud layer, we propose estimating CT as a function of modeled CB using three simple linear regression models. These models

are phenomenological expressions based on CT measurements obtained during the GOFOS experiment in 2017 (del Río et al.,

2021a). The proposed linear regression models are as follows:215

CTmod(9) = 236.47+0.9355(CB) (9)

CTmod(10) = CB+CB

√
FCF

2
(10)

CTmod(11) = 236.47+0.9355(CB)(1− ∂θ

∂z
)100 (11)

Equation 9 shows a linear regression model in which CT [m] is solely dependent on CB [m]. Equations 10 and 11 correspond

to linear regression models where CT is determined by CB and fog occurrence. The FCF (fog cover fraction [%], section 2.1.1.)220

in Equation 10 and the vertical thermal gradient (∂θ/∂z [K m−1], Fig. 3a) in Equation 11 are based on observations conducted

during the GOFOS experiment, where CT demonstrates a negative correlation with fog frequency (del Río et al., 2021a). A

comparable linear regression model, combining CB and fog occurrence to estimate CT, has been tested in various locations

within the coastal Atacama region by Lobos-Roco et al. (2024).

Figure 4 shows the effectiveness of linear regression models in predicting CT compared to observations obtained from225

the GOFOS experiment. The right panel of Figure 4a shows the performance of the three linear regression models against

observations for the year 2017. The annual means of the three models are similar to the observed value of (1073 m), with

respective values of 1050 m, 1091 m, and 1209 m. However, the CT derived from Equation 10 is the one that performs

better, exhibiting a standard deviation of 142 m compared to the observed value of 124 m. At the monthly scale (Fig. 4b),

the CT estimated by Equation 11 overestimates observations by 150 m. However, the CT from derived from equations 9230

and 10 remains within a 50 m range of the observed values. In Figure 4c, showing a representative diurnal cycle during the

foggy season, both observed and modeled CTs are presented. Here, it is evident that the CT estimated by equations 10 and
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11 demonstrate a better performance, closely aligning with observations (black triangles). However, the CT estimated from

Equation 9 underestimates observations by over 200 m. These three linear regression models offer a statistical framework for

estimating CT, with performance varying based on temporal scale. Henceforth, in this manuscript, we adopt the CT derived235

from Equation 10.

2.1.4 Liquid Water Mixing Ratio

Once we have estimated fog occurrence (FCF), the fog Cloud Base (CB), and Cloud Top (CT) using simple meteorological

data from a topographic transect, we proceed to determine the adiabatic liquid water mixing ratio rl within the cloud layer (z:

CT-CB). To achieve this, we utilize the following equation:240

rl(z) = rv(z)− rs(z);rl ≥ 0 (12)

where rv is the mixing ratio between mass water vapor by kilogram of dry air, rs denotes the saturated mixing ratio, and z

represents the vertical level between CB and CT (Fig. 2a). It is important to note that, using a combination of z1 and z2 stations

as in Equation 8, the term rv is assumed as the specific humidity of the mixed MBL (qML), and rs depends on absolute

temperature, therefore it is influenced by θML.245

Figures 5a and 5b show the validation of the model-estimated adiabatic liquid water mixing ratio (rl) against observations

of liquid water content (LWC) (CLU, 2024) derived from combined measurements of a microwave radiometer with a Doppler

lidar (Schween et al., 2022), conducted at the Diego Aracena Airport in the coastal Atacama Desert during July 2018.

In general terms, Figures 5a and 5b show a satisfactory comparison between our modeled estimations of liquid water content

and the measured ones. The mean observed values peak at 0.1 g m−3 at 800 m altitude, while our mean estimations peak at250

0.09 g m−3 at the same altitude (∼800 m), consistent with typical values found in marine Sc clouds. When analyzing the

0.95 percentile curve (red line in Fig. 5) the model follows the vertical distribution of observations, exhibiting peaks of 0.7 g

m−3 between 700 snd 900 m ASL when observation shows peaks of 0.5 g m−3. Upon comparing the model and observations

percentile 0.95, we observe that the model overestimates observations by ∼0.2 to 0.3 g m−3. Finally, upon integrating the

vertical column of LWC, we also observe similarities in the mean liquid water path (LWP) with values of 3.6 g m−2 and 2.6255

kg m−2 for modeled and observed data, respectively. To validate the results obtained from the thermodynamic module of the

