
 

1 

 

Combined impacts of climate change and human activities on blue 

and green water resources in the high-intensity development 

watershed 

Xuejin Tan 1, Bingjun Liu 2*, Xuezhi Tan 2, 3*, Zeqin Huang2, Jianyu Fu2 

1 School of Geography and Planning, Sun Yat-sen University, Guangzhou, 510006, PR China 

2 Center of Water Resources and Environment, School of Civil Engineering, Sun Yat-sen 

University, Guangzhou, 510275, PR China 

3 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen 

University, Zhuhai, 519082, PR China 

 

* Corresponding authors: Bingjun Liu (liubj@mail.sysu.edu.cn)  

Xuezhi Tan (tanxuezhi@mail.sysu.edu.cn) 

 

 

 

mailto:liubj@mail.sysu.edu.cn
mailto:tanxuezhi@mail.sysu.edu.cn


 

2 

 

Abstract  1 

Sustainable management of blue and green water resources is vital for the stability and 2 

sustainability of watershed ecosystems. Although there has been extensive attention to blue water 3 

(BW) which is closely related to human beings, the relevance of green water (GW) for ecosystem 4 

security is typically disregarded in water resource evaluations. Specifically, comprehensive studies 5 

are scarce on the detection and attribution of variations of blue and green water in the Dongjiang 6 

River Basin (DRB), an important source of regional water supply in the Guangdong-Hong Kong-7 

Macao Greater Bay Area (GBA) of China. Here we assess the variations of BW and GW scarcity, 8 

and quantify the impacts of climate change and land use change on BW and GW in DRB using a 9 

multi-water-flux calibrated Soil and Water Assessment Tool (SWAT). Results show that BW and 10 

green water storage (GWS) in DRB increased slowly with a rate of 0.14 and 0.015 mm a-1, 11 

respectively, while green water flow (GWF) decreased significantly at a rate of -0.21 mm a-1. The 12 

degree of BW and GW scarcity in DRB is low, and the per capita water resources in more than 80% 13 

of DRB exceed 1700 m3 capita-1 a-1. Attribution results show that 88.0%, 88.5%, and 39.4% of 14 

changes in BW, GWF, and GWS result from climate change, respectively. Both climate change and 15 

land use change have decreased BW, while climate change (land use change) has decreased 16 

(increased) GWF in DRB. These findings can guide the optimization of the allocation of blue and 17 

green water resources between upper and lower reach areas in DRB and further improve the 18 

understanding of blue and green water evolution patterns in humid regions.  19 

Key words: Blue and green water; Water scarcity; Climate change, Land use change; Water flow; 20 

Dongjiang River Basin 21 

1 Introduction 22 

Land use and land cover change (LUCC), and climate variability may alter hydrological 23 
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processes in watersheds (Berezovskaya et al., 2004; Chagas et al., 2022; Konapala et al., 2020; 24 

Tan et al., 2022a), which successively affect variations of regional water resources (Hoek van 25 

Dijke et al., 2022; Pokhrel et al., 2021; Stocker et al., 2023; Suzuki et al., 2021), potentially leading 26 

to ecosystem degradation and severe water shortage crises (Aghakhani Afshar et al., 2018; Zuo et 27 

al., 2015). With the development of society and the economy, there is an increasing need of water 28 

resources to accommodate human water utilization, encompassing agricultural, domestic, and 29 

industrial water usage. Water scarcity and spatiotemporal mismatch between regional water supply 30 

and demand in certain regions are becoming increasingly severe, significantly affecting sustainable 31 

development in these regions (Cook et al., 2014). Quantifying water resources in a changing 32 

environment is crucial for guiding efficient and sustainable water use. 33 

Previous studies on water resource assessment have explored the effects of climate change 34 

and anthropogenic factors on available water resources, including streamflow (Ahiablame et al., 35 

2017; Tan et al., 2023), baseflow (Ficklin et al., 2016; Tan et al., 2020), lake water (Acero Triana 36 

and Ajami, 2022; Tao et al., 2020), and groundwater (Han et al., 2020). Falkenmark and Rockström 37 

(2006) introduce a novel perspective on water resource assessment by categorizing water resources 38 

into BW and GW. BW is the total of deep aquifer recharge and river streamflow, such as water in 39 

lakes and rivers. Water users such as industries, agriculture, and municipal users can directly utilize 40 

BW. On the contrary, GW is the portion of precipitation that is not drained to the river for 41 

streamflow generation. GW is temporarily retained in the soil before eventually being released 42 
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back into the air by evapotranspiration. GW encompasses both green water flow (GWF) and green 43 

water storage (GWS) (Veettil and Mishra, 2018; Zang and Liu, 2013). Traditional water resource 44 

assessments concentrate on available water resources and only consider BW, but neglect GW (Dai 45 

et al., 2022), although GW is also essential. GW supplies about 80% of total water resources, 46 

sustaining crop growth and the sustainable development of forest and grassland ecosystems in arid 47 

regions or during dry seasons (Li et al., 2018; Schuol et al., 2008). Green water scarcity can lead 48 

to ecosystem degradation and intensify competition between human needs and ecosystems for 49 

water resources (Falkenmark et al., 2003; Veettil and Mishra, 2018). Compared to traditional 50 

streamflow assessment methods, water resource scarcity assessment methods based on the 51 

framework of BW and GW are more appropriate for maintaining sustainable water resource 52 

management (Cooper et al., 2022; Liu et al., 2017). Recently, some studies have characterized 53 

water scarcity by assessing variations of BW and GW. For example, Veettil and Mishra (2020) 54 

assess blue water scarcity and green water scarcity to show the water security status of counties in 55 

the United States. Hoekstra et al. (2012) use the concept of BW footprint to study water scarcity 56 

issues. Schyns et al. (2019) use the GW footprint to investigate green water scarcity and find that 57 

the increasingly severe shortage of GW poses a significant threat to natural ecosystems. 58 

The impacts of climate change and anthropogenic on the hydrological cycle processes in 59 

watersheds have attracted widespread attention (Ahiablame et al., 2017; Chouchane et al., 2020; 60 

Cooper et al., 2022; Tan et al., 2022b; Veettil and Mishra, 2016). Changes in land use alter the 61 
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underlying surface conditions. For example, afforestation or deforestation may exacerbate or 62 

alleviate global or regional climate change, and thus affect hydrological cycle processes (Bai et al., 63 