AMARU model, Figure 5c presents the temporal evolution of a simulated fog cloud during a fog event occurring between

July 16th and 25th, 2018, at the Alto Patache site. The figure illustrates the model’s capability to accurately represent fog-

cloud frequency, its vertical structure, and water density (rl) over time. In terms of fog frequency, our model shows fog-cloud

formation from the 17th to the 19th and from the 22nd to the 24th, aligning with the periods of highest fog collection rates260

(grey bars). From the 19th to the 22nd, our model does not depict cloud formations, consistent with near-null fog water

collection during this period. Likewise, we observe that changes in the vertical structure of the cloud (base and top) correspond

to variations in liquid water content and fog collection.
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Figure 5. Vertical profiles rl (in g m−3) (a) derived from a microwave radiometer and Doppler lidar observations (Schween et al., 2022;

CLU, 2024) and (b) estimated by the AMARU model over Diego Aracena Airport. Grey dots represent hourly-averaged profiles filtered by

percentile 0.99; red lines represent percentile 0.95, and the blue line represents the mean. (c) The evolution of the vertical profile simulated

by the AMARU model for the Alto Patache Site. Grey bars at the bottom represent fog collection measurements at 850 m (dashed line).
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Coordinate Altitude Time period mean 25% 50% 75%

19.17° S- 70.17° W 850 m 2022 16% 5% 13% 26%

20.48° S- 70.05° W 1200 m 2019 26% 6% 16% 30%

20.82° S- 70.14° W 850 m 2018 24% 11% 19% 31%

30.65° S- 71.68° W 630 m 2022 27% 6% 20% 45%

32.16° S- 71.49° W 650 m 2022 15% 4% 5% 21%
Table 1. Descriptive statistics of the empirical efficiency coefficient η estimated in five fog collection stations along a 2000 km coastal strip

in Chile.

In summary, our straightforward methodology, employing a topographic transect of meteorological stations, effectively

estimates the rl within the MBL vertical column. This estimation is achieved by combining thermodynamic principles and265

statistical regressions, supported by climatological observations. Notably, our approach not only provides estimates of rl but

also of fog frequency and the vertical structure of the fog cloud, thus enhancing our understanding of the fog phenomenon in

coastal arid regions.

2.2 Water potential module: collector efficiency coefficient (η)

The second critical parameter in our proposed model is the collector efficiency coefficient (η). This variable is intricately linked270

with complex processes and factors such as wind flow, liquid water content, droplet size, collector positioning, material prop-

erties, mesh curvature and porosity (Carvajal et al., 2020). To ensure our assumptions align with climatological observations,

we determine the collector efficiency using an empirical coefficient. This coefficient, previously defined in Equation 4, now is

redefined as the ratio between the observed fog collection (fobs) and the fog inflow (Fin), where fobs = Wh. As a ratio, η rep-

resents the percentage of the maximum water that a fog collector can potentially capture under given atmospheric conditions.275

η is calculated as follows:

η =
fobs
Fin

. (13)

Note that both Fin and fobs are averaged per hour, therefore both terms have the unit of L m−2 h−1. Since η is calculated

based on fog observations, its value depends on the type of collector used, providing flexibility to the model to adapt to different

collector types if observations are available.280

Table 1 shows the empirical collector efficiency coefficient (η) calculated for five fog collection stations located between 600

and 1200 m along the coastal strip of Chile. Overall, mean η varies from 15% to 27%, with a variability ranging from 4% to

45%. Three factors contribute to this variability in the efficiency coefficient. Firstly, the model’s ability to accurately determine

fog frequency (RMSE of 6% in Fig. 3a) can lead to discrepancies, potentially resulting in very high (η ∼100%) or null (η∼0%)

efficiencies when fog collection is observed, thus altering the averages. Secondly, wind speed may also play a significant role,285
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as it is responsible for transporting rl through the collector. Lastly, both the material of the mesh and its curvature during fog

collection could impact mesh efficiency (Carvajal et al., 2020). Despite the variability in η across all sites, we find an average

efficiency coefficient of 25% ± 10%, consistent with results in the literature. For instance, Montecinos et al. (2018) reported

efficiencies ranging from 0% to 36% in large fog collectors. Similarly, using numerical simulations, Carvajal et al. (2020)

reported a mean efficiency of 28% with a theoretical maximum of 36%. Finally, de Dios Rivera (2011) reported maximum fog290

collection efficiencies between 20% and 24% using a simple numerical model approach for different mesh types.

For our study, we use an η between 0.25 (25%). Once η is estimated, we can readily solve Equation (6) to obtain an estimation

of fog water harvesting (Wh). Given that rl has a vertical dimension, assuming a constant wind speed (u) along the MBL, we

can derive the vertical distribution of fog harvesting.

2.3 Spatial module: fog harvesting maps295

In addition to the thermodynamic module, we propose a spatial module for extrapolating the vertical variability of Wh into a

horizontal spatial domain. To do it, we integrate the vertical domain (z) of Wh to an area of optimal fog harvesting potential

obtained from a combination of a digital elevation model (DEM) and GOES satellite images. We outline four steps to achieve

this spatial variability.

The first step involves reclassifying the DEM grid cells based on the cloud layer height and removing all grid cells below the300

CB and above the CT elevation. This reclassification ensures that only the elevation range where the Sc cloud could potentially

impact the topography is considered. In the second step, we create an aspect image (slope orientation) with the DEM and

reclassify the pixels based on the angle range of the main wind direction (mean ± std) when fog is collected (obtained from

observations at the z2 station). The third step involves calculating the fog and low cloud (FLC) frequency using data from the

GOES satellite (del Río et al., 2021b; Espinoza et al., 2024). This algorithm continuously calculates the presence and absence of305

FCL in every GOES grid cell. The third step serves as a geographical framework, delineating the area where fog-cloud interacts

with topography. The spatial intersection of the three steps generates optimal areas for fog collection, physically representing

the locations where the Sc cloud and its harvesting potential intersect the surface. It is important to note that the values of grid

cells in these optimal areas for fog collection represent elevations (m ASL) in areas with high FLC frequency. The final step

involves replacing the elevation grid cell values of the optimal fog collection areas with the vertical distribution of potential310

fog harvesting (Wh). As Wh values are associated with a vertical domain (z), each Wh value can be mapped onto the resulting

grid of optimal fog collection areas. The result of this last step yields a spatial distribution of potential fog harvesting.

3 Model applications to (semi-)arid study case sites

The AMARU enables us to evaluate the spatiotemporal variability of fog harvesting using routine meteorological data and

satellite products. In this section, we evaluate the application of the model (Wh) at three sites along the coastal strip of Chile315

corresponding to hyper-arid, arid, and semi-arid ecosystems between 2018 and 2023.
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Figure 6. Location of the study sites and their meteorological stations. The blue-coloured areas represent the fog and low cloud (FLC)

frequency obtained by the GOES satellite (del Río et al., 2021b) between 2018 and 2023. z1 and z2 represent the meteorological stations

forming the transect used for running the model according to our methodology.
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Figure 6 shows the geographical setting of the study sites, which correspond to hyperarid (Site a), arid (Site b), and semi-arid

(Site c) fog ecosystems situated between 600 and 1200 m ASL along the coastal mountains of Chile. Generally, these sites

represent xeric ecosystems (Muñoz-Schick et al., 2001) sustained year-round by fog, with a frequency exceeding 40% (Fig. 6).

Each of these three sites is equipped with meteorological and fog collection observations, managed by the Centro UC Desierto320

de Atacama of Pontificia Universidad Católica de Chile. The characteristics of these stations and their data and parameters

used in the model are summarized in Table 2. In addition, to meet the model’s requirements, observations from these three sites

(z2) are complemented with data from near-sea level observations (z1), sourced from public datasets (www.agromet.cl), which

are also detailed in Table 2.