2020; Lian et al., 2020; Qiu et al., 2023). Changes in land use often lead to alterations in land-64 

atmosphere interactions, and vegetation cover changes are essential for regulating climate systems 65 

and land ecosystems (Foley et al., 2005; Huang et al., 2020). Large-scale greening could modify 66 

geophysical interactions between the atmosphere and the ground, impacting larger or local regional 67 

hydrological cycles. Land degradation (Walters and Babbar-Sebens, 2016), deforestation (Lee et 68 

al., 2011), and urbanization (Mohan and Kandya, 2015; Zhang et al., 2018) also have far-reaching 69 

effects on the climate and hydrological cycle.  70 

Climate change is also crucial to the variations in BW and GW resources. Precipitation is the 71 

source of BW and GW, and factors such as temperature, solar radiation, and potential 72 

evapotranspiration significantly influence the changes of BW and GW in watersheds, especially in 73 

GWF (Pandey et al., 2019; Schewe et al., 2014). For a single watershed, BW depends directly on 74 

precipitation and evapotranspiration (GWF) (Shen et al., 2017; Vano et al., 2012). Furthermore, 75 

precipitation intensity can have a significant impact on the redistribution of precipitation, BW, and 76 

GW , by altering infiltration and runoff generation processes (Eekhout et al., 2018; Nearing et al., 77 

2005). Therefore, it is crucial to quantify the effects of climate change and LUCC on BW and GW 78 

resources in a watershed for effective water resource planning and management. 79 

Water resources management is the primary issue to be addressed for water security. 80 
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Hydrological models are important tools to meet various needs in water resource management. 81 

Hydrological model simulation is an effective method to evaluate changes in blue and green water 82 

resources. As a widely used semi-distributed parametric hydrological model, the SWAT model is 83 

increasingly used in water resources management at the watershed scale. Based on the SWAT 84 

model, researchers simulated the spatiotemporal changes in blue and green water resources in Iran 85 

(Ahiablame et al., 2017), the Yangtze River basin (Nie et al., 2023), the Poyang Lake basin (Liu et 86 

al., 2023), and India (Sharma et al., 2023). Some studies have also used model simulations to 87 

analyze the effects of climate change and human activities on water resource changes in Meki 88 

River basin (Hordofa et al., 2023), China (Liu et al., 2022), and Ningxia(Ahiablame et al., 2017), 89 

etc. However, most of the hydrological models used in the study were calibrated and validated 90 

using only observed streamflow data without checking the accuracy of other simulated water 91 

variables, which can lead to uncertainties in modeling soil moisture and evapotranspiration (Nie 92 

et al., 2023). 93 

The Dongjiang River Basin (DRB) is a crucial water source region for core cities in GBA, 94 

such as Shenzhen, Hong Kong, and Huizhou. Given the significant BW demand from agriculture, 95 

domestic utilization, and industry, as well as the GW demand from over 18,000 km2 of forested 96 

land, the water resource stress in DRB is extremely high, although DRB is located in the wet South 97 

China (Liu et al., 2018). The growing mismatch between increasing water demand and decreasing 98 

water supply, along with seasonal and pollution-induced water scarcity issues, is becoming 99 
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increasingly prominent (Yang et al., 2018). However, the majority of current studies on water 100 

resources of DRB focus on changes and scarcity of surface water and groundwater (BW) while 101 

overlooking the critical role and spatiotemporal variations of GW (Huang et al., 2022; Jiang et al., 102 

2023; Wu et al., 2021). With the high-intensity urbanization and climate change in DRB, changes 103 

of BW and GW resources in DRB remain unknown.  104 

This research aims to analyze the influence of climate change and LUCC on BW and GW in 105 

DRB. The objectives of this research are (a) to build the SWAT model for DRB hydrological 106 

simulation, (b) to quantitatively evaluate the spatial and temporal variation of BW and GW in DRB, 107 

(c) to assess the status of water scarcity in DRB using the framework of BW and GW resources, 108 

and (d) to estimate the effects of climate change and LUCC on BW and GW in DRB. 109 

2 Materials and methods 110 

2.1 Study area 111 

The Dongjiang River is an important tributary of the Pearl River, positioned between 112 

longitude 113°25'-115°52'E and latitude 22°26'-25°12'N. It originates in Xunwu County, Jiangxi 113 

Province, flows through Jiangxi and Guangdong provinces, and goes across major cities including 114 

Longchuan, Heyuan, Dongguan, and Shenzhen. The trunk stream of the Dongjiang River has a 115 

total length of 562 km. DRB covers a watershed area of 3.5×104 km2. DRB is in the subtropical 116 

monsoon climate zone with adequate precipitation and high temperatures. The average annual 117 
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precipitation ranges from 1500-2400 mm, and the average temperature of the basin is 21℃ (Wu 118 

et al., 2019a). The altitude of the basin decreases from the northeast to the southwest. Regions of 119 

the upper reaches of DRB are dominated by mountains and hills, those of the middle reaches of 120 

DRB are dominated by hills and plains, and those of the lower reaches of DRB are dominated by 121 

plains.  122 

Previous hydrological simulation studies of DRB mainly use the Boluo hydrometric station 123 

as the outlet of the watershed (He et al., 2013; Wu et al., 2019a), so this research only analyzes the 124 

area of DRB where water flows to the Boluo station (Fig. 1). The Boluo hydrometric station is the 125 

main control station in the lower reaches of the Dongjiang. The Boluo hydrometric station occupies 126 

a drainage area of 25,325 km2, which is 71.7% of the total area of DRB. Since the 1950s, more 127 

than 896 reservoirs, ponds, dams, and other water conservancy facilities have been constructed in 128 

DRB. Among them, the Baipenzhu Reservoir, Fengshuiba Reservoir, and Xinfengjiang Reservoir 129 

are the three largest reservoirs in the basin with a cumulative storage capacity of 17,048 million 130 

m3. The Dongjiang-Shenzhen Water Supply Project constructed in 1964 diverts water from the 131 

Dongjiang River to Shenzhen and Hong Kong for providing fresh water resources for municipal 132 

use. Over 70% of Hong Kong's freshwater supply comes from the Dongjiang River. Therefore, it 133 

is crucial to comprehend the shifts in water resources within DRB for projecting future available 134 

water resources for the development of GBA. 135 
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 136 

Figure 1. Location and characteristics of the study area: (a) location of the watershed, spatial distribution of the 137 

hydrometeorological stations, and digital elevation model (Farr et al., 2007), (b) land use map (Xu et al., 138 

2018). 139 

2.2 Methodology 140 

2.2.1 SWAT model 141 

The SWAT model was adopted to simulate hydrological processes and estimate the amount 142 

of BW and GW for DRB (Arnold et al., 1998; Neitsch et al., 2002). The SWAT model is widely 143 

applied to simulate streamflow and surface runoff (Arshad et al., 2022; Martínez-Salvador and 144 

Conesa-García, 2020; Nie et al., 2023). The SWAT model is also widely utilized for exploring 145 

changes in BW and GW (Dai et al., 2022; Liang et al., 2018; Schuol et al., 2008).  146 
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In SWAT modeling, DRB was divided into 63 sub-basins (Fig. S1), and each sub-basin was 147 

then categorized into Hydrologic Response Units (HRUs) depending on land use, soils, and slope. 148 

The SCS curve number method was used for flow partitioning according to land use, soil type and 149 

antecedent soil moisture. The Penman-Monteith method was used to calculate potential 150 

evapotranspiration, which comprehensively considered various climatic factors such as solar 151 

radiation, air temperature, wind speed and relative humidity (Arnold et al., 1998; Neitsch et al., 152 

2002). 153 

2.2.2 Model calibration and validation 154 

To reduce the influence of hydraulic engineering, the SWAT model was calibrated and 155 

validated by utilizing monthly restored natural streamflow at the Boluo and Heyuan hydrometric 156 

stations. The optimum model parameters are shown in Table 1. All the selected parameters are 157 

automatically calibrated with 500 simulations via SWAT-CUP. The warm-up period for model 158 

simulations is the first two years of the simulation period. Reconstructed natural streamflow in 159 

1970-1979 was used to calibrate the model, and monthly time series of reconstructed natural 160 

streamflow, ET from GLEAM, and soil moisture data from ERA5 during 1980-1989 were used to 161 

validate the model. The calibration period for this research was 1970-1979, and the validation 162 

period was 1980-1989. Three metrics, including the determination coefficient (R2), the percentage 163 

bias (PBIAS), and Nash-Sutcliffe efficiency (NSE) were applied to evaluate the simulation 164 

performance of the SWAT model: 165 
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 169 

where Qnat, Qave, Qsim, and simQ   are monthly natural streamflow, mean monthly natural 170 

streamflow, simulated streamflow, and mean monthly simulated streamflow, respectively. n is the 171 

total number of time step. 172 

Table 1 Range of the main parameters and their optimal values obtained from the model calibration 173 

Parameter Calibration type Initial range Best calibrated value 

GW_REVAP.gw V 0.19-0.2 0.199 

GWQMN.gw V 493-1247 916.493 

SLSUBBSN.hru R 2.6-5.7 2.804 

ESCO.hru V 0.89-0.97 0.901 

CN2.mgt R 0.14-0.27 0.209 

CH_K2.rte V 0.38-1.16 0.926 

ALPHA_BNK.rte V 0.12-0.18 0.165 

SOL_AWC.sol R 0.3-0.6 0.598 

SOL_K.sol R 0.32-0.69 0.669 

CH_K1.sub V 0-0.15 0.0295 

Note: The symbols of V and R denote a replacement and a relative change to the default parameter value, 

respectively. 

This study reconstructed the natural monthly streamflow series of the basin by combining the 174 

inflow and outflow of the three major reservoirs (Xinfengjiang Reservoir, Fengshuba Reservoir, 175 

and Baipenzhu Reservoir) in DRB, based on the watershed water balance (Tu et al., 2018): 176 
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nat o o in outQ Q Q Q Q Q= + = + −                              (4) 177 

where ΔQ is the total reduced water volume, Qo, Qin, and Qout are the observed streamflow, 178 

reservoir inflow, and reservoir outflow, respectively. 179 

2.3 Calculation of blue and green water and water security indicators 180 

2.3.1 Calculation of blue and green water  181 

BW is calculated from the sum of water yield (SWAT output WYLD) and groundwater storage. 182 

The former refers to the amount of water that leaves the HRU and enters the channel. The latter 183 

represents the net amount of water recharged to aquifers (SWAT output GW_RCHG) and the 184 

amount of aquifer water discharges to the main channel (SWAT output GW_W) during a time step 185 

(Hordofa et al., 2023). GW can be divided into two components including GWF which is the actual 186 

evapotranspiration (SWAT output ET) from the HRU, and GWS which is the soil water moisture 187 

(SWAT output SW) (Nie et al., 2023; Veettil and Mishra, 2018). The calculation of the Green Water 188 

Index (GWI) involves dividing the quantity of GW by the sum of BW and GW (Ding et al., 2024). 189 

2.3.2 Blue and green water scarcity 190 

Blue water scarcity (BWSC) is determined by the quotient of BW withdrawal and availability. 191 

The estimation of BW withdrawals (BWW) in this study involved the multiplication of the 192 

aggregate population in each sub-basin by the combined water consumption per person (Liang et 193 
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al., 2020). The population of each sub-basin was extracted from the population raster data. Blue 194 

water availability (BWA) represents the quantity of water that can be utilized without negatively 195 

impacting the river ecosystems. Exhaustive exploitation of BW in rivers may adversely impact 196 

river ecosystems. Previous studies have generally used environmental flow requirements (EFR) as 197 

a suitable metric for sustaining robust ecosystems (Honrado et al., 2013). According to the study 198 

of Richter (2010) and Richter et al. (2012), extracting more than 20% of the water from rivers may 199 

result in ecological degradation. Therefore, 20% of streamflow can be deemed BW and used for 200 

water supply (Veettil and Mishra, 2016). The calculation of EFR, BWA, and BWSC are as follows: 201 

( ) mean( )=0.8a,t a,tEFR Q                                (6) 202 

where EFR(a,t) is the EFR for sub-basin ‘a’ during time ‘t’; Qmean is the long-term monthly average 203 

streamflow. 204 

( ) ( ) ( )a,t a,t a,tBWA Q EFQ= −                              (7) 205 

= /BWSC BWW BWA                                 (8) 206 

Green water scarcity (GWSC) is defined as the ratio between green water footprint (GWFO) 207 

and green water availability (GWA). GWFO denotes the actual evapotranspiration from the 208 

watershed. GWA is the soil moisture that is available for evapotranspiration and vegetation 209 

transpiration and is equal to the initial soil moisture (Liang et al., 2020). The GWSC can be 210 

formulated as: 211 

= /(a,t) (a,t) (a,t)GWSC GWFO GWA                                (9) 212 
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where GWSC is green water scarcity; GWFO(x,t) is the actual evapotranspiration；GWA(a,t) is initial 213 

soil moisture. 214 

Based on the blue water scarcity and green water scarcity, water scarcity of a region is 215 

categorized as: mild scarcity, moderate scarcity, severe scarcity and extreme scarcity, with 216 

thresholds set at 100%, 150% and 200%, respectively. 217 

2.3.3 Regional water stress 218 

The Falkenmark index (FLK) (Falkenmark et al., 1989) is a widely used measure of water 219 

stress, defined as the proportion of BWA to the overall population. The Falkenmark index is 220 

classified into no stress, stress, scarcity, and absolutely scarcity based on per capita water use. 221 