Site Coordinates Height Distance coast η Available data Time period

az2 20.82° S-70.14° W 850 m 5 km 25% T, RH, P, U, WD, fog collection 01-01-2018

az1 20.52° S-70.15° W 48 m 1 km T, RH, P, U, WD 31-12-2018

bz2 26.00° S-70.60° W 820 m 2 km 25% T, RH, P, U, WD, fog collection 01-05-2023

bz1 26.29° S-70.62° W 120 m 2 km T, RH, P, U, WD 31-10-2023

cz2 32.16° S-71.49° W 650 m 3 km 25% T, RH, P, U, WD, fog collection 01-09-2022

cz1 32.16° S-71.51° W 60 m 1 km T, RH, P, U, WD 31-12-2022
Table 2. Geographic characteristics and available data of observational sites (z2) and their corresponding stations at the coast (z1). T

represents air temperature at 2 m, RH relative humidity, P air pressure, U wind speed, and WD wind direction.

3.1 Seasonal cycle of modeled and observed fog harvesting325

AMARU satisfactorily reproduces the observations of fog harvesting in both magnitude and variability over time. Figure 7

shows a comparison of monthly-average daily rates of fog harvesting at the three analyzed sites. Overall, the model results

(blue) follow the seasonal cycle of observed fog collection (grey) across latitudes, albeit showing disagreements with obser-

vations by 1% to 20%. In the hyperarid environment of Site (a) (Fig. 7a), the model estimates an annual daily rate of 5.0 L

m−2 d−1, which satisfactorily compares to the rate of 5.5 L m−2 d−1 obtained through observations. Likewise, the model can330

closely track the seasonal cycle of fog harvesting, exhibiting low rates in summer (JFM) and autumn (AMJ) and higher rates

in winter (JAS) and spring (OND). Moreover, the model correctly estimates the frequency of fog events. For instance, during

summer, the model estimates a very low (JM) or null (F) fog collection, with errors around 0.39 L m−2 d−1 (20%) compared

to observations. Similarly, during the optimal fog harvesting season between winter and spring, the model correctly estimates

the monthly magnitude of observed fog collection with errors of 2 L m−2 d−1 (18%). Finally, the model successfully replicates335

the variability in the monthly daily rates of fog collection as indicated by the error bars. In spring, for example, the observed

rates range from 4 to 9 L m−2 d−1, while the model estimates rates range from 6 to 10 L m−2 d−1.

For Site (b), situated in an arid environment (Fig. 6), the amount of fog collection is notably lower compared to Site (a)

(hyperarid). However, the model accurately reproduces the annual-averaged daily rate of fog harvesting of 4.3 L m−2 d−1.

Despite this overall good performance, the model still underestimates observations by approximately 20% during winter-340
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Figure 7. Comparison of monthly-averaged daily fog collection rates between model (blue) and observations (grey) in three fog ecosystems

situated in the (a) hyperarid, (b) arid, and (c) semi-arid Chilean coast. The error bars show data variability between the 25th and 75th

percentiles.
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spring in terms of magnitude and variability (as indicated by the error bars). Unfortunately, the annual cycle for Site (b)

remains incomplete as observations began only from May to October 2023. For the semi-arid environment of Site (c) the

model shows annual daily rates of fog harvesting similar to those of Site (b), albeit with an overestimation of 20% compared

to observations. During the months with the highest fog collection rates (September to December), the model overestimates

observations by ∼1 L m−2 d−1. It is worth mentioning that these discrepancies in estimation are not systematic, and despite345

them, the model captures the same seasonal cycle obtained through observations at all three sites.

3.2 Vertical variability of fog harvesting potential (Wh)

Since the model estimates the liquid water content (rl) in the vertical column of the Sc cloud when it interacts with topography,

and assuming constant wind at z2 throughout the vertical, we can model the fog harvesting potential at every height within the

Sc cloud layer.350

Figure 8 shows the vertical variability of Wh potential for the three analyzed sites. In the figure, dots represent the total Wh

per hour at each height within the fog-cloud layer over the course of one year. The red line depicts the annual average daily

rate of Wh as a function of height, while the black dot shows the observed annual average daily rate. In addition, the dots are

colour-coded based on the corresponding rl values. From Figure 8, it is evident that fog harvesting potential decreases from

the hyperarid (north) to the semi-arid (south) regions for both Wh and rl. Specifically, in the hyperarid site, a Wh of 10 L355

m−2 d−1 can be easily reached, whereas in the arid and semi-arid sites, maximum Wh of 5 and 3 L m−2 d−1, respectively,

are observed. The same behaviour is observed for rl, which exhibits higher values (mean percentile 0.95 up to 0.7 g kg−1) in

the hyperarid site compared to the arid and semi-arid sites, where percentile 0.95 percentile reaches up to 0.6 g kg−1 and 0.4

g kg−1, respectively. The vertical variability of Wh also allows us to study the vertical liquid water capacity of the fog cloud.