Absolute scarcity is regarded to occur in areas where the indicator threshold is less than 500 m3 222 

capita-1 a-1, and no stress is thought to occur in areas where the threshold is larger than 1700 m3 223 

capita-1 a-1.  224 

2.4 Calculation of relative contribution 225 

2.4.1 Scenario design and simulation 226 

Three scenarios were constructed to assess the impacts of climate change and LUCC on BW 227 

and GW by changing climate conditions (land use) while holding land use (climate conditions) for 228 

the three scenarios simulation each (Table 2). The land use map was fixed when simulating the 229 

influences of climate change on blue and green water (S2-S1), while climate conditions was fixed 230 
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when simulating the influences of LUCC on blue and green water (S3-S2). The climate conditions 231 

and the land use were altered when assessing the joint influences of climate change and LUCC on 232 

blue and green water (S3-S1). 233 

Table 2 Scenario settings for the simulation of effects of climate change and LUCC on blue and green water 234 

Scenarios Land use 
Climate 

period 

Combined 

effects 

Land use change 

effects 

Climate change 

effects 

S1 1980 1970-1993    

S2 1980 1994-2017   S2-S1 

S3 2015 1994-2017 S3-S1 S3-S2  

2.4.2 Relative contribution rate calculation 235 

The influences of climate change and LUCC on the changes of blue and green water in 236 

different periods are evaluated utilizing the relative contribution (RC) in this research (Li et al., 237 

2021): 238 

Climate change contribution to BW and GW change is estimated by: 239 

2 1

2 1 3 2

100%C

X X
RC

X X X X

−
= 

− + −
                          (10) 240 

where X1, X2, and X3 are the amount of water including BW or GWF and GWS, respectively for 241 

scenarios S1, S2, and S3. 242 

The contribution of LUCC to changes in BW and GW are estimated by Equations 11. 243 

3 2

3 2 2 1

100%L

X X
RC

X X X X

−
= 

− + −
                          (11) 244 
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2.5 Data 245 

The dataset used in this study consists of three parts: (1) hydrometeorological data, (2) 246 

geospatial data encompassing DEM, soil type, and land use, and (3) socioeconomic data 247 

encompassing per capita water consumption and population data. 248 

Observed monthly streamflow data of the two hydrological stations in the study were 249 

collected for the years 1970-2000 from Boluo Station and Heyuan Station, and the observed 250 

streamflow time series of these two hydrological stations are of no missing data. Monthly inflow 251 

and outflow data of the three major reservoirs in DRB were also collected. All hydrologic data 252 

were obtained from the Guangdong Provincial Hydrological Bureau. Meteorological data of daily 253 

precipitation, temperature, and other meteorological data for 1968-2017 from 21 Meteorological 254 

stations in the watershed were obtained from the National Meteorological Information Center of 255 

the China Meteorological Administration. Monthly actual ET data for SWAT model validation was 256 

obtained from the Amsterdam Evapotranspiration Model dataset with a spatial resolution of 0.25° 257 

× 0.25° (Martens et al., 2017). Monthly soil moisture data for SWAT model validation was obtained 258 

from the European Center for Medium-Range Weather Forecasts ERA5-land dataset with a spatial 259 

resolution of 0.1° × 0.1° (Muñoz Sabater, 2019). The actual evapotranspiration and soil moisture 260 

of the watershed equals the average of all grids included in DRB. 261 

The 90-meter resolution DEM data and 30-meter resolution land use data at ten-year intervals 262 

(i.e., 1980, 1990, 2000, 2010, 2015) are obtained from the Data Center for Resources and 263 
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Environmental Sciences of the Chinese Academy of Sciences (Xu et al., 2018). Soil data is 264 

obtained from the 1-km resolution Harmonized World Soil Database dataset from the Food and 265 

Agriculture Organization of the United Nations (Fischer et al., 2008). 266 

The annual per capita integrated water consumption data of DRB from 2000-2017 was 267 

acquired from the Water Resources Bulletin of Guangdong Province. The population data in 2000, 268 

2005, 2010, and 2015 was obtained from the 1 × 1 km spatial raster data of the Resource and 269 

Environment Science and Data Center of the Chinese Academy of Sciences (Xu, 2017). 270 

3 Results 271 

3.1 Model Performance 272 

3.1.1 Streamflow reconstructed 273 

The difference between the monthly average observed streamflow and the monthly average 274 

natural streamflow is small (Figure 2). The monthly average measured streamflow and natural 275 

streamflow at the Heyuan station is 492.1 m3 s-1 and 507.9 m3 s-1, respectively, while the monthly 276 

average measured streamflow and natural streamflow at the Boluo station is 768.4 m3 s-1 and 796.7 277 

m3 s-1, respectively. The difference between the measured streamflow and the natural streamflow 278 

mainly occurs in November, December, January, and February (where the measured streamflow is 279 

greater than the natural streamflow) and May, June, and July (where the measured streamflow is 280 

less than the natural streamflow) (Fig. 2a and Fig. 2c). 281 
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 282 

Figure 2. Observed streamflow and natural streamflow processes at the Heyuan and Boluo stations from 1970 283 

to 2000. (a) Annual distribution of streamflow at the Heyuan station, (b) streamflow process at the Heyuan station, 284 

(c) annual distribution of streamflow at the Boluo station, (d) streamflow process at the Boluo station 285 

3.1.2 Model calibration and verification 286 

The SWAT model shows sufficient accuracies in simulating streamflow, actual 287 

evapotranspiration, and soil moisture changes in DRB and can better simulate both seasonal and 288 

interannual changes in streamflow. During the calibration period, both stations achieved R2 above 289 

0.9, NSE exceeding 0.8, and PBIAS less than 14% (Fig. 3). Both stations had simulated streamflow 290 

R2 greater than 0.8 during the validation period. The NSE for streamflow simulation at the Heyuan 291 

station and Boluo station of the validation were 0.81 and 0.74, respectively. The model performs 292 

well in simulating the ET and soil moisture. Since the GLEAM ET data and ERA5 soil moisture 293 

data are raster data of spatial resolution of 0.25×0.25°, considering the influence of data accuracy 294 



 

19 

 

on the results, this study uses the watershed scale to validate the simulation results of ET and soil 295 

moisture. In the validation period, the R2 and NSE for the simulation of evapotranspiration were 296 

0.92 and 0.8, respectively (Fig. S2), while the R2 and the NSE for the soil moisture simulation were 297 

both greater than 0.6. These validation results show that the model can be used to simulate 298 

hydrological regimes in DRB. 299 

 300 
Figure 3. Simulated and observed monthly streamflow at the (a) Heyuan and (b) Boluo gauge stations 301 

during calibration and validation periods. 302 

3.2 LUCC and Climate variability in DRB 303 

LUCC in DRB is mainly the decrease of cultivated land and the increase of urban land. The 304 

land use in DRB primarily consisted of forest land (18,875-18833 km2), which is more than 70% 305 
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of DRB. From 1980 to 2015, the urban land and water areas showed an increase of 469.4 km2 306 

(137%) and 17.4 km2 (2.8%), while the grassland, cultivated land, and forest land showed a 307 

decrease of 41.3 (4.3%), 487.5 (10.8%), and 42.1 km2 (0.2%), respectively (Table 3).  308 

Table 3 Land use transfer matrix in DRB from 1980 to 2015 309 

Land use type 

2015 
1980 

total 

(km2)  

Grass 

Land 

(km2) 

Urban 

land 

(km2) 

Cultivated 

Land (km2) 

Forest 

land 

(km2)  

Water 

area 

(km2) 

Unused 

land (km2) 

1980 

Grassland 795.6 29.9 18.3 123.5 2.5 0.0 969.7 

Urban land 0.6 319.6 12.4 7.6 2.3 0.0 342.4 

Cultivated 

land 
19.0 269.8 3771.7 427.9 40.4 0.03 4528.8 

Forest land 110.7 183.7 226.2 18278.7 33.1 0.02 18832.5 

Water area 2.5 8.9 12.7 36.8 551.0 0.00 611.9 

Unused land 0.0 0.0 0.02 0.03 0.00 0.45 0.51 

2015 total  928.4 811.9 4041.3 18874.5 629.2 0.51 25285.8 

DRB exhibited significant regional differences in multi-year average precipitation, 310 

temperature, and potential evapotranspiration. The precipitation exhibited an increasing trend from 311 

the central to the south and north of DRB. The temperature and potential evapotranspiration 312 

showed an overall distribution pattern of greater values in the south and minor values in the north 313 

of DRB (Fig. 4). The multi-year average precipitation for the entire DRB was 1790.1 mm, with 314 

annual precipitation ranging from 1236.2-2567.5 mm. The regions with the highest multi-year 315 

average annual precipitation are located in the southeast of DRB, where annual precipitation 316 

exceeds 2200 mm, while the regions with the lowest precipitation are in the northeastern of the 317 

watershed. The average annual temperature in DRB ranged from 19.5-21.3 °C, and the average 318 
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annual potential evapotranspiration ranged from 1101.5-1320.6 mm. The south of DRB is 319 

predominantly urban, characterized by the urban heat island effect, while the north of DRB is 320 

mountainous with higher elevations, leading to the spatial distribution of temperatures.  321 

The average temperature and potential evapotranspiration at DRB meteorological stations 322 

exhibited significant variations, while precipitation showed a relatively minor trend (Fig. 4). 323 

Overall, basin-averaged precipitation and potential evapotranspiration showed a non-significant 324 

decreasing trend, while temperatures showed a significant increasing trend. There was no 325 

significant change trend of precipitation for all stations in DRB (Fig. 4a). Twenty out of 21 326 

meteorological stations in the region showed statistically significant increasing trends in average 327 

temperature, indicating a warming trend (Fig. 4b). Nine stations showed a significant decreasing 328 

trend in potential evapotranspiration, primarily located in northern DRB (Fig. 4c). 329 

 330 

Figure 4. Spatial distribution of annual mean (a) precipitation, (b) temperature, (c) potential 331 

evapotranspiration in DRB from 1960-2017. Each triangle represents the Mann-Kendall test result at a 332 

meteorological station. 333 
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The mean precipitation, temperature, and potential evapotranspiration of DRB can be 334 

obtained from the precipitation, temperature, and potential evapotranspiration of stations using the 335 

Tyson polygon method. The inter-annual variation of annual precipitation in DRB showed an 336 

insignificant decreasing trend (-0.51mm a-1). The annual mean temperature showed a significant 337 

increasing trend (0.024℃ a-1). The annual potential evapotranspiration showed a significant 338 

decreasing trend (-0.38mm a-1) (Fig. S3). 339 

3.3 Blue and green water resources  340 

The average annual BW and GW were 1240.8 and 840.7 mm, respectively. The DRB water 341 

resources were dominated by BW, representing 60.1% of the total water resources, and BW was 342 

1.48 times higher than that of GW resources. The average GWF and GWS were 689.3 and 151.4 343 

mm, respectively. 344 

The annual BW resources in the sub-basins of DRB ranged from 893.7-1990 mm, showing 345 

an increasing trend from the central to the south and north of DRB, aligning with the spatial 346 

distribution of precipitation (Fig. 5a). The regions with abundant BW resources are situated in the 347 

central and southeast parts of DRB (>1300 mm), and the BW in the upper reaches is comparatively 348 

low (<1100 mm). Differences in the spatial distribution of BW are primarily caused by differences 349 

in the spatial distribution of precipitation. Overall, the GWF and GWS are more evenly distributed 350 

in the sub-basins than BW. The annual GWF in the sub-basins of DRB ranged from 573.6-923.6 351 

mm. The sub-basins with higher GWF are primarily located in the Xinfengjiang reservoir area in 352 
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the middle reaches (>700 mm), while the low GWF sub-basins are situated in the southwest of 353 

DRB (<600 mm) (Fig. 5b). The land use in the sub-basins where Xinfengjiang Reservoir is located 354 

is primarily water areas, with a higher water evaporation rate than other regions, resulting in a 355 

greater GWF in this area than in other regions. The annual GWS in the sub-basins of DRB ranged 356 

from 126-190.6 mm. The sub-basins with higher GWS are mainly located in the lower part of DRB 357 

(>150 mm) (Fig. 5c). The distribution pattern of GWS resources has a great relationship with the 358 

soil type of the watershed. The upper reaches and the northwestern part of the watershed are mostly 359 

red soil, while the middle and lower reaches are dominated by reddish soil. Reddish soil has a 360 

smaller water storage capacity than red soil, loses water faster, and has weaker water conservation 361 

and water supply performance than red soil. This is the primary factor for the north-south 362 

discrepancies in the amount of GWS resources in DRB. In addition, the southern region is mostly 363 

of large and medium-sized cities. As urban construction land expands, the land use type in the 364 

region has gradually changed to urban land, industrial land, etc., and the solidification of road 365 

surfaces has reduced the area of bare soil in the region, resulting in a decrease in GWS resources. 366 