For instance, in the hyperarid site, the model estimates fog harvesting potential from 600 m up to 1350, while in the arid and360

semi-arid sites, fog can be harvested from 500 to 1250 and from 370 to 1050, respectively. These variations in rl and the fog

cloud layer height are explained in Equation (3) and Figures 2b and 2c. In Equation (3), we show that the calculation of cloud

base, and consequently rl, is influenced by the combined conditions of stations z1 and z2. For example, in the hyperarid site

situated within the tropics (Fig. 6), air temperature is higher at both z1 and z2 compared to the semi-arid site. This implies

that the condensation of the air parcel in Site (a) will occur at a higher altitude than in Site (b). Likewise, higher temperatures365

increase the air’s capacity to hold humidity, resulting in a higher rl observed in the hyperarid site compared to the semi-arid

one. Another significant factor contributing to the difference in rl and cloud layer height is the distance from the coast at which

station z2 is located. For instance, the hyperarid site is 5 km inland compared to the arid and semi-arid sites located 2 km and

3 km away from the coast, respectively (Table 2). Consequently, inland conditions in the hyperarid site are hotter than in the

other two sites, contributing to the formation of the cloud layer at higher altitudes.370

Figure 8 also shows the annual average daily rates (red line) estimated by the model and observed by a standard fog collector

(black dot). This red line indicates the vertical placement of the maximum annual Wh. For example, in the hyperarid site, the

maximum Wh is located at 900 m in height, while observations are situated at 850 m ASL, explaining the highest annual

daily fog collection rates. In contrast, in the arid and semi-arid sites, the maximum Wh is not aligned with the height of the
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observations. For Site (b) case, the maximum Wh is reached at ∼680 m, whereas observations are located at 820 m ASL.375

Similarly, for Site (c), the maximum Wh is situated at 500 m, while observations are at 650 m ALS. The validation of annual

average daily rates in Figure 8 is determined by the proximity of the black dot to the red line at the observed height. For

example, in Figure 8a, we observe an underestimation by the model, which is also evident in Fig 7a, but not in the vertical

dimension, as the observations differ by ∼0.5 L m−2 d−1 from the modeling results. For sites (b) and (c) (Figs. 8b and 8c), the

model accurately reproduces the annual daily rates, consistent with the observation, as also observed in Figures 7b and 7c.380

3.3 Spatial variability of Wh: fog harvesting potential mapping

The combination of AMARU’s results with satellite products enables us to interpolate the influence of the Sc cloud over land

and its potential harvesting in space. This subsection introduces two examples of AMARU’s results in spatial variability that

can be utilized for fog ecosystem delimitation and water planning.

Figure 9a shows the optimal fog harvesting areas highlighted in red, corresponding to the region where the Sc cloud interacts385

with the Earth’s surface. For Site (c), these areas are displayed near the summit of the coastal mountains, specifically ranging

from 370 m to 1050 m ASL (Fig. 8c). In addition, based on data from the meteorological Station (z2) at this site, the fog cloud

flux originates from the South and Southeast (110° to 300°), which is reflected in the model’s depiction of the mountain slopes

facing South and Southeast. In the zoom-out view of Figure 9a, we observe that the extent of these optimal fog harvesting areas

spans within the first ∼20 km from the coast, as determined by the frequency of fog and low clouds derived from the GOES390

satellite (section 2.3).