The annual GWI (Fig. 5d) showed a spatial pattern opposite to BW, decreasing from 0.45 in the 367 

upper reaches to 0.3 in the lower reaches. The highest GWI is found in the upper reaches, which is 368 

due to the relatively low rainfall in the upper reaches and the lush vegetation, with significant plant 369 

interception and transpiration, resulting in a higher proportion of total evapotranspiration than in 370 

the middle and lower reaches. The central part of the basin has the highest precipitation, leading 371 
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to a lower GWI. The southern part of the watershed has the highest temperature, and 372 

evapotranspiration is high. Meanwhile, the lower reaches have a large proportion of agricultural 373 

and urban land, and crop irrigation can increase evapotranspiration. 374 

 375 

Figure 5. Spatial distribution of mean (a) BW, (b) GWF, (c) GWS, (d) GWI in DRB over 1970-2017. 376 

In DRB, there was no significant increasing trend in either BW or GWS, while GWF 377 

exhibited a significant decreasing trend. The annual trend rate of BW in DRB was 0.14 mm a-1, 378 

with an annual fluctuation range of 713.6-2017.5 mm during 1970-2017. The minimum BW 379 

occurred in 1991, while the maximum was recorded in 2016 (Fig. 4a). The GWF in DRB from 380 
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1970 to 2017 exhibited a significant decreasing trend (-0.57 mm a-1) (Fig. 4b). The minimum 381 

GWF occurred in 2005 (603.1 mm), while the maximum was recorded in 1974 (721.3 mm). In 382 

contrast, the GWS in DRB from 1970 to 2017 has been slowly increasing at a rate of 0.015 mm a-383 

1 (Fig. 4c). The annual fluctuation in GWS was smaller than BW and GWF. The GWI in DRB 384 

from 1970 to 2017 showed no significant decreasing trend at a rate of -0.0003 % a-1 (p>0.05) (Fig. 385 

4d), implying that the redistribution of precipitation in DRB might change slowly. 386 

 387 

Figure 6. Interannual variation of (a) BW, (b) GWF, (c) GWS, (d) GWI in DRB during 1970-2017. 388 

3.4 Blue and green water scarcity 389 

The average blue water scarcity level in DRB was low (22.4%) during 1970-2017. The blue 390 

water scarcity levels in various sub-basins ranged from 0.1-206%. The multi-year average blue 391 

water scarcity, except for one sub-basin in the southwest, was all low (<100%) (Fig. 7a). This 392 
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indicates that blue water scarcity is not common in DRB at the annual scale. Regions with 393 

relatively high blue water scarcity (>20%) are mostly situated in the upper reaches of various 394 

tributaries within the watershed, where river streamflow is relatively small. The area with the 395 

highest blue water scarcity (206%) is located in the 63rd sub-basin of Shenzhen and Huizhou, 396 

reaching a moderate level of blue water scarcity. This region has a large population, with a much 397 

higher blue water demand than other areas. Additionally, this sub-basin is situated in the upper 398 

reaches of the primary tributary of DRB, resulting in a limited supply of BW resources. Although 399 

the northern parts of sub-basins 55, 56, and 61 have large populations, these sub-basins are situated 400 

in downstream of the main Dongjiang River, with a higher streamflow, leading to lower BWSC 401 

levels. The average GWSC in the entire basin from 1970-2017 was low (41.4%). The blue water 402 

scarcity levels in various sub-basins ranged from 31-104%. The vegetation cover in DRB is high, 403 

and DRB is thus of relatively high rates of vegetation transpiration and interception evaporation. 404 

The basin experiences a GWSC of nearly 50%, indicating a potential occurrence of GWSC. The 405 

areas with higher GWSC are primarily situated in the middle reaches for DRB (Fig. 7b), where 406 

water surface evaporation is high, resulting in their GWSC exceeding 100%. The evaporated water 407 

in these areas originates from the reservoirs, not the soil, leading to an overestimation of the GWSC 408 

in these sub-basins.  409 

Furthermore, the FLK index was also used to quantify population-driven water resource 410 

scarcity. F1-F4 represent absolute scarcity, scarcity, stress, and no stress, respectively. The results 411 
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showed that most regions in DRB have no water scarcity pressure (Fig. 7c). However, the 63rd 412 

sub-basin experienced absolute water scarcity, and the 52nd sub-basin experienced water scarcity. 413 

There were six lower reaches sub-basins and four upper reaches sub-basins facing water stress. 414 

DRB receives ample precipitation, resulting in a relatively large river flow, generally leading to a 415 

higher FLK index. As a result, the basin faces lower water resource pressure. 416 

 417 
Figure 7. Spatial distribution of the mean (a) BWSC, (b) GWSC, and (c) FLK index in DRB over 1970-418 

2017. 419 

This study also further identified hotspots of BWSC and GWSC in DRB by hierarchical 420 

clustering of BWSC and GWSC in each sub-basin. Figure 8 shows the clustering tree results for 421 

BWSC and GWSC. When the standardized distance was set to 500, all sub-basins could be divided 422 

into four categories according to blue water scarcity: (1) The first category consisted of 27 sub-423 

basins, such as 32, 56, and 28, where the blue water scarcity level was the lowest (<20%). (2) The 424 

second category comprised sub-basin 63, which has the most severe blue water scarcity (206%). 425 
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(3) The third category comprised seven sub-basins, such as 52, 58, and 60, all located in the lower 426 

reaches, with relatively high blue water scarcity levels (40%-100%). These sub-basins are mostly 427 

located in the tributaries of the lower reaches, with a relatively large population and smaller river 428 

streamflow compared to the mainstem of the Dongjiang River. (4) The fourth category consisted 429 

of 28 sub-basins, such as 59, 62, and 8, with blue water scarcity levels ranging from 20% to 40%. 430 

Similarly, hierarchical clustering was conducted for GWSC. When the standardized distance was 431 

set to 500, GWSC in the sub-basins could be divided into three categories: (1) The first category 432 

consisted of 56 sub-basins, such as 37, 56, and 29, with relatively low GWSC levels, all below 433 

50%, indicating low GWSC. (2) The second category consisted of sub-basins 32 and 33, where the 434 

predominant land use type was water areas, leading to higher GWSC due to high water surface 435 

evaporation. (3) The third category consisted of sub-basins 47, 31, 54, 30, and 36, where the water 436 

area proportion in these sub-basins was larger than in others, leading to significant influences from 437 

water surface evaporation. Figure S4 shows the annual variation of blue water scarcity and green 438 

water scarcity in the basin. Except for some sub-basins, the blue and green water scarcity in most 439 

sub-basins is less than 50%. The degree of green water scarcity is higher than that of blue water 440 

scarcity in most of the sub-basins. Only the sub-basin 63 in downstream experienced a severe blue 441 

water scarcity. 442 
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 443 

Figure 8. Hierarchical clustering tree of (a) BWSC, (b) GWSC. 444 

The interannual variations in BWSC and GWSC in DRB showed distinct regional differences. 445 

BWSC in the basin was slowly increasing at a rate of 0.3% a-1 (Fig. 9a). The BWSC in the lower 446 

reaches slowly increased at a rate of 1.1 % a-1, while the BWSC in the upper and middle reaches 447 

slowly decreased at -0.47% a-1 and -0.1% a-1, respectively. GWSC in the upper, middle, and lower 448 

reaches of DRB showed a decreasing trend, with basin scale GWSC decreasing significantly at a 449 

rate of -0.04% a-1 (Fig. 9b). Despite the acceleration of urbanization and a significant increase in 450 
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population in the middle and lower reaches of the watershed, blue water availability and the 451 

amount of obtainable BW have been increasing. Additionally, the annual per capita water 452 

consumption in the basin has decreased from 481.0 m³ in 2000 to 245.0 m³ in 2020. As a result, 453 

the rate of increase in BWSC in the watershed has been relatively small. In contrast, the GWF in 454 

DRB demonstrated a significant decreasing trend, and the GWS increased slowly. Therefore, the 455 

GWSC in DRB demonstrated a significant decreasing trend. Meanwhile, the FLK index of the 456 

watershed showed a significant decreasing trend (-285.3 m3 per year), which means that the per 457 

capita water resources in the watershed have significantly decreased (Fig. 9c). This is due to the 458 

rapid population growth in the watershed and the slow increase in available water resources. 459 

 460 

Figure 9. Interannual variation of(a) BWSC, (b) GWSC, and (c) FLK index in DRB during 1970-2017. 461 
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3.5 Impacts of LUCC and climate change on blue and green water 462 

To examine the impacts of climate change and LUCC on BW and GW change, this study set 463 

three climate conditions and land use scenarios to explore this effect by comparing the scenarios 464 

(Table 3). The combined impacts of climate change and LUCC on BW and GWS in DRB were 465 

superimposed, and the combined effect on GWF was a negatively synergistic effect. Figure 10 466 

shows the variations in BW and GW under the impacts of climate change (S2-S1) and LUCC (S3-467 

S2), as well as their combined effects (S3-S1), along with the relative contribution of climate 468 

change and LUCC to the BW and GW changes in DRB during 1970-2017. Under the joint 469 

influences of climate change and LUCC, BW decreased by 4.5 mm a-1. Among this decrease, 470 

climate change resulted in a loss in BW of 3.9 mm a-1, contributing 88.0%, while LUCC led to a 471 

loss in BW of 0.5 mm a-1, contributing 12.0% (Fig. 10a). The effect of climate change on BW 472 

variation is much greater than that of LUCC at the basin scale. Under the combined influences of 473 

climate change and LUCC, GWF decreased by 17.0 mm a-1. Among this decrease, climate change 474 

accounted for a decrease in GWF of 19.5 mm a-1, contributing 88.5% to the decrease, while LUCC 475 

led to an increase in GWF of 2.5 mm a-1, contributing 11.5% (Fig. 10b). Overall, the influence of 476 

climate change on GWF changes in the watershed is significantly more pronounced than that of 477 

LUCC. Under the joint influences of climate change and LUCC, GWS increased by 0.7 mm a-1. 478 

Among this increase, climate change contributed to an increase in GWS of 0.3 mm a-1, accounting 479 

for 39.4%, while LUCC contributed to an increase in GWS of 0.4 mm a-1, accounting for 60.6% 480 
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(Fig. 10c). DRB is situated in a humid region with high GWS, resulting in small fluctuations of 481 

GWS in response to precipitation changes. The fluctuations of GWS are primarily influenced by 482 

soil properties and land use. In general, the effect of climate change on the GWS change of DRB 483 

is smaller than the effect of LUCC. 484 

 485 

Figure 10. Effects and relative contribution of climate change and LUCC on the changes in (a) BW, (b) GWF, 486 

and (c) GWS in DRB during 1970 to 2017. 487 

Under the coupled influences of climate change and LUCC, the BW and GW resources in 488 

DRB have changed. However, there were differences in the joint impacts of climate change and 489 
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LUCC on BW and GW. Both climate change and LUCC have led to the decrease of BW in the 490 

watershed, and the combined effect of climate change and LUCC on BW equals to the sum of their 491 

individual effects. Climate change, such as a decrease in potential evapotranspiration, has resulted 492 

in a decrease in GWF in DRB, while LUCC has led to an increase in GWF. Therefore, the joint 493 

impacts of climate change and LUCC on GWF were partially offset, resulting in the joint impacts 494 

of climate change and LUCC on GWF being less than the sum of their absolute individual effects. 495 

Both climate change and LUCC have led to an increase in GWS in DRB, and the joint impacts of 496 

climate change and LUCC on GWS equals to the sum of their individual effects. 497 

4 Discussion 498 

This study used the SWAT model to simulate the changes in BW and GW resources in DRB 499 

over the past five decades and their response to climate change and LUCC. It also assessed the 500 

water resource security in the basin. The findings revealed that the GWF exhibited a decreasing 501 

trend, and the BW and GWS exhibited an increasing trend. Liu et al. (2010) similarly found an 502 

increasing trend in annual surface runoff in DRB. Potential evapotranspiration in DRB showed a 503 

decreasing trend, which may be the main cause of the significant decrease in GWF in the basin 504 

(Fig. S3), and similar conclusions are obtained in He et al. (2013). 505 

We show that water resources in DRB are dominated by BW, with a mean annual GWI of 0.4, 506 

which is the same as what many studies show in humid areas (Nie et al., 2023). Although the GWI 507 
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in humid areas is much smaller than that in arid areas, the ratio of GW in DRB still reaches 40%, 508 

so it is imperative to incorporate GW in the water resources assessment system. The GWI in the 509 

upper and middle reaches of DRB exceeded 0.4, while that in the lower reaches was only about 510 

0.3. These results mean that to ensure the appropriate utilization of water resources, effective water 511 

management in the upper and middle reaches of DRB should consider GW planning while water 512 

management in the lower reaches should mainly consider BW. The assessment results of BWSC 513 

and GWSC in DRB similarly illustrate this issue. The GWSC in the upper and middle reaches was 514 

bigger than that in the lower reaches of DRB, while the BWSC in the lower reaches of DRB was 515 

bigger than in the upper and middle reaches (Fig. 9). 516 

There are robust correlations between BW and precipitation, GWF and potential 517 

evapotranspiration in DRB. Climate change plays a dominant role in variations of BW and GWF. 518 