To independently validate the spatial interpolation of AMARU’s results, we compare the optimal fog harvesting areas with

fog-dependant vegetation. In Figure 9a, areas highlighted in green represent the normalized difference vegetation index (NDVI)

estimated through Sentinel satellite imagery. Overall, the optimal fog harvesting areas align with areas exhibiting the highest

NDVI values. For example, a concentration of NDVI is observed at the summit of the mountains and the southeast slopes,395

indicative of a forest ecosystem sustained by fog (Garreaud et al., 2008). Furthermore, NDVI also concentrates at the bottom

of small valleys downstream of the summits, suggesting that fog water accumulated on the summits may potentially flow down,

supplementing the precipitation input to the streams.

Figure 9b shows the spatial variability modeled resulting from the intersection between the vertical profile annual average

daily rate (red line, Fig. 8a) and the optimal fog harvesting areas. In the figure, we observe the spatial distribution of the fog400

water potential along the mountain, with maximum values observed around 900 m. The topography of the mountain favours

altitudes around 900 m ASL with Southwest slope orientations, leading the model to project large areas with fog harvesting

potential ranging from 4 to 5 L m−2 d−1. In the eastern areas of the meteorological station (red dot, z2), fog harvesting potential

decreases to lower altitudes, consistent with results presented in Figure 8a. Likewise, decreases towards the southwest of the

station at higher altitudes until it disappears. The area surrounding the station corresponds to the well-known fog oases of Alto405

Patache (Muñoz-Schick et al., 2001), situated between 600 and 850 m, within the optimal areas of fog harvesting determined

by the model.
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Figure 8. Vertical variability of modeled fog harvesting (Wh) in the (a) hyperarid, (b) arid, and (c) semi-arid sites. Dispersed dots represent

the total fog harvesting at every hour; the red line is the annual average daily rate of Wh, and the grey dot is the observed annual averaged

daily rate of Wh. The dispersed dots are color-coded in a blue scale representing the liquid water content (rl). The grey shading represents

the topographic profile of each site. The right panels show a photograph of each site during a fog event.
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Figure 9. (a) optimal fog harvesting areas (red line) resulting from the model for Site (c) compared to the normalized difference vegetation

index (NDVI, ranging from 0.1 to 0.4) estimated through Sentinel satellite images for 2022. The yellow dot indicates the meteorological

station (z2). (b) Spatial variability of annual averages daily rates of Wh for the Site (a) estimated during 2018. The red dot indicates the

meteorological station (z2).
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This model application is further extrapolated to the entire region to determine optimal fog harvesting spots within the area

of influence of fog and low clouds, as determined through the GOES satellite. An example of these larger areas is shown in the

zoom-out view of Figure 9b, where optimal fog harvesting areas are situated within 10 km from the coast. Since the model runs410

with simple meteorological time series, fog harvesting potential maps can be generated for different time averages, enabling

us to study and assess the spatial changes in fog harvesting potential over hours (events), days, seasons, and years.

4 Model limitations and challenges

Despite the versatility of the AMARU model in representing the harvesting of the advective fog phenomenon in both time and

space, it has several limitations that are worth describing.415

Firstly, one of the most important variables in the model is the adiabatic liquid water mixing ratio (rl), which is estimated

assuming water vapor is condensed because it reaches saturation. Despite our simplistic approach and reliable results, we

know that further model improvements must be made by including essential microphysical processes. Such processes are

mean volume diameter, effective size, droplet concentration, and effective droplet size (Gultepe et al., 2021). To account for

these processes, comprehensive observations must be performed to get a complete budget equation allowing us to have more420

realistic modeling.

Secondly, the model’s capability to represent fog harvesting in time is primarily limited by the empirical collector coefficient.

However, this coefficient remains constant in the model, resulting in both underestimations and overestimations compared

to observations. To improve our estimations of fog harvesting over time, further exploration into the collector efficiency is

necessary, incorporating factors such as wind speed, collector material properties, and cloud droplet size into more complex425

functions.