BW is more sensitive to precipitation and potential evapotranspiration. GWF shows sensitivity to 519 

changes in potential evapotranspiration and GWS is influenced by both precipitation and potential 520 

evapotranspiration (Ahiablame et al., 2017; He et al., 2015). Of course, some studies in arid regions 521 

show that GWF is mainly affected by precipitation (Ahiablame et al., 2017), which may be linked 522 

to the hydrothermal conditions of the basin. There is sufficient precipitation in DRB, where the 523 

GWF changes are mainly energy-limited, and the effect of precipitation on the GWF is smaller.  524 

Although BW and GW are mainly affected by climate change, the influences of LUCC on 525 

them cannot be ignored. The reaction of water resources to LUCC is exceedingly intricate and 526 
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involves various hydrological processes, including runoff yield, infiltration, and groundwater (Cuo, 527 

2016; Zhang and Shangguan, 2016). As there is a strong compensatory effect of diverse land use 528 

in the hydrological system, particularly in expansive watersheds, this could create a strong 529 

resistance to GW and BW conversion (Lin et al., 2015). A decrease in forest land or an increase in 530 

cultivated and urban land could lead to a rise in BW and a decline in GW in the watershed. Veettil 531 

and Mishra (2018) demonstrate that there is a 10% rise in forest land cover and a 1.4% drop in BW, 532 

indicating a negative elasticity between the two. However, the effect of urban land on streamflow 533 

in different periods showed the opposite effect. On the one hand, the increase in urban land results 534 

in increases in impermeable area and thus surface runoff in the basin, but at the same time, the 535 

increase in urban land may also reduce groundwater discharge to streamflow. At the same time, 536 

LUCC often results in changes in vegetation. Vegetation variations affect the water cycle by 537 

altering canopy interception (Shao et al., 2018; Wu et al., 2019b), transpiration (Chen et al., 2023) 538 

and canopy evaporation, and ameliorating soil structure (Qiu et al., 2022), Thus increasing 539 

vegetation often increases infiltration and soil moisture and reduces surface runoff. 540 

There are several limitations and uncertainties in this research. (1) Since the quantity of the 541 

BW and GW is derived from the output results of the model simulations, including water yield, ET, 542 

soil moisture, and groundwater, the precision of the outcomes depends largely on the precision of 543 

the model simulations. Given the absence of observed evapotranspiration and soil moisture data 544 

for DRB, this study calibrated and validated the SWAT model using only monthly streamflow, 545 
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which may weaken these results to some extent. To enhance the credibility of the model, this study 546 

also utilized widely used actual evapotranspiration data (GLEAM) and soil moisture (ERA5-land) 547 

during model validation at a basin scale. The findings indicated that the simulation performance is 548 

relatively good and meets the accuracy requirements for simulation. (2) Climate change, LUCC, 549 

and large reservoir operation are the primary factors influencing the changes in hydrological 550 

conditions in DRB. The contributions of reservoir regulation, LUCC, water resource utilization, 551 

and climate change to the distribution of intra-annual flow are 33.5%, -9%, 4.5%, and 1%, 552 

respectively, during 1956-2009 (Tu et al., 2015). The operation of reservoirs, including large 553 

reservoirs like the Xinfengjiang Reservoir, is one of the important reasons for hydrological changes 554 

in DRB (Lin et al., 2014; Zhang et al., 2015). The reservoir module was not established when 555 

constructing the SWAT model in this research. To obtain natural BW and GW volumes in the 556 

watershed and mitigate the impact of hydraulic engineering, reconstructed natural streamflow 557 

based on observed flow was utilized for model calibration and validation. However, hydraulic 558 

engineering significantly influences the annual allocation of BW. The flow restoration considered 559 

the impacts of the three major reservoirs on the Dongjiang River and did not consider the impacts 560 

of other minor hydraulic projects and human water consumption. (3) Both the calculations of 561 

BWSC and the FLK index include environmental flows. This study represented the proportion of 562 

environmental flow in streamflow as 80%. Some studies have suggested that assuming 563 

environmental flow to be 80% of the total water resources in a basin may overestimate water 564 
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scarcity (Liu et al., 2017; Richter et al., 2012). Therefore, we varied the proportion of 565 

environmental flow and assessed the degree of BWSC using 60% and 70% proportions. Results 566 

show that only the 63rd sub-basin changed from severe BWSC to moderate to high BWSC, while 567 

other sub-basins remained with low BWSC. Therefore, the threshold for environmental flow has a 568 

minor impact on this paper. The assessment of BWSC and per capita water resources did not take 569 

into account the water demand of cities such as Shenzhen and Hong Kong, although the water 570 

supply for these cities primarily comes from the Dongjiang River through the Dongjiang-Shenzhen 571 

Water Supply Project. (4) The hydrological modeling approach utilized in this research is a 572 

frequently used method for quantitative analysis of attribution. Nevertheless, it implies 573 

independence between climate change and LUCC and does not adequately distinguish the impacts 574 

of these two components. Such restrictions are diffusely recognized to exist (Dey and Mishra, 575 

2017). Despite this recognized limitation, hydrological modeling methods have been widely used 576 

in numerous similar researches, yielding credible results (Li et al., 2021; Nie et al., 2023). 577 

5 Conclusion 578 

This study analyzed the spatio-temporal evolution of BW and GW, assessed the water security, 579 

and evaluated the effects of climate change and LUCC on BW and GW in DRB using the SWAT 580 

model. The conclusions can be outlined as follows: 581 

(1) During 1970-2017, grassland, cultivated land, and forestland in DRB decreased by 4.3%, 582 
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10.8%, and 0.2%, respectively, while urban land and water areas increased by 137% and 2.8%, 583 

respectively. The annual precipitation and potential evapotranspiration showed a non-significant 584 

decreasing trend, while the annual average temperature showed a significantly increasing trend. 585 

(2) The annual BW, GWF, and green storage in DRB from 1970-2017 were 1240.8 mm, 840.7 586 

mm, and 151.4mm, respectively. BW (0.14 mm a-1) and GWS (0.015 mm a-1) in DRB showed no 587 

significant increasing trend, and GWF (-0.57 mm a-1) showed a significant decreasing trend. 588 

(3) The level of annual BWSC and GWSC in DRB were low, and per capita water resources 589 

exceeded 1,700 m3 capita-1 a-1. BWSC displayed a non-significant increasing trend, while the 590 

GWSC and FLK index displayed a significant decreasing trend, especially in lower reaches.  591 

(4) Climate change was the major driving factor of changes in BW and GWF, and LUCC was 592 

the major driving factor of GWS change. Climate change contributed to 88.0%, 88.5%, and 39.4% 593 

of the changes in BW, GWF, and GWS in DRB, respectively. Both climate change and LUCC 594 

decrease (increase) BW (GWS), while climate change (LUCC) decreases (increases) GWF in DRB. 595 
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