Thirdly, the model’s capability to assess fog harvesting potential in the vertical column of the MBL enables us to evaluate the

maximum fog harvesting potential beyond single-point observations. However, this vertical Wh estimation is contingent upon

accurately determining rl assuming that wind speed remains consistent at every level of the MBL. Although rl estimations

align with observations from microwave radiometers, our results must be validated with in-situ observations of liquid water430

content during fog collection. In addition, relevant physical processes influencing CT, such as dry air entrainment from the

free troposphere, and thermal inversion are not included in its calculation. Instead, CT is statistically estimated, leading to

uncertainties in a variable whose precision is crucial for estimating the maximum rl and, consequently, Wh. Regarding wind

speed, our assumption of a constant horizontal wind along the MBL is based on the mixed layer theory, which posits that

scalars such as potential temperature, mixing ratio, and wind speed remain constant if the MBL is well-mixed. However, this435

theory does not consider topography, which may disturb this constant pattern when interacting with MBL winds. To improve

the model’s estimation of rl and better Wh potential, future research must incorporate accurate vertical profile observations of

temperature, mixing ratio, and wind speed.

Finally, the spatial extrapolation of Wh represents a preliminary approach for fog harvesting potential mapping. This is

because its accuracy is limited by the availability of spatially distributed meteorological data. We spatially extrapolate the440
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conditions determined by the model for the z2 station to all surrounding areas that share the same geographic conditions.

Nevertheless, this approach may overestimate several inland locations that meet the geographical characteristics of z2 but not

the atmospheric ones. Improving this spatial extrapolation ofWh can be addressed using two approaches. The first one involves

utilizing gridded meteorological data that allows us to solve Equation (6) at every grid point. Unfortunately, available gridded

data is often too coarse to accurately represent the sub-kilometer fog harvesting phenomenon. The second approach entails445

incorporating the FLC frequency determined by the GOES satellite (Fig. 6) into the spatial interpolation of Wh. For example,

we can modifyWh spatially using a function based on the FLC frequency, where locations with similar geographical conditions

to z2 station may see their Wh reduced (increased) if their FLC frequency is higher (lower) than that observed at z2 station.

5 Conclusions

We propose, formulate, and evaluate an observational-driven model, named AMARU, for estimating advective fog water po-450

tential harvesting in (semi-)arid regions. This model uses standard and routine meteorological observations to estimate where,

when, and how much water can be potentially harvested from fog clouds. The proposed model employs a thermodynamic

approach to estimate fog’s adiabatic liquid water mixing ratio, incorporating key physical processes associated with the inter-

action between the stratocumulus cloud and topography. This approach yields vertical profiles of liquid water mixing ratio,

from which fog frequency, cloud base, and top can be derived. In addition, by integrating the estimations of liquid water mix-455

ing ratio with climatological records of fog harvesting observations, we derive an empirical collector efficiency coefficient to

estimate vertical profiles of potential fog harvesting. Finally, combining vertical profiles of fog harvesting potential with satel-

lite products, we introduce a methodology for spatially extrapolating these results, thereby generating fog harvesting potential

maps.

460

Below, we outline the main conclusions of our research.

– Despite the simple approach, this model correctly reproduces essential physical components involved in fog harvesting.

Our evaluation with available observations show that model results reproduce: fog frequency (R: 0.95; RMSE: 6%),

cloud base and top height (errors <50 m), liquid water content (errors ∼0.2 g m−3), and fog collector efficiency (errors465

∼5%). Overall, fog harvesting observation are satisfactorily reproduce by the model with mean errors of 10% (<1 L

m−2).

– The simple approach takes advantage of using routine meteorological data, which is widely available worldwide in areas

characterized by land-ocean contrast and complex topography.

– However, the model presents several limitations, whose improvement will depend on comprehensive observations and470

further research. Between the limitations, microphysics observations of cloud droplet size, concentration, and actual

water content must be incorporated to improve the model. Moreover, further research must be done on the empirical
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coefficient, which is constant in the model. However, our observations suggest a variability which depends mainly on

wind speed, but also in the materials. Finally, future research should incorporate accurate vertical profiles of temperature,

mixing ratio, and wind speed to corroborate our vertical modeling assumptions.475

– Our model offers a versatile approach with multiple applications in massive fog harvesting planning and ecosystem de-

limitation for conservation purposes, among others. Since fog is a global meteorological phenomenon, this model holds

potential for applicability in many coastal (semi-)arid regions, addressing data deficiencies in regions where fog harvest-

ing represents a viable water source.

480

Finally, we expect this research to yield significant social benefits by providing decision-makers with valuable insights into

new water sources, thus aiding in the mitigation of climate change impacts.
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